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Abstract

We evaluated a modified VBS (Volatility Basis Setheme to treat biomass burning-like
organic aerosol (BBOA) implemented in CAMx (Comperkive Air Quality Model with
extensions). The updated scheme was parameterizbdnavel wood combustion smog

chamber experiments using a hybrid VBS framewogt #iccounts for a mixture of wood
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burning organic aerosol precursors and their furtinectionalization and fragmentation in the
atmosphere. The new scheme was evaluated for ahe @finter EMEP intensive campaigns
(February-March 2009) against aerosol mass speetenfAMS) measurements performed
at 11 sites in Europe. We found a considerable orgment for the modelled organic aerosol
(OA) mass compared to our previous model applioatidh the mean fractional bias (MFB)

reduced from -61% to -29%.

We performed model-based source apportionment estudnd compared results against
positive matrix factorization (PMF) analysis perfmd on OA AMS data. Both model and
observations suggest that OA was mainly of secgndegin at almost all sites. Modelled
secondary organic aerosol (SOA) contributions talt®@A varied from 32 to 88% (with an
average contribution of 62%) and absolute conctots were generally under-predicted.
Modelled primary hydrocarbon-like organic aero3¢éD@A) and primary biomass burning-like
aerosol (BBOA) fractions contributed to a lesseterk (HOA from 3 to 30%, and BBOA
from 1 to 39%) with average contributions of 13 &%6, respectively. Modelled BBOA
fractions was found to represent 12 to 64% of tiel tresidential heating related OA, with
increasing contributions at stations located inrtbthern part of the domain.

Source apportionment studies were performed tosase contribution of residential and
non-residential combustion precursors to the t&&@A. Non-residential combustion and
transportation precursors contributed about 30-4@%SOA formation (with increasing
contributions at urban and near industrializeds}itehereas residential combustion (mainly
related to wood burning) contributed to a largeteak around 60-70%. Contributions to OA
from residential combustion precursors in differealatility ranges were also assessed: our
results indicate that residential combustion gassphprecursors in the semi-volatile range
contributed from 6 to 30%, with higher contributiopredicted at stations located in the
southern part of the domain. On the other handhdrigolatility residential combustion

precursors contributed from 15 to 38% with no sfiegradient among the stations.

The new retrieved parameterization, although leadina better agreement between model
and observations, still under-predicts the SOAtfoaicsuggesting remaining uncertainties in

the new scheme or that other sources and/or fasmatechanisms need to be elucidated.
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1 Introduction

Organic aerosol (OA) comprises the main fractiofired particulate matter (P (Jimenez et
al., 2009). Even though the sources of its prinfeagtion (primary organic aerosol, POA) are
qualitatively known, uncertainties remain in termof the total emission fluxes annually
released into the troposphere (Kuenen et al., 20Mdjeover, the measured OA load largely
exceeds the emitted POA fractions at most measuntesites around the world. A secondary
fraction (SOA), formed from the condensation ofdizéd gases with low-volatility on pre-
existing particles, is found to be the dominanttitm of OA (Crippa et al., 2014; Huang et
al., 2014; Jimenez et al., 2009). Such low-volgtiiroducts are produced in the atmosphere
when higher volatility organic gases are oxidizgdbone (Q), hydroxyl (OH) radical and/or
nitrate (NQ) radical. The physical and chemical processesngat the formation of SOA
are numerous, very uncertain and currently undbatge(Hallquist et al., 2009; Tsigaridis et
al., 2014; Fuzzi et al., 2015; Woody et al., 2016).

Available long-term measurements might help in idlaiing the composition and origin of
OA in different seasons. Canonaco et al. (20155quted direct evidence for significant
changes in the SOA fingerprint between summer ammtew from 13 months of OA

measurements conducted in Zirich using the aexdsmhical speciation monitor (ACSM).
Their results indicate that summer oxygenated OAninarises from biogenic precursors
whereas winter oxygenated OA is more strongly grilked by wood burning emissions.
Moreover, numerous ambient studies of open burpiames from aircraft do not show a net
increase in OA, despite observing oxidation (Cubisbal., 2011; Jolleys et al., 2012). It is
therefore necessary that the chemical transporteleoCTMs) correctly reproduce OA

concentrations by taking into account all the utaieties and variability of observations.

