
Response	  to	  Reviewers	  	  
	  
We	  thank	  both	  reviewers	  for	  their	  supportive	  and	  insightful	  comments.	  We	  have	  addressed	  all	  issues	  and	  have	  
adjusted	  the	  manuscript	  accordingly	  where	  necessary.	  Our	  responses	  are	  provided	   in	  blue	   italic.	  We	  have	  also	  
attached	  the	  revised	  manuscript	  with	  the	  tracked	  changes	  in	  blue.	  
	  
Reviewer	  1	  
	  
The	  authors	  of	  OMI	  air-‐quality	  monitoring	  over	  the	  Middle	  East	  have	  made	  a	  great	  effort	  to	  take	  on	  board	  most	  of	  
my	  original	  comments,	  especially	  with	  regard	  to	  the	  length	  of	  the	  supplementary	  material.	  The	  presentation	  of	  their	  
work	  has	  increased	  overall,	  which	  will	  lead	  to	  increased	  visibility	  to	  the	  community.	  	  
No	  problem	  –	  thanks	  for	  the	  helpful	  suggestions!	  
	  

Section	  2:	  Please	  add	  references	  of	  validation/cross-‐comparison	  works	  of	  the	  satellite	  products	  where	  appropriate.	  
We	  have	  added	  key	  validation	  references	  for	  HCHO	  and	  NO2,	  but	  note	  there	  are	  no	  validation	  references	  for	  the	  new	  
BIRA	  OMI	  CHOCHO	  product.	  Given	  the	  manuscript	  length,	  we	  don’t	  think	  adding	  a	  paragraph	  describing	  applications	  
of	  the	  DOMINO	  NO2	  product	  is	  critical	  to	  the	  paper	  (especially	  as	  a	  reader	  can	  refer	  to	  the	  already	  cited	  references	  
and	  thus	  additional	  references	  therein).	  
	  

Line	  177:	  Did	  you	  use	  similar	  cut-‐off	  criteria	  for	  the	  other	  species?	  if	  so,	  please	  add	  in	  the	  relevant	  paragraphs.	  
A	  cloud	  radiance	  fraction	  of	  30%	  corresponds	  to	  an	  effective	  cloud	  fraction	  of	  about	  15-‐20%	  [Stammes	  et	  al.	  2008,	  
Krotkov	  et	  al.,	  2016],	  making	  it	  broadly	  consistent	  with	  cloud	  filters	  applied	  to	  the	  other	  species.	  We	  have	  added	  this	  
detail	  to	  the	  text.	  
	  

Line	   181:	   Is	   this	   for	   each	   individual	   measurement?	   the	   value	   seems	   rather	   small.	   Please	   expand	   this	   phrase	  
accordingly.	  
The	  SO2	  data	  are	   in	  this	  study	  are	  assigned	  a	  default	  uncertainty	  of	  0.5	  DU	  before	  gridding	  (as	   individual	  PBL	  SO2	  
measurements	  in	  the	  product	  do	  not	  have	  an	  associated	  error).	  This	  value	  is	  taken	  from	  the	  NASA	  SO2	  ReadMe	  file,	  
which	  is	  based	  on	  the	  analysis	  of	  the	  root	  mean	  square	  (RMS)	  and	  standard	  deviation	  values	  for	  instantaneous	  field	  
of	  view	  (IFOV)	  observations	  in	  different	   latitudinal	  bands.	   	   In	  the	  tropics	  the	  error	   is	  about	  0.5	  DU	  but	  can	  be	  up	  to	  
0.7-‐0.9	  at	  higher	  latitudes	  where	  there	  is	  strong	  ozone	  interference.	  We	  have	  added	  this	  information	  to	  the	  text.	  
	  

Line	  210:	  Please	  explain	  why	   in	   the	  HCHO	  plot	   there	  appear	   to	  be	  high	  values	   in	   the	  bottom	  of	   the	  domain,	   also	  
around	  the	  eastern	  Mediterranean	  and	  the	  island	  of	  Cyprus?	  
In	  the	  bottom	  of	  the	  domain,	  high	  HCHO	  columns	  occur	  due	  to	  the	  oxidation	  of	  biogenic	  volatile	  organic	  compounds,	  
emitted	  predominately	  by	  vegetation	  and	  from	  fires	  within	  the	  African	  tropics	  [see	  e.g.,	  Marias	  et	  al.,	  2013].	  Over	  the	  
eastern	  Mediterranean	  Sea,	  the	  high	  HCHO	  columns	  are	  a	  known	  retrieval	  artifact	  owing	  to	  the	  presence	  of	  Saharan	  
dust	  compromising	  the	  AMF	  calculations,	  and	  also	  a	  potentially	  an	  unknown	  HCHO	  source,	  as	  discussed	  in	  the	  study	  
of	  Sabolis	  et	  al.	  [2011].	  Hence	  these	  features	  are	  well-‐documented	  within	  the	  literature.	  
	  

Line	  242:	  Please	  discuss	  the	  differences	  between	  these	  medians	  and	  the	  ones	  noted	  above,	  also	  giving	  the	  1sigma.	  
Are	  these	  medians	  only	  of	  the	  locations	  or	  the	  entire	  domain?	  
In	  the	  previous	  section	  3.1,	  the	  median	  uncertainties	  correspond	  to	  the	  errors	  of	  the	  gridded	  data	  (i.e.	  at	  0.05x0.05	  
degree	  resolution).	  As	  explained	  in	  section	  3.2,	  for	  each	  location	  we	  construct	  a	  time	  series	  of	  the	  monthly	  averaged	  
vertical	  columns,	  based	  on	  the	  weighted	  averaged	  of	  the	  gridded	  cells	  around	  the	  target.	  Thus,	  every	  time	  series	  data	  
point	   has	   a	   corresponding	   uncertainty.	  We	   simply	   calculate	   the	  median	   of	   these	   vertical	   column	   time	   series	   data	  
point	  uncertainties,	  for	  each	  species	  over	  all	   locations.	  We	  have	  adjusted	  the	  text	  to	  “…median	  uncertainties	  of	  the	  
trace	  gas	  vertical	  column	  time	  series	  data	  points	  reduce…”	  to	  hopefully	  make	  this	  clearer.	  We	  have	  also	  now	  added	  
the	  1-‐sigma	  error	  to	  each	  of	  these	  median	  values.	  	  
	  

Line	  248:	  Why	  didn't	  you	  use	  the	  IQR	  as	  filter?	  since	  you	  have	  used	  it	  above	  as	  statistical	  tool.	  Did	  you	  try	  different	  
cut-‐offs	  and	  found	  that	  the	  3	  median	  STDs	  is	  the	  best?	  also,	  did	  you	  filter	  with	  this	  method,	  when	  you	  calculated	  the	  
percentages	  shown	  in	  line	  244?	  please	  explain.	  
We	  use	   the	  median	  absolute	  deviation	  as	  we	  have	  previously	   found	   it	  a	  more	   robust	   statistical	   filter	   for	   removing	  
outliers	   in	   satellite	   trace	   gas	   columns	   (particularly	   HCHO),	   than	   other	   types	   of	   methods	   (e.g.,	   using	   the	   IQR	   or	  
standard-‐deviation).	  Note	  there	  is	  a	  typo	  in	  the	  original	  manuscript	  -‐	  the	  cut-‐off	  is	  actually	  2.5	  -‐	  as	  recommended	  in	  
the	   cited	   reference:	   Leys	   et	   al.	   [2013].	   Apologies.	   Various	   filter	   cut-‐off	   values	   were	   tested.	   Lower	   values	   (<2.5)	  
removed	   too	   many	   data	   points	   to	   perform	   a	   meaningful	   analysis,	   whilst	   higher	   values	   (>2.5)	   did	   not	   remove	   all	  
outlying	   peaks	   sufficiently.	  We	   also	   ask	   the	   reviewer	   to	   note	   that	   the	   trends	   are	   not	   significantly	   affected	   by	   this	  



filtering	  processes	  (see	  e.g.,	  Test	  5	   in	  Section	  5.2).	  The	  uncertainties	   in	  section	  3.2	  (line	  244)	  are	  computed	  prior	  to	  
filtering.	  	  	  
	  

Line	  250:	  Why	  not	  the	  AMFs?	  isn't	  the	  main	  error	  source	  for	  all	  the	  DOAS-‐type	  analysis	  techniques,	  the	  AMF?	  
Agreed,	  the	  AMF	  is	  one	  of	  the	  main	  error	  sources	  in	  tropospheric	  trace	  gas	  retrievals.	  However,	  quite	  simply	  there	  are	  
no	   outlying	   spikes	   in	   the	   AMFs	   to	   filter	   out	   as	   their	   variation	   is	   relatively	   smooth	   in	   comparison,	   hence	   it	   is	   not	  
necessary	  step.	  	  
	  

Line	  	  251:	  20%	  continuous	  months	  or	  random,	  scattered	  in	  the	  time	  series?	  
Randomly	  scattered	  through	  the	  time	  series.	  We	  have	  added	  this	  detail	  to	  the	  text.	  	  
	  

