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Abstract. The ability to predict the trajectory of climate change requires a clear understanding of the emissions and uptake 

(a.k.a. surface fluxes) of long-lived greenhouse gases (GHGs).  Furthermore, the development of climate policies is driving a 10 

need to constrain the budgets of anthropogenic GHG emissions.  Inverse problems that couple atmospheric observations of 

GHG concentrations with an atmospheric chemistry and transport model have increasingly been used to gain insights into 

surface fluxes.  Given the inherent technical challenges associated with their solution, it is imperative that objective 

approaches exist for the evaluation of such inverse problems. Because direct observation of fluxes at compatible 

spatiotemporal scales is rarely possible, diagnostics tools must rely on indirect measures. Here we review diagnostics that 15 

have been implemented in recent studies, and discuss their use in informing adjustments to model setup.  We group the 

diagnostics along a continuum starting with those that are most closely related to the scientific question being targeted, and 

ending with those most closely tied to the statistical and computational setup of the inversion.  We thus begin with 

diagnostics based on assessments against independent information (e.g., unused atmospheric observations, large-scale 

scientific constraints), followed by statistical diagnostics of inversion results, diagnostics based on sensitivity tests and 20 

analyses of robustness (e.g., tests focusing on the chemistry and transport model, the atmospheric observations, or the 

statistical and computational framework), and close with the use of synthetic data experiments (a.k.a. observing system 

simulation experiments (OSSEs)).  We find that existing diagnostics provide a crucial toolbox for evaluating and improving 

flux estimates, but, not surprisingly, cannot overcome the fundamental challenges associated with limited atmospheric 

observations or the lack of direct flux measurements at compatible scales.  As atmospheric inversions are increasingly 25 

expected to contribute to national reporting of GHG emissions, the need for developing and implementing robust and 

transparent evaluation approaches will only grow. 
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1 Introduction and the need for diagnostics 

The ability to predict the trajectory of climate change requires a clear understanding of the historical and current emissions 

and uptake (a.k.a. surface fluxes) of long-lived greenhouse gases, and chief among them carbon dioxide (CO2) and methane 

(CH4), over the Earth’s land and ocean regions.  For the natural components of the global budgets of these gases, 

understanding historical and contemporary flux patterns is needed for elucidating the biogeochemical processes that control 5 

flux variability, and therefore the likely evolution of these fluxes under changing climate scenarios (e.g., Friedlingstein et al., 

2014).  The ability to constrain the anthropogenic components of greenhouse gas budget estimates, on the other hand, is 

becoming increasingly central to discussions aimed at setting emissions, or emissions reduction, targets at local to global 

scales (e.g., Pacala et al., 2010).  

Direct monitoring of the fluxes of greenhouse gases is only feasible at a limited number of spatial and temporal scales, 10 

however.  Point sources of anthropogenic emissions can be measured directly at discrete times for example (e.g., Allen et al., 

2015; Subramanian et al., 2015; Zimmerle et al., 2015), while biospheric fluxes over land can be continuously monitored at 

plot scale (i.e. from a few hectares to a few km2, depending on sensor height) using the eddy covariance technique (e.g., 

Baldocchi et al., 2001; Law et al., 2002), and ocean fluxes can also be deduced locally from the difference between the 

partial pressure of CO2 measured in seawater and that in the overlying air (e.g., Takahashi et al., 1993, 2002).  At the global 15 

scale, a network of observation sites tracks the global growth rate of atmospheric concentrations of greenhouse gases, and 

gives broad insight into the temporal (e.g., seasonal, interannual) and spatial (e.g., hemispheric, latitudinal) signatures of net 

greenhouse gas emissions (e.g., Tans et al., 1990; Steele et al., 1992).   

The target applications listed in the first paragraph, however, require an understanding of fluxes at intermediate scales, e.g., 

from urban to biome to national to continental.  Direct observations of fluxes are not feasible at these scales, and gaining an 20 

understanding of flux budgets and controlling processes at these scales therefore invariably depends on a process of either 

“upscaling” small-scale flux observations, or “downscaling” large-scale information provided by atmospheric concentration 

measurements.  Upscaling strategies range from the implementation of mechanistic models calibrated using plot-scale flux 

observations (e.g., Richardson et al., 2012; Schaefer et al., 2012), to the development of statistical or machine learning 

approaches for elucidating dominant patterns (e.g., Beer et al., 2010; Jung et al., 2011), to the combination of fine-scale flux 25 

measurements with activity data (e.g., fuel consumption for anthropogenic emissions, or burnt area for fire emissions) as the 

basis of emissions inventories (e.g., van der Werf et al., 2006; Jeong et al., 2014; Lyon et al., 2015).  Downscaling strategies, 

on the other hand, most typically involve the solution of an inverse problem to elucidate spatially and temporally resolved 

flux information from upwind and downwind observations of atmospheric greenhouse gas abundance (e.g., Enting et al., 

2002). 30 

Inverse problems that couple atmospheric observations of greenhouse gas concentrations with an atmospheric chemistry and 

transport model in order to gain insights into underlying flux patterns have been used since the late 1980s (e.g., Enting and 

Mansbridge, 1989; 1991).  While the observational network has expanded and the statistical and numerical methods have 
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become more sophisticated (e.g., Ciais et al., 2010a; Michalak, 2013; Miller and Michalak, 2017; Houweling et al., 2017), 

the underlying principles have remained largely unchanged.  Spatiotemporal flux patterns at the Earth’s surface lead to 

spatial and temporal gradients in atmospheric concentrations of greenhouse gases.  The inverse problem then amounts to 

using those gradients to recover information about the flux patterns.  From a scientific perspective, an additional goal is often 

to also gain insight into the enviro-climatic factors driving these patterns (e.g., Gourdji et al., 2012; Fang and Michalak, 5 

2015; Miller et al. 2014, 2016b).  Although the principle is simple, the atmospheric inverse problem is ill-conditioned 

because the diffusive nature of atmospheric transport means that relatively small variations or errors in observed or modelled 

atmospheric concentrations can correspond to relatively large differences or errors in the inferred flux quantities and 

patterns.  In addition, the atmospheric inverse problem is often under-determined because the sparse observational coverage 

precludes the possibility of resolving fluxes (spatially and temporally) at all the scales that are of scientific or policy interest, 10 

as well as at all the scales to which atmospheric observations are locally sensitive. 

