

1

2 **Characterization of the Long-term Radiosonde Temperature Biases in**
3 **the Lower Stratosphere using COSMIC and Metop-A/GRAS Data from**
4 **2006 to 2014**

5

6

7

8 Shu-peng Ho¹, Liang Peng¹, Holger Vömel²

9

10 ¹ COSMIC Project Office, University Corporation for Atmospheric Research, Boulder,
11 CO, USA

12 ² National Center for Atmospheric Research, Boulder, CO, USA

13

14 Manuscript for Atmospheric Chemistry and Physics
15 September 2016

16

17

18

19 Shu-Peng Ho, COSMIC Project Office, Univ. Corp. for Atmospheric Research, P. O.
20 Box 3000, Boulder CO. 80307-3000, USA (spho@ucar.edu)

21

22

23

24

25

26

27

28

29

30

31 **Abstract**

32 Radiosonde observations (RAOBs) have provided the only long-term global *in*
33 *situ* temperature measurements in the troposphere and lower stratosphere since 1958. In
34 this study, we use consistently reprocessed Global Positioning System (GPS) radio
35 occultation (RO) temperature data derived from COSMIC and Metop-A/GRAS missions
36 from 2006 to 2014 to characterize the inter-seasonal and inter-annual variability of
37 temperature biases in the lower stratosphere for different sensor types. The results show
38 that the RAOB temperature biases for different RAOB sensor types are mainly owing to i)
39 uncorrected solar zenith angle dependent errors, and ii) change of radiation correction.
40 The mean daytime temperature difference (ΔT) for Vaisala RS92 is equal to 0.18 K in
41 Australia, 0.20 K in Germany, 0.10 K in Canada, 0.13 K in England, and 0.33 K in Brazil.
42 The mean daytime ΔT is equal to -0.06 K for Sippican, 0.71 K for VIZ-B2, 0.66 K for
43 AVK-MRZ, and 0.18 K for Shanghai. The daytime trend of anomalies for Vaisala RS92
44 and RO temperature at 50 hPa is equal to 0.00 K/5yrs over United States, -0.02 K/5 yrs
45 over Germany, 0.17 K/5yrs over Australia, 0.23 K/5yrs over Canada, 0.26 K/5yrs over
46 England, and 0.12 K/5yrs over Brazil, respectively. Although there still exist
47 uncertainties for Vaisala RS92 temperature measurements over different geographical
48 locations, the global trend of temperature anomaly between Vaisala RS92 and RO from
49 June 2006 to April 2014 is within +/-0.09 K/5yrs globally. Comparing with Vaisala RS80,
50 Vaisala RS90 and sondes from other manufacturers, the Vaisala RS92 seems to provide
51 the best RAOB temperature measurements, which can potentially be used to construct
52 long term temperature CDRs. Results from this study also demonstrate the feasibility to
53 use RO data to correct RAOB temperature biases for different sensor types.

54 **1. Introduction**

55 Stable, long-term atmospheric temperature climate data records (CDRs) with accurate
56 uncertainty estimates are critical for understanding the impacts of global warming in both
57 troposphere and stratosphere and their feedback mechanisms (Thorne et al., 2011; Siedel
58 et al., 2011). Radiosonde observations (RAOBs) have provided the only long-term global
59 *in situ* temperature, moisture, and wind measurements in the troposphere and lower
60 stratosphere since 1958. Several groups have been using multiple years of RAOB
61 temperature measurements to construct long term CDRs (e.g., Durre et al., 2005; Free et
62 al., 2004, 2005; Sherwood et al., 2008; Haimberger et al., 2008, 2011; Thorne et al., 2011;
63 Siedel et al., 2009). However, it has also long been recognized that the measurement
64 quality varies for different sensor types and height (e.g. Luers and Eskridge, 1995, Luers
65 1997, Luers and Eskridge 1998). Therefore, beside some sensor types where a relatively
66 objective radiation correction had been applied to some sensor types (i.e., Vaisala RS90),
67 it is very difficult to objectively identify, trace, and remove most of the sensor type
68 dependent biases for the historical sonde data and use the corrected RAOB temperatures
69 to construct consistent temperature CDRs. The large uncertainties among temperature
70 CDRs constructed from satellite and *in situ* measurements are still one of the most
71 challenging issues for global changing researches (IPCC AR5).

72 The causes of temperature errors among RAOB sensor types include the
73 changing of instruments and practices (Gaffen, 1994) and measurement errors occurring
74 due to the influence of solar and infrared radiation on the thermistor. In the past decade,
75 many homogenization methods were proposed to identify and correct sonde errors due to
76 changing of instruments and practice (Luers and Eskridge 1998; Lanzante et al., 2003;

77 Andrae et al., 2004; Free et al., 2004, 2005; Sherwood et al., 2008; Haimberger et al.,
78 2008, 2011; Thorne et al., 2011; Siedel et al., 2009). Possible temperature errors due to
79 changing of instruments were identified by comparing with those temperature
80 measurements from adjacent weather stations. However, this approach is limited by the
81 low number of co-located observations and large atmospheric variability. In addition, due
82 to lack of absolute references, the remaining radiation temperature biases from adjacent
83 stations may not be completely removed. As a result, only relative temperature
84 differences of a possibly large uncertainty among stations are identified.

85 To correct possible RAOB temperature errors due to radiative effects, Andrae et
86 al., (2004) and Haimberger et al., (2007, 2008, 2011) used reanalyses data to identify
87 temperature anomalies between observations and backgrounds, which are then used to
88 minimize the differences between daytime and nighttime temperature anomalies.
89 Nevertheless, because changes of reanalysis systems and possible incomplete calibration
90 of satellite instruments may complicate the temperature anomaly correction, long-term
91 stability of the derived temperature trends is still of great uncertainty. To correct the
92 RAOB solar/infrared radiation errors, radiation correction tables (for example, RSN96,
93 RSN2005 and RSN2010 tables from Vaisala) were introduced by manufacturers to correct
94 for radiation errors of particular sensors. However, when and how exactly different
95 countries start to apply these corrections and whether there are remaining uncorrected
96 radiative effects over different geographic regions are still unknown. It is critically
97 important to use stable and accurate temperature references to characterize these errors
98 from multiple sensors in different geographical regions over a long period of time.

99 Unlike RAOBs, the fundamental observable (i.e., time delay) for the Global

100 Positioning System (GPS) radio occultation (RO) satellite remote sensing technique can
101 be traced to ultra-stable international standards (atomic clocks) on the ground. The RO
102 derived atmospheric variables have been used as reference to identify RAOB sensor
103 dependent biases. For example, Kuo et al., (2004) used RO data to identify sensor type
104 dependent refractivity biases. Ho et al., (2010a) demonstrated that RO derived water
105 vapor profiles can be used to distinguish systematic biases among humidity sensors. He et
106 al., (2009), hereafter He2009 and Sun et al. (2010, 2013) used GPS RO temperature data
107 in the lower stratosphere to quantify the temperature biases for several sensor types.
108 While He2009 used the FORMOSAT-3/Constellation Observing System for Meteorology,
109 Ionosphere, and Climate (COSMIC) post-processed temperature profiles from August
110 2006 to February 2007 to quantify the radiosonde radiation temperature biases for
111 different sensor types, Sun et al., (2010; 2013) used COSMIC real-time processed
112 temperature profiles from April 2008 to August 2009 and from May 2008 to August 2011,
113 respectively, to identify radiosonde temperature biases for numerical weather prediction
114 analysis. Because the complete GPS orbital information is not available in a real-time
115 mode, approximate GPS orbital information was used in the real-time inversion
116 processing. The differences between real-time and post-processed RO temperatures in the
117 lower stratosphere range from 0.3 K to 0.1 K depending on the comparison periods (not
118 shown). Although the real-time COSMIC data, which are processed by using periodically
119 revised inversion packages, may be suitable for weather analysis, it may not be suitable
120 for climate studies. Both of these RAOB-RO comparisons are constructed from a
121 relatively limited period of time. A consistent validation of the variability of inter-
122 seasonal and inter-annual RAOB temperature biases in a longer time period (close to ten

123 years) for different temperature sensor types has not yet been done.

124 Recently, the UCAR Constellation Observing System for Meteorology,
125 Ionosphere, and Climate (COSMIC) Data Analysis and Archive Center (CDAAC) has
126 developed an improved reprocessing package, which is used to consistently process RO
127 data from multiple years of multiple RO missions including COSMIC (launched in April
128 2006) and Meteorological Operational Polar Satellite–A (Metop-A)/GRAS (GNSS
129 Receiver for Atmospheric Sounding (launched in October 2006). A sequence of
130 processing steps is used to invert excess phase measurement to retrieve atmospheric
131 variables including bending angle, refractivity, pressure, temperature, and geo-potential
132 height. Brief description of the improved reprocessing package and the general quality of
133 GPS RO data for climate as benchmark references for climate studies are described in
134 Appendix A.

135 The objectives of this study are to use consistently reprocessed GPS RO
136 temperature data to characterize i) solar zenith angle (SZA) dependent temperature biases,
137 ii) potential residual temperature errors due to incomplete radiation correction, iii)
138 temperature biases due to change of radiation correction over different geographical
139 regions, iv) the inter-seasonal and inter-annual variability of these temperature biases,
140 and v) the trend analysis and their uncertainty for different sensor types in the lower
141 stratosphere. Contrasting to previous studies (i.e., He2009 and Sun et al. 2010, 2013),
142 close to 8 years (from June 2006 to April 2014) of consistently reprocessed temperature
143 profiles derived from COSMIC (i.e., COSMIC2013 covering from June 2006 to April
144 2014) and Metop-A/GRAS (i.e., Metop-A2016 covering from September 2007 to
145 December 2015) are used. Because COSMIC contains dominate sample numbers (six

146 receivers) than those of Metop-A (one receiver), we limited this study from June 2006 to
147 April 2014 (see Section 2.2). Because the quality of RO data in the lower stratosphere
148 does not change during the day or night and is not affected by clouds (Anthes et al.,
149 2008), the RO temperature profiles co-located with RAOBs are useful to identify the
150 variation of temperature biases of different temperature sensors. The trend uncertainties
151 for specific RAOB sensor types are also specified. Systematic RAOB temperature biases
152 and their uncertainties relative to RO data are documented for different sensor types,
153 which in turn is useful to quantify uncertainties of temperature CDRs constructed from
154 different RAOB sensor types.

155 In Section 2, we describe the RO and RAOB data and the comparison method.
156 The global comparison of RO-RAOB pairs for different temperature sensor types for
157 daytime and nighttime are summarized in Section 3. The global SZA dependent
158 temperature biases for various sensor types at different geo-graphical regions are also
159 compared in this section. The inter-seasonal variations of RAOB-RO temperature biases
160 are assessed in Section 4. We perform the trend analysis for temperature biases among
161 sensors in Section 5. We conclude our study in Section 6.

162

163 **2. Data and Comparison Method**

164 **2.1 RAOB data**

165 The radiosonde data (sonPrf) from June 2006 to April 2014 used in this study are
166 downloaded from CDAAC (<http://cosmic.cosmic.ucar.edu/cdaac/index.html>). The sonPrf
167 data include the temperature, pressure and moisture profiles generated from the original
168 radiosonde data in the NCAR data archive (<http://rda.ucar.edu/datasets/ds351.0>), which

169 provides global radiosonde data with the detailed instrument type.

170 There are more than 1100 radiosonde stations over both lands and islands globally.

171 Figure 1 depicts the geophysical locations for all RAOB data from June 2006 to April
172 2014, which are used in this study. These include Vaisala RS80, RS90, RS92, AVK-
173 MRZ (and other Russian sondes), VIZ-B2, Shippican MARK II A, Shanghai (from
174 China), and Meisie (Japan). These radiosonde data are transmitted through the Global
175 Telecommunication System (GTS). Table 1 summarizes the availability for different
176 instrument types. In total, seventeen different types of radiosonde systems were used
177 during the comparison time period. The solar absorptivity (α) and sensor infrared
178 emissivity (ϵ) for the corresponding thermocap and thermistor for different instrument
179 types are also summarized in Table 1. Most of the radiosonde data are collected twice
180 per day.

181 Because the Vaisala RS80 sensor was never changed and should be the same
182 across all RS80 models and the software uses the same radiation correction table which
183 should not show any differences, we do not further separate Vaisala RS80 sensors (i.e.,
184 ID=37, 52, 61, and 67). For the same reason, all RS92 sensors (ID=79, 80, 81) are
185 summarized together and all Russian sensors (ID=27, 75, 88, 89, 58) are also summarized
186 as AVK sonde (see Table 2 and Section 3.1).

187

188 **2.2 GPS RO data**

189 The re-processed COSMIC (Version 2013.3520, available from June 2006 to
190 April 2014) and Metop-A/GRAS (Version 2016.0120, available from April 2008 to Dec.
191 2015) dry temperature profiles downloaded from UCAR CDAAC

192 (<http://cosmic.cosmic.ucar.edu/cdaac/index.html>) are used in this study. With six GPS
193 receivers on board LEO satellites, COSMIC produced about 1000 to 2500 RO profiles
194 per day since launch. With one GPS receiver, Metop-A/GRAS produced about 600 RO
195 profiles per day. To maintain similar sample numbers in each month, we use RO data
196 from June 2006 to April 2014 in this study. The detail inversion procedures of COSMIC
197 Version 2013.3520 and Metop-A Version 2016.0120 are summarized in [http://cdaac-](http://cdaac-www.cosmic.ucar.edu/cdaac/doc/documents/Sokolovskiy_newroam.pdf)
198 [www.cosmic.ucar.edu/cdaac/doc/documents/Sokolovskiy_newroam.pdf](http://cdaac-www.cosmic.ucar.edu/cdaac/doc/documents/Sokolovskiy_newroam.pdf). The general
199 description of CDAAC inversion procedures is detailed in Kuo et al., (2004), and Ho et
200 al., (2009a, 2012). In a neutral atmosphere, the refractivity (N) is related to pressure (P in
201 hPa), temperature (T in K) and the water vapor pressure (e in hPa) according to Smith
202 and Weintraub (1953):

203

204
$$N = 77.6 \frac{P}{T} + 3.73 * 10^5 \frac{e}{T^2} . \quad (1)$$

205

206 Because in the upper troposphere and stratosphere moisture is negligible, the dry
207 temperature is nearly equal to the actual temperature (Ware et al., 1996). In this study, we
208 use RO dry temperature from 200 hPa to 20 hPa to quantify the temperature biases for
209 different sensor types.