Most of the CTMs account for common biogenic anth@pogenic high volatility SOA
precursors such as terpenes, isoprene, xylene alugné which have a saturation
concentration (§ higher than 10pg m® (Aksoyoglu et al., 2011; Ciarelli et al., 2016a). A
few models also include intermediate volatility angc compounds (IVOCs) with a’ ©f 10°

- 10° ug m® and semi-volatile organic compounds (SVOCs) with @f 0.1 - 18 pg m* co-
emitted with POA (Bergstrom et al., 2012; Ciarellial., 2016a; Denier van der Gon et al.,
2015; Fountoukis et al., 2014; Tsimpidi et al., @0MWoody et al., 2016). In these

applications, the volatility distributions of POA&GIVOCs emissions are based on the study
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of Robinson et al. (2007), where the IVOC masssgimed to be 1.5 times the total organic

mass available in the semi-volatile range.

The standard gridded emission inventories do noingtude SVOCs and their emissions are
still highly uncertain as their measurement isrggip affected by the method used (Lipsky
and Robinson, 2006). A recent study by Denier van@on et al. (2015) reported a new
residential wood burning emission inventory inchgiSVOCs, where emissions are higher
by a factor of 2-3 on average than those in the EARIJ inventory (Kulmala et al., 2011).
The new emission inventory was used in two CTMs EEVand PMCAMX) and it improved
the model performance for the total OA (Denier wiar Gon et al., 2015). Ciarelli et al.
(2016a) showed that allowing for evaporation offaiy organic particles as available in
European emission inventories degraded OA perfocedfurther under-predicted OA but
with POA and SOA components in a better agreenveméyeas model performance improved
when volatility distributions that implicitly accoti for missing semi-volatile material

(increasing POA emissions by a factor of 3) wengaeed.

Various modelling studies were performed by indrep$OA emissions by a factor of 3 to
compensate for the missing gaseous emissions hasepartitioning theory predictions
(Ciarelli et al., 2016a; Fountoukis et al., 201Ari%astava et al., 2011; Tsimpidi et al., 2010).
Fig. S1 shows the partitioning of 1y m* of POA at different temperatures using the latest
available volatility distribution for biomass bungi (May et al., 2013). The ratio between the
available gas and particle phase material in th@-gelatile range is predicted to be roughly
3. This implies that, in these applications, thevigeesmitted organic mass (POA + SVOCs +
IVOCs) is 7.5 times higher than in original emissidi.e., OM = (3*POA) + (1.5*(3*POA))).
This indirect accounting of missing organic matedauld be used in the absence of more
detailed gridded emission inventories, keeping inchthat the amount of higher volatility
compounds was specifically derived from studiesdooted with diesel engines (Robinson et
al., 2007).

Along with ambient measurement studies, novel wmathing smog chamber studies provide
more insight into wood burning SOA formation ane tature of its precursors. Bruns et al.
(2016) performed several wood-burning aging experits in a ~7 rhsmog chamber. Using

proton-transfer-reaction mass spectrometry (PTR-M8Y characterized SOA precursors at
the beginning of each aging experiment and fouati up to 80% of the observed SOA could

be explained with a collection of a few SOA preoussthat are usually not accounted in
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regional CTMs (e.g. cresol, phenol, naphthalenecdrtly, we used those chamber data to
parameterize a hybrid volatility basis set (Ciaretl al., 2016b). The results provided new
direct information regarding the amount of woodrg SOA precursors which could be
directly used in CTM applications in the absencenofe refined wood burning emissions in
gridded inventories. The box-model application oejorced the chamber data with an error of
approximately 25% on the OA mass and 15% on ther@i@ (Ciarelli et al., 2016b).

In the current study, the updated volatility bass (VBS) parameterization was implemented
in the comprehensive air quality model with extensi(CAMx) model, and simulations were
performed in Europe for a winter period in Februligrch 2009. Results are compared with
previous simulations using the original VBS framekv@Ciarelli et al., 2016a) and with
source apportionment data at eleven sites wittemifft exposure characteristics, obtained

using PMF applied to AMS measurements (Crippa.ef@ll4).