Given the high scientific and policy value of accurate greenhouse gas budgets, the growing role of atmospheric inverse 

problems to obtain these budgets at relevant scales, and the inherent technical challenges associated with the solution of 

these inverse problems, it is imperative that objective approaches exist for evaluating the scientific value and accuracy of 

inverse modelling estimates of greenhouse gas fluxes.  Here, we review diagnostics that have been implemented in recent 15 

studies, and discuss their use in informing adjustments to model setup. We have structured the review in a manner that we 

hope will be useful to novices and specialists alike. We present a relatively comprehensive survey of recent approaches, in 

order to provide a detailed representation of the state-of-the art for specialists. At the same time, we have organized the 

review around high-level categories in order to help guide researchers who are newer to the field and provide an entry point 

for further inquiry via the cited studies.  20 

Fundamentally, the emphasis of diagnostic tools should be on the scientific value of insights that are based on the solution of 

an atmospheric inverse problem. This quality control approach (i.e., the evaluation of the flux estimates) also has to be 

complemented by quality assurance (i.e., the evaluation of the estimation process that yielded the flux estimates). Indeed, the 

solution of atmospheric inverse problems invariably involves a series of decision points including, but not limited to, (1) the 

choice of the atmospheric observations to be used, (2) the choice of the atmospheric chemistry and transport model to be 25 

implemented, (3) the choice of a statistical framework for defining an objective function that captures the relative 

contribution of atmospheric observations, the chemistry and transport model, and any prior information in informing flux 

patterns, and (4) the choice of a numerical framework for the solution of the inverse problem.  Each of these choices will 

have a direct impact on estimates.  It is therefore also imperative to have diagnostic tools that can evaluate the self-

consistency of the modelling and statistical assumptions specific to the choices made in the setup of the inverse problem.  In 30 

other words, at a minimum, the ultimate estimates must be consistent with the assumptions inherent to the specific modelling 

setup that was implemented. 
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2 Challenges of diagnosing atmospheric inversions 

Having established the need for diagnostic tools to assess atmospheric inverse modelling results, the question then becomes 

one of identifying appropriate diagnostics, metrics, or benchmarks.  As discussed in the last section, however, direct 

observation of greenhouse gas fluxes is not possible at the space and time scales targeted by atmospheric inversions. This is 

in part because inversion systems for long-lived greenhouse gases are run over time periods ranging from weeks to decades 5 

to capture the long dispersion times of tracers in the atmosphere and to capture temporal variability in fluxes.  These long 

timespans are achieved at the expense of relatively coarse horizontal resolutions, ranging from tens of kilometres to one or 

more degrees, such that the large gap between flux measurements and inverse model scales precludes direct evaluation of 

inverse modelling results.  This gap is filled only rarely by some regional inversions (e.g., Lauvaux et al., 2009, Meesters et 

al., 2012). This means that there is a basic lack of independent measures of flux to assess inverse modelling estimates. 10 

Diagnostic tools used for assessing inverse modelling estimates must therefore rely on other indirect measures or information 

about the fluxes to be estimated.  Such measures and information should, in principle, be independent from the information 

used in the solution of the original inverse problem.  A natural choice might then be to use additional atmospheric 

concentration data not assimilated in the original inverse problem, because, as noted earlier, gradients in atmospheric 

greenhouse gas concentrations are themselves the result of underlying flux patterns.  Given the ill conditioned and typically 15 

under-determined nature of the atmospheric inverse problem, however, it is often desirable to use as much information (i.e. 

data) as possible to inform the initial solution of the inverse problem, in order to gain the deepest and most precise insights 

possible about flux patterns.  This goal, however, is at odds with the desire to keep some independent flux-relevant 

observations for diagnosing the estimates obtained from the inversion.  Although this problem is not unique to the solution of 

atmospheric inverse problems, it is certainly particularly salient in this context.  Two examples follow. 20 

In some ways, numerical weather forecasting (e.g., Kalnay et al., 2003) bears some resemblance to the flux estimation 

problem, as they both rely on atmospheric observations and a numerical representation of atmospheric dynamics.  In both 

cases, the ability to diagnose the accuracy and precision of estimates is of high value.  Key differences emerge upon closer 

examination, however.  First, the target quantities predicted/estimated in numerical weather prediction, such as temperature, 

precipitation, and barometric pressure, are ones that can also be measured directly at a large number of locations, via both in 25 

situ and remote sensing observations, making a comparison to direct benchmarks feasible (e.g., ECMWF, 2016). Although it 

is technically true that in some cases a scale mismatch still occurs (e.g., a thermometer cannot measure the “average” 

temperature over a computational grid box), the quantities of interest are less likely to display the strong multi-scale 

heterogeneity that makes eddy covariance flux observations ill-suited for diagnosing grid-scale inverse-model-derived flux 

estimates at much coarser spatial resolution.  Second, whereas atmospheric inverse problems aim to infer/estimate historical 30 

flux distributions that were never observed directly, the accuracy and precision of numerical weather forecast estimates can 

largely be verified, evaluated, and diagnosed simply by waiting for weather patterns to unfold.  This is perhaps best 
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illustrated through the long-standing comparisons of forecast skill among the world’s weather forecasting bureaus (Simmons 

and Hollingsworth, 2002; WMO-LCDNV, 2016). 