210

211 **2.3 Detection of RAOB Temperature Biases Using RO Data over Different
212 Geographical Regions**

213 The RO atmPrf data from COSMIC and Metop-A/GRAS are first interpolated into
214 the mandatory pressure level of the radiosondes (i.e., 200 hPa, 150 hPa, 100 hPa, 50 hPa,

215 and 20 hPa). To account for the possible temporal and spatial mismatches between RO
216 data and RAOBs, the RO atmPrf data within 2 hours and 300 km with those radiosonde
217 data are collected for different ROAB instrument types, which are similar to the matching
218 criteria used in He2009. Different from He2009, positions of RO measurements at the
219 corresponding heights are used in the RAOB-RO ensembles. We compute temperature
220 differences between RO atmPrf and the corresponding RAOB pairs in the same pressure
221 level i using the equation

222

223
$$\Delta T(i, j) = (1/n) \times \sum_{s=1}^{s=n} \{T_{RAOB}(i, j, s) - T_{RO}(i, j, s)\}, \quad (2)$$

224

225 where j is the index for eighteen instrument type listed in Table 1, and s is the index for
226 all the matched pairs for each of seventeen instrument types.

227 In addition, we further compare the monthly mean temperature biases for the
228 matched pairs at different geo-graphical regions. The equation we used to compute the
229 monthly mean temperature biases between RAOB and RO data at the mandatory height is

230

231
$$\Delta T^{Time}(l, m, k) = T_{RAOB}(l, m, k) - T_{RO}(l, m, k), \quad (3)$$

232

233 where l , m , and k are the indices of the month bin for each vertical grid (l), zone (m) and
234 month for the whole time series ($k = 1$ to 95) from June 2006 to December 2015,
235 respectively. The geographical zones (m) are from USA ($m=1$), Australia ($m=2$),
236 Germany ($m=3$), Canada ($m=4$), England ($m=5$), Brazil ($m=6$), Russia ($m=7$), and China
237 ($m=8$), Japan ($m=9$), respectively. The standard deviation of the time series ($Std(\Delta T^{Time})$)

238 is also computed to indicate the variation ΔT^{Time} . In this study, we define daytime data
239 are from SZA from 0 degree to 90 degree and nighttime data area from SZA from 90
240 degree to 180 degree. The SZA is computed from the launch time and location of sonde
241 station since the time and location of the sonde at different height is not available.

242

243 **3. Global Mean RAOB Temperature Biases for all Sensor Types Identified by RO
244 Data**

245 Introduced since 2003, RS92 (ID=79,80,81) from June 2006 to April 2014 was used
246 in this study. Over oceans, Vaisala RS92 launched from ships were also used (see Figure
247 1). Since 1981 to the current, Vaisala RS80 (from 1981 to 2014), RS90 (from 1995 to
248 2014), and RS92 have widely used for numerical weather prediction (NWP) and
249 atmospheric studies. While the Vaisala have been corrected for possible radiation error
250 (see RS92 Data Continuity link under Vaisala website), some radiation corrections were
251 also made for other sensor types although that may not be clearly indicated in the
252 Metadata files. We quantify the global mean residual radiation correction biases for all
253 sensor types in this section.

254

255 **3.1 The RAOB Temperature Biases during the Daytime and Nighttime for All Senor
256 Types**

257 In total, we have more than 600,000 RAOB-RO pairs. Using Eq. (2), we compute
258 the temperature biases of radiosonde measurements for each individual sensor type. The
259 mean temperature bias for ensembles of the RAOB-RO pairs from June 2006 to April
260 2014 for the layer between 200 hPa and 20 hPa for different RAOB sensor types is

261 summarized in Table 2. The standard deviations of the temperature difference ($Std(\Delta T)$)
262 for the layer between 200 hPa and 20 hPa for each individual radiosonde types are also
263 calculated.

264 In general, the radiosonde temperature biases vary for different sensor types. The
265 mean ΔT for RS92 (0.16 K), RS80 (0.10 K), RS90 (0.13 K), Sippican MarkIIA (-0.08 K),
266 Shanghai (0.05 K) and Meisei (0.11 K) are smaller than those for AVK (0.33 K) and VIZ-
267 B2 (0.22 K) (see Table 2).

268 The solar radiation effect on different sensors is the dominant error source of
269 RAOB temperature biases (Luers et al., 1998 and He2009). We assume that all
270 operational data have a radiation correction already applied. The global temperature
271 biases relative to the co-located RO temperature at 50 hPa for various radiosonde sensor
272 types for daytime and nighttime are shown in Figures 2a and b, respectively. Only those
273 stations containing more than 50 RO-RAOB pairs are plotted. Figure 2a depicts that there
274 exists obvious different mean ΔT for different sensor types, which vary with geographical
275 region. Most of the sensor types contain positive temperature biases ranging from 0.1 to
276 0.5 K during the daytime. This bias during daytime may be a result of the residual error
277 of the systematic radiation bias correction. Although we only include those stations
278 containing more than 50 RO-RAOB pairs, some levels of heterogeneity (i.e., Fig. 2a over
279 Brazil) may be, in part, due to lower sampling numbers. For example, those stations with
280 temperature biases larger than 0.5 K in the east Brazil contain only about 60 RO-RAOB
281 pairs. The causes of the temperature biases heterogeneity over North and South China are
282 not certain in this point.

283 The mean ΔT between 200 hPa and 20 hPa for different sensor types in the

284 daytime is summarized in Table 2. The daytime mean ΔT (RS92) is about 0.1 K to 0.3 K
285 globally, and the ΔT (AVK) is as large as 0.8 K. The relatively larger $Std(\Delta T)$ for
286 Shanghai (~1.67 K) may be mainly due to large ΔT difference in north and south China
287 under different solar zenith angle especially during the daytime. In the daytime ΔT
288 (Shanghai) can be as large as 0.2 K to 0.4 K in east and north China and range from -0.2
289 K to -0.4 K in the south China.

290 The mean nighttime ΔT is very different from those in the daytime for the same
291 sensors. Figure 2b shows that most of the sensor types show a cold bias at night except
292 for Vaisala in South American, Australia, and Europe. The mean ΔT at night for the two
293 sonde types with the largest warm bias at daytime (AVK and VIZ-B2) is equal to -0.06 K
294 and -0.42 K, respectively. The scatter of ΔT at night is similar for all sonde types with
295 $Std(\Delta T)$ between 1.55 K and 1.68 K (see Table 2).

296 The global mean ΔT for the Vaisala RS92 during the comparison period is slight
297 larger than the temperature comparison between COSMIC and Vaisala RS92 in 2007 (Ho
298 et al., 2010b) (~0.01 K) and in He2009 (~0.04 K from ~200 hPa to 50 hPa). This could be
299 in part because more RS92-RO pairs from lower solar zenith angle regions (for example,
300 from the southern Hemisphere and near Tropics, see Section 3.2b) are included after
301 2007 (see section 5). The Stds of ΔT for daytime and nighttime combined are 1.52 K for
302 Vaisala RS92, 1.58 K for AVK, 1.67 K for VIZ-B2, 1.59 K for Sippican, 1.68 K for
303 Shanghai, and 1.69 K for Meisei.

304

305 **3.2 Solar Zenith Angle Dependent Temperature Biases for Vaisala Sondes**

306 **a. Regional Comparison Results**

307 More than 50% of RAOB data are from Vaisala sondes, from a number of
308 different countries. In total, 161,019 RS92 (ID=79, 80, 81) ensemble pairs are distributed
309 in all latitudinal zones during the daytime. To quantify a possible residual radiation
310 correction error for Vaisala RS92 measurements in the lower stratosphere, which may
311 vary with SZA, and over different regions, we further compare the mean temperature
312 differences from 200 hPa to 20 hPa for daytime and nighttime over different regions in
313 Figures 3 and 4, respectively. Figure 3a is for United States, and Figs. 3b-f are for the
314 Australia, Germany, Canada, England, and Brazil, respectively.

315 Figure 3a depicts that RS92 in different regions demonstrate a similar quality in
316 terms of standard deviation relative to the mean biases when comparing to RO data.
317 Because some stations in United States are only interested in the tropospheric profiles
318 and use smaller balloons, less RO-RS92 samples are available above 70 hPa comparing
319 those in other countries. The $Std(\Delta T)$ (RS92) from 200 hPa to 20 hPa for different
320 countries are United States (1.59 K), Australia (1.48 K), Germany (1.48 K), Canada (1.43
321 K), England (1.5 K), and Brazil (1.44 K).

322 However, there still exist small but not negligible ΔT (RS92) between 200 hPa
323 and 20 hPa in different regions. The mean ΔT (RS92) in the United States is close to zero
324 near the 200 hPa then slightly increases with height. The mean ΔT (RS92) in United
325 States from 200 hPa to 20 hPa is equal to 0.10 K. The mean ΔT (RS92) are 0.18 K for
326 Australia, 0.20 K for Germany, 0.10 K for Canada, 0.13 K for England, and 0.33 K for
327 Brazil (Figs. 3b-e).

328 Figure 4 depicts the mean RS92-RO temperature differences from 200 hPa to 20
329 hPa for nighttime, where Figure 4a is for United States, and Figs. 4b-f are for the

330 Australia, Germany, Canada, England, and Brazil, respectively. The nighttime RS92 data
331 over different regions show a similar scatter compared to those at daytime. The $Stds(\Delta T)$
332 (RS92) are 1.61 K for United States, 1.50 K for Australia, 1.50 K for Germany, 1.58 K
333 for Canada, 1.47 K for England, and 1.50 K for Brazil. In most of the regions, the mean
334 nighttime temperature biases (RAOB minus RO) are 0.1 K to 0.2 K smaller (colder) than
335 those from the daytime results, except for those in United States and England. The
336 nighttime mean temperature bias for USA is 0.14 K whereas the daytime mean bias is
337 0.10 K. The nighttime mean temperature bias for England 0.14 K whereas the daytime
338 mean bias is 0.13 K. These residual nighttime warm biases are not seen in the ROAB-RO
339 ensemble pairs for Sippican MARK, VIZ-B2, AVK, and Shanghai Sondes (see Section
340 3.3). This 0.1 K – 0.2 K warm bias for RS92 at night could be due to calibration of the
341 RS92 temperature sensor (see Dirksen et al., 2014). The mean nighttime ΔT (RS92) are
342 0.14 K for United States, 0.19 K for Australia, 0.15 K for Germany, -0.10 K for Canada,
343 0.14 K for England, and 0.25 K for Brazil, respectively (Figs. 4a-e).

344 The small but not negligible mean Vaisala RS92 temperature biases in different
345 regions may indicate a small residual error after applying the radiation correction tables
346 (i.e., RSN96, RSN2005, and RSN2010 tables) for the respective sonde type. Because the
347 quality of RO temperature is not affected by sunlight in the lower stratosphere, the small
348 but obvious geographical dependent biases are most likely due to the residual radiation
349 correction for RS92 and when and how different countries apply the radiation correction
350 (see Section 4.1). Because all sondes are launched close to the same UTC time, RS92 in
351 different regions are launched at different local times, i.e. different SZA. The analyses for
352 the SZA dependent temperature biases are further discussed in next section.

353 **b. Solar Zenith Angle Dependent Temperature Biases**

354 To further quantify a possible SZA dependence of the temperature bias due to
355 residual radiation errors for Vaisala RS92, we bin the computed ΔT in 5-degree SZA bins
356 at each of the ROAB mandatory pressure levels above 200 hPa using all the RAOB-RO
357 ensembles from June 2006 to April 2014. Figure 5 depicts the Vaisala RS92 temperature
358 biases at 50 hPa as function of SZA where Figure 5a is for the United States, and Figs.
359 5b-f are for the Australia, Germany, Canada, England, and Brazil, respectively. Only
360 those bins contains more than 50 RAOB-RO pairs are included. Low SZA is at noon and
361 90 degrees SZA is for sunrise or sunset, where the solar elevation angle is close to zero.
362 Figure 5 shows that the mean ΔT (RS92) has a slightly larger warm bias for low SZA
363 (near noon) than that at higher SZA (late afternoon and in the night).

364

365 **3.3 Solar Zenith Angle Dependent Temperature Biases for Sippican MARK, VIZ-
366 B2, AVK-MRZ, and Shanghai Sondes**

367 Unlike Vaisala sondes, which are distributed in almost all latitudinal zones, other
368 sonde types are distributed mainly in the northern mid-latitudes. Figs. 6a-d depict the
369 mean temperature differences from 200 hPa to 20 hPa in the daytime for ΔT (Sippican),
370 ΔT (VIZ-B2), ΔT (AVK), and ΔT (Shanghai), respectively. The mean ΔT is -0.06 K for
371 Sippican, 0.71 K for VIZ-B2, 0.66 K for AVK-MRZ, and 0.18 K for Shanghai,
372 respectively. These mean biases are similar, but not exactly the same as those from
373 He2009 (not shown). This may owe, in part, to the sampling differences between He2009
374 (from 2006 August to 2007 Feb., 7 months) and this study (95 months).

375 Figs. 7a-d depict the mean temperature differences from 200 hPa to 20 hPa in the

376 nighttime also for ΔT (Sippican), ΔT (VIZ-B2), ΔT (AVK-MRZ), and ΔT (Shanghai),
377 respectively. The mean ΔT is -0.10 K for Sippican, -0.42 K for VIZ-B2, -0.06 K for AVK,
378 and -0.07 K for Shanghai. Their $Stds(\Delta T)$ are 1.62 K for Sippican, 1.60 K for VIZ-B2,
379 1.56 K for AVK, and 1.68 K for Shanghai, respectively.

380 Similar to Vaisala, we also bin the computed ΔT in 5-degree SZA bins for each
381 mandatory pressure levels above 200 hPa using all the RAOB-RO pairs from June 2006
382 to April 2014 for different sensor types. Only those bins contains more than 50 RAOB-
383 RO pairs are included. Figures 8a-d depicts ΔT at 50 hPa varying for SZA ranging from 0
384 degrees to 180 degrees for Sippican MARK, VIZ-B2, AVK-MRZ, and Shanghai,
385 respectively.

386 The SZA for Sippican, VIZ-B2, Russian, and Shanghai sondes is mainly ranging
387 between 30 degree and 150 degree. The VIZ-B2 has an obvious warm bias during
388 daytime and a cold bias at night relative to those of RO temperature profiles (Figure 8b).
389 At 50 hPa, the VIZ-B2 warm bias can be as large as 1.75 K near the noon, and it
390 decreases to -0.8 K during the night. AVK has a temperature bias of from about 0.7 K to
391 1.1 K in the daytime where its nighttime biases are close to zero (Figure 8c). The mean
392 temperature biases for the Shanghai sondes is about 0.16 K and -0.07 K for daytime and
393 nighttime (Figure 6d), respectively.