2 Method

2.1 Regional modelling with CAMx

The CAMxversion 5.41 with VBS scheme (ENVIRON, 2011; Kaak, 2014)was used in this
study to simulate an EMEP measurement campaigneleet®5 February and 26 March 2009
in Europe. The modelling method and input data wiwe same as those used in the
EURODELTA 1ll (ED Ill) project, described in detaih Ciarelli et al. (2016a). The model
domain covers Europe with a horizontal resolution 0c25° x 0.25°. Meteorological
parameters were calculated from ECMWF IFS (Integtaforecast System) data at 0.2°
resolution. There were 33 terrain-followinglevels from ~20 m above ground level (first
layer) up to about 350 hPa, as in the original tffa. For the gas phase chemistry, the
Carbon Bond (CB05) mechanism (Yarwood, 2005). B@RROPIA thermodynamic model
(Nenes et al., 1998) was used for the partitiorfignorganic aerosols (sulfate, nitrate,
ammonium, sodium and chloride). Aqueous sulfate r@trdte formation in cloud water was
calculated using the RADM algorithm (Chang et B887). Formation and evolution of OA is
treated with a hybrid volatility basis set (VBSattaccounts for changes in volatility and O:C
ratio (Koo et al., 2014) with dilution and agingarkcle size distributions were treated with a
two static mode scheme (fine and coarse). Theteeptgsented in this study refer to the fine
fraction (PMs). We parameterized the biomass burning sets basedhamber data as
described in Ciarelli et al. (2016b).
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The anthropogenic emission inventory was made abdlailfor the ED 1ll community team by
the National Institute for Industrial EnvironmenndaRisks (INERIS) at 0.25° x 0.25°
horizontal resolution. More information regardirng tanthropogenic emission inventories are
available in Bessagnet et al. (2014, 2016) andeliat al. (2016a). Hourly emissions of
biogenic VOCs, such as monoterpenes, isopreneuiseggnes, xylene and toluene, were
calculated using the Model of Emissions of Gases &erosols from Nature MEGANv2.1
(Guenther et al., 2012) for each grid cell in thedel domain.

2.2 Biomass burning organic aerosol scheme

The biomass burning organic aerosol scheme wadragred using recently available wood
burning smog chamber data (Bruns et al., 2016)easribed in Ciarelli et al. (2016b). The
model deploys three different basis sets (Donaliug.,€2011) to simulate the emissions of
organics from biomass burning and their evolutiorihie atmosphere. The first set allocates
fresh emissions into five volatility bins rangingthvsaturation concentrations between'10
and 18 ug m* following the volatility distribution and enthalpyf vaporization proposed by
May et al. (2013). In order to include gas-phasganics in the semi-volatile range in the
absence of more detailed inventory data, we usedpiproach proposed by previous studies
(Shrivastava et al., 2011; Tsimpidi et al., 20I)e second set allocates oxidation products
from SVOCs after shifting the volatility by one erdof magnitude. The third set allocates
oxidation products from traditional VOCs (xylen®luene, isoprene, monoterpenes and
sesquiterpenes) and from non-traditional SOA pramsrretrieved from chamber data (~4.75
times the amount of organic material in the senl&tile range, Ciarelli et al., 2016b).
Primary and secondary semi-volatile compounds re#bt OH in the gas-phase with a rate
constant of 4x18" cn® molec! s* (Donahue et al., 2013), which decreases theirraiiin
concentration by one order of magnitude. No hetemegus oxidation of organic particles or
oligomerization processes is included in the modéie new model parameterization
described in this study is referred to as VBS_BCWN&roughout the paper to distinguish
from the previous base case called VBS_BC as div&iarelli et al. (2016a).

2.3 Model evaluation

The model results for the period between 25 Felgraad 26 March 2009 were compared
with OA concentrations measured by AMS at 11 Euaopsites. Modelled BBOA, HOA and

SOA concentrations were compared with multi-lineagine 2 (ME-2) analysis performed on
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AMS data (Paatero, 1999) using source finder (S@E&nonaco et al., 2013; Crippa et al.,
2014). Elevated sites such as Montseny and PuybdeeDwere also included in the analysis
and modelled concentrations for these two site® w&tracted from higher layers in order to
minimize the artefacts due to topography in a teff@llowing coordinate system. This was
not the case in our previous application, where eh@HR concentrations were extracted from
the surface layer (Ciarelli et al., 2016a). We az=t POA emissions from SNAP2 (emissions
from non-industrial combustion plants in the SeddcNomenclature for Air Pollution) and