Another useful example is that of the development of retrieval algorithms for remote sensing observations of atmospheric 

constituents (e.g., Rodgers, 2000).  Let us take as a prototypical example the process of obtaining estimates of column-

integrated dry air mole fractions of atmospheric carbon dioxide (XCO2) from the spectrum of reflected sunlight measured by 5 

the Orbiting Carbon Observatory (OCO-2) space-borne instrument (e.g., Crisp et al., 2012).  In this case, the observations 

are radiances at specific wavelengths within the spectrum of reflected light, with a focus on specific absorption bands that 

are observed at high spectral resolution.  The forward problem involves the solution of radiative transfer equations.  The 

target variable of primary interest is XCO2.  This problem has analogies to the flux estimation problem in that the column-

integrated CO2 concentrations cannot be measured directly per se.  A key difference, however, is that a number of validation 10 

datasets are available to help diagnose the retrieval algorithm (e.g., Osterman, 2011).  These include, among others, 

observations from ground-based remote sensing instruments (that look up at the sun, rather than down at the Earth, e.g., 

Wunch et al. (2011)), and targeted campaigns of in situ airborne observations that can capture CO2 concentration variability 

within a portion of the atmospheric column (e.g., Tadić et al., 2014; Frankenberg et al., 2016).  Unlike in the flux estimation 

problem, there is no direct conflict between using these additional measurements for validation / diagnosis versus using them 15 

to directly inform the solution of the inverse problem itself, as there is no clear mechanism by which these additional 

observations could be routinely incorporated within the core retrieval algorithm, although they can be used for additional 

empirical bias correction. 

Overall, then, while the need for diagnostics to evaluate the scientific validity and statistical self-consistency of flux 

estimates derived via the solution of atmospheric inverse problems is clear, this need poses very substantial challenges.  20 

These include the lack of independent measures of flux at comparable spatiotemporal scales, and the inherent dilemma 

between using available atmospheric observations for estimation versus validation.  These features make the process of 

developing and implementing diagnostics particularly challenging, and fundamentally different from the challenges observed 

in other fields that might at first glance appear to be somewhat analogous. 

3 Overview of existing diagnostics 25 

Researchers have taken a number of approaches in tackling the challenges associated with the development of diagnostics 

that are both practical, given the unavoidable limitations in available data, and genuinely informative, in terms of assessing 

the accuracy and precision of flux estimates. Here we describe existing diagnostics that have been used as part of inverse 

modelling efforts.  We focus primarily on diagnostics that evaluate the validity and self-consistency of the inversion setup, 

rather than on diagnostics designed to assess the information content of specific data sets. We also discuss how diagnostics 30 

are used to inform adjustments to model setup and the trade-offs inherent to alternative possible approaches to model 

evaluation.  We focus primarily on examples from papers published between 2010 and 2016, and on papers that present 
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recent applications of specific diagnostics rather than on the studies where these diagnostics were originally introduced.  We 

do so in order to get a contemporary snapshot of approaches that are currently being used for diagnosing atmospheric 

inversions.  The groupings of diagnostics are ordered here by starting with diagnostics that are most closely related to the 

actual scientific problem or question being targeted by the inversion, to those that are most closely tied to the statistical and 

computational setup of the inversion framework itself.  More fundamental overriding questions about the types of insights 5 

that the range of currently available diagnostics can (or cannot) actually provide are then discussed in Section 4. 

3.1 Assessment against independent information 

The most natural starting point for assessing the solution of an atmospheric inverse problem is through evaluation against 

independent information. Although, as discussed in earlier sections, direct observations of surface fluxes are seldom 

available at compatible scales, at least two additional avenues are available. The first is to evaluate flux estimates against 10 

unused atmospheric observations, whether from in situ monitoring or remote sensing. This is accomplished through the 

solution of the “forward” problem, which translates estimated fluxes into modelled atmospheric concentration fluctuations. 

The second is to compare estimates against any available large-scale scientific constraints. This approach can be challenging 

especially when large-scale constraints are themselves uncertain. 

3.1.1 Evaluation against unused atmospheric observations 15 

If any atmospheric observations are available that have not been used as a constraint in the solution of the inverse problem, 

they can be leveraged to evaluate final flux estimates. To do so, final flux estimates are used as an input into the atmospheric 

chemistry and transport model used as part of the inversion, and predicted concentrations at the times and locations of the 

additional available atmospheric observations are then compared to the measured concentrations.  These additional 

observations can be of several types, and inform the inversion setup in various ways, given differences in vertical 20 

information, spatial coverage, and precision. 

Evaluating inversion results constrained by in situ observations using independent surface or satellite total column 

measurements can provide additional information about regional fluxes. The much broader spatial coverage of satellite 

observations makes it possible to assess flux estimates at large spatial scales, and thus can help to identify large-scale spatial 

biases that are related to a lack of in situ coverage in some regions (e.g., biases in the latitudinal gradient or over land versus 25 

ocean) (e.g., Lindqvist et al., 2015). However, it is important to note in the context of these comparisons that the satellite 

retrievals themselves may have regional biases, as will be discussed later. 

Conversely, for inversions constrained by satellite observation of total column concentrations, evaluating results using in situ 

measurements can reveal errors in the column-constrained system’s ability to reproduce surface fluxes, which can be related 

to aspects of the retrieval (such as biases) or to the transport model’s representation of boundary layer dynamics (e.g., 30 

Locatelli et al., 2015; Cressot et al., 2014).  
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Comparisons to independent measurements can also be used to isolate transport errors from the other confounding errors.  

For example, comparing the total column mixing ratios simulated based on posterior flux estimates obtained using surface 

data to independent observations of total column mixing ratios can diagnose a transport model’s skill in simulating the 

seasonality of the tropopause height and of the stratospheric partial column (e.g., Houweling et al., 2014). Performing this 

type of assessment for multiple inversions constrained by different types of measurements but using the same transport 5 

model can provide insight into whether seasonal biases in the inversion are caused by seasonal biases in an observing system 

or to seasonal biases in the transport model (e.g., Houweling et al., 2014). More generally, vertical transport bias can be 

assessed by comparing the vertical gradients of posterior vertical profiles to those of observed profiles (e.g., Pickett-Heaps et 

al., 2011; Saeki et al., 2013b; Liu and Bowman, 2016), because vertical gradients provide information about vertical mixing 

and convection. 10 

More broadly, evaluation against all types of independent atmospheric observations provides an additional window into the 

degree to which estimated fluxes capture key features of the atmospheric signal, such as the seasonal cycle, latitudinal 

gradients, or regional patterns of concentrations (e.g., Zhang et al., 2014; Jiang et al., 2014; Diaz Isaac et al., 2014; Pandey et 

al., 2016; Liu and Bowman, 2016; Johnson et al., 2016).  