394

395 **4. Comparison of the Seasonal RAOB Temperature Biases in different Regions**

396 Since there is some residual radiation error, we characterize the long-term
397 stability of RAOB temperature measurements for different RAOB sensor types by
398 quantifying their seasonal temperature biases relative to those of co-located RO data.

399

400 **4.1 Identification of RS92 Temperature Biases due to Change of Radiation**

401 **Correction**

402 The RAOB-RO monthly mean temperature biases in the lower stratosphere at
403 different geographical regions are highly dependent on the seasonal variation of the SZA.
404 The Vaisala RS92 radiosonde was introduced in 2003 and is scheduled to be replaced by
405 the Vaisala RS41 in 2017. Vaisala included a reinforcement of the RS92 sensor in 2007,
406 which impacted the radiation error. To account for this sensor update, the radiation
407 correction tables were updated in 2011 (RSN2010, software version 3.64), which is used
408 to replace the original radiation correction table. Between 200 hPa and 20 hPa, the
409 correction in RSN2010 is about 0.1 K stronger than in RSN2005 (see
410 <http://www.vaisala.com/en/products/soundingsystemsandradiosondes/soundingdatacontinuity/RS92DataContinuity/Pages/revisedsolarradiationcorrectiontableRSN2010.aspx>). It is
411 likely that a country updated the correction table for their entire network. However, when
412 exactly each country implemented these updated Vaisala radiation correct tables is
413 unknown.

415 To identify possible RS92 temperature biases due to changes of the radiation
416 correction table (i.e., RSN2010), we compare the mean ΔT from January 2007 to
417 December 2010 (i.e., ΔT (RS92₂₀₀₇₀₁₋₂₀₁₀₁₂) to those from January 2011 to April 2014 (i.e.,
418 ΔT (RS92₂₀₁₁₀₁₋₂₀₁₄₀₄) over the United States, Australia, Germany, Canada, England, and
419 Brazil (Figs. 9a-f). RO temperature is used as references for these two periods. Results
420 show that there is no obvious ΔT change between these two periods for the RS92 sondes
421 over United States and Germany (the mean daytime temperature difference between these
422 two periods are about -0.05 K and -0.01 K in 50 hPa for United States and Germany,

423 respectively, see Figs. 9a and c). However, the daytime temperature difference between
424 ΔT (RS92₂₀₀₇₀₁₋₂₀₁₀₁₂) and ΔT (RS92₂₀₁₁₀₁₋₂₀₁₄₀₄) over Australia, Canada, England, and
425 Brazil show obvious close to 0.1 K to 0.15 K difference varying at different heights (see
426 Figures 9b, c, e, and f, respectively). Note that over Australia, the temperature difference
427 between these two periods at 20 hPa is also as large as -0.2 K, which may also be resulted
428 in the incomplete radiation correction. The incomplete radiation correction likely leads to
429 small but not negligible anomaly in the time series. In this case, the trend anomalies in
430 Australia, Canada, England, and Brazil at 50 hPa is larger than those over the United
431 States and over Germany (see Section 5.2).

432 The Deutscher Wetterdienst (DWD), Germany's Meteorological Service,
433 implemented the updated radiation correction for the Vaisala RS92 not in 2011, but in the
434 spring of 2015, to avoid inconsistencies with corrections already implemented in their
435 data assimilation system. This may in part explain the better consistency
436 of ΔT (RS92₂₀₀₇₀₁₋₂₀₁₀₁₂) and ΔT (RS92₂₀₁₁₀₁₋₂₀₁₄₀₄) over Germany than over other
437 countries. This also indicates the importance of establishing traceability through careful
438 documentation and metadata tracking, which is especially crucial for radiosonde data
439 used in climate studies. The relatively small temperature difference between these two
440 periods over the United States is most likely a statistical artifact due to the very small
441 number of coincidences in this period, since the US National Weather Service (NWS) did
442 not use Vaisala RS92 radiosondes before 2012.

443

444 **4.2 Time Series Anomaly for RS92**

445 SZA-dependent biases may result in seasonally and regionally dependent

446 temperature biases for different sensor types, which may result in unexpected trend
447 uncertainty. With a residual RS92 radiation error identified in the Section 3.2, the time
448 series of the RS92-RO temperature bias behave slightly different for different regions.
449 Figures 10a-f show daytime and nighttime time series of monthly mean temperature
450 biases computed using Eq. (3) at 50 hPa for ΔT^{Time} (RS92) at United States (ΔT^{Time}
451 (RS92_{USA})), Australia (ΔT^{Time} (RS92_{Australia})), German (ΔT^{Time} (RS92_{German})), Canada
452 (ΔT^{Time} (RS92_{Canada})), England (ΔT^{Time} (RS92_{England})), and Brazil (ΔT^{Time} (RS92_{Brazil})),
453 respectively. The number for the monthly RAOB-RO pairs for daytime is in pink dash
454 line and that for the nighttime is in green dash line. The vertical lines superimposed on
455 the monthly mean are the standard error of the mean.

456 Figures 10a-f indicate that the time series of ΔT^{Time} (RS92) at all regions are largely
457 constant in time with a small difference during the daytime and nighttime in each
458 individual regions. The consistency of RAOB and RO time series data is best represented
459 by their standard deviation. The $Std(\Delta T^{Time})$ are 0.4 K for United States, 0.18 K for
460 Australia, 0.20 K for Germany, 0.35 K for Canada, 0.39 K for England, and 0.22 K for
461 Brazil, respectively. The relatively larger $Std(\Delta T^{Time})$ for United States and England may
462 be owing to smaller samples (less than 40 RAOB-RO pairs in most of the months from
463 2006 to 2014). The relative larger $Std(\Delta T^{Time})$ in Canada is mainly caused by the seasonal
464 sampling difference. During summer, daytime RAOB-RO pairs are as many as 400 and
465 drop to less than 10 pairs during winter (Figure 10d). The mean daytime temperature
466 biases are 0.08 K for United States, 0.22 K for Australia, 0.22 K for Germany, -0.06 K
467 for Canada, 0.12 K for England, and 0.35 K for Brazil.

468 The $Std(\Delta T^{Time})$ for RS92 at night are larger than those during daytime, except for

469 those in Canada, which may be due to a relative smaller RAOB-RO ensemble pairs in the
470 nighttime over those regions. The $Std(\Delta T^{Time})$ for RS92 are 0.46 K for United States,
471 0.30 K for Australia, 0.24 K for Germany, 0.32 K for Canada, 0.42 K for England, and
472 0.43 K for Brazil in the nighttime. Their mean nighttime temperature biases are 0.19 K
473 for United States, 0.23 K for Australia, 0.21 K for Germany, -0.01 K for Canada, 0.16 K
474 for England, and 0.26 K for Brazil. The less than 0.5 K $Std(\Delta T^{Time})$ for RS92 over
475 daytime and nighttime over these six regions actually demonstrate the long-term stability
476 of RS92 data.

477 The variation of mean ΔT^{Time} at different regions is highly related to the
478 corresponding variation of SZA. The largest mean ΔT^{Time} (RS92) is over Brazil (i.e.,
479 ΔT^{Time} (RS92_{Brazil}) see Figure 10f), where the mean ΔT^{Time} (RS92_{Brazil}) is equal to 0.35 K
480 and 0.26 K for the daytime and nighttime, respectively.

481 A seasonal variation of ΔT^{Time} (RS92) is not apparent expect over Canada.
482 Although the mean temperature biases are very small (less than +/- 0.06 K) over Canada
483 (i.e., northern high-altitudes), there still exist some seasonal-dependent temperature bias,
484 which could be a result of the very few RAOB-RO ensemble pairs for night time in
485 summer, and for daytime night time in winter (Fig. 10d). Over Canada, daytime SZA is
486 as high as 50 degree in summer which becomes 88 degree during the winter. Therefore,
487 the daytime ΔT^{Time} (RS92) can be as large as 0.3 K during the summer and as low as -0.3
488 K during the winter.

489 With less radiative effect on sondes, the magnitude of RAOB-RO temperature
490 bias at 150 hPa is in general smaller than those in 50 hPa (see Table 4). The mean ΔT^{Time}
491 (RS92) at 150 hPa daytime temperature differences are 0.00 K for United States, 0.03 K

492 for Australia, 0.07 K for Germany, 0.03 K for Canada, 0.04 K for England, and 0.21 K
493 for Brazil. The corresponding ΔT^{Time} (RS92) for nighttime for these countries are 0.09 K
494 for United States, 0.08 K for Australia, 0.06 K for Germany, 0.12 K for Canada, 0.05 K
495 for England, and 0.23 K for Brazil. The $Std(\Delta T^{Time})$ for RS92 at these six regions are all
496 less than 0.37 K during the day and less than 0.52 K during the night (Table 4).

497

498 **4.3 Time Series Anomaly for Sippican MARK, VIZ-B2, AVK-MRZ, and Shanghai 499 Sondes**

500 To demonstrate the inter-seasonal and inter-annual variation of the RAOB-RO
501 temperature biases, the time series of the monthly mean temperature bias for Sippican
502 MARK IIA (ID=87), VIZ-B2, AVK, and Shanghai (i.e., $\Delta_{Sippican}^{Time}$, Δ_{VIZ-B2}^{Time} , Δ_{AVK}^{Time} , and
503 $\Delta_{Shanghai}^{Time}$) in the northern mid-latitudes (from 60°N to 20°N) are shown in Figure 11. The
504 mean temperature biases in this region for $\Delta_{Sippican}^{Time}$, Δ_{VIZ-B2}^{Time} , Δ_{AVK}^{Time} , and $\Delta_{Shanghai}^{Time}$ for 50 hPa
505 are summarized in Table 5.

506 Figure 11 shows the time series of the monthly mean temperature bias at 50 hPa.
507 During daytime $\Delta_{Sippican}^{Time}$ (-0.12 K), Δ_{VIZ-B2}^{Time} (0.87 K), Δ_{AVK}^{Time} (0.80 K), and $\Delta_{Shanghai}^{Time}$ (0.10 K)
508 are warmer than those in the nighttime. The monthly mean temperature biases at 50 hPa
509 for nighttime are -0.12 K for $\Delta_{Sippican}^{Time}$, -0.56 K for Δ_{VIZ-B2}^{Time} , -0.03 K for Δ_{AVK}^{Time} , and -0.20 K
510 for $\Delta_{Shanghai}^{Time}$. While $\Delta_{Sippican}^{Time}$ and $\Delta_{Shanghai}^{Time}$ are largely constant in time, Δ_{VIZ-B2}^{Time} has obvious
511 seasonal variations with a negative trend during nighttime and positive trend during
512 daytime. The number of VIZ-B2 observations drops off after 2012 (see Figure 11b),
513 which contributes to the larger variation of the Δ_{VIZ-B2}^{Time} after then.

514 Δ_{AVK}^{Time} has an irregular seasonal variation particularly during daytime, with a large
515 warm bias. A part of this irregular bias may be due to an unidentified change of
516 instrumentation and large seasonal variations in sample numbers. The standard deviation
517 of the temperature differences for these four sensors (i.e., $Std(\Delta_{Sippican}^{Time})$, $Std(\Delta_{VIZ-B2}^{Time})$,
518 $Std(\Delta_{AVK}^{Time})$, and $Std(\Delta_{Shanghai}^{Time})$) at daytime are 0.33K for $\Delta_{Sippican}^{Time}$, 0.37 K for Δ_{VIZ-B2}^{Time} , 0.22
519 K for Δ_{AVK}^{Time} , and 0.18 K for $\Delta_{Shanghai}^{Time}$. The corresponding nighttime variations are 0.21 K
520 for $\Delta_{Sippican}^{Time}$, 0.43 K for Δ_{VIZ-B2}^{Time} , 0.21 K for Δ_{AVK}^{Time} , and 0.17 K for $\Delta_{Shanghai}^{Time}$. The mean time
521 series temperature bias at 50 hPa for these sensor types for the northern mid-latitude is
522 summarized in Table 5 and the corresponding mean time series temperature differences at
523 150 hPa is summarized in Table 6.

524

525 **5. Trend Analysis and Potential Causes of RAOB Temperature Trend Uncertainty**

526 **5.1 Comparison Method**

527 To further quantify inter-annual variation of RAOB temperature biases for
528 different sensor types, we conduct the trend analysis for the time series of RAOB-RO
529 temperature anomaly. The anomaly of trend for each of individual sensor types relative to
530 those of co-located RO temperature are computed and compared. We focus on the trend
531 analysis for individual sensor types over specific regions similar to previous sections. The
532 de-seasonalized temperature anomalies are computed by:

533

$$534 \Delta T^{Deseason}(l, m, k) = T_{RAOB}(l, m, k) - \overline{T^{Time}}(l, m, k), \quad (4)$$

535

536 where l , m , and k are the indices of the month bin for each layer (l), zone (m) and month
537 for the whole time series ($k = 1$ to 95), respectively, and k' is the index of the month bin
538 of the year ($k' = 1$ to 12). $\overline{T^{Time}}(l, m, k')$ is the mean RO temperature co-located for
539 different sensor types for each level (l), zone (m), and averaged over all available years
540 for a particular month (k'). Note that because the period of available measurements for
541 each of the sensor types is different, the months used to compute $\overline{T^{Time}}(l, m, k')$ may vary
542 for different sensor types. The mean trend of temperature difference anomalies for each
543 of the sensor types at 50 hPa and 150 Pa are summarized in Tables 5 and 6, respectively.

544

545 **5.2 Trend of Temperature Anomalies for Vaisala Sondes**

546 The trend uncertainty for RAOB over different regions are mainly due to i)
547 uncorrected solar zenith angle dependent biases, ii) changing of radiation correction, iii)
548 and iv) small samples used in the trend analysis. While it is not possible to identify the
549 bias for each of the individual causes, we can only quantify the combined statistical
550 biases using RAOB-RO ensembles.

551 Figure 12 depicts the de-seasonalized temperature anomalies for Vaisala RS92
552 over United States ($\Delta T_{RS92_USA}^{Deseason}$), Australia ($\Delta T_{RS92_Australia}^{Deseason}$), German ($\Delta T_{RS92_Germany}^{Deseason}$),
553 Canada ($\Delta T_{RS92_Canada}^{Deseason}$), England ($\Delta T_{RS92_England}^{Deseason}$), and Brazil ($\Delta T_{RS92_Brazil}^{Deseason}$), respectively.