Line	  252:	  6%	  in	  a	  ten	  year	  long	  monthly	  mean	  time	  series,	  means	  that	  7	  months	  out	  of	  120	  months	  are	  missing	  in	  
total.	  I	  find	  that	  quite	  hard	  to	  believe,	  especially	  for	  SO2	  and	  CHOCHO.	  Unless	  your	  3	  median	  filter	  is	  too	  lax,	  or	  you	  
actually	  mean	  something	  else	  and	  not	  6%	  in	  total.	  For	  e.g.	  the	  SO2	  NASA	  product	  comes	  with	  the	  specification	  that	  
the	  winter	  months	  not	  be	  used,	  I	  am	  assuming	  that	  you	  used	  them	  anyway.	  And	  even	  though	  the	  uncertainties	  are	  
strong,	  there	  were	  still	  no	  more	  than	  7	  months	  out	  of	  120	  missing?	  Please	  explain	  and	  expand	  on	  this	  issue.	  
The	  6%	  is	  simply	  the	  largest	  median	  number	  of	  points	  missing	  per	  time	  series	  out	  of	  all	  four	  species	  and	  four	  target	  
categories	  (here	  quoted	  for	  NO2).	  However,	  you	  are	  quite	  right	   in	  some	  cases	  the	  number	  of	  points	  missing	  can	  be	  
notably	  higher,	  e.g.,	  between	  0-‐25%.	  We	  now	  make	  this	  clearer	  in	  the	  text.	  	  
	  

Line	  307:	  This	  phrase	  is	  rather	  difficult	  to	  follow,	  too	  dense	  maybe.	  How	  about	  re-‐wording	  it	  in	  simpler	  terms?	  
Adjusted.	  
	  

Line	  312:	  Since	  some,	  if	  not	  all,	  of	  the	  main	  conclusions/discussion	  in	  this	  work	  is	  based	  on	  the	  trend	  and	  the	  growth	  
rate,	   Fg,	   it	   is	   important	   to	   show	   that	  using	  667	  days	   compared	   to	  700	  days	  provides	   similar	   results.	  What	  exactly	  
does	  "days"	  mean	  in	  this	  context,	  since	  your	  time	  series	  are	  in	  monthly	  means?	  
In	  our	  initial	  tests	  we	  tried	  different	  combinations	  of	  the	  cited	  long-‐term	  filter	  values	  (500,	  667,	  and	  720	  days)	  for	  the	  
DOMINO	  NO2	  and	  SAO	  HCHO	  products	  over	  urban	  areas	  (818	  targets)	  to	  assess	  their	  impact	  on	  the	  growth	  (note	  the	  
filters	  do	  not	  affect	  the	  fitted	  linear	  trend).	  We	  found	  the	  differences	  in	  the	  growth	  rates	  small	  using	  the	  500	  day	  and	  
720	  day	  filters,	  compared	  with	  the	  default	  667-‐day	  filter.	  For	  NO2,	   the	  differences	  are	   less	  than	  1%,	  and	  for	  HCHO	  
they	  are	  1-‐2%.	  We	  have	  added	  this	  information	  to	  the	  text.	  The	  filters	  are	  given	  in	  days	  but	  are	  converted	  to	  months	  
in	  the	  analysis	  code.	  	  
 

Line	  315:	  For	  such	  a	  small	  town,	  of	  65000	  people,	  how	  do	  you	  explain	  such	  an	  increase	  in	  NO2?	  surely	  not	  traffic.	  Are	  
there	  power	  plants	  around?	  	  
Although	   accurate	   statistics	   are	   difficult	   to	   find,	   it	   is	   believed	   that	   during	   the	   last	   decade	   or	   so,	   Dahuk	   itself	  
experienced	  a	  sizeable	  urban	  growth	  [Mustafa	  et	  al.	  2012],	  and	  now	  has	  a	  population	  of	  about	  280,000	  [MOP-‐KRG,	  
2012],	   while	   the	   region	   itself	   has	   had	   to	   accommodate	   an	   influx	   (>100,000)	   of	   Syrian	   refugees	   [UNOCHA].	   	   Both	  
factors	   likely	   contribute	   to	   the	   growth	   in	   NO2	   levels.	   We	   now	   mention	   this	   in	   the	   text	   and	   added	   appropriate	  
references.	  
	  

Line	  318:	   Is	   this	  value	  considered	  good	  enough?	  you	  note	  above	  that	  anything	  higher	   than	  2	   is	  statistically	  sound,	  
however	  is	  8	  good?	  or	  is	  a	  value	  of	  800	  expected	  in	  robust	  cases?	  
Published	  values	  of	  the	  trend	  ratio	  are	  typically	  2-‐6	  –	  see	  e.g.,	  van	  der	  A	  et	  al.	  [2006]	  or	  De	  Smedt	  et	  al.	  [2010].	  Hence	  
we	  consider	  a	  value	  of	  8	  as	  a	  strong	  trend.	  Values	  of	  800	  would	  imply	  negligible	  noise.	  	  
	  

Line	  322:	  I	  might	  understand	  why	  you	  repeated	  the	  trend	  analysis	  for	  the	  cloud	  parameters,	  since,	  there	  might	  have	  
been	  a	  trend	  in	  cloudiness	  indeed	  over	  the	  decade.	  Why	  did	  you	  perform	  the	  trend	  analysis	  on	  the	  AMF,	  what	  is	  the	  
physical	  reason?	   is	  there	  a	  parameter	  that	  enters	  the	  AMF	  calculation	  that	   is	  expected	  to	  have	  a	  possible	  trend?	   I	  
would	  be	  more	  interested	  in	  seeing	  whether	  the	  radiances	  themselves	  have	  a	  trend,	  but	  that	  is	  beyond	  the	  scope	  of	  
this	  paper	  and	  something	  for	  the	  PIs	  who	  create	  the	  datasets	  to	  worry	  about.	  	  
As	   a	   precaution,	  we	   felt	   it	  was	   necessary	   to	   identify	   AMF	   trends	   to	   eliminate	   them	  as	   a	   cause	   of	   vertical	   column	  
trends.	  In	  theory,	  unless	  there	  is	  an	  underlying	  trend	  in	  the	  a	  priori	  trace	  gas	  profiles	  and	  surface	  reflectance	  (typically	  
these	  are	  fixed	  to	  a	  single	  year),	  or	  cloud	  parameters,	  we	  shouldn’t	  expect	  any	  AMF	  trends.	  However,	  AMF	  trends	  do	  
occur,	  mostly	  caused	  by	  the	  cloud	  parameters	  and/or	  sampling	  effects.	  	  
	  

Line	  336:	   Is	   this	   the	  median	   for	   the	  decade?	   for	   the	   locations	  only?	  please	  clarify	   for	  all	   the	  rest	  of	   the	  section	  as	  
well.	   	  What	   is	  the	  STD	  associated	  with	  this	  value?	  aren't	  the	  HCHO	  and	  SO2	  values	  within	  their	   individual	   limits	  of	  
statistical	  significance?	  
Yes,	   these	  are	  the	  averages	  for	  the	  decade	  (2005-‐2014)	  determined	  using	  all	  1032	  target	   locations	  (i.e.	  urban	  +	  oil	  
ports	  +	  refineries	  +	  power	  plants),	  and	  thus	  are	  statistically	  significant	  (at	  the	  95%	  confidence	  level).	  We	  have	  made	  
this	  point	  clearer	  in	  the	  text	  and	  added	  the	  1-‐sigma	  errors.	  	  



	  

Line	  342:	  Why	  do	  you	  suppose	  this	  is?	  what	  is	  the	  physics	  behind	  HCHO	  being	  higher	  in	  ports?	  
To	  clarify	  we	  have	  only	  examined	  levels	  of	  the	  pollutants	  over	  oil	  ports	  –	  we	  have	  corrected	  this	  throughout	  text.	  The	  
reason	  why	  HCHO	  is	  higher	  over	  the	  oil	  ports	  is	  unclear.	  	  
	  

Line	   392:	   This	   is	   the	   average	   for	   the	   decade?	   it	   is	   extremely	   low,	   and	   I	   am	   guessing	   well	   outside	   any	   statistical	  
significance.	  Please	  discuss	  this	  issue.	  
As	  discussed	  above,	   this	   is	   the	  average	  SO2	   for	   the	  decade	   (2005-‐2014),	  and	   is	   statistically	   significant	   (at	   the	  95%	  
confidence	  level).	  The	  SO2	  values	  for	  we	  find	  for	  the	  Gulf	  region	  are	  consistent	  with	  studies	  of	  Krotkov	  et	  al.	  [2016],	  
Fioletov	  et	  al.	  [2016],	  and	  McLinden	  et	  al.	  [2016].	  
	  