3.1.2 Evaluation at aggregated scales against large-scale scientific constraints 15 

The accuracy of inversion-derived flux estimates and the validity of the overall inversion framework can be assessed, at 

large scales, based on existing understanding of carbon cycle and atmospheric dynamics. This type of evaluation may 

involve comparisons of the inversion-derived estimates to existing information about flux magnitudes at large scales, about 

the overall direction of the net flux in a region (i.e. emission vs. uptake), or about flux seasonality. Care must be taken, 

however, for the approach not to become circular, i.e. for inversion results not to be evaluated by comparing them to 20 

assumed features of the very processes that the inversion is trying to inform. 

In the simplest case, spatially aggregated posterior fluxes can be assessed based on expert knowledge of the system. For 

example, methane emissions in regions dominated by natural gas extraction, urbanization, wetlands, or cattle feedlots are 

expected to substantially outweigh soil methane uptake, and negative estimated emissions in such regions would point to 

errors in the inversion (e.g., Berchet et al., 2013).  Similarly, global decadal atmospheric growth rates and latitudinal 25 

gradients of greenhouse gases are well constrained by long-term baseline observations (e.g., Conway et al., 1994), and 

posterior flux estimates can be evaluated against such large-scale constraints (e.g., Cressot et al., 2014).  Evaluation against 

observed latitudinal gradients provides information not only about global total fluxes, but can also inform the accuracy of the 

representation of inter-hemispheric transport, although more so for gases with limited uptake at the Earth surface (e.g., 

Thompson et al., 2014). This comparison is especially helpful when performed using both surface and upper-troposphere or 30 

total column concentrations, because this makes it possible to assess how both meridional and vertical transport are 

represented (e.g., Thompson et al., 2014).  
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More broadly, inversion-derived fluxes can be compared against independent estimates of fluxes for comparable regions, 

although the fact that both the inversion-derived and the independent estimates of fluxes are uncertain must be recognized.  

For example, the fraction of the global CO2 sink attributable to land versus ocean can be compared between inversions and 

independent model or mass-balance estimates (e.g., Le Quéré et al., 2015). For specific regions and periods, inversion results 

can also be compared against detailed inventory estimates of fluxes (e.g., Lauvaux et al., 2012; Schuh et al., 2013).  A third 5 

example (noted already in Section 3.1.1) is the comparison of large-scale seasonal cycles of modelled trace gas 

concentrations to observations. For inversions constrained by remotely sensed data, checking for consistency in seasonal 

cycles between observations, estimates from a satellite-data-constrained-inversion, and estimates from an in-situ-data-

constrained inversion may draw attention to the need for seasonal bias correction in the observations, while also exploring 

other potential causes of regional or seasonal bias, such as seasonal biases in vertical transport (e.g., Houweling et al., 2014).  10 

Lastly, bottom-up studies also provide regional budget estimates at the annual or pluriannual scale that can be compared to 

inverse modelling results (e.g., Gourdji et al., 2012; Miller et al., 2013, 2014). The comparison may reveal convergence (e.g., 

Ciais et al., 2010b) or divergence (e.g., Chevallier et al., 2014; Miller et al., 2013, 2014) of the estimates. However, the 

attribution of any divergence remains subjective, given the uncertainty of the bottom-up estimates themselves (e.g., 

Chevallier et al., 2014; Reuter et al., 2014; Gourdji et al., 2012).  15 

Finally, large dipoles in estimated fluxes between large regions can point to a lack of observational constraint for certain 

regions, to overfitting of the observations that do exist, and/or to biases in large-scale transport (e.g., Alexe et al., 2015; 

Nassar et al., 2011). The presence of flux dipoles can, however, also be representative of real spatial flux patterns, and 

sensitivity tests focusing on factors such as the coverage of observational constraints can help to evaluate such patterns in 

posterior fluxes (e.g., Cressot et al., 2014; Rivier et al., 2010) (see also Section 3.3).  20 

3.2 Statistical diagnostics of inversion results 

Rather than comparing flux estimates against independent information directly, a second set of strategies focuses instead on 

assessing whether the prior and posterior flux estimates, uncertainties, and covariances are consistent with the assumptions 

built into the design of the implemented inversion framework.  These strategies thereby focus on statistical self-consistency 

of the inversion setup, and in this way can point to discrepancies that can signal unreliable results.  25 

The majority of inverse modelling approaches used for greenhouse gas flux estimation leverage a combination of prior 

information and an observational constraint.  Within the mathematical framework of the inversion, the uncertainty and 

spatiotemporal covariance structure of the prior information (i.e., prior error statistics), as well as the reliability with which 

the researchers expect to be able to reproduce the atmospheric observations (i.e., model-data-mismatch statistics), are 

represented through error covariances.  These error covariances, the prior information, the observational data, and the 30 

chemistry and transport model are then also used to quantify the uncertainty associated with posterior estimates (see e.g., 

Rayner et al., (2016) for a detailed discussion).  This framework provides an opportunity to evaluate the statistical self-

consistency of the inversion setup.   
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For example, under the assumption of Gaussian and unbiased errors and for a given set of assumptions about error 

correlations, the sum of squared errors follows a chi-squared distribution with a known number of degrees of freedom; for 

this reason, posterior errors can be used to evaluate or scale assumed prior error variances (e.g., Michalak et al. 2005; 

Desroziers, 2006; Wu et al., 2013; Lauvaux et al., 2016; Cressot et al., 2014). In some cases, deviations between 

concentrations modelled based on posterior fluxes and atmospheric observations not included in the original inversion can be 5 

used for this purpose (e.g., Chevallier and O’Dell 2013).  This approach can also be used to assess how model-data mismatch 

errors vary seasonally (e.g., Gourdji et al., 2012; Kim et al., 2011).  Also, the very high resolution of some regional 

inversions and the availability of plot-scale flux measurements make it possible to validate the posterior uncertainty of fluxes 

directly in some cases (e.g., Broquet et al., 2013).   