554 In general, daytime trend differences at 50 hPa in all six regions are within ± 0.26 (K/5yrs,
555 see Table 3). While the daytime trend of anomalies for RAOB and RO temperature at 50
556 hPa for United States and Germany are 0.00 and -0.02 K/5yrs, the trend of anomalies are
557 equal to 0.18 K/5yrs over Australia, 0.24 K/5yrs over Canada, 0.26 K/5yrs over England,

558 and 0.12 K/5 yrs over Brazil, respectively. This non-trivial trend anomaly in the later
559 regions may be owing to the incomplete daytime radiation correction applied in these
560 regions between ΔT (RS92₂₀₀₇₀₁₋₂₀₁₀₁₂) and ΔT (RS92₂₀₁₁₀₁₋₂₀₁₄₀₄) (see Figure 9). The
561 corresponding nighttime trend differences in these six regions are -0.21 K/ 5yrs for
562 United States, -0.08 K/ 5yrs for Australia, -0.14 K/ 5yrs for Germany, -0.02 K/ 5yrs for
563 Canada, -0.16 K/ 5yrs for England, and -0.10 K/ 5yrs for Brazil (see Table 3).

564 To further examine the temperature trend uncertainty for global Vaisala sensors,
565 we compare the global trend of anomaly for RS80, RS90, and RS92 at 50 hPa and 150
566 hPa in Tables 5 and 6, respectively. The global de-seasonalized temperature anomalies
567 for Vaisala RS92 for daytime and nighttime are equal to 0.07 K/5yrs and -0.09 K/5yrs,
568 respective (Table 5). The 95% confidence intervals for slopes are shown in the
569 parentheses. This indicates that although there might be a small residual radiation error
570 for RS92, the trend anomaly between RS92 and RO from June 2006 to April 2014 is
571 within +/-0.09 K/5yrs globally. These values are just above the 1 sigma calibration
572 uncertainty estimated by Dirksen et al., (2014). This means that probably the stability of
573 the calibration alone could explain most of this very small trend. It is also consistent with
574 the change in radiation correction.

575 The trend anomaly between RS80 and RO is about 0.19 K/5yrs during the day
576 and 0.11 K/5yrs during the night (Table 5). Those between RS90 and RO temperature in
577 the lower stratosphere are equal to -0.01 K/5yrs and 0.04 K/5yrs for daytime and
578 nighttime, respectively (Table 5).

579 To compute the degree of deviation between RAOB temperature and RO
580 temperature, we also calculate the root mean square (RMS) temperature difference of the

581 derived de-seasonalized anomalies. The global RMS for $\Delta T_{RS92}^{Deseason}$ in the daytime is equal
582 to 0.06 K. This indicates the consistency of RS92 temperature measurements relative to
583 the RO temperature. Both of the global RMS for RS80 and RS90 in daytime are (0.27,
584 0.26) K (Table 5).

585 Because the RAOB temperatures in 150 hPa are less biased compared to those at
586 50 hPa, the de-seasonalized temperature anomalies for Vaisala Sondes at 150 hPa are
587 even smaller than those at 50 hPa. The trend differences for $\Delta T_{RS92}^{Deseason}$ at 150 hPa for
588 RS92 are -0.13 K/5yrs for United States, 0.12 K/5yrs for Australia, -0.02 K/5yrs for
589 Germany, 0.23 K/5yrs for Canada, 0.06 K/5yrs for England, and 0.00 K/5yrs for Brazil
590 during the daytime (see Table 4). The corresponding trend differences during the
591 nighttime are -0.23 K/5yrs for United States, -0.07 K/5yrs for Australia, -0.19 K/5yrs for
592 Germany, -0.21 K/5yrs for Canada, -0.08 K/5yrs for England, and -0.01 K/5yrs for Brazil.
593 The global RMS of RAOB-RO anomalies for RS92 at 150 hPa are 0.04K for daytime and
594 0.07 K for nighttime (Table 6).

595

596 **5.3 Trends of Temperature Anomalies for Sippican MARK, VIZ-B2, AVK-MRZ,
597 and Shanghai Sondes**

598 Figure 13 depicts the de-seasonalized temperature anomalies for Sippican MARK
599 IIA (ID=87), VIZ-B2 (ID=51), AVK-MRZ (ID=27), and Shanghai (ID=32) (i.e.,
600 $\Delta T_{MARK-IIA}^{Deseason}$, $\Delta T_{VIZ-B2}^{Deseason}$, $\Delta T_{AVK}^{Deseason}$, and $\Delta T_{Shanghai}^{Deseason}$) at 50 hPa, respectively. The trends of
601 temperature anomalies for these sensor types are listed in Table 5. The 95% confidence
602 intervals for slopes are shown in the parentheses. The daytime temperature trend
603 anomalies are 0.41 K/5yrs for $\Delta T_{MARK-IIA}^{Deseason}$, 0.47 K/5yrs for $\Delta T_{VIZ-B2}^{Deseason}$, -0.14 K/5yrs for

604 $\Delta T_{AVK}^{Deseason}$, and 0.18 K/5yrs for $\Delta T_{Shanghai}^{Deseason}$, which are much larger than those of the
605 Vaisala RS92. The corresponding nighttime trend anomalies are 0.24 K/5yrs ($\Delta T_{MARK-II4}^{Deseason}$),
606 -0.35 K/5yrs ($\Delta T_{VIZ-B2}^{Deseason}$), -0.14 K/5yrs ($\Delta T_{AVK}^{Deseason}$), -0.02 K/5yrs ($\Delta T_{Shanghai}^{Deseason}$). Since the
607 number of AVK - RO pairs decrease significantly after 2012, the trend anomaly for
608 AVK-RO pairs before and after 2012 vary.

609 The root mean square (RMS) of the de-seasonalized time series $Std(\Delta T^{Time})$ is
610 used to indicate the trend uncertainty of the time series. The trend differences and RMS
611 for all the sonde types at 50 hPa and 150 hPa are summarized in Tables 5 and 6,
612 respectively.

613

614 **6. Conclusions and Future Work**

615 In this study, we used consistently reprocessed GPS RO temperature data to
616 characterize radiosonde temperature biases and the inter-seasonal and inter-annual
617 variability of these biases in the lower stratosphere for different radiosonde types. We
618 reach the following conclusions.

619 1. Solar zenith angle dependent biases: The solar radiative effect on different sensors
620 is the dominant error source of RAOB temperature biases during daytime. With the
621 consistent precision of RO temperature data between COSMIC and Metop-A, we are able
622 to identify the mean temperature biases from 200 hPa to 20 hPa layer among older
623 sensors (i.e., Vaisala RS80 sensors with ID=37, 52, 61, and 67), and new sensors (i.e.,
624 RS92 sensors with ID=79, 80, 81), and the obvious daytime and nighttime biases for the
625 same sensor types which is usually distributed in the same countries (i.e., Shanghai
626 sensor in China, AVK in Russian, VIZ-B2 in United States). Because the quality of

627 RO temperature is not affected by sunlight in the lower stratosphere, those
628 daytime/nighttime biases shall mainly originate from uncorrected radiation biases for
629 each individual sensor types. Most of the sensor types contain positive temperature biases
630 ranging from 0.1 to 0.5 K during the daytime. Among all the sensors, the Vaisala RS92
631 has the smallest temperature biases in the lower stratosphere comparing to the co-located
632 RO temperatures. The daytime mean ΔT (RS92) is about 0.1 K to 0.3 K globally. The ΔT
633 (AVK) mainly distributed over Russian is as large as 0.8 K. Most of the sensor types
634 contain cold bias in the night where the mean ΔT (AVK) and ΔT (VIZ-B2) in the night
635 time are as large as -0.22 K and -0.54 K, respectively.

636 2. Residual solar zenith angle dependent biases: After applying the solar radiation
637 correction, most of the RS92 daytime biases are removed. However, a small residual
638 radiation bias for RS92 remains, which varies with different geographical region or
639 operating organization. Similar to He2009 and Sun et al., (2010, 2013), there exist a
640 small SZA dependent biases among different sensor types. The global mean residual
641 temperature biases for RS92 (i.e., ΔT (RS92) from SZA 0 to 45 degrees in 20 hPa, 50 hPa,
642 and 150 hPa are close to 0.3 K, 0.15 K, and 0.05 K, respectively. These biases are less
643 than the uncertainty described in Dirksen et al., (2014). In the daytime, the mean ΔT
644 (Sippican), ΔT (VIZ-B2), ΔT (AVK-MRZ), and ΔT (Shanghai) are (-0.06, 0.71, 0.66, 0.18)
645 K.

646 3. Changing of radiation correction and RAOB temperature uncertainty due to
647 when and how the radiative correction was implemented: the correction for RSN2010 is
648 about 0.1 K warmer than those from RSN2005. To identify the possible RS92
649 temperature biases due to changes of radiation correction table (i.e., RSN2010), we

650 compare mean ΔT (RS92) from January 2007 to December 2010 (i.e., ΔT (RS92₂₀₀₇₀₁₋₂₀₁₀₁₂) to those from January 2011 to April 2014. Results show that there are no obvious
651 ΔT (RS92) change between these two periods for the RS92 sondes over United States and
652 Germany in 20hPa. However, the daytime temperature difference between ΔT
653 (RS92₂₀₀₇₀₁₋₂₀₁₀₁₂) and ΔT (RS92₂₀₁₁₀₁₋₂₀₁₄₀₄) over Australia, Canada, England, and Brazil
654 show obvious close to 0.1 K to 0.15 K difference varying at different heights. Changing
655 sensors independently of the appropriate radiation correction introduces extra
656 uncertainties of the RS92 trends. The relatively small temperature difference between
657 these two periods over the United States is most likely a statistical artifact due to the very
658 small number of coincidences in this period. The relatively small temperature difference
659 between these two periods over the Germany may because the DWD implemented the
660 updated radiation correction for the Vaisala RS92 not in 2011, but in the spring of 2015,
661 to avoid inconsistencies with corrections already implemented in their data assimilation
662 system. This also indicates the importance of establishing traceability through careful
663 documentation and metadata tracking, which is especially crucial for radiosonde data
664 used in climate studies.

666 4. We used time series of RAOB-RO anomalies to indicate the long term stability
667 for each individual sonde types. The uncertainties are from the combined effects of i)
668 uncorrected solar zenith angle dependent biases, ii) change of radiation correction, iii)
669 when and how the radiation correction was implemented, and iv) small samples used in
670 the time series and trend analysis. Results show that the time series of ΔT^{Time} (RS92) at all
671 regions are, in general, persistent in time with a small difference during the daytime and
672 nighttime in each individual regions. Other sensors have much larger variation than those

673 of Vaisala RS92. While $\Delta_{Sippican}^{Time}$ and $\Delta_{Shanghai}^{Time}$ are largely constant in time, Δ_{VIZ-B2}^{Time} has
674 obvious seasonal variations with a negative trend and night and positive trend during
675 daytime. Δ_{AVK}^{Time} has an irregular seasonal variation particularly during daytime, with a
676 large warm bias.

677 5. We found that the variation of mean ΔT^{Time} at different regions is highly related to
678 the corresponding variation of SZA especially for VIZ-B2 and AVK-MRZ during the
679 daytime where the Sippican MARK IIA over USA and Shanghai ΔT^{Time} do not show
680 significant seasonal variation. The daytime trend of anomalies for RAOB and RO
681 temperature at 50 hPa for United States and Germany are equal to (0.00, -0.02) K/5yrs,
682 the trend of anomalies are equal to (0.18, 0.24, 0.26, 0.12) K/5yrs over Australia, Canada,
683 England, and Brazil, respectively. The trend anomaly between RS92 and RO from June
684 2006 to April 2014 is within +/-0.09 K/5yrs globally. The trend anomaly between RS80
685 and RO is about 0.19 K/5yrs during the day and 0.11 K/5yrs during the night. The
686 daytime temperature trend anomalies for $\Delta T_{MARK-IIA}^{Deseason}$, $\Delta T_{VIZ-B2}^{Deseason}$, $\Delta T_{AVK}^{Deseason}$, and $\Delta T_{Shanghai}^{Deseason}$
687 are (0.40, 0.47, -0.14, 0.18) K/5yrs, which are much larger than those of RS92.

688 Note that the analyses we performed here do not include other error sources (i.e.,
689 cloud radiative effect, ventilation, and sensor orientation, meta data errors) mentioned by
690 Dirksen et al., (2014). Since it is not possible to investigate these errors, we assume these
691 errors introduce more or less random errors when a relative large sample is used. In
692 addition, although RO derived temperature data are not directly traceable to the
693 international standard of units (SI traceability), it has been shown that the high precision
694 nature does preserve through the inversion procedures (Ho et al., 2009a, 2011). This
695 makes RO derived temperature uniquely useful for assessing the radiosonde temperature

696 biases and their long-term stability including the seasonal and inter-annual variability in
697 the lower stratosphere. Results from this study also demonstrate the potential usage of
698 RO data to identify RAOB temperature biases for different sensor types.

699

700 **Acknowledgments**

701 This work is supported by the NSF CAS AGS-1033112. The authors
702 acknowledge the contributions to this work from members of the COSMIC team at
703 UCAR.

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722 **Appendix A: The Quality of GPS RO Data as Benchmark References and the New
723 Reprocessed Package**

724

725 **A1. The Quality of GPS RO Data as Benchmark References for Climate Studies**

726 While the position and speed of the GPS and low earth orbit (LEO) satellites are
727 known, we can inverse the time delay to bending angles, refractivity, and temperature
728 vertical distribution with high precision and accuracy (Ho et al., 2009a,b, 2012). While
729 time delay and bending angle are traceable to the international standard of units (SI
730 traceability), the derived temperature profiles are not. To investigate the structural
731 uncertainty of RO temperature profiles, Ho et al., (2009a and 2011) compared CHAMP
732 (CHAllenging Minisatellite Payload) temperature profiles generated from multiple
733 centers when different inversion procedures were implemented. Results shown that the
734 mean RO temperature biases for one center (for example from UCAR) relative to the all
735 center mean is within $\pm 0.1\text{K}$ from 8 km to 30 km except for south pole above 25 km (see
736 Fig. 6d in Ho et al., 2011). Ho et al., (2007, 2009b) demonstrated that the RO derived
737 temperature profiles in the lower stratosphere are extremely useful to identify and
738 calibrate the inter-satellite microwave brightness temperature differences form Advanced
739 Microwave Sounding Units (AMSU) and Microwave Sounding Units (MSU) on board
740 different satellite missions. In this study, UCAR RO temperature profiles will be used in
741 this study.