SNAP10 (emissions from agriculture, about 6% of PIRASNAP2) to be representative of
biomass burning like emissions. OA emissions frdmother SNAP categories, including

emissions from ships, were compared with HOA-resbIPMF factors. Whilst this could be a
reasonable assumption for HOA-like aerosol, it isbpbly not the case for BBOA-like

aerosol, as gridded emissions for SNAP2 also irclather emission sources (i.e., coal
burning which might be important in eastern Eurapeauntries like Poland). We could not
resolve our emission inventory to that level ané ttontribution of coal could not be

separated for these European cites (Crippa €@i4) in contrast to China (Elser et al., 2016)
using similar statistical methods. Finally, the S®Action was compared to the PMF-

resolved oxygenated organic aerosol (OOA) fraction.

Statistics were reported in terms of mean bias (MB3an error (ME), mean fractional bias
(MFB), mean fractional error (MFE) and coefficieaftdetermination &) (see Table S1 for

the definition of statistical parameters).

3 Results and discussions

3.1 Analysis of the modelled OA

Figure 1 shows the average modelled OA concentrmtand surface temperature for the
period between 25 February and 26 March 2009. Testyes were below 0°C in the north,
ranged 5-10°C in central Europe and were above 10°Be southern part of the domain.
Model performance for surface temperature was ewadlwithin the ED Il exercise and

found to be reproduced reasonably well, with a ganender-prediction of around 1°C

(Bessagnet et al., 2014).

A clear spatial variability in the modelled OA cemtrations is observed (Fig. 1). Predicted
OA concentrations were higher in eastern Europeaumtcies (especially Romania and

southern Poland) as well as over northern Italf@§g m* on average) whereas they were

7
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lower in the northern part of the domain. A simiggratial distribution of OA concentrations
was also reported by Denier van der Gon et al.§p0%ing the EMEP model. Relatively high
OA concentrations over the Mediterranean Sea arimlynaf secondary origin due to
enhanced photochemical activity (more details aund in Section 3.2). In addition, the

reduced deposition capacity over water leads toari@A levels.

The scatter plots in Fig. 2 show the modelled (VBS_NEW) versus measured daily
average OA concentrations at 11 sites in Europetheg with the results from our previous
model application (VBS_BC, Ciarelli et al., 2016@y comparison. The modified VBS
scheme (VBS_BC_NEW) predicts higher OA concentreticompared to our previous study
using the original scheme (VBS_BC) (~ 60% more QAaverage at all sites). Statistical
parameters improved significantly (Table 1); theaméractional bias MFB decreased from -
61% in VBS_BC to -29% in VBS_BC_NEW and the modetfprmance criteria were met
(Boylan and Russell, 2006). The coefficient of deieation remained almost unchanged for
OA in the VBS_BC_NEW cas&{=0.58) compared to VBS_B®&{=0.57) indicating that the
original model was able to similarly capture the @aily variation, but not its magnitude.
The majority of the stations show RA> 0.4. Lower values were found for the elevatedssite
of Montseny and Puy de DomB*0.17 andR?=0.13, respectively) and also at the Helsinki
site (®=0.06). In spite of the improvements with respecearlier studies, modelled OA is
still lower than measured (mean bias MB from -fglni® up to -3.1ug m®) at most of the
sites, with only a slight overestimation at a fewdtions (MB from 0.3i9 m2up to 0.9ug m

3)_

The observed OA gradient among the 11 sites wasodaped very well (Fig. 3). Both
measured and modelled OA concentrations were higihe8arcelona. Other sites with
concentrations greater than i3y m?® were Payerne, Helsinki, Vavihill and Montseny.
Barcelona and Helsinki are both classified as urtations, which justifies the higher OA
loads due to the anthropogenic activities (e.dfitracooking and heating). Anthropogenic
activities in the area of Barcelona could also@ffeA concentrations at Montseny which is
about 40 km away. In the case of Payerne and Mauiing relatively high OA concentrations
might be due to residential heating, where woolhrgely used as a combustion fuel during
cold periods (Denier van der Gon et al., 2015). €bilbolton, located not far from London,
this might not be the case: the fuel wood usaghenJK is the lowest in Europe (Denier van

der Gon et al., 2015). Ots et al. (2016) suggettedpossibility of missing diesel-related
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IVOCs emissions, which might be an important sowt&OA in those regions. However,

other studies reported substantial contributiomfrgolid fuel combustion to OA (Young et

al., 2015). In this case, it might be that difftbess in reproducing the OA concentration are
mainly related to the relatively complex area of Hite (i.e., close to the English Channel).
An evaluation of diurnal variations of HOA and S@Ancentrations for this site showed a
consistent under-prediction of both components. (ER).