The spatial and temporal autocorrelation of posterior errors can also be used to inform model setup (Diaz Isaac et al., 2014) 10 

or to assess the identifiability of underlying fluxes (Yadav et al., 2016). 

Other than assessing self-consistency, statistical diagnostics can also be used to quantify the error reduction (or information 

gain) made possible by the assimilation of atmospheric observations. In this approach, posterior uncertainties are compared 

to prior uncertainties. In cases where the explicit quantification of posterior flux uncertainties is prohibitively 

computationally expensive, it can also be approximated through approaches such as the use of a Monte Carlo ensemble of 15 

inversions in which model parameters are perturbed for each run (e.g., Chevallier et al., 2007; Cressot et al., 2014; Pandey et 

al., 2016). More simply, the deviations between atmospheric observations not included in the inversion and modelled 

concentrations based on posterior vs. prior fluxes can be used as a measure of error reduction (e.g., Liu and Bowman, 2016; 

Johnson et al., 2016; Lauvaux et al., 2016).  

3.3 Sensitivity tests and analysis of robustness 20 

The validity and robustness of inversion-derived estimates can also be assessed through sensitivity tests. These tests involve 

running additional inversions where one or several components have been altered. The most common of these are changes to 

the chemistry and transport model used to translate fluxes into atmospheric concentrations, changes to the set of atmospheric 

observations used to constrain flux estimates, and changes to the implemented statistical or computational framework. 

Examples of the latter include changes to prior estimates, boundary conditions, and flux spatiotemporal resolutions. Results 25 

shed light on the degree to which results are robust to specific implementation choices. 

3.3.1 Chemistry and transport model 

Recently, as inversions have become more sophisticated, transport model sensitivity tests have become more 

computationally expensive. As a result, it has become more difficult to assess the impact of model choice on inversion 

results (e.g., Gurney et al., 2002; Baker et al., 2006). Applications focusing exclusively on synthetic data are covered in 30 

Section 3.4, while here we present a few examples that included real observations. 
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Examining the effect of the choice of a chemistry and transport model can lead to various insights.  For example, the 

transport model used by an inversion may be run using different boundary layer schemes to assess how the representation of 

vertical mixing affects the interpretation of assimilated data (e.g., Peters et al., 2010). Another aspect is the impact of the 

spatial resolution of the transport model, and particularly the use of finer grids within mesoscale domains versus the coarser 

grids typical of global transport models. For example, including a finer-scale nested grid and changing the transport 5 

representation at these finer scales provides information about the effect of transport representation at scales finer than the 

grid scale of global transport models (e.g., Rivier et al., 2010).  In addition, posterior meridional concentration gradients can 

be compared across inversions that use different global transport models to assess the effect of interhemispheric transport 

(e.g., Thompson et al., 2014).  

The implementation of more than one transport model in a forward run can also shed light on consistent differences in the 10 

ability to represent observed atmospheric concentration signals, seasonal cycles of mixing ratios, or vertical profiles (e.g., 

Pillai et al., 2012; Diaz Isaac et al., 2014). 

3.3.2 Atmospheric observations 

Performing inversion sensitivity tests in which only the constraining observational data set is changed between inversions 

can shed light on the impact of various observations on flux estimates, and therefore on their relative information content 15 

with regard to underlying fluxes, and also makes it possible to assess the extent to which conclusions are robust to the choice 

of observations used to constrain the inversion. 

For example, a major effort has been made to quantify the effects of including remotely sensed observations (specifically, 

satellite retrievals) as an additional constraint beyond in situ observations. This is distinct from the applications discussed in 

Section 3.1.1, where remote sensing observations were not included in the inversions, but were instead used to evaluate 20 

inversion-derived flux estimates. Satellite data provide the benefit of broader spatial coverage than in situ measurements, 

potentially informing fluxes in regions not well constrained by current in situ networks. However, the informational value 

and robustness of the information provided by satellite observations is still the subject of ongoing research, and thus their use 

as constraints in inversions requires special consideration of the impacts of any potential biases. Several studies have 

included satellite total column or mixing ratio data as an additional constraint on a model otherwise constrained only by in 25 

situ concentration measurements, to determine whether remotely sensed total column concentrations provide a significant 

amount of additional information (e.g., Alexe et al., 2015; Houweling et al., 2014; Nassar et al., 2011; Pandey et al., 2016; 

Saeki et al., 2013a). An inversion constrained only by in situ measurements may also be compared to an inversion 

constrained only by satellite measurements (e.g., Cressot et al., 2014). The spatial distribution and magnitude of fluxes and 

the source/sink status of particular regions are often the major posterior features compared between inversions constrained 30 

by different subsets of available data (e.g., Alexe et al., 2015; Cressot et al., 2014; Houweling et al., 2014; Nassar et al., 

2011).  The differences in the geographical flux patterns can be attributed through the use of various methods focusing on 

quantifying the information content and geographical coverage of satellite data. The relative information content of the 
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different observational datasets can be quantified via the degrees of freedom (a metric based on posterior error covariances) 

provided to the inversion (see e.g., Rodgers 2000), whereby data sets that represent a stronger constraint provide more 

degrees of freedom (e.g., Nassar et al., 2011). The constraint provided for specific regions by observations with extensive 

geographical coverage can also be qualitatively analysed by creating visualizations of the sensitivity to fluxes from a certain 

region (e.g., Nassar et al., 2011). If satellite retrievals provide a large increase in coverage over a particular region, then this 5 

method may help to explain large changes in posterior fluxes in upwind areas. 