Line	  422:	  I	  fail	  to	  understand	  the	  meaning	  of	  this.	  In	  line	  392	  you	  quote	  that	  "the	  highest	  level	  of	  0.73	  D.U.	  was...".	  In	  
general,	  I	  found	  this	  sub-‐section	  rather	  tiresome	  and	  repetitive	  of	  information	  given	  already	  above.	  You	  can	  merge	  
the	  two	  paragraphs,	  if	  you	  wish,	  so	  that	  for	  e.g.	  when	  you	  discuss	  median	  NO2	  levels,	  you	  can	  also	  give	  the	  highest	  
NO2	  level.	  
In	  line	  392,	  the	  0.73	  DU	  is	  the	  highest	  median	  vertical	  column	  level.	  In	  line	  422,	  we	  refer	  to	  the	  highest	  maximum	  SO2	  
vertical	  columns.	  We	  have	  corrected	  the	  text	  in	  Section	  4.2	  and	  line	  392	  to	  avoid	  any	  misunderstanding.	  We	  prefer	  to	  
keep	  Sections	  4.1	  and	   the	  4.2	  as	  distinct	   components	   to	  make	   it	  obvious	   that	   the	   former	  discusses	  average	   levels,	  
whilst	  the	  latter	  only	  discusses	  maximum	  values.	  
	  

Line	   428:	   You	   mean	   peak-‐to-‐peak	   amplitude?	   and	   have	   you	   averaged	   all	   locations?	   only	   those	   with	   statistically	  
significant	  seasonality?	   in	  general,	  this	  type	  of	   information	  is	  missing	  from	  the	  text.	   I	  understand	  the	  authors	  have	  
this	  knowledge,	  but	  it	  would	  be	  good	  to	  have	  it	  in	  the	  text	  so	  that	  other	  colleagues	  can	  follow	  this	  work	  and	  compare	  
like	  with	  like.	  
Apologies	   for	  not	   including	  this	   information	  at	   the	  start	  of	   this	   section	  –	  although	  we	  ask	   the	   reviewer	   to	  note	  we	  
explicitly	  state	  how	  the	  seasonal	  amplitudes	  were	  calculated	  in	  Section	  3.3;	  see	  line	  293	  of	  the	  original	  manuscript.	  
Hence	  we	  have	  now	  added	  at	   the	  start	  of	  Section	  4.3	   the	   following:	   	   “To	  assess	   the	  seasonal	  variability	  over	  each	  
target	  we	  determined	  the	  average	  peak-‐to-‐peak	  difference	  of	  its	  corresponding	  time	  series,	  and	  used	  these	  values	  to	  
compute	   the	  median	  seasonal	  amplitude	  over	  all	   locations,	  within	  each	   target	  category.”	  –	  hopefully	   this	  makes	   it	  
clearer	  to	  the	  reader.	  
	  

Line	  432:	  So,	  what	  does	  this	  mean?	  that	  the	  highest	  amplitude	  is	  over	  the	  power	  plant	  in	  Iran	  and	  the	  lowest	  over	  
Ataq?	  physics-‐wise?	  What	  is	  this	  seasonality	  in	  HCHO	  due	  to?	  
Yes,	  this	  is	  correct.	  We	  have	  adjusted	  the	  sentence	  to	  make	  it	  clearer.	  The	  seasonality	  of	  HCHO	  and	  CHOCHO	  are	  due	  
to	   seasonal	   variations	   of	   biogenic	   VOCs,	   specifically	   isoprene	   whose	   emissions	   peak	   in	   July-‐August	   time	   and	  
methanol.	  We	  have	  added	  this	  to	  the	  text	  and	  included	  the	  reference:	  
	  

• Müller,	  J.-‐F.,	  Stavrakou,	  T.,	  Smedt,	  I.	  D.,	  and	  Roozendael,	  M.	  V.:	  VOC	  emissions	  in	  the	  Middle	  East	  from	  bottom-‐up	  inventories	  &	  as	  
seen	  by	  OMI,	  GlobEmission	  User	  Consultation	  Meeting,	  Doha,	  Qatar,	  24-‐25	  November,	  2015.	  

	  
Line	  441:	  How	  is	  this	  possible,	  since	  you	  used	  FFT	  to	  de-‐noise	  and	  de-‐trend	  the	  data?	  I	  think	  you	  should	  reconsider	  
this	  phrase	  and	  what	  exactly	  you	  mean.	  
We	  only	  meant	   that	   the	  SO2	  and	  CHOCHO	  retrievals	  are	  noisier	   than	   their	  NO2	  and	  HCHO	  counterparts,	  and	   thus	  
their	  time	  series	  even	  after	  filtering	  and	  smoothing	  are	  noisier	  too.	  We	  have	  adjusted	  the	  text	  accordingly.	  
	  

Line	  445:	  Not	  sure	  I	  follow	  you	  here.	  Are	  there	  274	  towns,	  power	  plants,	  oil	  ports,	  and	  such	  like	  in	  Palestine?	  or	  do	  
you	  mean,	  274	  pixels	  that	  comprise	  Palestine?	  please	  rephrase	  accordingly.	  
We	  do	  not	  understand	  the	  confusion.	   It	   is	  clearly	  stated	   in	   the	  manuscript	   that	  “…if	  we	  disregard	  Palestine,	  where	  
only	  1	  out	  of	   its	  274	  urban	  targets	  had	  a	  real	  trend…”	  –	   i.e.	  we	  are	  not	  discussing	  gridded	  pixels.	  Nevertheless,	  we	  
have	   changed	   the	   text	   to:	   “However,	   in	   Palestine	   only	   1	   out	   of	   a	   potential	   274	   urban	   targets	   had	   a	   real	   trend.	  
Neglecting	  the	  Palestine	  results	  in	  this	  instance,	  increases	  the	  detection	  rate	  to	  36%.”	  	  
	  

Line	   501:	  Not	   only	   that,	   it	   is	  where	  we	   can	   be	   sure	   that	   there	   is	   enough	   signal	   in	   the	   data	   themselves	   to	   give	   a	  
meaningful	  trend.	  
This	  is	  correct	  –	  we	  have	  added	  this	  to	  the	  sentence.	  
	  

This	  is	  indeed	  a	  very	  interesting	  comment,	  and	  the	  main	  questions	  that	  popped	  into	  my	  mind	  when	  viewing	  the	  plots	  
of	  the	  differences	  between	  trend	  and	  growth	  rate.	  TO	  be	  honest,	  I	  found	  the	  concept	  of	  these	  difference	  plots	  quite	  
hard	   to	   grasp.	   How	   do	   you	   explain	   them?	   for	   e.g.	   what	   does	   it	   mean	   that	   for	   NO2	   these	   differences	   can	   range	  
around	  +/-‐5%	  per	  annum? 
As	  discussed	  in	  Section	  5.2	  this	  is	  the	  difference	  between	  the	  linear	  trend	  (in	  %/yr)	  and	  the	  growth	  rate	  (in	  %/yr).	  	  In	  
the	   text	  we	  discuss	   the	  difference	  between	   the	   trend	  and	  growth	   rate	  at	   Ibri	   (in	  Oman),	  we	  have	  now	  amend	   this	  



sentence	  to	  show	  explicitly	  what	  the	  difference	   implies.	  These	  differences	  between	  the	   linear	  trend	  and	  the	  growth	  
rate	   occur	   due	   to	   the	   latter	   tracking	   inter-‐annual	   variations	   in	   the	   data	   not	   accounted	   for	   in	   the	   linear	   part	   of	  
equation	   1	   [see	   Thoning	   et	   al.	   (1989)	   or	   https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html]	   –	   we	   have	  
added	  this	  information	  to	  the	  text.	  	  
	  

Lines	  553,	  561	  &	  570:	  Hence,	  you	  may	  conclude	  that	  for	  the	  DOMINO	  NO2	  product,	  the	  estimated	  NO2	  emissions	  
will	   remain	  more	  or	   less	  unaltered	  between	  using	  a	  10km	  or	  a	  20km	  smoothing	  radius	  around	  the	  source.	  Do	  you	  
agree?	  if	  so,	  add	  a	  relevant	  phrase	  in	  this	  paragraph.	  
The	  reviewer	  may	  be	  ‘right’	  but	  we	  believe	   it	   is	  more	  accurate	  to	   just	  say	  that	  only	  the	  NO2	  columns	  are	  generally	  
unaltered.	  
	  

Line	  577:	  Yes,	  but	  these	  are	  not	  so	  great	  as	  to	  recommend	  that	  someone	  uses	  10km	  instead	  of	  20km.	  Please	  also	  
recall	  that	  the	  usable	  OMI	  pixels	  are	  larger	  than	  15x50km	  anyways.	  
Agreed,	   there	   is	   little	   to	   chose	   between	   the	   too	   values,	   although	   a	   10	   km	   radius	   much	   better	   covers	   the	   urban	  
footprint	  of	  most	  locations,	  even	  the	  larger	  cities.	  	  
	  

Line	  621:	  So,	  you	  recommend	  using	  the	  affected	  rows?	  
Yes,	   but	   only	   to	   avoid	   trends	   in	   the	   number	   of	   samples,	   and,	   additionally	   only	   if	   the	   corrupted	   observations	   from	  
those	  affected	  rows	  are	  heavily	  weighted	  so	  as	  not	  to	  affect	  the	  gridded	  data	  (i.e.	  by	  assigning	  each	  observation	  an	  
extremely	  high	  uncertainty).	  
	  