3.2 Analysis of the OA components

The predicted POA spatial distribution (Fig. 4) embles the residential heating emission
pattern of different countries (Bergstrom et a12). The highest POA concentrations were
predicted in east European countries, France, §arand in northern Italy (~3-bg m®)
whereas they were less thanufi m* in the rest of the model domain. Very low OA
concentrations in Sweden were already shown byigus\European studies. Bergstrom et al.
(2012) reported that Swedish organic carbon (OCisgions from the residential heating
sector were lower by a factor of 14 compared towsdyr even though Sweden had much
higher wood usage (60% higher) likely due to unstameation of emissions from residential

heating in the emission inventory.

The spatial distribution of SOA concentrations,tbe other hand, is more widespread with a
visible north to south gradient (Fig. 4). Higher A®@oncentration were predicted close to
primary emission sources (e.g. Poland, Romania/dey and Portugal) but also in most of

the countries below 50° latitude and over the Meditnean Sea where higher OH
concentration, reduced deposition capacity and kiftribution from long-range transport

are expected (average concentrations aroung@°).

Comparison of results from this study (VBS_BC_NEWith the earlier one (VBS_BC,
Ciarelli et al., 2016a) suggests that the new VB®&8sie predicts higher SOA concentrations
by about a factor of 3 (Fig. 5) and improves thelgigerformance when comparing assessed
OOA from measurements with modelled SOA (Table 3).

POA concentrations, on the other hand, are clu$testow 1pug m* except in Barcelona,
showing anR?=0.36, (Fig. 5 and Table 2). Although predicted P®déncentrations at
Barcelona were lower than the measurements, MFB4-4iid MFE=69% were still in the
range for acceptable performance criteria (MAE5% and -60 < MFB < + 60 %, Boylan
and Russell, 2006). On the other hand, the modet-predicted the POA concentrations at

9
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Hyytiala (MFB=131% and MFE=131%), Helsinki (MFB=958d MFE=100%) and Cabauw
(MFB=76% and MFE=86%) mainly due to the overestadaBBOA fraction as seen in Fig.
6.

At most of the sites, OA was dominated by SOA (F&y.and Fig. 7) which was
underestimated in particular at Chilbolton, Melp&ind Vavihill (Table 3). As already
mentioned, the under-prediction of SOA concentratimight be attributed to missing SOA
precursors or uncertainties in SOA formation me@rma and removal processes. On the
other hand, the remote station of Mace Head shaweakitive bias for SOA (MFB = 30%),
even though model and measurement concentratioresweey similar (0.54 and 0.3& m?,
respectively), which could be attributed to an egéimated contribution from the boundaries.
The relatively small positive bias at the two eledssites, Montseny and Puy de Dome (MFB
= 4% and 17%, respectively), is most likely theutesf difficulties in capturing the inversion

layer.

Mostly traffic-related HOA was underestimated a thiban site Barcelona (Table S2, Fig. 6),
with the model not able to reproduce the diurnalaten of HOA at this urban site likely due
to poorly reproduced meteorological conditionsay much dilution during day time in the
model (Fig. S2). The under-prediction of the HOAction is consistent with our previous
study where model evaluation for NQevealed a systematic under-estimation of the
modelled concentration (Ciarelli et al., 2016a)eTdourse resolution of the domain (0.25° x
0.25°) may result in too low emissions especiatlyudban sites. The majority of the NO
(NO+NQO,) emissions in Europe arises from the transporiaiector (SNAP7), which might
have much larger uncertainties than previously gho{vaughan et al., 2016). An evaluation
of planetary boundary layer height (PBLH) withiret&DIIlI shows that although the PBLH
was quite well represented in general in the ECMW& meteorological fields, CAMx tends
to underestimate the night-time minima and to cstareate some daytime peaks. The other
urban site considered in this study is Helsinkitiis case, HOA concentrations were over-
predicted, as seen in Figs. 6 and S2, which migfitate missing dispersion processes in the

model or under-estimated dilution.