In addition, the robustness of conclusions about flux distributions derived from satellite observations can be explored by 

using alternative sets of satellite-derived observations. Studies have checked for agreement in posterior fluxes for inversions 

run using different satellite instruments and retrieval algorithms (e.g., Alexe et al., 2015; Chevallier et al., 2014; Takagi et 

al., 2014). The effect of the bias correction scheme used for satellite retrieval post-processing has also been a subject of 10 

several sensitivity studies (e.g., Houweling et al., 2014; Alexe et al., 2015; Nassar et al., 2011; Cressot et al., 2014, Basu et 

al., 2013). 

Sensitivity tests based on inversions constrained by different subsets of available observations have been used to examine the 

incremental gain in information obtained by expanding the in situ observation network. Such experiments can be used to 

estimate the uncertainty reduction (see Section 3.2) that could potentially be achieved by assimilating more observations 15 

over or downwind from poorly constrained regions, as well as the effects of a more extensive observational network on the 

estimated spatial and temporal variability of fluxes (e.g., Butler et al., 2010; Saeki et al., 2013b; Kadygrov et al., 2015; Jiang 

et al., 2014; Peters et al., 2010). They can also be used to determine the value of episodic versus continuous observations 

(e.g., Peters et al., 2010). These sensitivity tests can also determine whether regions with strong fluxes, such as the “dipoles” 

discussed in Section 3.1.2, are simply due to a relative lack of constraint for certain regions (e.g., Rivier et al., 2010).  20 

Last, sensitivity tests have also been used to examine the potential role of bias of in situ measurements at specific site.  In 

such studies, an offset is added to specific observations, and the results of the control inversion and the inversion with the 

offset can be compared to determine the effect of potential biases on the posterior flux field (e.g., Peters et al., 2010; Masarie 

et al., 2011). 

3.3.3 Statistical and computational framework 25 

Sensitivity tests can be used to explore the impact of the statistical assumptions and computational framework used in 

inversions.  

For example, the impact of assumptions about the statistical representation of prior errors and model-data mismatch errors 

can be examined by performing multiple inversions, as can the impact of approaches aimed at optimizing these error 

statistics (e.g., Bousquet et al., 2011; Cressot et al., 2014; Wu et al., 2013; Ganesan et al., 2014; Berchet et al., 2013). 30 

Sensitivity tests may also be run on other statistical parameters such as the assumed correlation length of fluxes (Corazza et 

al., 2011). 
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Another key aspect of regional inversions that can be explored through sensitivity tests is the impact of the choice of a 

dataset used to represent background concentrations of greenhouse gases entering the model domain.  This can be done 

through the implementation of alternative boundary conditions, and/or the exploration of the impact of uncertainty in 

individual sets of boundary conditions (e.g., Göckede et al., 2010b; Bréon et al., 2015; Schuh et al., 2010; Gourdji et al., 

2012).  5 

Similar to the case of boundary conditions, inversions aiming to isolate one component of greenhouse gas budgets (e.g., 

biospheric CO2 in the case of CO2 inversions) must rely on pre-existing estimates of other components of the budget (e.g., 

fossil fuel CO2 emissions).  The impact of the choice of an estimate can be explored through sensitivity tests (e.g., Peylin et 

al., 2011; Peters et al., 2010).  

The choice of a model or data set to be used as an a priori estimate in Bayesian inversions is another source of uncertainty in 10 

the inferred fluxes, particularly in areas where the observation constraint is weak. Inversions using alternative inventories or 

process-based models with different spatial and seasonal flux patterns as priors can be compared in terms of the spatial and 

temporal distributions of the posterior fluxes to assess the robustness of flux estimates (e.g., Kim et al., 2011; Göckede et al., 

2010b; Bergamaschi et al., 2015; Corazza et al., 2011; Peters et al., 2010). 

A final example is the use of sensitivity tests to explore the effect of the spatial and temporal aggregation and resolution of 15 

the unknown fluxes in the modelling framework. The impact of the choice of flux regions, model grid resolution, model grid 

nesting, or model time step can all be explored (e.g., Rivier et al., 2010; Göckede et al., 2010a; Kim et al., 2014; Peters et al., 

2010).  

3.4 Synthetic data experiments 

Observing system simulation experiments (OSSEs) are studies in which synthetic observations are constructed at observation 20 

times and locations using a prescribed set of fluxes and a chemistry and transport model. These synthetic observations are 

then used instead of actual observations as data constraints on an inversion. OSSEs are particularly useful for diagnostics 

because the “true” transport and fluxes are known and can be manipulated.  These types of studies constitute a necessary but 

certainly not sufficient condition for ensuring a good inversion setup, as many complexities of inversions using real 

observations can only be approximated within a synthetic data experiment context.  OSSEs have become a key component of 25 

inversion model development, especially as models have become more complex. 

Because the “true” fluxes are known in an OSSE, various metrics can be used to assess how well the inversion can recover 

fluxes. OSSEs can be used to quantify the magnitude and geographical distribution of uncertainty that stems from specific 

errors or assumptions in the inversion framework, such as transport model errors (e.g., Houweling et al., 2010; Berchet et al., 

2015), spatiotemporal flux patterns within regions (e.g., Berchet et al. 2015), biased priors (e.g., Berchet et al. 2015), flux 30 

spatiotemporal resolutions (e.g., Wu et al., 2011), or parameter choices within computational data assimilation systems (e.g., 

Miyazaki et al., 2011, Chatterjee et al. 2012). Posterior flux errors and error covariances can be used to assess the impact of 

modelling simplifications or data limitations on the accuracy and precision of flux estimation (e.g., Berchet et al., 2015; 
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Gourdji et al., 2010). OSSEs can also be used to understand sources of bias through a simple differencing of posterior and 

“true” fluxes (e.g., Locatelli et al., 2013; Thompson et al., 2011; Basu et al., 2016; Bloom et al., 2016). Similar tests can be 

run to determine the effects of observational biases and mistuning of error statistics on the accuracy of posterior estimates 

(e.g., Baker et al., 2010).  