742 GPS RO observations are of high vertical resolution (from $\sim 60\text{ m}$ near the surface
743 to $\sim 1.5\text{ km}$ at 40 km). The mean temperature difference between the collocated soundings
744 of COSMIC and CHAMP is within 0.1 K from 200 hPa to 20 hPa (Ho et al., 2009b;

745 Anthes et al., 2008; Foelsche et al., 2009). Schreiner et al., (2014) compared re-processed
746 COSMIC and Metop-A/GRAS bending angles produced at CDAAC. The mean COSMIC
747 and Metop-A/GRAS bending angle differences are about 0.02–0.03 μ rad which
748 demonstrates the reproducibility of COSMIC and Metop-A/GRAS. The mean layer
749 temperature difference between 200 hPa to 10 hPa is within 0.05 K (not shown). This is
750 consistent with those between COSMIC and CHAMP at the same height (Ho et al.,
751 2009a). The precision of RO temperature is \sim 0.1 K (e.g., Anthes et al., 2008; Ho et al.,
752 2009a), and the precision of the trend of RO derived temperature data is within \pm 0.06
753 K/5yrs (Ho et al., 2012). To estimate the accuracy of RO temperature in the upper
754 troposphere and lower stratosphere, Ho et al., (2010) compared RO temperature from 200
755 hPa to 10 hPa to those from Vaisala-RS92 in 2007 where more than 10,000 pairs of
756 Vaisala-RS92 and COSMIC coincident data are collected. The mean bias in this height
757 range is equal to -0.01 K with a mean standard deviation of 2.09K. Although the quality
758 of Vaisala-RS92 may vary in different regions (see Section 4.1), this comparison
759 demonstrates the quality of RO temperature profiles in this height range.
760

761 **A2. Brief Description of the New Inversion Package from CDAAC**

762 Comparing with the previous version, the new inversion package used improved
763 precise orbit determination (POD) and excess phase processing algorithm, where a high-
764 precision, multiple Global Navigation Satellite System (GNSS) data processing
765 software (i.e., Bernese Version 5.2, Dach et al., (2015)) is applied for clock estimation
766 and time transfer. In the reprocessing package, the POD for COSMIC and Metop-
767 A/GRAS are implemented separately (Schrein et al., 2011). Compared to the real-time
768 processed RO data, much improved and more completed satellite POD data are used in

769 the reprocessed package. The re-processed COSMIC and Metop-A/GRAS data would
770 produce more consistent and accurate RO variables than those from post-processed
771 (periodically updated inversion packages were used) and real-time processed datasets.

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792 References

793

794 Anthes, R. A., P. Bernhardt, Y. Chen, L. Cucurull, K. Dymond, D. Ector, S. Healy, S.-P.
795 Ho, D. Hunt, Y.-H. Kuo, H. Liu, K. Manning, C. McCormick, T. Meehan, W.
796 Randel, C.R. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, D. Thompson,
797 K. Trenberth, T.-K. Wee, Z. Zeng (2008), The COSMIC/FORMOSAT-3 Mission:
798 Early Results, *Bul. Amer. Meteor. Sci.* 89, No.3, 313-333.

799

800 Andrae, U., N. Sokka, and K. Onogi (2004), The radiosonde temperature bias correction
801 in ERA-40. ERA-40 Project Report Series, Vol. 15, 34 pp.

802

803 Dach, R., S. Lutz, P. Walser, P. Fridez (Eds) (2015), Bernese GNSS Software Version
804 5.2. User manual, Astronomical Institute, University of Bern, Bern Open Publishing.
805 DOI: 10.7892/boris.72297; ISBN: 978-3-906813-05-9.

806

807 Dirksen, R. J., M. Sommer, F. J. Immel, D. F. Hurst, R. Kivi, and H. Vömel,
808 (2014), Reference quality upper-air measurements: GRUAN data processing for the
809 Vaisala RS92 radiosonde, *Atmos. Meas. Tech.*, 7, 4463–4490, 2014.

810

811 Durre, I., T. Reale, D. Carlson, J. Christy, M. Uddstrom, M. Gelman, and P. Thorne
812 (2005), Improving the usefulness of operational radiosonde data, *Bull. Am.*
813 *Meteorol. Soc.*, 86, 411 – 418, doi:10.1175/BAMS-86-3-411.

814

815 Free, M., J. K. Angle, I. Durre, J. Lanzante, T. C. Peterson, and D. J. Seidel (2004),
816 Using first differences to reduce inhomogeneity in radiosonde temperature datasets,
817 *J. Clim.*, 17, 4171–4179.

818

819 Free, M., D. J. Seidel, J. K. Angell, J. Lanzante, I. Durre, and T. C. Peterson (2005),
820 Radiosonde atmospheric temperature products for assessing climate (RATPAC): A
821 new data set of large-area anomaly time series, *J. Geophys. Res.*, 110, D22101,
822 doi:10.1029/2005JD006169.

823

824 Foelsche, U., B. Pirscher, M. Borsche, G. Kirchengast, and J. Wickert (2009), Assessing
825 the climate monitoring utility of radio occultation data: From CHAMP to
826 FORMOSAT-3/COSMIC, *Terr. Atmos. and Oceanic Sci.*, Vol. 20, doi:
827 10.3319/TAO.2008.01.14.01(F3C).

828

829 Haimberger, L., (2007), Homogenization of radiosonde temperature time series using
830 innovation statistics. *J. Climate*, 20, 1377– 1403.

831

832 —, C. Tavolato, and S. Sperka (2008), Toward elimination of the warm bias in historic
833 radiosonde temperature records—Some new results from a comprehensive
834 intercomparison of upper- air data. *J. Climate*, 21, 4587–4606.

835

836 —, and U. Andrae (2011) Radiosonde temperature bias correction in ERA-Interim.
837 ERA Rep. Series, Vol. 8, 17 pp.

838
839 He, W., S.-P. Ho, H. Chen, X. Zhou, D. Hunt, and Y. Kuo (2009), Assessment of
840 radiosonde temperature measurements in the upper troposphere and lower
841 stratosphere using COSMIC radio occultation data, *Geophys. Res. Lett.*, 36, L17807,
842 doi:10.1029/2009GL038712.

843
844 Ho, S.-P., Y. H. Kuo, Zhen Zeng, and Thomas Peterson (2007), A Comparison of Lower
845 Stratosphere Temperature from Microwave Measurements with CHAMP GPS RO
846 Data, *Geophys. Research Letters*, 34, L15701, doi:10.1029/2007GL030202.

847
848 Ho, S.-P., and co-authors (2009a), Estimating the Uncertainty of using GPS Radio
849 Occultation Data for Climate Monitoring: Inter-comparison of CHAMP
850 Refractivity Climate Records 2002-2006 from Different Data Centers, *J. Geophys.*
851 *Res.*, doi:10.1029/2009JD011969.

852
853 Ho, S.-P., M. Goldberg, Y.-H. Kuo, C.-Z Zou, W. Schreiner (2009b), Calibration of
854 Temperature in the Lower Stratosphere from Microwave Measurements using
855 COSMIC Radio Occultation Data: Preliminary Results, *Terr. Atmos. Oceanic Sci.*,
856 Vol. 20, doi: 10.3319/TAO.2007.12.06.01(F3C).

857
858 Ho, S.-P., Zhou X., Kuo Y.-H., Hunt D., Wang J.-H., (2010a), Global Evaluation of
859 Radiosonde Water Vapor Systematic Biases using GPS Radio Occultation from
860 COSMIC and ECMWF Analysis. *Remote Sensing*. 2010; 2(5):1320-1330.

861
862 Ho, S.-P., Ying-Hwa Kuo, William Schreiner, Xinjia Zhou (2010b), Using SI-traceable
863 Global Positioning System Radio Occultation Measurements for Climate
864 Monitoring [In "States of the Climate in 2009]. *Bul. Amer. Meteor. Sci.*, 91 (7),
865 S36-S37.

866
867 Ho, S.-P., and co-authors (2012), Reproducibility of GPS Radio Occultation Data for
868 Climate Monitoring: Profile-to-Profile Inter-comparison of CHAMP Climate
869 Records 2002 to 2008 from Six Data Centers, *J. Geophys. Research.* VOL. 117,
870 D18111, doi:10.1029/2012JD017665.

871
872 Ho, S.-P., L. Peng, and D. Hunt (2016), Construction of consistent temperature climate
873 data records in the lower Troposphere using COSMIC, Metop-A/GRAS, and
874 Metop-B/GRAS from 2006 to 2015, *Atmos. Meas. Tech.*, submitted.

875
876 Kuo, Y. H., T. K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, and D. Hunt (2004),
877 Inversion and error estimation of GPS radio occultation data, *J. Meteorol. Soc. Jpn.*,
878 82, 507– 531.

879
880 Lanzante, J. R., S. A. Klein, and D. J. Seidel (2003), Temporal homogeni- sation of
881 monthly radiosonde temperature data, Part I: Methodology, *J. Clim.*, 16, 224–240,
882 doi:10.1175/1520-0442(2003)016.

883

884 Luers, J. K., and R. E. Eskridge (1995), Temperature corrections for the VIZ and Vaisala
885 radiosondes, *J. Appl. Meteor.*, 34, 1241–1253.

886

887 Luers, J. K., (1997), Temperature error of the Vaisala RS90 radiosonde, *J. Atmos.*
888 *Oceanic Technol.*, 14, 1520–1532.

889

890 Luers, J. K., and R. E. Eskridge (1998), Use of radiosonde temperature data in climate
891 studies, *J. Clim.*, 11, 1002–1019.

892 Schreiner, W., S. Sokolovskiy, D. Hunt, C. Rocken, and Y.-H. Kuo (2011), Analysis of
893 GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS
894 missions at CDAAC, *Atmos. Meas. Tech.*, 4, 2255–2272.

895

896 Seidel, D. J., and Coauthors (2009), Reference upper-air observations for climate:
897 Rationale, progress, and plans. *Bull. Amer. Meteor. Soc.*, 90, 361–369.

898

899 Seidel D.J., N. P. Gillett , J. R. Lanzante, K. P. Shine, P. W. Thorne (2011), Stratospheric
900 tem- perature trends: Our evolving understanding. Wiley Interdisciplinary Reviews
901 2: 592–616.

902

903 Sherwood, S. C., C. L. Meyer, R. J. Allen, and H. A. Titchner (2008), Robust
904 tropospheric warming as revealed by iteratively homogenized radiosonde data. *J.*
905 *Climate*, 21, 5336–5352.

906

907 Smith, E. K., and S. Weintraub (1953), The constants in the equation for atmospheric
908 refractive index at radio frequencies, *J. Res. Natl. Bur. Stand. U.S.*, 50, 39–41.

909

910 Sun, B., Reale, A., Seidel, D. J., and Hunt, D. C. (2010), Comparing radiosonde and
911 COSMIC atmospheric profile data to quantify differences among radiosonde types
912 and the ef- fects of imperfect collocation on comparison statistics, *J. Geophys. Res.*,
913 115, D23104, doi:10.1029/2010JD014457.

914

915 Sun, B., A. Reale, S. Schroeder, D. J. Seidel, and B. Ballish (2013), Toward improved
916 corrections for radiation-induced biases in radiosonde temperature observations, *J.*
917 *Geophys. Res.*, 118, 4231–4243, doi:10.1002/jgrd.50369.

918

919 Thorne, P. W., D. E. Parker, J. R. Christy, and C. A. Mears (2005), Uncertain- ties in
920 climate trends: Lessons from upper-air temperature records, *Bull. Am. Meteorol.*
921 *Soc.*, 86, 1437–1442, doi:10.1175/BAMS-86-10-1437.

922

923 Thorne, P. W., and Coauthors, 2011a: A quantification of uncertainties in historical
924 tropical tropospheric temperature trends from radiosondes. *J. Geophys. Res.*, 116,
925 D12116, doi:10.1029/2010JD015487.

926

927 Ware, R., et al. (1996), GPS sounding of the atmosphere from low Earth orbit:
928 Preliminary results, *Bull. Am. Meteorol. Soc.*, 77, 19–40, doi:10.1175/1520-0477.
929

930

Figure Captions

931

932 Figure 1. Global distribution of radiosonde stations colored by radiosonde types. Radiosonde types
933 updated from June 2006 to December 2015 are used. The percentage of each type of radiosonde used
934 among all stations is listed. For those stations that radiosonde types are changed during this period, the
935 latest updated radiosonde type is used in this plot. Vaisala RS92 ship observations contain less than
936 3% of the total RS92 profiles.

937

938 Figure 2. Mean RAOB-RO temperature biases at 50 hPa for the RAOB-RO ensembles from June
939 2006 to December 2015 for a) daytime, and b) nighttime. Only those stations containing more than 50
940 RO-ROAB pairs are plotted.

941

942 Figure 3. Comparisons of temperature between RS92 and RO for daytime over a) United States, b)
943 Australia, c) Germany, d) Canada, e) England, and f) Brazil. The red line is the mean difference; the
944 black line is the standard deviation of the mean difference; the dotted line is the sample number. The
945 top X axis shows the sample number. The same symbols are also used for the following plots.

946

947 Figure 4. Comparisons of temperature between RS92 and RO for nighttime over a) United States, b)
948 Australia, c) Germany, d) Canada, e) England, and f) Brazil.

949

950 Figure 5. The mean temperature biases (RS92 minus RO) at 50 hPa varying for SZA from 0 degrees
951 to 180 degrees for a) United States, b) Australia, c) Germany, d) Canada, e) England, and f) Brazil.
952 The red cross is the mean difference for each 5 SZA bins; the red vertical line is the standard deviation
953 of error defined as standard deviation divided by sample numbers; the vertical red lines superimposed
954 on the mean are the standard error of the mean; the black line to indicate zero mean; the blue dash line
955 is the sample number. The right Y axis shows the sample number. Only bins for more than 50 RAOB-
956 RO pairs are plotted.

957

958 Figure 6. Comparisons of temperature between radiosonde and RO during the daytime for a) Sippican
959 over United States minus RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde minus RO,
960 d) Shanghai minus RO.