Line	  630:	  You	  mean	  you	  didn't	  not	  use	  the	  IQR	  to	  exclude	  daily	  values	  from	  creating	  the	  monthly	  means?	  if	  you	  are	  
worried	  about	  genuine	  points	  why	  don't	  you	  use	  3*IQR	  instead	  of	  1.5*IQR?	  
We	  do	  not	  understand	  the	  reviewer’s	  comments	  in	  this	  instance.	  We	  do	  not	  filter	  the	  any	  of	  the	  satellite	  data	  using	  
the	  IQR	  (nor	  is	  this	  indicated	  in	  the	  manuscript	  anywhere).	  	  
	  
Reviewer	  #2	  
	  
The	  paper	  contains	  a	  very	  thorough	  analysis	  of	  some	  air	  quality	  gases	  in	  the	  Middle	  East.	  It	  is	  scientifically	  speaking	  
not	  very	  new,	  but	  it	  is	  a	  very	  useful	  overview	  of	  the	  air	  quality	  in	  the	  region	  with	  many	  details.	  
	  
Line	  160:	   Scenes	  with	  effective	   cloud	   fraction	  >	  20	  %	  are	   rejected	   for	  CHOCHO,	   in	   line	  177-‐178:	   a	   filter	   for	   cloud	  
radiance	   fraction	  >	  0.3	   is	  mentioned	   for	  SO2,	  while	   in	   line188	   it	   is	  mentioned	  that	  scenes	  with	  a	  higher	   than	  20%	  
fractional	  cloud	  cover	  are	  filtered	  for	  all	  data.	  Why	  are	  you	  not	  using	  a	  single	  cloud	  filter	  setting	  for	  all	  data.	  
As	  mentioned	   in	  our	   response	   to	   reviewer	  1,	  a	   cloud	   radiance	   fraction	  of	  30%	   for	   SO2	  corresponds	   to	  an	  effective	  
cloud	   fraction	   of	   about	   15-‐20%,	  making	   it	   consistent	  with	   the	   cloud	   filters	   applied	   to	   the	   other	   species.	  We	   have	  
added	  this	  detail	  to	  the	  text,	  and	  adjusted	  the	  text	  accordingly.	  
	  

Line	   180:	   Several	   times	   in	   the	   period	   of	   this	   research	   volcanoes	   in	   North-‐East	   Africa	   have	   been	   erupting	  with	   as	  
result	   volcanic	   plumes	   over	   the	  Middle	   East	   region.	   Large	   parts	   of	   the	   plume	   have	   values	   of	   less	   than	   5DU.	   For	  
example	   in	  June	  2011	  many	  days	  show	  remnant	  SO2	  values	  caused	  by	  the	  eruption	  of	  the	  Nabro	  volcano.	   I	  would	  
expect	  this	  affects	  the	  trend	  considerably	  and	  it	  might	  be	  better	  to	  remove	  this	  period	  from	  the	  time	  series	  of	  SO2.	  
We	  removed	  the	  June	  2011	  data	  and	  repeated	  our	  analysis	  –	  it	  had	  negligible	  effect	  –	  only	  producing	  1	  extra	  trend	  
over	  a	  power	  plant.	  Note	  also	  that	  anomalous	  SO2	  peaks	  potentially	  due	  to	  volcanic	  eruptions,	  are	  typically	  removed	  
by	  the	  outlier	  filtering	  as	  discussed	  in	  Section	  3.3	  
	  

Line	  200-‐201:	  Does	  this	  mean	  that	  for	  the	  gases	  HCHO	  and	  NO2	  the	  row	  anomaly	  mask	  in	  2013	  is	  less	  strict	  than	  in	  
some	  earlier	  years?	  By	  using	  different	  criteria	  over	  the	  years	  for	  these	  gases	  your	  trend	  is	  still	  affected	  by	  sampling	  I	  
would	  think.	  Please	  clarify	  this	  section.	  
We	   tested	  many	   different	   approaches	   to	   account	   for	   the	   row	   anomaly	  when	   gridding	   the	   data.	   The	   static	  mask,	  
based	  on	  the	  most	  affected	  rows	  at	  the	  end	  of	  2013,	  simply	  identifies	  the	  most	  problematic	  detector	  rows.	  However,	  
those	  detector	  rows	  not	  covered	  by	  the	  static	  mask	  are	  also	  sometimes	  compromised	  for	  certain	  time	  periods	  during	  
the	  mission,	  but	  they	  can	  (&	  do)	  provide	  valuable	  observations	  outside	  those	  periods.	  However,	  note	  each	  retrieval	  
group	  assign	  different	  quality	  flags	  (QFs)	  to	  their	  product,	  which	  we	  also	  have	  to	  respect	  when	  gridding	  the	  data.	  For	  
SO2	  and	  CHOCHO	  the	  static	  mask	  method	  &	  product	  QFs	  work	  fine,	  but	  for	  NO2	  and	  HCHO	  it	  doesn’t.	  Hence	  this	  is	  
why	  our	  approach	  for	  these	  latter	  gases	  is	  to	  block	  out	  the	  worst	  rows	  using	  the	  2013	  mask,	  and	  then	  assign	  a	  high	  
uncertainty	  to	  any	  other	  row-‐	  corrupted	  observations.	  This	  compromise	  yields	  a	  high	  number	  of	  observations	  per	  grid	  
cell	  and	  the	  lowest	  number	  of	  sample	  trends.	  The	  additional	  sensitivity	  test	  (test	  3	  in	  section	  5.2)	  only	  uses	  data	  from	  
rows	  in	  which	  there	  have	  been	  no	  corrupted	  observations	  over	  the	  lifetime	  of	  the	  mission.	  	  
	  



Line	  224:	  I	  think	  this	  Figure	  2	  does	  not	  add	  much	  to	  the	  paper	  and	  in	  my	  view	  can	  be	  removed.	  	  
Figure	  2	  has	  now	  been	  moved	  to	  the	  supplementary	  material,	  as	  we	  believe	  it	  is	  important	  that	  readers	  can	  view	  how	  
well	  the	  spatial	  mask	  captures	  the	  urban	  extent	  of	  target	  areas.	  
	  

Line	  579:	  Also	  for	  NO2	  a	  cloud	  fraction	  of	  less	  than	  20%	  is	  advised.	  However,	  I	  doubt	  these	  advices	  were	  given	  with	  
this	  particular	  test	  in	  mind.	  I	  suggest	  to	  apply	  this	  test	  also	  to	  CHOCHO	  and	  SO2.	  
As	  requested	  we	  also	  applied	  a	  stricter	  effective	  cloud	  fraction	  filter	  of	  10%	  to	  all	  species	  -‐	  for	  SO2	  this	  correspond	  to	  
a	  cloud	  radiance	  fraction	  of	  20%.	  This	  had	  little	  impact	  on	  SO2	  although	  fewer	  trends	  in	  total	  detected	  for	  NO2	  (232)	  
and	  HCHO	   (59);	  no	   trends	  were	   found	   for	  CHOCHO.	  Generally,	  most	  of	   the	  highest	   ranked	   trends	   for	   each	   species	  
were	   very	   similar	   to	   the	   default	   scenario,	   indicating	   a	   20%	   cloud	   fraction	   filter	   is	   likely	   an	   optimum	   choice	   for	  
detecting	  air-‐quality	  trends	  over	  this	  region	  without	  affecting	  trend	  magnitudes.	  This	  information	  has	  been	  added	  to	  
the	  text.	  
	  

Line	  595-‐599:	  I	  thought	  the	  standard	  analysis	  was	  already	  done	  for	  unaffected	  rows.	  How	  are	  the	  unaffected	  rows	  
defined	  in	  this	  particular	  test?	  
See	  our	  comments	  above.	  
	  

Line	  622:	  It	  is	  not	  only	  the	  number	  of	  observations	  but	  also	  the	  type.	  Because	  you	  are	  using	  a	  different	  selection	  of	  
rows	  you	  have	  a	  selection	  of	  other	  pixel	  sizes.	  The	  change	  of	  pixel	  sixe	  alone	  will	  already	  affect	  the	  derived	  trends.	  
This	  should	  be	  added	  to	  the	  discussion.	  
We	  have	  added	  this	  interesting	  point	  to	  the	  discussion.	  Thanks!	  
	  

Section	  5.3:	   In	   this	   section	   it	  might	  be	   interesting	   to	   include	   the	  study	  of	  Schneider	  et	  al.	   (2015),	  who	  did	  a	   trend	  
analysis	  on	  NO2	  in	  large	  urban	  agglomerations	  for	  the	  period	  2002-‐2012,	  based	  on	  SCIAMACHY.	  
Added.	  
	  

Figure	  3,	   left-‐side:	   In	   this	   Figure	   I	   have	  difficulties	  distinguishing	  between	  oil	   refineries,	   oil	   ports	  or	  power	  plants.	  
Other	  symbols	  or	  colors	  can	  improve	  the	  Figure.	  Please	  also	  add	  the	  symbols	  to	  the	  legend.	  
Done.	  
	  

Table	  1-‐4:	  In	  my	  opinion	  large	  part	  of	  this	  table	  can	  be	  moved	  to	  the	  supplementary	  Material	  	  
We	  prefer	   to	   keep	   Tables	   1-‐4	   as	   they	   are,	   since	   they	   provide	   a	   summary	   of	   all	   the	   key	   statistics	   for	   each	   species	  
(rather	   than	  having	   too	  many	  additional	   tables	   in	   the	   supplementary	  material	  –	  as	   this	  was	  commented	  on	   in	   the	  
initial	  pre-‐ACPD	  review).	  
	  