The modelled BBOA fraction on the other hand wasegally higher than the measurements,
with an average MFB of 50% (Table S3, Figs. 6wt)ich might arise from various factors:
1) In the model, POA emissions from SNAP2 and SNARfe assumed to be representative

of BBOA emissions which might not be the case fbEaropean countries (other non-wood

10
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fuels such as coal, which is allocated to SNAP2gaty and could not be separated in this
study), 2) The under-prediction of the modelledfae temperature (Bessagnet et al., 2014)
will directly influence the partitioning of organieaterial in the semi-volatile range,

favouring freshly emitted organic material to comske more to the particle phase, 3)
Uncertainties in the adopted volatility distribut®and/or in the oxidation processes of semi-

volatile organic vapours.

The temporal variability of OA concentrations wagnoduced quite well: most of the peaks
were captured accurately (Fig. 8); the magnitudesnty a few (Vavihill, Chilbolton and

Barcelona) were underestimated. Diurnal variatioind OA, BBOA and SOA components at
the rural-background sites suggest that the modal able to reproduce the relatively flat
profile of the measured SOA and the increased BBO#Acentrations at night (Fig. 9). On the
other hand, there was a slight underestimation ©AHluring the day, especially around

noon, likely as a result of too much dilution iretimodel.

In our previous application, we performed a sevisjtistudy with increased biogenic and
residential heating emissions by a factor of twaf€lli et al., 2016a). While the model was
rather insensitive to the increased biogenic emissiduring winter periods, a substantial
increase in the OA concentrations was observed vemissions from residential heating
were doubled. The model with doubled emissions froresidential heating
(VBC_BC_2xBBOA), overestimated the POA fractionrmabst of the sites (Fig. 10) with
smaller effects on SOA, even though a better closuais achieved between modelled and
observed OA. The results of the simulations usinge tnew parameterization
(VBC_BC_NEW), on the other hand, were closer tortteasurement data especially for the
SOA fraction (Fig. 10).

3.3 Residential versus non-residential combustion p recursors

More detailed source apportionment studies werlopeed in order to assess the importance
of residential and non-residential combustion preaxs for OA and SOA. The upper panel in
Fig. 11 shows the relative contributions to SOAnfraesidential and non-residential
combustion precursors. The model results indicat nhon-residential combustion and
transportation precursors contribute about 30-4@6SOA formation (with increasing
contribution at urban and near-industrialized $it@bereas residential combustion (mainly

related to wood burning) contribute to a largereexti.e., around 60-70%. The residential
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combustion precursors were further apportioned eémisolatile and higher volatility
precursors (Fig. 11, lower panel). In particula¥/C& precursors exhibit a south-to-north
gradient with increasing contribution to the resil heating related OA for stations located
in the southern part of the domain (maximum andimmim contributions of 42 and 17% in
Montseny and Hyytidla, respectively). Such a gratlalso reflects the effect of temperature
on the partitioning of semi-volatile organic madéri the lower temperatures in the northern
part of the domain will reduce the saturation comegion of the organic compounds
allowing primary organic material to favour the {pde phase and reducing the amount of
SVOCs available that could act as SOA precursorshé southern part of the domain, the
higher temperature will favour more organic matenathe semi-volatile range to reside in
the gas-phase, rendering it available for oxidatiom the other hand, no south-to-north
gradient was predicted for the higher volatilitass of precursors. Source apportionment for
different volatilities classes of the non-residahtind transportation sectors is currently not

implemented for this model application.