961

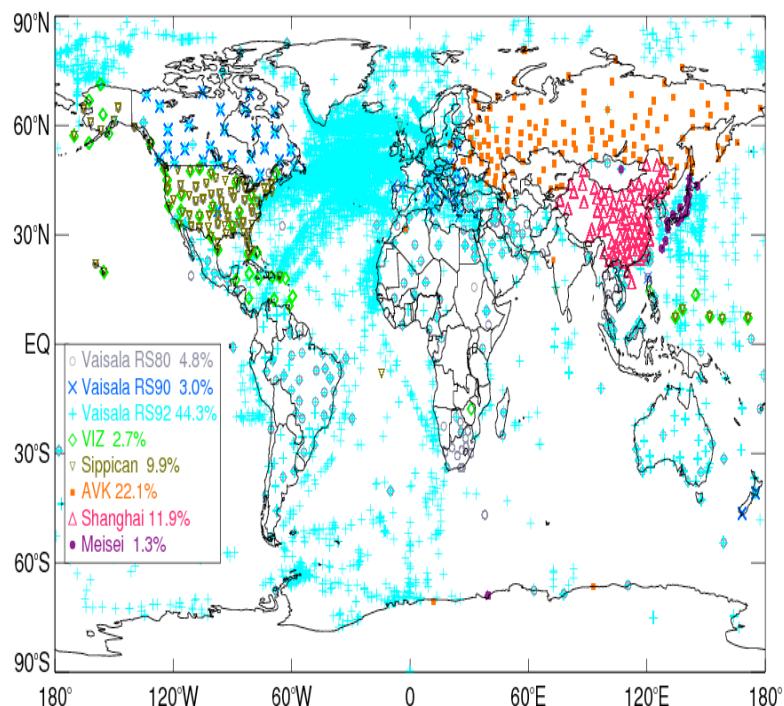
962 Figure 7. Comparisons of temperature between radiosonde and RO during the nighttime for a)
963 Sippican over United States minus RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde
964 minus RO, d) Shanghai minus RO.

965

966 Figure 8. The mean temperature biases at 50 hPa varying for SZA from 0 degrees to 180 degrees for a)
967 Sippican over United States minus RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde
968 minus RO, d) Shanghai minus RO. Only bins for more than 50 RAOB-RO pairs are plotted.

969

970 Figure 9. The temperature differences between RS92 – RO from January 2007 to December 2010 (ΔT
971 ($RS92_{200701-201012}$) and those from January 2011 to December 2015 (ΔT ($RS92_{201101-201512}$)) over a)
972 United States, b) Australia, c) Germany, d) Canada, e) England, and f) Brazil.


973

974 Figure 10. The time series of monthly mean temperature differences to RO at 50 hPa for RS92 for a)
975 United States, b) Australia, c) Germany, d) Canada, e) England, and f) Brazil. The red cross is the
976 mean difference for RS92 minus RO temperature at 50 hPa during the daytime and the blue cross is
977 for that during the nighttime; the vertical lines superimposed on the mean values are the standard error
978 of the mean for daytime and nighttime, respectively; the black line indicates zero temperature bias; the
979 pink/green dash line is the sample number for the daytime and nighttime, respectively. The right Y
980 axis shows the sample number. The same symbols are also used for the following plots.

981

982 Figure 11. The time series of temperature anomaly in 50 hPa for a) Sippican over United States minus
983 RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde minus RO, d) Shanghai minus RO.
984
985 Figure 12. The time series of de-seasonalized temperature anomaly in 50 hPa for a) United
986 States, b) Australia, c) Germany, d) Canada, e) England, and f) Brazil. The 95% confidence intervals
987 for slopes are shown in the parentheses.
988
989 Figure 13. The time series of de-seasonalized temperature anomaly in 50 hPa for a) Sippican over
990 United States minus RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde minus RO, d)
991 Shanghai minus RO. The 95% confidence intervals for slopes are shown in the parentheses.
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

1061

1062

1063

1064

1065

1066 Figure 1. Global distribution of radiosonde stations colored by radiosonde types.
1067 Radiosonde types updated from June 2006 to December 2015 are used. The percentage of
1068 each type of radiosonde used among all stations is listed. For those stations that
1069 radiosonde types are changed during this period, the latest updated radiosonde type is
1070 used in this plot. Vaisala RS92 ship observations contain less than 3% of the total RS92
1071 profiles.

1072

1073

1074

1075

1076

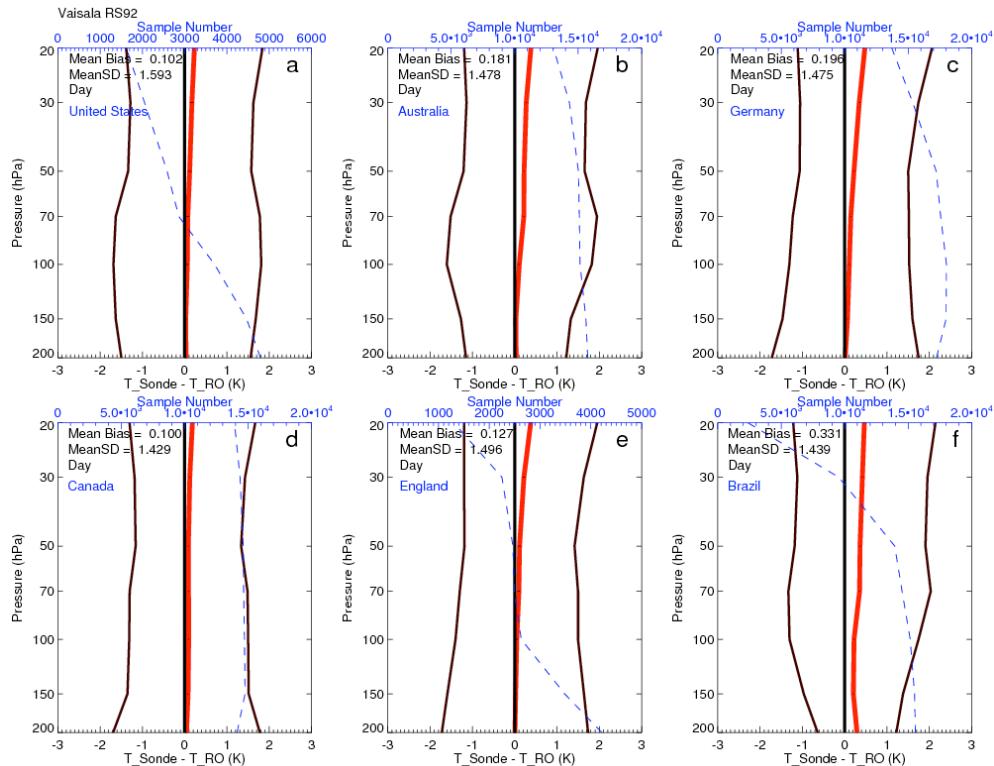
1077

1078

1079

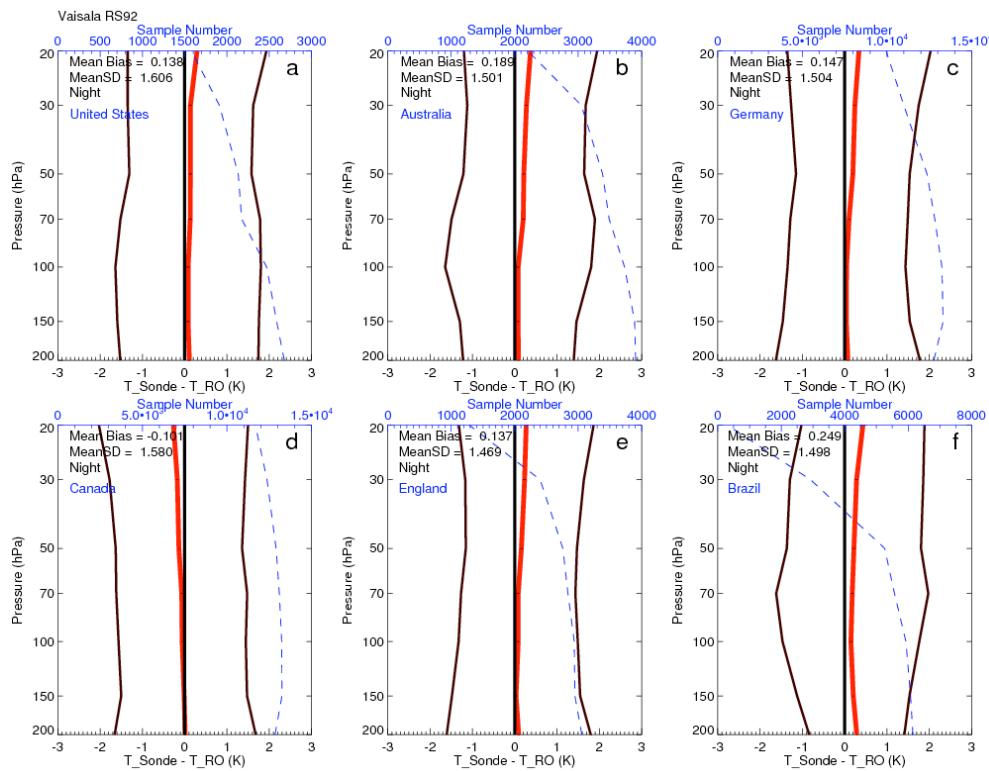
1080

1081


1082

1083
1084
1085
1086
1087

1088
1089
1090 Figure 2. Mean RAOB-RO temperature biases at 50 hPa for the RAOB-RO ensembles from June
1091 2006 to December 2015 for a) daytime, and b) nighttime. Only those stations containing more than 50
1092 RO-ROAB pairs are plotted.
1093
1094
1095
1096


1097
 1098
 1099

1100 Figure 3. Comparisons of temperature between RS92 and RO for daytime over a)
 1101 United States, b) Australia, c) Germany, d) Canada, e) England, and f) Brazil. The red
 1102 line is the mean difference; the black line is the standard deviation of the mean difference;
 1103 the horizontal black lines superimposed on the mean are the standard error of the mean;
 1104 the dotted line is the sample number. The top X axis shows the sample number. The same
 1105 symbols are also used for the following plots.

1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121

1122

1123

1124

1125

1126 Figure 4. Comparisons of temperature between RS92 and RO for nighttime over a)
1127 United States, b) Australia, c) Germany, d) Canada, e) England, and f) Brazil.