In	  general:	  the	  significance	  in	  which	  most	  values	  are	  given	  is	  much	  too	  high	  compared	  to	  their	  errors.	  A	  digit	  less	  is	  
often	  possible	  and	  makes	  the	  text	  better	  readable.	  
We	  prefer	  to	  keep	  the	  level	  of	  significance	  (&	  decimal	  places)	  as	  originally	  presented,	  as	  it	  is	  more	  accurately	  helps	  to	  
distinguish	  &	  rank	  the	  linear	  trends	  and	  pollution	  levels	  –	  and	  is	  consistent	  with	  the	  tabulated	  results	  in	  the	  excel	  files	  
provided	  in	  the	  supplementary	  materials.	  	  	  	  
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Abstract. Using Ozone Monitoring Instrument (OMI) trace gas vertical column observations of

nitrogen dioxide (NO2), formaldehyde (HCHO), sulphur dioxide (SO2), and glyoxal (CHOCHO),

we have conducted a robust and detailed time series analysis to assess changes in local air-quality

for over 1000 locations (focussing on urban, oil refineries, oil ports, and power plant targets) over

the Middle East for 2005–2014. Apart from NO2, which is highest over urban locations, average5

tropospheric column levels of these trace gases are highest over oil ports and refineries. The highest

average pollution levels over urban settlements are typically in Bahrain, Kuwait, Qatar, and United

Arab Emirates.

We detect 278 statistically significant and real linear NO2 trends in total. Over urban areas NO2

increased by up to 12% yr−1, with only two locations showing a decreasing trend. Over oil refineries,10

oil ports, and power plants, NO2 increased by about 2–9 % yr−1. For HCHO, 70 significant and real

trends were detected, with HCHO increasing by 2–7 % yr−1 over urban settlements and power

plants, and by about 2–4 % yr−1 over refineries and oil ports. Very few SO2 trends were detected,

which varied in direction and magnitude (23 increasing and 9 decreasing). Apart from two locations

where CHOCHO is decreasing, we find glyoxal tropospheric column levels are not changing over15

the Middle East. Hence for many locations in the Middle East, OMI observes a degradation in

air-quality over 2005–2014. This study therefore demonstrates the capability of OMI to generate

long-term air-quality monitoring at local scales over this region.

1 Introduction

It is well-established that poor air-quality can significantly impact human health, ecosystems and20

agriculture, the built environment, and regional climate (Monks et al., 2009). The human and mon-

etary costs associated with increasing levels of air-pollution are substantial. For example, the World
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Health Organisation (WHO) estimates that globally nearly 7 million premature deaths were at-

tributed to household and ambient air pollution during 2012 (WHO, 2014). Similarly, the Organ-

isation for Economic Co-operation and Development (OCED) estimated that outdoor air pollution is25

costing its 34 member states, plus the People’s Republic of China and India, an estimated 3.5 trillion

dollars a year in terms of the value of lives lost and ill health (OCED, 2014).

Regulatory control of urban air-quality is typically most effective when important target areas are

extensively monitored, so pollutant emissions can be quantified and their atmospheric chemical pro-

cessing well-understood. In addition to in situ measurements made by ground stations and aircraft30

campaigns, satellite observations also form an important component of air-quality monitoring (Mar-

tin, 2008; Duncan et al., 2014). Satellite measurements of pollutants such as nitrogen dioxide (NO2),

carbon monoxide (CO), troposphere ozone O3, formaldehyde (HCHO), sulphur dioxide (SO2), and

aerosol particulate matter (PM), have been widely used to characterise their global atmospheric dis-

tributions, to quantify surface precursor emissions, and to evaluate local air-quality (see e.g., Martin,35

2008; Streets et al., 2013; Duncan et al., 2014, and references therein). Furthermore, with the advent

of successive and longer-duration satellite missions, particularly the sequence of ultra-violet–visible

(UV–VIS) instruments of GOME (Burrows et al., 1999), SCIAMACHY (Bovensmann et al., 1999),

and GOME-2 (Callies et al., 2006), together with the OMI sensor (Levelt et al., 2006), there is a

growing ability to study long-term changes in air-quality from space. Some notable studies that have40

used satellite trace gas measurements to examine air pollution trends include: Richter et al. (2005);

van der A et al. (2006, 2008); Ghude et al. (2008); De Smedt et al. (2010, 2015); Russell et al.

(2012); Schneider and van der A (2012); Hilboll et al. (2013); Jin and Holloway (2015); Krotkov

et al. (2016); Lamsal et al. (2015); Lelieveld et al. (2015); Schneider et al. (2015), and Duncan et al.

(2016).45

The Middle East is a region where long-term changes in air-quality have probably been less well

studied, in comparison to Asia, Europe, and North America. Besides frequent dust-storms (Furman

and Hadar, 2003), the region’s air-quality is characterised by year-long high ozone levels (Lelieveld

et al., 2009), with an observed summer maximum (Liu et al., 2009; Zanis et al., 2014). The high

ozone levels are in part due to long-range transport, strong local emissions, and favourable condi-50

tions for ozone photochemistry (Lelieveld et al., 2009). In-situ instruments frequently record high

pollutant concentrations in urban areas which exceed recommended guidelines (e.g., Modarres and

Dehkordi, 2005; Nasralla and Seroji, 2007; Abdul-Wahab, 2009; Munir et al., 2013; Rashki et al.,

2013).

The severity and variability of the region’s air pollution can be directly observed from space.55

For example, several studies have reported appreciable trends in NO2 vertical column over Middle

Eastern cities prior to 2011, with increases of order 2–9 % yr−1 found over Tehran, 4–5 % yr−1

over Jeddah, 6–7 % yr−1 over Riyadh, and 10–20 % yr−1 over Baghdad, depending on the satellite

instrument and the averaging period (van der A et al., 2008; Schneider and van der A, 2012; Hilboll
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et al., 2013). Similarly, De Smedt et al. (2010) also found an increasing trend of 1–3 % yr−1 in60

GOME and SCIAMACHY tropospheric HCHO columns over Tehran and Baghdad during 1997–

2009, but a decrease of about 2 % yr−1 over Riyadh.

More recently, Lelieveld et al. (2015) examined annual changes in OMI NO2 and SO2 columns

over the Middle East over 2005–2014, reporting that after increases in the period 2005–2010, there

was a reduction in these gases, either due to new regulatory legislation, or due to falls in economic65

output associated with regional conflicts and geopolitical controls. In particular, decreases in NO2

tropospheric columns of order 40–50% were noted over Damascus and Aleppo since 2011, coincid-

ing with the start of Syria’s civil war. A similar regional-scale study by Krotkov et al. (2016), also

observed that during 2005–2008 OMI NO2 column increased by 20% but remained approximately

constant thereafter, whereas OMI SO2 columns dropped by 20% after 2010, only recovering to 200570

levels in 2014. A further OMI NO2 column trend analysis over the region’s major cities by Duncan

et al. (2016) likewise reported decreases over Damascus and Aleppo, but of about 3–4 % yr−1, with

increases of about 2–6 % yr−1 elsewhere.

However, besides these valuable studies and to the best of our knowledge, long-term changes in

local air-quality for many smaller Middle-Eastern cities and towns have not been reported. In this75

study we aim to remedy this situation by determining the changes in air-pollution over local popu-

lation centres and also oil/energy infrastructure from space using a decade’s worth of observations

from the OMI instrument. Our target areas are therefore (1) cities and towns, (2) large-scale oil

refineries and ports, and (3) coal, gas and oil fuelled electricity generating power-plants.

To track the air-quality over our specified targets, we use OMI tropospheric vertical column ob-80

servations of NO2, HCHO, glyoxal (CHOCHO), together with retrieved boundary layer column

concentrations of SO2. Although each of these reactive species has different sources and sinks, they

are all established key indicators of anthropogenic emissions, active photochemistry, and air pollu-

tion. For example, the dominant sources of NOx (=NO+NO2) in the troposphere are the combustion

of fossil fuels, biomass burning, emissions from soil, and lightning. Boundary layer SO2 is pre-85

dominantly generated by the burning of sulphur laden fossil fuels and the refinement of sulphur

ores; volcanic SO2 emissions are typically injected high into the atmosphere well above the bound-

ary layer. The chemical reactions of NO2 and SO2 lead to the formation of nitrate and sulphate

aerosols, which contribute to PM2.5 (particulate matter with diameters <2.5 µm), another critical

pollutant (Kim et al., 2015). HCHO and CHOCHO are reaction products from the oxidation of an-90

thropogenic, biogenic, and pyrogenic volatile organic compounds (VOCs); they can also be directly

emitted from fires. Observed HCHO and CHOCHO distributions therefore contain the signature of

underlying VOC emissions. Quantifying VOC emissions is important, as the oxidation of VOCs in

the presence of high NOx and sunlight leads to the formation of tropospheric ozone, which is a major

air pollutant contributing to photochemical smog, as well as a key greenhouse gas and atmospheric95

oxidant (Monks et al., 2015). Apart from SO2, which has lifetime of about one week, the trace gases
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are also relatively short-lived (order of hours to a day), so that spatial displacements from emission

sources are often small.