OSSEs can also be used to determine the sensitivity of inversions to transport errors. The model-data mismatch may be 5 

compared between an inversion that uses the “true” transport to calculate the sensitivity matrix versus that of an inversion 

that uses a different transport model (e.g., Chevallier et al., 2010; Houweling et al., 2010; Berchet et al., 2015; Locatelli et 

al., 2013). Assuming that the difference in performance between these two transport models is comparable to the difference 

between transport models used in real-data inversions, the inversion with inconsistent transport can be compared to the 

inversion with consistent transport to determine how much the inconsistencies in transport affect the inversion. A similar test 10 

can be conducted simply by adding transport or chemistry errors to the pseudo-observations for one run of the model (e.g., 

Gourdji et al., 2010; Baker et al., 2010; Thompson et al., 2011). In addition, the meteorological forcing field may be 

perturbed independently of the transport model itself, to determine how the underlying meteorological assumptions affect the 

inversion; this is particularly important because the meteorology is often not optimized for transport runs (as noted by 

Berchet et al., 2015).  15 

OSSEs are also useful for determining the sensitivity of the inversion to the choice of priors. Within a Bayesian inversion, 

perturbations of prior fluxes from the “true” fluxes in terms of spatial distribution, temporal distribution, and flux magnitude 

by region can be used for a synthetic data sensitivity test (e.g., Berchet et al., 2015). This type of study is useful for 

determining prior-related biases in cases when the bottom-up inventories for a particular trace gas in the model domain are 

highly uncertain. 20 

OSSEs can also provide information about how much information can be obtained from the current observational network. 

Pseudo-observation sites and types of data (for example, mixing ratios, profiles, column averages, or isotopic signatures 

from flask samples) can be added or taken away from the inversion to determine how the density and distribution of 

observations affect the precision and accuracy of the posterior flux field (Villani et al., 2010; Miyazaki et al., 2011; 

Hungershoefer et al., 2010; Shiga et al., 2013; Basu et al., 2016; Bloom et al., 2016). In addition, the ability of existing 25 

monitoring network sites to detect specific types of fluxes or flux patterns can be explored, as well as the impact of various 

sources of uncertainty on detection (e.g., Shiga et al., 2014; Fang et al., 2014; Miller et al., 2016a). Such experiments can 

determine how much information about the true flux field is provided by an observational network. The uncertainty 

reduction from the prior to the posterior estimates (see Sections 3.2 and 3.3.2) provides an overall metric for evaluating the 

information provided by hypothetical observations (e.g., Chevallier et al., 2010; Baker et al., 2010; Hungershoefer et al., 30 

2010). 

Finally, through sensitivity tests, OSSEs can help to determine optimal model resolution and observational averaging for 

obtaining the most accurate posterior fluxes. This has been done for model temporal resolution and observational temporal 



14 
 

averaging (e.g., Gourdji et al., 2010). OSSEs can also be used to test the performance of the optimization of multiscale grids, 

which can decrease computational costs relative to regularly spaced grids (e.g., Wu et al., 2011). 

4 Evaluation of existing diagnostics 

We have presented diagnostics as an approach to the needs of quality control and of quality assurance for atmospheric 

inversion systems. The diagnostics that were presented in Section 3, in many ways, address this question well. The diversity 5 

of diagnostics may even give the impression that they can compensate for the lack of direct independent validation 

measurements described in Section 2, and thereby ensure statistical optimality of inverse modelling systems. Indeed, even 

uncertain parameters (hyperparameters) of the prior and observation error covariance matrices are optimisable from the 

assimilated data (e.g., Section 3.3.3). In most cases, however, such an interpretation would be overly optimistic.  The 

diagnostic approaches described in Section 3 provide a crucial toolbox for evaluating and improving flux estimates obtained 10 

through the solution of atmospheric inverse problems. Without diagnostics, it is impossible to assess whether flux estimates 

are reliable, or to make sense of differences among alternative sets of estimates.  At the same time, however, none of the 

presented approaches overcome the fundamental challenges described in Section 2. As such, the information provided by 

diagnostic tests must itself be taken with a proverbial “grain of salt,” and it is equally important to be aware of the aspects of 

an inversion that cannot be evaluated using existing diagnostics as it is to assess those that can. 15 

The key information lies in available measurements: diagnostics can only help to reformulate this information by bringing to 

light the impact of specific assumptions, in the same way that the atmospheric inversion reformulates observed 

concentrations in terms of surface fluxes, or that a retrieval scheme for an Earth observing system reformulates the measured 

radiance information into a geophysical quantity. For instance, the principle of objectively tuning error statistics for 

atmospheric inversions (e.g., Michalak et al., 2004; 2005) ultimately relies on disentangling deviations between prior flux 20 

assumptions and observations into components attributable to prior uncertainty versus model-data-mismatch errors. The 

attribution to these two components of error is based on leveraging differences in their space-time structure, however, and is 

made easier when the two sources of error have features that are statistically distinct (e.g., Desroziers et al., 2005). 

Alternatively, some of the statistics may be well known from some other information source and can then play the role of a 

fixed point to deduce the other ones (e.g., Kuppel et al., 2013). It is important to remember, however, that diagnostics cannot 25 

bring original information to the problem, but rather provide a framework for interpreting available information. This is 

particularly obvious when no real measurements are assimilated (the synthetic data experiments of Section 3.4). 

The interpretation of diagnostics is also complicated by the fact that many of them are not independent of the underlying 

assumptions of the inversion systems themselves (e.g., independence of prior errors from model-data mismatch errors, 

uncorrelated nature of model-data-mismatch errors, linear observation operator, Gaussian error statistics, etc.). As a result, 30 

they may simply express the inadequacy of these assumptions rather than the misspecification of some particular component 

of the inversion setup. A common example is the inflation of observation error variances to compensate for neglecting 
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observation error correlations, which yields a too small model-data-mismatch (see Section 3.2.2) that cannot be adequately 

resolved without removing the decorrelation hypothesis (e.g., Chevallier, 2007). 