1128

1129

1130

1131

1132

1133

1134

1135

1136

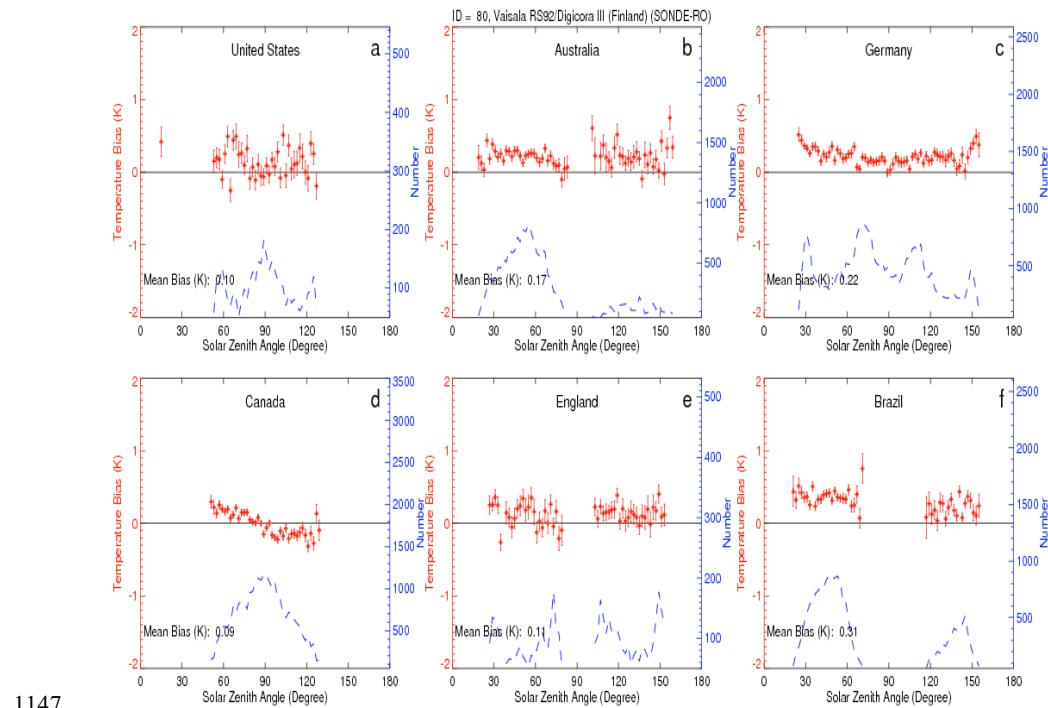
1137

1138

1139

1140

1141

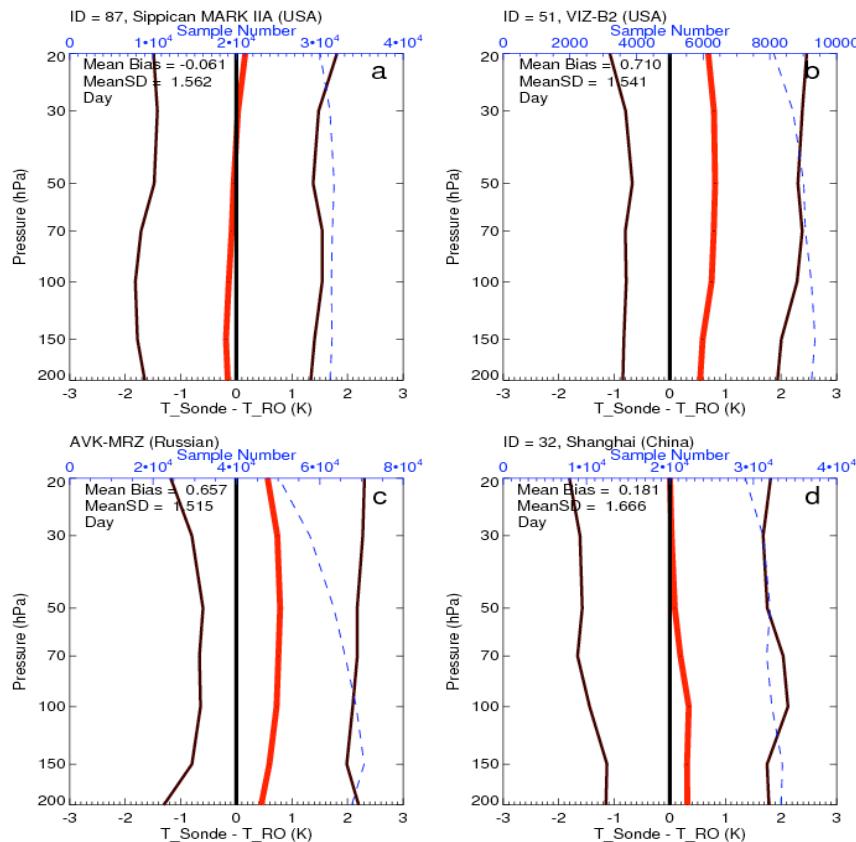

1142

1143

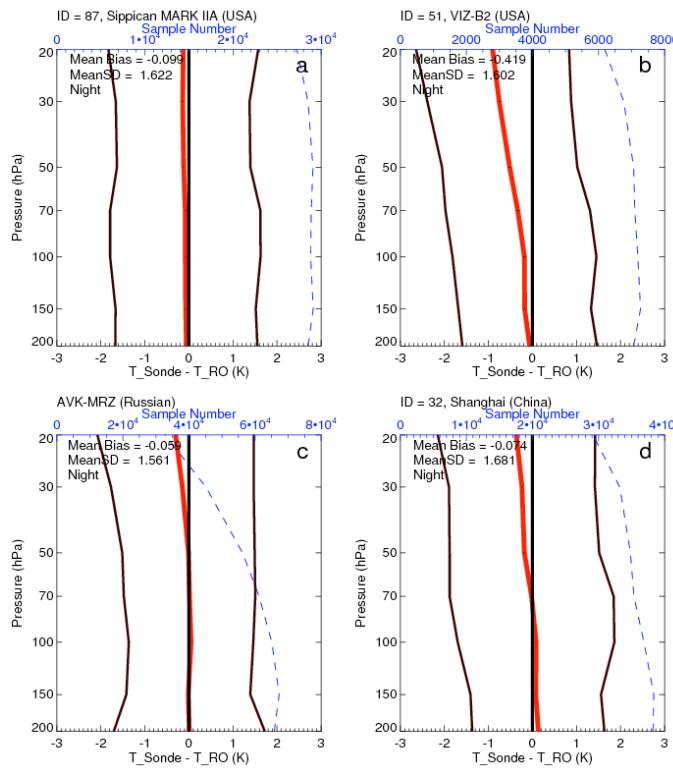
1144

1145

1146

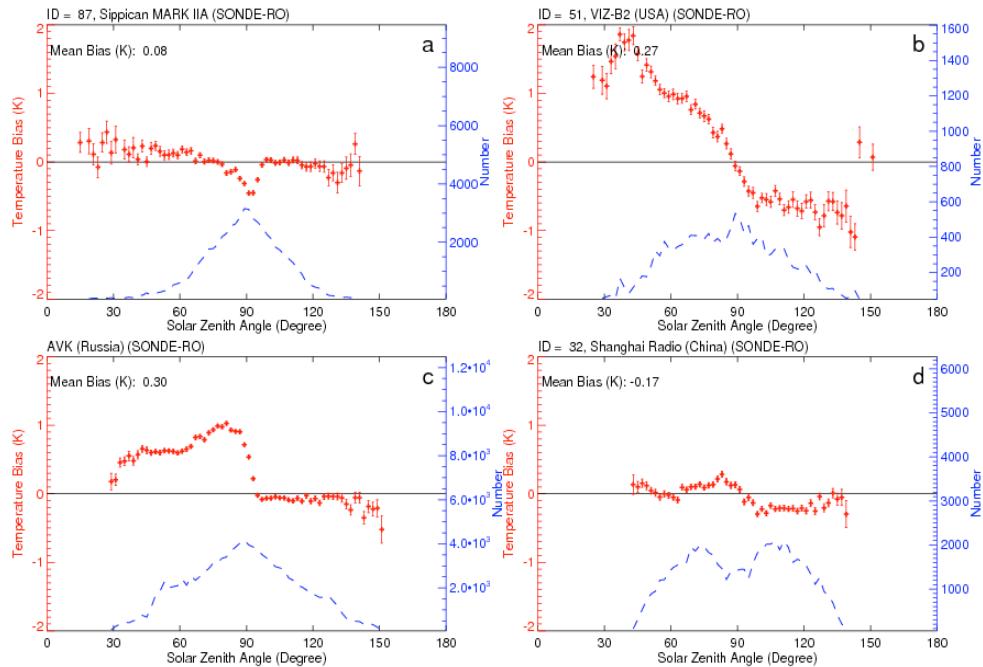


1147


1148

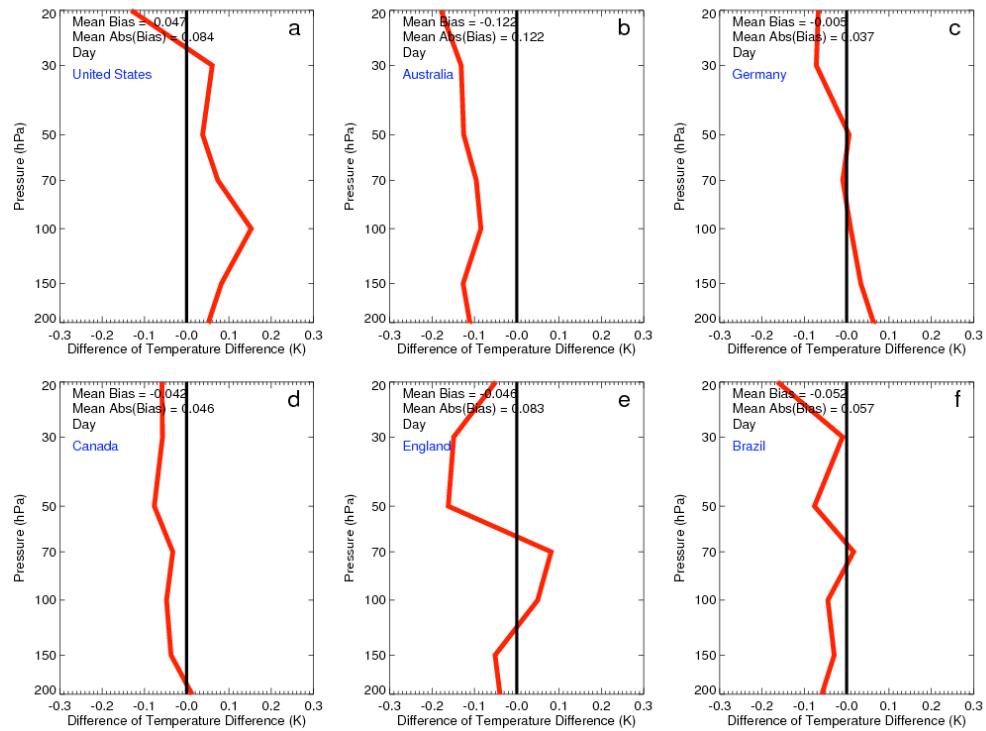
1149

1150 Figure 5. The mean temperature biases (RS92 minus RO) at 50 hPa varying for SZA from 0 degrees
1151 to 180 degrees for a) United States, b) Australia, c) Germany, d) Canada, and e) England, and f) Brazil.
1152 The red cross is the mean difference for each 5 SZA bins; the red vertical line is the standard deviation
1153 of error defined as standard deviation divided by sample numbers; the vertical red lines superimposed
1154 on the mean are the standard error of the mean; the black line to indicate zero mean; the blue dash line
1155 is the sample number. The right Y axis shows the sample number. Only bins for more than 50 RAOB-
1156 RO pairs are plotted.
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169


1170
 1171
 1172
 1173 Figure 6. Comparisons of temperature between radiosonde and RO during the daytime for a) Sippican
 1174 over United States minus RO, b) VIZ-B2 over United States minus RO, c)
 1175 d) Shanghai minus RO.
 1176
 1177
 1178
 1179

1180
1181
1182 Figure 7. Comparisons of temperature between radiosonde and RO during the nighttime for a)
1183 Sippican over United States minus RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde
1184 minus RO, d) Shanghai minus RO.
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

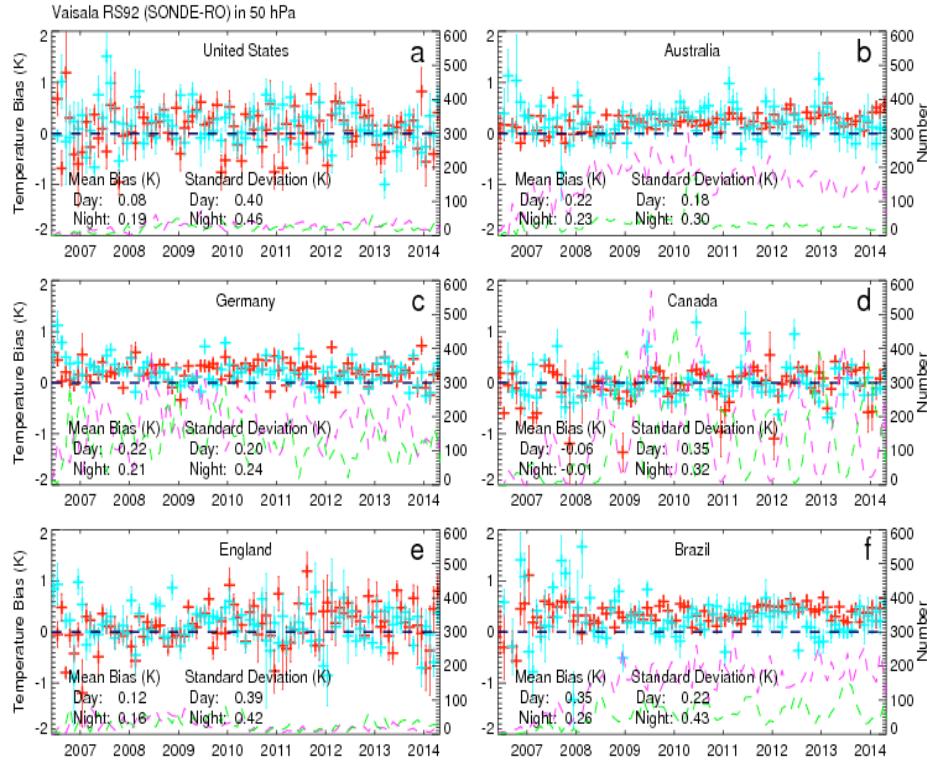
1206
1207
1208


1209
1210

1211 Figure 8. The mean temperature biases at 50 hPa varying for SZA from 0 degrees to 180 degrees for a)
1212 Sippican over United States minus RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde
1213 minus RO, d) Shanghai minus RO. Only bins for more than 50 RAOB-RO pairs are plotted.

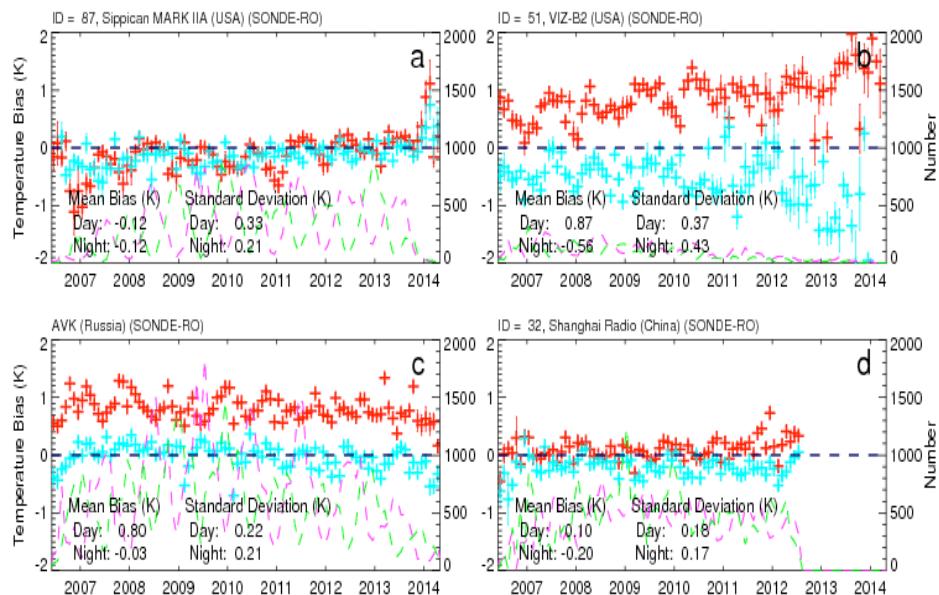
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

Vaisala RS92, (20060601~20101231 - 20110101~20140430)


1234
1235
1236

1237 Figure 9. The temperature differences between RS92 – RO from January 2007 to December 2010 (ΔT
1238 ($RS92_{200701-201012}$) and those from January 2011 to December 2015 (ΔT ($RS92_{201101-201512}$)) over a)
1239 United States, b) Australia, c) Germany, d) Canada, e) England, and f) Brazil.

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258



1259
1260
1261

1262
1263
1264
1265

1266 Figure 10. The time series of monthly mean temperature differences to RO at 50 hPa for RS92 for a
1267 United States, b) Australia, c) Germany, d) Canada, e) England, and f) Brazil. The red cross is the
1268 mean difference for RS92 minus RO temperature at 50 hPa during the daytime and the blue cross is
1269 for that during the nighttime; the vertical lines superimposed on the mean values are the standard error
1270 of the mean for daytime and nighttime, respectively; the back line indicates zero temperature bias; the
1271 pink/green dash line is the sample number for the daytime and nighttime, respectively. The right Y
1272 axis shows the sample number. The same symbols are also used for the following plots.
1273
1274
1275
1276
1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

Figure 11. The time series of temperature anomaly in 50 hPa for a) Sippican over United States minus
1287 RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde minus RO, d) Shanghai minus RO.