In this study, we have two broad goals: (1) to establish which locations have the highest pollution

levels and (2) to use time series analysis in order to determine which locations have statistically100

significant trends and to quantify the trend magnitudes. The structure of this paper is as follows. In

section 2 we introduce the OMI data products. In Section 3 we discuss how the OMI data is gridded

and describe the time series analysis. We present our results in Section 4, with a discussion on their

validity in Section 5. Finally, we conclude the paper in Section 6.

2 OMI Satellite Data105

2.1 The Ozone Monitoring Instrument (OMI)

The Dutch-Finnish Ozone Monitoring Instrument (OMI) (Levelt et al., 2006), is a nadir-viewing UV-

VIS 2-dimensional charged-couple device (CCD) spectrometer, launched on board NASA’s Aura

satellite in July 2004. OMI orbits the Earth in a Sun-synchronous polar orbit, crossing the Equator

at 13:30 local time (LT) in its ascending mode. The instrument has a 114◦ field-of-view producing a110

2600 km wide swath which contains 60 cross-track pixels that range in size from 14×26 km2 at nadir

to 28×160 km2 at the swath edges. With these viewing geometry and orbital characteristics, OMI

achieves global coverage daily (in nominal operational mode). However, from 2007 onwards, OMI’s

coverage has been considerably reduced due to problems with certain rows of its CDD detector (see

Section 3.1 for further details).115

In this work we use 10 years (2005–2014) of OMI vertical column observations of NO2, HCHO,

CHOCHO, and SO2. A brief overview of these products is given below; explicit details of each trace

gas retrieval are given in the cited references.

2.2 SAO Formaldehyde

The official NASA HCHO product is provided by the updated Smithsonian Astrophysical Observa-120

tory (SAO) retrieval, as described in González Abad et al. (2015) and evaluated in Zhu et al. (2016).

HCHO slant columns are retrieved through a direct non-linear least-squares fitting of spectral ra-

diances within the interval 328.5–356.5 nm. The retrieval algorithm includes dynamic calibration

of solar and radiance wavelengths, the use of a daily radiance reference spectra, an under-sampling

correction, and computation of common-mode residual spectrum. The cross-sections of HCHO and125

other absorbers are fitted, together with a Ring effect correction, scaling and closure polynomials,

and a spectral shift parameter. The retrieved slant columns are converted to vertical columns us-

ing air-mass factors (AMFs) taken from look-up tables pre-computed using the VLIDORT radiative

transfer model (Spurr, 2008), which uses a priori HCHO profiles from a global 2.0◦×2.5◦ GEOS-

Chem chemistry transport model simulation (originally described in Bey et al., 2001). Effective130
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cloud fraction and cloud-top pressure are taken from the OMI O2-O2 cloud product (Acarreta et al.,

2004), whilst the surface reflectivity for clear-sky scenes, is extracted from the OMI mode Lamber-

tian Equivalent Reflectivity (LER) dataset created by Kleipool et al. (2008). A daily post-processing

normalisation correction (a function of latitude and detector row) is applied to reduce retrieval biases,

minimise noise and reduce cross-track striping. Observations with effective cloud fractions >20%135

are rejected. Over our domain of interest (20–80◦E, 10–50◦N) we find the median uncertainty of a

single measurement is about 60–70%, with an inter-quartile range (IRQ) of about 175%.

2.3 DOMINO NO2 Vertical Columns

Tropospheric NO2 vertical columns are from the KNMI DOMINO v2 product (Boersma et al.,

2011a, b), which is a well-established dataset (see, e.g., Hains et al., 2010; Wang et al., 2016). The140

NO2 slant columns are retrieved using the differential optical absorption spectroscopic (DOAS)

technique, by fitting the absorption cross sections of NO2, O3, and H2O, along with a synthetic

Ring spectrum, to observed reflectance spectra in the 405-465 nm interval (Boersma et al., 2007).

The retrieved total slant columns are then assimilated into the TM4 chemistry model (Dentener

et al., 2003), to estimate and remove the stratospheric NO2 component. Finally, tropospheric ver-145

tical columns are then derived by applying altitude-resolved AMFs from a precomputed look-up

generated with the KNMI DAK radiative transfer model using TM4 NO2 profiles from a 2.0◦×3.0◦

global simulation. Surface reflectivity and cloud-parameters are taken from Kleipool et al. (2008)

and Acarreta et al. (2004), respectively. As with HCHO, observations with effective cloud fractions

>20% are rejected. The median uncertainty of an individual measurement over our target region is150

about 60–70%, with an IQR of about 54%.

2.4 BIRA CHOCHO Vertical Columns

Glyoxal vertical columns are retrieved from OMI spectra using an updated DOAS retrieval origi-

nally devised for GOME-2 (Lerot et al., 2010). The retrieval uses a daily mean Earthshine Pacific

radiance spectrum, and applies a row-dependent wavelength calibration. An initial pre-fit of liquid155

water optical depth (in 405–490 nm) is performed, before the absorption cross-sections of CHOCHO

and other interfering absorbers are fitted in the spectral window 435–490 nm to retrieve the slant

columns. Tropospheric vertical columns are obtained using pre-computed look-up tables of altitude

resolved AMFs, which uses a priori profiles over land from a global 2.0◦×2.5◦ IMAGES simulation

(Müller and Stavrakou, 2005). Over the oceans a single oceanic profile is used for the AMFs, derived160

from airborne MAX-DOAS measurements over the Pacific Ocean (Volkamer et al., 2015). Unlike

the retrievals of HCHO and NO2, the cloud effects are not accounted for in the AMF calculation (via

the independent pixel approximation); instead only ‘clear-sky’ observations are retained by rejecting

scenes with effective cloud fractions >20%. The median uncertainty of an individual measurement

is about 50-60% with an IQR of about 250%.165
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2.5 NASA Sulphur Dioxide

To assess changes in anthropogenic SO2 we use planetary boundary layer columns (NASA product

OMSO2 v1.2.0) determined using a principal component analysis (PCA) retrieval that is sensitive

to surface concentrations (Li et al., 2013). The algorithm applies the PCA technique to OMI UV

sun-normalised radiances (310.5–340 nm) over an SO2-free region (in the Equatorial Pacific) to170

establish the principal components of the main physical and measurement spectral features that do

not correspond to SO2 absorption. A set of principal components and SO2 radiance Jacobians (i.e.

that describe the radiance sensitivities to changes in the SO2 column), are then iteratively fitted

to observed OMI radiances to obtain the slant column density. An estimate of the boundary layer

SO2 is then calculated based on the assumptions of the vertical SO2 distribution (Krotkov, 2014).175

The algorithm applies the PCA technique to each OMI detector row individually, and uses the VLI-

DORT radiative transfer code to compute the SO2 Jacobians, with RT model inputs based on a fixed

atmospheric profile and climatological SO2 profile over the summertime eastern US, the latter corre-

sponding to an effective AMF of 0.36 (Fioletov et al., 2016). Scenes with strong ozone absorption of

>1500 Dobson Units (1 DU = 2.69×1016 molecules cm-2) are excluded due to spectral interference180

in the retrieval. For this study we only use SO2 data from OMI rows 4–54 (0-based) and with cloud

radiance fraction <0.3 (Krotkov, 2014), which corresponds to an effective cloud fraction of about

15% (Krotkov et al., 2016), broadly consistent with the other species. Although SO2 over the Mid-

dle East is mostly unaffected by volcanic emissions over 2005–2014 (Krotkov et al., 2016), transient

volcanic SO2 enhancements were removed if they exceeded a threshold of 5 DU (Fioletov et al.,185

2011). The estimated uncertainty of the SO2 PBL is about 0.5 DU in the tropics, and ∼0.7–0.9 at

higher latitudes, based on the analysis of the root-mean square (RMS) and standard deviation values

for instantaneous field of view (IFOV) observations in different latitudinal bands (see Li et al., 2013;

Krotkov, 2014).

3 Methods190

3.1 Data Gridding

We monthly-average the OMI observations onto a high resolution 0.05◦× 0.05◦ grid using an area-

weighting tessellation algorithm (Spurr, 2003; Hewson et al., 2015). The gridding algorithm prop-

erly accounts for the areal proportions of grid cells underlying the satellite footprint and inversely

weights each observation according to the measurement uncertainty and OMI ground pixel-size.195

Spatial zoom orbits are not included in our analyses, nor are scenes with solar zenith angles > 70◦.