The comparison of inversion results with independent (un-assimilated) concentration measurements (Section 3.1.1) is also 

partly ambiguous, because an unknown fraction of the misfit is simply caused by the chemistry and transport model that 

simulates the independent measurements. Similarly, the interpretation of differences between inversion results and flux 5 

estimates from bottom-up inventories (Section 3.1.2) may revolve around estimating the uncertainty of the latter (see, e.g., 

the diverging conclusions of Chevallier et al. (2014) and Reuter et al. (2014) about the quality of the inferred carbon sink of 

Europe). 

Sensitivity tests about some components of the inversion systems, like the chemistry and transport model (see Section 3.3.1), 

are implemented in an attempt to sample the same error statistics as those specified by the model-data-mismatch and prior 10 

error covariance matrices. In practice, however, they may instead reflect different opinions about the error statistics. For 

instance, intercomparisons of inversion results like those of Transcom (e.g., Gurney et al., 2002, Peylin et al., 2013) form 

¨ensembles of convenience¨ rather than statistically-coherent ensembles.  They may underestimate the quality of state-of-the-

art inversions (because some systems would underperform due to particularly coarse horizontal resolution or due to an out-

dated transport simulation configuration) as well as overestimate it (because the few participants cannot sample the whole 15 

uncertainty space). To represent inversion uncertainty, inversion intercomparisons should explore the space of uncertainty 

widely (e.g., the ensemble would not be limited to one particular source of information for its prior fluxes for a given source-

sink process) and in a balanced way (e.g., the ensemble would not oversample marginally-different versions of a single 

transport model at the expense of other transport model types). However, this goal is usually hampered by limited resources 

that favour existing set-ups over the design of systematic explorations of other plausible and defensible set-ups. 20 

Overall then, satisfying the diagnostics described in Section 3 is, strictly speaking, neither a sufficient nor a necessary 

condition for optimality (see also the discussion in Talagrand 2014). The degree of usefulness of diagnostics is proportional 

to the amount of information that is input to them; conversely, lack of independent information can lead to problems of 

equifinality, where similar apparent skill is achieving through widely different setups and assumptions. In some cases, the 

process of identifying and improving weak components of an inverse system itself represents an inference problem that may 25 

be ill-posed or under-determined. As a result, the interpretation of diagnostics itself often requires subjective expert 

knowledge.  

Despite their ambiguity, however, the role and diversity of diagnostics has increased over the years, and this is an important 

and positive development. Indeed, the diagnostics described in Section 3 have proven their practical usefulness in 

understanding the behaviour of inversion systems, by providing a fresh perspective on inversion results. Moreover, they can 30 

reveal, or at least suggest, the presence of hidden flaws in inversion systems by shedding light on the symptoms of these 

flaws. As such, they form a critical basis for the credibility of the inversion approach to flux estimation. While existing 

diagnostics tools have limitations, some of which are unavoidable given the challenges described in Section 2, a careful 
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review of the literature makes it clear that the implementation of diagnostics is a necessary step in the “exploration” of an 

inversion system. 

5 Looking ahead 

Atmospheric inversions are increasingly expected to contribute to national reporting of greenhouse gas emissions under 

future international treaties (see the discussions in Ogle et al., (2015) for biogenic emissions, Miller and Michalak (2017) for 5 

anthropogenic emissions, and Wu et al., (2016) for urban emissions). The routine run of atmospheric inversion systems will 

necessitate reinforcing the robustness and the transparency of their process through commonly agreed upon quality insurance 

and quality control procedures. In practice, this implies systematically providing reliable associated uncertainty statistics 

together with the posterior fluxes, and some evidence of the statistical consistency of these fluxes with the inversion 

assumptions. Such norms will have to rely on the systematic implementation of diagnostics of the type discussed here to a 10 

large extent, even for emerging applications like the quantification of urban emissions (McKain et al., 2012).  

As we have seen in Section 4, many more measurements are needed to decrease diagnostics ambiguities.  This requirement 

primarily relates to concentration measurements rather than flux measurements because scale mismatches usually hamper the 

comparison of inversions with the latter (see Section 2). A step in data density may be achieved by hypothetical low cost 

sensors (Wu et al., 2016) or from future satellite imagers (e.g., Rayner et al., 2014), provided these new data do not suffer 15 

from significant systematic errors. Efforts to substantially increase observational coverage are already under way (see, e.g., 

http://www.climate-kic-centre-hessen.org/miriade.html, or Ciais et al., 2015), but the feasibility of sufficiently limiting 

systematic errors remains to be demonstrated. 

Interestingly, a (large) increase in the horizontal resolution of the inversion systems would also make it possible to 

incorporate direct flux measurements in the diagnostics, even when the targeted scales are coarser (see discussion in Section 20 

2 and Lauvaux et al. (2009) or Meesters et al. (2012)).  Inversion systems could also be run at very high resolution for the 

express purpose of comparing estimates to flux measurements. The validation with accurate flux measurements would avoid 

some of the ambiguity imposed by the chemistry and transport models on the concentration-based diagnostics.  

This would also open up new directions for diagnostics development.  For example, direct comparison to flux observations 

would make it possible to better assess posterior uncertainties, for instance by building on diagnostics developed in the 25 

context of ensemble prediction systems – diagnostics that have not yet been used for atmospheric inversions (e.g., the 

reliability diagram of Talagrand et al., 1999).  These ideas were explored, for example, by Broquet et al. (2013), using 

aggregates of flux measurements. Among other benefits, the direct validation of the posterior uncertainties would reveal 

possible departures from normality for flux errors, which may be especially important in the case of systematically positive 

emissions (e.g., Koohkan et al., 2013). Such diagnostics would certainly help to guide future developments of inversion 30 

systems.  
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Taken together, it is clear that the importance of developing and implementing carefully-designed diagnostics for 

atmospheric inversions of long-lived greenhouse gases is only going to grow over time. 
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