A comprehensive summary of the contribution tottital OA from all the sources (i.e. HOA,
BBOA, residential combustion semi-volatile precussoresidential combustion higher
volatility precursors and non-residential combustioecursors) is shown in Fig. 12 at each of
the measurement sites. Residential combustion e in the semi-volatile range
contributed from 6 to 30% whereas higher volatiigmpounds contributed to a larger extent,
i.e. from 15 to 38%. SOA from non-residential corsiftan precursors contributed from 10 to
37% to the total OA. The primary sources HOA andCBBcontributed from 3 to 30% and 1-
39%, respectively. These results lead to the ceimiuthat the overall contribution of
residential combustion to OA concentrations in Peroaries between 52% at stations in the

UK and 75-76% at stations in Scandinavia.
Conclusion

This study aims to evaluate recent VBS parameti#izain commonly used CTMs and to
underline the importance of taking into accountatpd and more detailed SOA schemes as
new ambient and chamber measurements elucidatégheomplexity and strong variability
of OA. In this context, a new VBS parameterizatifmsed on recent wood burning
experiments) implemented in CAMx was evaluated raaihigh-resolution AMS
measurements at 11 sites in Europe during FebiMargh 2009, one of the winter EMEP

intensive measurement campaigns. Results obtairmed this study were compared with
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those from our earlier work in which the originaB8 scheme in CAMx was applied. A
detailed source apportionment for the organic ai@A) fraction was discussed. This study

provided the following outcome:

A considerable improvement was found for the madkllOA concentrations
compared to our previous studies mainly due toithproved secondary organic
aerosol (SOA) performance. The average bias forltheAMS sites decreased by
about 60% although the model still underestimdiesOA fraction.

Both model and PMF source apportionment based acasunements suggested that
OA was mainly of secondary origin with smaller paim contribution, with primary
contribution of 13 and 25% for HOA and BBOA, respesdy. The model
performance for the HOA fraction was reasonablydgabmost of the sites except at
the urban Barcelona site which could be relatetiéauncertainties in emissions or too
much dilution in the model. On the other hand, iiedelled BBOA was higher than
the measurements at several stations indicatingnded for further studies on
residential heating emissions, their volatilitytdtsution and oxidation pathway of the

semi-volatile organic gases.

Emissions from the residential heating sector (SRMRrgely influenced the OA
composition. The modeled primary BBOA fraction adnited from 46% to 77% of
the total primary organic fraction (POA), with ameaage contribution of 65%. Non-
residential combustion and transportation precsrsmmtributed about 30-40% to
SOA (with increasing contribution at urban and Aedustrialized sites) whereas
residential combustion (mainly related to wood lngh contributes to a larger extent,
~ 60-70%. Moreover, the contribution to OA fronsideential combustion precursors
in different range of volatilities was also investied: residential combustion gas-
phase precursors in the semi-volatile range cantiibfrom 6 to 30% with a positive
south-to-north gradient. On the other hand, higl@atility residential combustion
precursors contributed from 15 to 38% showing necsje gradient among the

stations.
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635 4 Tables and Figures
636

637 Table 1. Statistics of OA for the VBS_BC_NEW caseRebruary-March 2009 at each AMS
638 site as well as an average of all sites for bottSVBC_NEW and VBS_BC. Bold numbers

639 represent the stations were model performanceieriteere met.

Mean Mean

observed modellec MB ME MFB MFE
Site* r R?
OA OA R g
(ng %) (ug %) [l [l

(g m?)  (ug ¥

Barcelona 8.3 5.1 3.1 3.7 0.4 0.5 0.6 0.4
(BCN)
Cabauw 1.2 15 0.3 0.7 0.1 05 0.7 0.4
(CBW)
Chilbolton 2.4 1.0 -1.4 15 0.9 0.9 0.8 0.6
(CHL)
Helsinki 2.7 36 0.9 1.8 0.3 0.6 0.3 0.1
(HEL)
Hyytiala 1.3 1.7 0.3 0.8 0.1 0.6 0.8 0.6
(SMR)
Mace Head (.8 0.7 0.1 0.3 01 0.7 0.7 0.5
(MHD)
Melpitz 15 0.8 -0.6 0.9 -0.6 0.7 0.6 0.3
(MPZ)
Montseny 3.1 35 0.4 2.0 0.1 0.6 0.4 0.1
(MSY)
Payerne 41 2.9 -1.2 1.9 05 0.7 0.7 0.4
(PAY)
Puyde Dome g 1.1 0.4 0.8 0.3 0.8 0.4 0.2
(PDD)
Vavihill 3.9 21 1.8 2.0 0.8 0.8 0.8 0.6
(VAV)
VBS_BC_NEW 3.0 2.3 -0.7 1.6 -0.3 0.7 0.8 0.6
VBS_BC
(Ciarelli et al., 3.0 1.4 -1.5 1.8 -0.6 0.8 0.8 0.6
2016a)

640 * Model OA concentrations extracted at surface llexeept for the stations of Puy de Déme

641 and Montseny.
642

643
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644 Table 2. Statistics of POA for the VBS_BC_NEW cése February-March 2009 at each
645 AMS site as well as an average of all sites fohb¢BS_BC_NEW and VBS_BC. Bold

646 numbers represent the stations were model perfaenariteria were met.