We also follow the data recommendations provided with each product to reject non-optimum ob-

servations. The quality of the level 1B radiance data from certain rows of OMI’s CCD detector is

known to be affected by blockage effects, wavelength shifts, and stray light originating from out-
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side the nominal field of view. This dynamic behaviour is the well-known OMI row anomaly (http:200

//www.knmi.nl/omi/research/product/rowanomaly-background.php), which impacts atmospheric re-

trievals from the affected rows. The temporal variability of the row anomaly is also known to com-

promise the derivation of long-term trace gas trends (De Smedt et al., 2015). For this reason, we

follow a similar approach to De Smedt et al. (2015), by using the OMI XTrackQualityFlags (Dutch

Space, 2009) to construct a static mask based on the most affected rows at the end of 2013, to then205

discard row-anomaly observations over the entire 2005–2014 period. This quality filtering largely

removes any statistically significant sampling trends in the generated monthly datasets, except for

the SAO HCHO and DOMINO NO2 data. Therefore, for these gases we further use the XTrack-

QualityFlags to identify affected observations not flagged by the static mask, whose measurement

uncertainties we then increase by a factor of 1000, so that these observations are included in the210

analysis without affecting the monthly averaged fields (i.e. they are assigned a very low weight in

the averaging). On average there are typically 20–35 samples per grid-cell per month. To reduce

noise in the monthly gridded data we smooth the data with a 0.15◦×0.15◦ Gaussian filter of 1-σ

width. For the noisier CHOCHO fields, a 2-σ Gaussian is used. The spatial smoothing enhances

localised ‘hot-spots’ and is preferable to averaging the data onto a coarser resolution grid where the215

atmospheric signatures of target features can be lost. The median uncertainties of the gridded data

are about 4% for NO2, 6% for HCHO, 27% for CHOCHO, and 40% for SO2.

Figure 1 shows the 2005 annual distributions of each species over the broad Middle East region.

Clearly visible in the NO2, HCHO and CHOCHO maps are the major urban areas of Riyadh, Bagh-

dad, Tehran, Jeddah, and pollution enhancements along the eastern and northern coasts of the Persian220

Gulf. Intense SO2 hotspots are found over the Jeddah and Mecca region, Kharg Island (in the Gulf)

and near Kerman (Iran), where the Sarcheshmeh Copper Complex smelter is found.

3.2 Time Series Construction

To determine the temporal variability of the OMI vertical column data over urban areas we use

the Global Rural-Urban Mapping Project Version 1 (GRUMPv1) settlement points database (Balk225

et al., 2006; SEDAC, 2015) to identify the geolocation coordinates of 818 cities and towns, that have

populations ranging from over 50 to nearly 7 million inhabitants (as determined for the year 2000).

We then construct a 10-year time-series (of 120 months) by averaging those monthly-gridded data

that lie within ±2 grid-cells of the city or town location, which corresponds to a radial distance of

approximately 10 km from the urban centre. Visual inspection of these spatial masks overlaid onto230

GoogleEarth imagery shows this filtering criteria is well-suited to capture the extent of most urban

areas (see e.g., Figure S1). For Baghdad, Riydah, and Tehran, which have larger urban spread, the

average of ±4 grid-cells is used instead, consistent with an approximate 20 km radial distance. In

addition to the trace gas vertical columns, we also construct coincident times series for the associated

cloud fraction, cloud-top pressure (or height), AMFs (where appropriate), and number of grid-cell235
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samples. This helps clarify whether any observed trends in the trace gases are real, by applying the

same time-series analysis to all the retrieved parameters.

We use this same approach to examine air-quality variability over oil refineries, oil ports and

power plants. The 2010 Oil Refining Survey (Kootungal, 2010) was used to identify 41 major

crude oil refineries, whereas the Global Energy Observatory (GEO) free online resource (http:240

//globalenergyobservatory.org) was used to locate 18 oil ports and 155 power plants. Where different

types of power plants (e.g., oil versus gas fuelled) were closely co-located, a single geolocation co-

ordinate was used to mark that target. The geographical distribution of the selected targets is shown

in Figure 2a, and as an example, Figure 2b shows the urban spatial filtering masks, applied to the

observed 2005 annual OMI NO2 distributions over northern Iran. The latter figure shows that this245

approach treats the larger cities, such as Tehran, as individual urban regions, with intention of re-

solving trends of separate districts, and that in some cases the spatial masks can partially overlap for

targets which are close to one another.

Considering all locations, we find that by applying a weighted average to the data within ±2
grid-cells of the target, the median uncertainties of the trace gas vertical column time series data250

points reduce to 0.37±0.26% for NO2, 0.73±0.64% for HCHO, 1.82±1.90% for CHOCHO, and

1.63±2.58% for SO2.

3.3 Time Series Analysis

Each time series consists of monthly mean OMI observations y(t) over a given target site, where

time t is in fractional years. We analyse each time series individually for each location following a255

consistent procedure. First, we filter the time series data for outliers, rejecting observations that lie

beyond 2.5 median absolute standard deviations (Leys et al., 2013). This helps to reduce difficulties

in the analysis and interpretation of noisy vertical column data when encountered; the filtering is

not required for AMFs, cloud-parameters or the number of samples. Second, we linearly interpolate

across missing data points, applying a quality filter that if >20% of (randomly scattered) values260

are missing from the time series then the dataset is rejected. Typically 0–25% of data points maybe

missing from a time series, but on average, we find that less than 6% are missing. Third, we then

fit to the data a model function F (t) consisting of a linear component plus a four-term harmonic

Fourier series, defined as follows:

F (t) = µ+ωt+

4∑
n=1

[An cos(2πnt)+Bn sin(2πnt) ] (1)265

where µ is the mean value of the time series data at time t= 0, ω is the linear trend of the variable

(per year), and the parameters An and Bn are the Fourier series coefficients that essentially model

seasonal and inter-seasonal variability. Many other trend studies have fitted very similar functions

(see e.g, van der A et al., 2006; Gardiner et al., 2008; De Smedt et al., 2010; Hilboll et al., 2013;

Jin and Holloway, 2015). We fit this model to the data using a non-linear least squares Levenberg-270
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Marquardt algorithm, which generates an estimate of the fit parameters µ, ω, An and Bn plus their

uncertainties and covariance.

Fourth, we check that the trend ω is real, i.e. significant at the 95% confidence level. The generally

accepted rule for determining whether a trend is statistically significant is |ω/σω|> 2, provided the

lag-one autocorrelation of the fit residual is small (Weatherhead et al., 1998; van der A et al., 2006).275

To determine the precision (σω) of the trend we follow the approach of Gardiner et al. (2008) by

bootstrap resampling (with replacement) the initial fit residuals to reconstruct the fitted function

with representative noise. The model function F (t) is then refitted to this data and the fit parameters

recalculated. This process is repeated 2000 times to build a sampling distribution for each of the fit

coefficients, with the difference between the 2.5th and 97.5th percentiles representing the coefficient’s280

associated 2σ uncertainty (De Smedt et al., 2010). The advantage of the bootstrap resampling method

is that it enables non-normally distributed data to be treated robustly (Gardiner et al., 2008).

Fifth, we additionally filter the initial fit residuals with short and long-term filters, to derive sev-

eral other quantities of interest. For this we follow closely the curve fitting routines adopted by

the NOAA’s Earth System Earth System Research Laboratory (ERSL) Global Monitoring Division285

(GMD), which are based on the original study of Thoning et al. (1989) and are fully described online

(at http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html). The general approach is to transform

the residuals into the frequency domain using a Fast Fourier Transform (FFT), apply a low-pass filter

function to the frequency data, then transform the filtered data to the time domain using an inverse

FFT. We use a low-pass frequency filter H(f) of the form:290

H(f) = exp
[
− ln2×

( f
fc

)6]
(2)

where f is the frequency (cycle per year), and fc is the frequency response of the filter. We filter the

initial fit residual twice, once with a short-term cut-off value for smoothing the data, and once with

a long-term value to remove any remaining seasonal oscillation and to track inter-annual variability.

Once the residual has been filtered, several curves can be constructed:295

1. A smoothed function fit FS(t) which is the function fit F (t) plus the residual filtered using the

short-term cutoff value. Its uncertainty is given by σ2
FS

= σ2
F+σ2

S , where σ2
S is the uncertainty

of the short-term filtered residual, and σF is the uncertainty of the model function estimated

from the covariance matrix of the fit parameters using error propagation.

2. A long-term trend fit FT (t), which is the linear component of F (t) plus the residual filtered300

using the long-term filter. It represents the long-term trend with the seasonal cycle removed. Its

uncertainty is σ2
FT

= σ2
F +σ2

L, where σ2
L is the uncertainty of the long-term filtered residual.

3. A de-trended seasonal cycle FC(t) which is computed by subtracting the long-term trend

fit from the smoothed function fit, that is, FC(t) = FS(t)−FL(t). It represents the annual

seasonal oscillation with any long-term trend removed. Its uncertainty is given by σ2
FC

=305
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σ2
FS

+σ2
FT

. The average seasonal amplitude is defined as the mean peak to trough difference

of FC(t).

4. A growth rate curve FG(t) which is the rate of change of the long-term trend FT (t), deter-

mined using a three-point (quadratic) Lagrangian interpolation to compute the first derivative.

Its uncertainty is given by σ2
G = 2×σ2

FT
since the derivative is approximately equal to the310

taking the difference of two data points one year apart, and plotting this difference midway

between the two points. The average growth rate G, is then simply the median value of FG(t).

The statistical uncertainty of the residual filters (σS and σL) are calculated following Thoning et al.