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

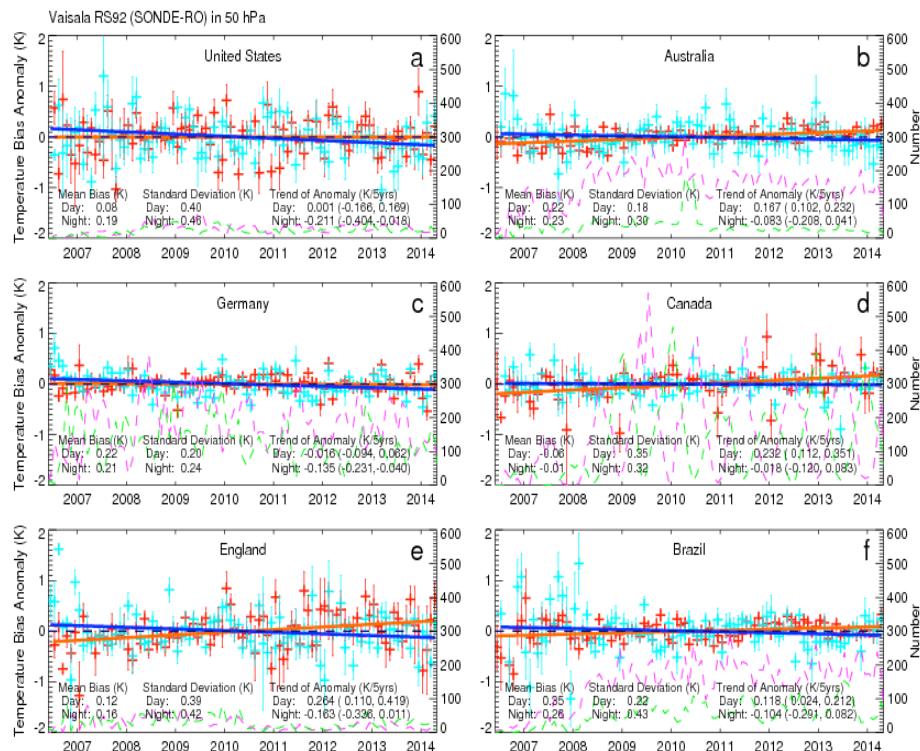
1301

1302

1303

1304

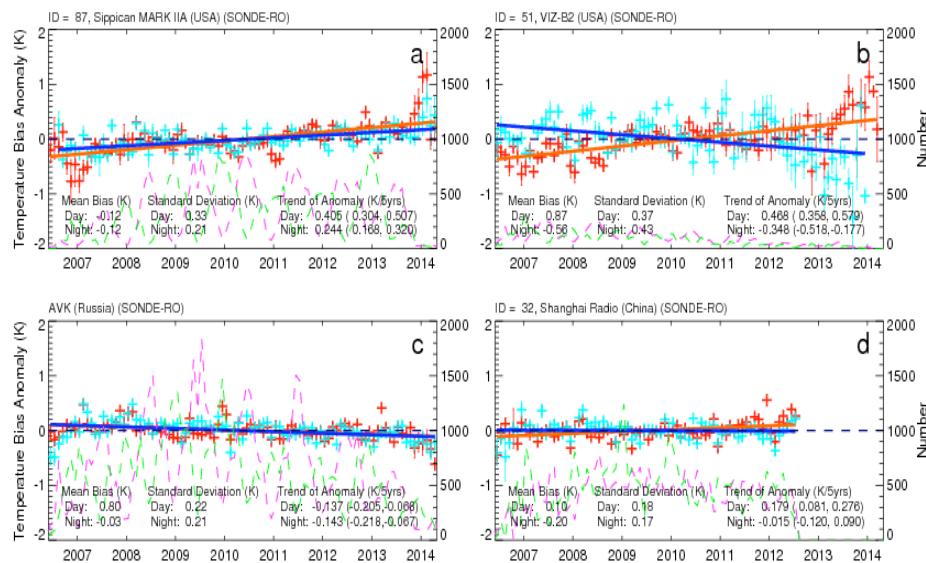
1305


1306

1307

1308

1309
1310
1311
1312


1313
1314
1315
1316

1317 Figure 12. The time series of de-seasonalized temperature anomaly in 50 hPa for RS92 for a) United
1318 b) Australia, c) Germany, d) Canada, e) England, and f) Brazil. The 95% confidence intervals
1319 for slopes are listed in the parentheses.

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334
1335
1336
1337
1338
1339
1340

1341
1342

1343 Figure 13. The time series of de-seasonalized temperature anomaly in 50 hPa for a) Sippican over
1344 United States minus RO, b) VIZ-B2 over United States minus RO, c) Russian Sonde minus RO, d)
1345 Shanghai minus RO. The 95% confidence intervals for slopes are listed in the parentheses.

1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

1366

1367

1368

1369

1370

1371 Table 1. Summary of the availability for different instrument types and their solar absorptivity (α) and
 1372 sensor infrared emissivity (ϵ) for the corresponding thermocap and thermistor and the sample number
 1373 of RAOB-RO pairs used in this study from June 2006 to December 2015.

1374

1375

	ID	Sensor type	Availability	Solar absorptivity	Infrared emissivity	Number of RO-RAOB pairs
RS80	37	Bead thermocap	1981~2014	0.15[<i>Luers and Eskridge, 1998</i>]	0.02	1624
Vaisala RS80-57H	52	Bead thermocap	early 1990s [<i>Redder et al., 2004</i>] ~ Jul 2012	0.15	0.02	13192
Vaisala RS80/Loran	61	Bead thermocap	~ 2014	0.15	0.02	11591
Vaisala RS80/Digicora III	67	Bead thermocap	~ 2012	0.15	0.02	2864
Vaisala RS90/Digicorn I, II	71	Thin wire F-thermocap [<i>Sun et al., 2010</i>]	1995 ~ 2014	0.15[<i>Luers, 1997</i>]	0.02	18082
Vaisala RS92/Digicora I/II	79	Thin wire F-thermocap [<i>Sun et al., 2010</i>]	2003 ~ 2014	0.15	0.02	40478
Vaisala RS92/Digicora III	80	Thin wire F-thermocap	2004~2014	0.15	0.02	184542
Vaisala RS92/Autosonde	81	Thin wire F-thermocap	2011~2014	0.15	0.02	42577
AVK-MRZ	27	Rod thermistor [<i>Sun et al., 2010</i>]	~ 2014	0.2[<i>He et al., 2009</i>]	0.04	48954
AVK-BAR Russian	58	Rod thermistor	2007 ~ 2014	0.2	0.04	26020
AVK-MRZ (Russian)	75	Rod thermistor	~ 2013	0.2	0.04	9472
MARL-A or Vektor-M-MRZ (Russian)	88	Rod thermistor	~ 2014	0.2	0.04	23326
MARL-A or Veltor-M-BAR (Russian)	89	Rod thermistor	~ 2014	0.2	0.04	25715
VIZ-B2	51	Rod thermistor [<i>Sun et al., 2010</i>]	1997[<i>Elliott et al., 2002</i>]~ 2014	0.15[<i>Luers and Eskridge, 1998</i>]	0.86	16310
Sippican MARK II A Chip	87	Chip thermistor [<i>Sun et al., 2010</i>]	1998[<i>Elliott et al., 2002</i>]~ 2014	0.07[<i>Luers and Eskridge, 1998</i>]	0.85	59775
Shanghai	32	Rod thermistor	1998 ~ 2012	<0.07 [<i>Wei, 2011</i>]	>0.90	71605
Meisei Japan	47	Thermistor [<i>KOBAYASHI et al., 2012</i>]	1994 ~ 2013	0.18[<i>Luers and Eskridge, 1998</i>]	0.84	7888

1376

1377

1378

1379
1380
1381
1382

1383 Table 2. Mean and standard deviation of temperature differences (K) from the layer from 200 hPa to
1384 20 hPa between RO and eight types of radiosonde^{a,b}. ^aThe values of standard deviations of temperature
1385 differences are shown in the parentheses. ^bThe sample number are for the ROAB-RO pairs available
1386 in the same time period.

1387
1388
1389

	ID	All Day and night mean(std)/ sample numbers	Day mean(std)/ sample numbers	Night mean(std)/ sample numbers
Vaisala RS80	37, 52, 61, 67	0.10 (1.54)/29271	0.10 (1.53)/15947	0.09 (1.55)/13324
Vaisala RS90	71	0.13 (1.54)/18082	0.16 (1.51)/8758	0.11 (1.57)/9324
Vaisala RS92	79, 80, 81	0.16 (1.52)/267597	0.20 (1.50)/161019	0.09 (1.55)/106578
AVK	27, 75, 88, 89, 58	0.33 (1.58)/133487	0.66 (1.51)/67679	-0.06 (1.56)/65808
VIZ-B2	51	0.22 (1.67)/16310	0.71 (1.54)/9246	-0.42 (1.60)/7064
Sippican MARKIIA Chip	87	-0.08 (1.59)/59775	-0.06 (1.56)/31230	-0.10 (1.62)/28545
Shanghai	32	0.05 (1.68)/71605	0.18 (1.67)/33360	-0.07 (1.68)/38245
Meisei Japan	47	0.11 (1.69)/7888	0.03 (1.71)/3849	0.19 (1.66)/4039

1390
1391
1392
1393
1394
1395
1396
1397

1398

1399

1400 Table 3. Mean, standard deviation (std) of monthly temperature differences (K), trend of temperature
1401 anomaly (K/5yrs), and root mean square (RMS) of RS92-RO time series at 50 hPa over United States,
1402 Australia, Germany, Canada, England, and Brazil.

1403

1404

1405

1406

1407

1408

	United States		Australia		Germany		Canada		England		Brazil	
	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
Mean Bias	0.08	0.19	0.22	0.23	0.22	0.21	-0.06	-0.01	0.12	0.16	0.35	0.26
std of Mean Bias	0.4	0.46	0.18	0.3	0.2	0.24	0.35	0.32	0.39	0.42	0.22	0.43
Trend of Anomaly (K/ 5 yrs)	0.001	-0.211	0.167	-0.083	-0.016	-0.135	0.232	-0.018	0.264	-0.163	0.118	-0.104
Trend of RO Temperature (K/5yrs)	0.941	0.506	-0.26	0.082	0.29	0.708	-0.69	-0.534	0.509	1.143	-0.076	-0.354
RMS of ANOM	0.365	0.439	0.161	0.275	0.173	0.22	0.276	0.215	0.358	0.392	0.212	0.398

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444 Table 4. Mean, standard deviation (std) of monthly temperature differences (K), trend of temperature
1445 anomaly (K/5yrs), and root mean square (RMS) of RS92-RO time series at 150 hPa over United States,
1446 Australia, Germany, Canada, England, and Brazil.

1447

1448

1449

1450

	United States		Australia		Germany		Canada		England		Brazil	
	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night	Day	Night
Mean Bias	0	0.09	0.03	0.08	0.07	0.06	0.03	0.12	0.04	0.05	0.21	0.23
STD of Monthly Mean Bias	0.33	0.35	0.13	0.22	0.2	0.25	0.35	0.52	0.37	0.33	0.16	0.27
Trend of ANOM (K/ 5 yrs)	-0.134	-0.228	0.117	-0.072	-0.02	-0.189	0.226	-0.21	0.056	-0.083	0.004	-0.014
Trend of RO Temperature (K/5yrs)	1.508	1.134	-0.2	-0.232	0.428	0.717	-0.797	0.217	0.562	1.011	0.085	0.439
RMS of ANOM	0.302	0.328	0.126	0.197	0.18	0.222	0.301	0.466	0.346	0.305	0.141	0.242

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490 Table 5. Mean, standard deviation (std), trend (K/5yrs), and root mean square (RMS) of time series of
1491 temperature anomaly at 50 hPa for global Vaisala (RS80, RS90, and RS92), and other sensor types in
1492 the North hemisphere mid-latitude (60°N-20°N). The 95% confidence intervals for trend of anomaly
1493 are listed in the parentheses.

	ID	Day				Night			
		Mean Bias	STD Of MB	Trend of ANOM (k/5yrs)	RMS of ANOM	Mean Bias	STD Of MB	Trend of ANOM (k/5yrs)	RMS of ANOM
RS80	37,52, 61,67	0.18	0.29	0.187 (0.073,0.301)	0.268	0.13	0.33	0.114(-0.019,0.248)	0.301
RS90	71	0.16	0.29	-0.006 (-0.123,0.111)	0.26	0.17	0.38	0.043(-0.115,0.201)	0.352
RS92	79,80, 81	0.22	0.07	0.074 (0.051,0.097)	0.062	0.12	0.12	-0.094(-0.131,-0.057)	0.093
Russia	27,75, 88,89 58	0.8	0.22	-0.137 (-0.205,-0.068)	0.164	-0.03	0.21	-0.143(-0.218,-0.067)	0.18
VIZ-B2	51	0.87	0.37	0.468 (0.358,0.579)	0.322	-0.56	0.43	-0.348(-0.518,-0.177)	0.386
Sippican MARKIIA Chip	87	-0.12	0.33	0.405 (0.304,0.507)	0.292	-0.12	0.21	0.244(0.168,0.320)	0.197
Shanghai	32	0.1	0.18	0.179 (0.081,0.276)	0.161	-0.2	0.17	-0.015(-0.120,0.090)	0.159
Meisei Japan	47	0.07	0.69	0.006 (-0.353,0.365)	0.619	0.05	0.51	-0.086(-0.369,0.197)	0.494

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505 Table 6. Mean, standard deviation (std), trend (K/5yrs), and root mean square (RMS) of time series of
 1506 temperature anomaly at 150 hPa for global Vaisala (RS80, RS90, and RS92), and other sensor types in
 1507 the North hemisphere mid-latitude (60°N-20°N). The 95% confidence intervals for trend of anomaly
 1508 are shown in the parentheses.

1509

1510

1511

1512

1513

		Day				Night			
		Mean Bias	STD Of MB	Trend of ANOM (k/5yrs)	RMS of ANOM	Mean Bias	STD Of MB	Trend of ANOM (k/5yrs)	RMS of ANOM
RS80	37,52, 61,67	0.18	0.19	0.045 (-0.036,0.126)	0.18	0.21	0.29	0.063(-0.055,0.181)	0.263
RS90	71	0.1	0.31	-0.058 (-0.181,0.065)	0.275	0.11	0.33	-0.065(-0.203,0.072)	0.307
RS92	79,80, 81	0.08	0.05	0.013 (-0.005,0.031)	0.041	0.05	0.08	-0.068(-0.094,-0.042)	0.066
Russia	27,75, 88,89 58	0.54	0.19	-0.194 (-0.254,-0.134)	0.16	0	0.21	-0.147(-0.199,-0.094)	0.135
VIZ-B2	51	0.65	0.38	0.370 (0.227,0.514)	0.362	-0.15	0.3	-0.051(-0.182,0.079)	0.272
Sippican MARKIIA Chip	87	-0.23	0.19	0.217 (0.148,0.285)	0.181	-0.1	0.18	0.160(0.095,0.226)	0.158
Shanghai	32	0.32	0.12	-0.086 (-0.149,-0.023)	0.1	0.08	0.19	-0.302(-0.394,-0.210)	0.176
Meisei Japan	47	0.06	0.53	-0.102 (-0.371,0.168)	0.458	0.19	0.5	0.001(-0.271,0.272)	0.455

1514

1515

1516

1517

1518

1519