Mean Mean

. observed modelled MB ME MFB MFE ,
YEPOAL POA iy om0 8 r "
(g M%) (ug
Barcelona 4.0 2.0 2.1 2.4 05 0.7 0.4 0.2
Cabauw 0.4 0.9 05 05 0.8 0.9 05 02
Chilbolon 1.0 05 -05 05 -06 0.7 038 0.6
Helsinki 058 25 17 17 1.0 1.0 0.2 0.0
Hyytiala 0.1 05 0.4 0.4 13 13 05 0.3
Mace Head 02 0.1 -0.1 0.2 05 1.0 0.2 0.1
Melpitz 0.3 0.3 0.1 0.2 03 0.7 0.5 0.2
Montseny 0.5 04 0.0 03 02 0.7 03 0.1
payeme 07 11 03 06 05 0.7 0.5 03
Puy de Dome 02 0.3 0.1 0.2 05 0.9 0.2 0.1
Vavihil 11 1.0 -0.1 0.6 03 0.7 05 0.2
VBS_BC_NEW 09 0.9 -0.1 07 03 0.8 0.6 0.3
VBS_BC
(Cia;’gﬂg‘;t) s o9 0.9 0.0 08 03 08 06 0.4
647
648
649
650
651
652
653
654
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655 Table 3. Statistics of SOA for the VBS_BC_NEW cése February-March 2009 at each
656 AMS site as well as an average of all sites fohb¢BS_BC_NEW and VBS_BC. Bold

657 number represents the stations were model perfaenariteria were met.

Mean Mean

observed modelled MB ME MFB MFE
Site r R?
SOA  SOA (gm?)  (gmd) [ [1

(ng M) (ug nY)

Barcelona 44 3.2 1.2 16 -0.4 05 0.7 05
Cabauw 1.0 0.6 -0.4 0.6 -0.7 0.9 0.7 0.4
Chilbolton 14 0.5 -0.9 1.0 -1.1 1.2 0.7 0.5
Helsinki 1.8 11 -0.7 1.1 -0.7 0.9 0.4 0.2
Hyytiala 1.2 1.1 -0.1 07 -0.7 1.0 08 0.6
Mace Head 0.4 0.5 0.2 0.6 0.3 1.0 0.4 0.2
Melpitz 1.2 0.5 0.7 0.8 -1.0 11 0.6 0.4
Montseny 2.6 3.1 0.5 1.8 00 0.7 0.4 0.1
Payemne 3.7 2.0 1.7 2.1 -0.8 0.9 0.5 0.3
Puy de Dome 0.6 0.9 0.3 0.8 0.2 0.9 0.2 0.1
Vavihill 2.8 1.1 -1.7 17 -1.2 1.2 0.8 0.7
VBS_BC_NEW 2.1 1.4 -0.6 1.2 -0.6 0.9 0.7 0.5
VBS_BC
(Ciazrgﬂg‘;t) o1 05 15 16 11 13 0.7 0.6
658
659
660
661
662
663
664
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692 Figure 6 Relative (upper panel) and absolute (lower paratfrioution of HOA, BBOA and
693 SOA to OA concentrations at 11 sites from PMF asialpf AMS measurements (first bar)
694 and CAMx VBS_BC_NEW results (second bar) for thequebetween 25 February and 26
695 March 2009.
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712 Figure 8.Comparison of measured hourly OA mass concentiat{@S-OA dotted line),
713  with modelled components HOA, BBOA and SOA.
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730 Figure 11.Contribution of residential and non-residential turstion precursors to SOA at
731 different sites (upper panel). Contribution of BBO8VOCs and higher volatility organic
732 precursors to residential heating OA (lower partgfations are ordered from south to north.
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734  Figure 12. Average modelled composition of OA & 11 AMS sites for the period between

735 25 February and 26 March 2009.
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