(1989), via:

σ2
filter = σ2

rsd

nc∑
i=1

c2i +2

nc−1∑
j=1

nc∑
k=j+1

cj ck r(k−j) (3)315

where σrsd is the residual standard deviation and r(k−j) are the lags in a first-order auto-regressive

process (defined as r(k) = r(1)k for k = 1,2, . . . ), and nc is the number of filter weights. The filter

weights ci are the values of the impulse response functions (IRF) of the filter transfer functions,

computed by applying the filters to a delta function impulse in the time domain (Thoning et al.,

1989). We compute the filter uncertainties for the short- and long-term cut-off values individually,320

and apply them to calculate the uncertainties in the derived curves. In this study, we use short-

term and long-term filters of 200 and 667 days, respectively. Sensitivity tests using filters of 100,

150, 500, and 720 days, indicate that these two filter values offer the best compromise for slightly

higher correlations between the data and fitted curves, versus slightly smaller curve uncertainties.

Furthermore, we also evaluated the long-term filter values (500, 667, and 720 days) on the DOMINO325

NO2 and SAO HCHO products over urban areas (818 targets) to assess their impact on the growth

rate (note the filters do not affect the fitted linear trend µ). We found differences in the growth rates

are small when using the 500 and 720 day filters, compared with the default 667 day filter, e.g., for

NO2 the differences are less than 1%, and for HCHO they are 1-2%.

Figure 3 shows an example of a time-series fit to observed NO2 data over Dahuk in Iraq (43.00◦E,330

36.87◦N, population: 65683), where a statistically significant large upward linear trend of 2.77±0.35

×1014 molecules cm−2 yr−1 is found. This corresponds to a linear growth of 12.23±1.54% relative

to the observed 2005–2014 median VCD. In this example, |ω/σω|= 7.9 and the uncertainties of the

trend (FT ) and smoothed curves (FS) are about 5% and 7.5%, respectively. The median growth rate

G is 12.44±8.18%, whilst the mean seasonal amplitude is 1.78±0.32×1015 molecules cm−2 (about335

79±14% relative to the median column). A similar analysis of the coincident time series of the

NO2 AMF, cloud fraction, cloud-top pressure and number of samples, reveals no other significant

trend. This indicates that the upward growth in NO2 is not caused by a trend in any other retrieval

parameter and is real at the 95% confidence level. This observed increase in NO2 over the city is

likely linked to its recent population growth (estimated at 280,400 people in 2012, see e.g., MOP-340
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KRG, 2012), and rapid urban expansion (Mustafa et al., 2012). Figures S2 to S4 show similar fits

for HCHO, CHOCHO, and SO2, respectively.

Although no underlying trends have been reported in the OMI data (Boersma et al., 2011b; Li

et al., 2013; González Abad et al., 2015), as a precaution we performed the time series analysis on

gridded OMI data over the remote Pacific ocean (60N–60S, 90–170W). No statistically significant345

trends were found for any species.

4 Results

In this section we present our main results, with Tables 1– 4 providing a concise summary of the

analysis. Tables S1 to S2 (both excel files) provide a more complete classification of the analysis,

where the highest ranked median levels and absolute linear trends for each target category are tabu-350

lated. Only the top 50 ranked locations are given for urban and power plants categories.

4.1 Average Pollution Levels

We use the observed median vertical columns determined for all locations within each category (i.e.

not the fitted µ in equation 1) to assess average pollution levels (see Table S1). The overall 2005–

2014 average median columns are 26.98±1.85×1014 molecules cm−2 for NO2, 3.97±0.30×1015355

molecules cm−2 for HCHO, 18.71±2.09×1013 molecules cm−2 for CHOCHO, and 0.21±0.09 DU

for SO2. Relative to the overall median column, the highest mean NO2 values are found over urban

areas and oil ports, which are about 5% and 15% higher than refineries and power plants, respec-

tively. Whereas for HCHO, we find that highest average columns are found over oil ports, with

values about 5% higher than those for refineries, 15% higher than urban areas, and 16% higher than360

power plants. The highest average CHOCHO levels are also found over oil ports, with refineries,

power plants, and urban areas being about 5%, 16%, and 25% less, respectively. For SO2 the highest

average values are found over oil ports and refineries, which are 57% higher than power plants, and

81% higher than urban regions. Hence the general conclusion we can make is that average trace gas

levels tend to be highest over oil ports and refineries (with the exception of NO2).365

The interquartile range (IQR) of the observed median columns gives some indication of the spread

of the trace gas levels within a given target category. For NO2 the IQR varies between 68% for

urban areas, 59% for refineries, 45% for oil ports and 53% for power plants (as a percentage of the

overall average median values). The higher IQR over urban areas may reflect the larger variability

of underlying NOx emissions between different towns and cities. For HCHO, the IQR only varies370

between 13% for urban areas and ports, to 20% for refineries and 26% for power plants. The similar

IQR values likely indicate a lower variation in HCHO sources and sinks over different locations. For

CHOCHO, the IQR varies between 25% for urban areas to 51% over refineries, with the IQR over

11



ports and plants about 46–47%. For SO2, the IQR is lowest over urban areas (42%), but increases

substantially over ports (100%), power plants (114%) to a maximum over refineries (148%).375

Figure S4 shows the statistical box-and-whisker plots of the observed median vertical columns

over urban targets for each country. The highest average pollution levels are typically found in

Bahrain, Kuwait, Qatar, and the United Arab Emirates (UAE). For example, NO2 columns over

Bahrain, Kuwait, and UAE, are 52%, 66% and 53% above the median urban level of 28.13 ×1014

molecules cm−2, respectively. Similarly for SO2, Bahrain is 246% , Kuwait 490%, Qatar 208%,380

and UAE 166% above the average urban level, whilst for CHOCHO, the corresponding values are

Bahrain 33%, Kuwait 72%, Qatar 30%, and UAE 58%. Meanwhile for HCHO, only Qatar at 30%

is prominently above the average urban level, whereas Bahrain is 18%, Kuwait 8%, UAE 19%, and

Yemen 15%. According to the World Data Bank (http://data.worldbank.org) 2014 gross domestic

product per capita, Bahrain, Kuwait, Qatar, and UAE were ranked 39th, 22th, 2nd, and 21st, respec-385

tively. By comparison, Iraq and Iran were ranked only 109th and 118th. Thus, over this region we

find the more economically developed countries tend to have the highest pollution levels.

Considering average NO2 levels over individual urban locations, we find Kuwait has 25 settle-

ments in the top 50 highest ranked places, whereas Saudi Arabia has 9 locations, Bahrain 5, Iran 5,

and UAE 5. The highest average NO2 columns were found over Funtas (in Kuwait), with a median390

value of 63×1014 molecules cm−2. Funtas is one of several coastal settlements adjacent to the Mina

Al-Ahmadi and Mina Abdullah refineries, which all have high average NO2 levels. These two re-

fineries had median vertical column levels of 55.07 ×1014 molecules cm−2, which were the highest

of all refineries. Similarly, the adjacent Mina Al-Ahmadi port had the highest columns over all ports

(of 64.11 ×1014 molecules cm−2). Thus, this general area is a particularly intense NO2 hotspot, as395

indicated in Figure 1, due to the close proximity of several emission sources. For comparison, the

highest NO2 columns over power plants were found at the Tarasht Shahid Firouzi power station near

Tehran, which had a median level of 74.18×1014 molecules cm−2.

For HCHO, Iran with 16 locations, Yemen 13, and Saudi Arabia 6, dominated the top-50 ranked

urban settlements. The five locations with the highest median values were located in Yemen, along400

its western coast, with the highest columns found over al-Marawiah, which had an average value

of 5.28 ×1015 molecules cm−2. Over refineries, the highest median HCHO columns of 4.86 ×1015

molecules cm−2 were detected at the Umm Said refinery in Qatar. In addition, 6 of the highest

10 ranked power plants were also located in Qatar, particularly, those near Doha and Masaieed.

However, higher median column values of 4.99 and 5.03 ×1015 molecules cm−2 were found over405

the Bandar-e Khomeni port, and Petroshimi and Bandar Immam power plants, respectively. Both

these sites are closely located to the Bandar Imam Petrochemical facility in south Iran, which may

indicate a potentially strong VOC source.

The top-50 ranked urban locations for SO2 were dominated by Kuwait (26 locations) and Iran

(13 locations). The highest median level of 0.73 DU was found at Rafsanjan (Iran), which is closely410
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located to the Sarcheshmeh copper mine and smelter facility. The coastal settlements adjacent near

to the Shuaiba, Mina Al-Ahmadi and Mina Abdullah refineries (in Kuwait) again had high pollutant

levels, typically 0.65–0.68 DU. Similarly, the oil ports of Kharg Island (in the Gulf) and Jeddah

terminal also have high levels of 0.85 DU and 0.76 DU. Over power plants, the highest average

levels were found over Mobin Petroshimi open gas cycle turbine (OGCT) facility, and the Asalooyeh415

OCGT near Bushehr (Iran), with levels of 1.00 DU and 0.98 DU, respectively.

The highest average CHOCHO values over urban areas were found mostly in Iran (17 locations),

Saudi Arabia (13), and Kuwait (17). The cities of Mecca and Tehran have the largest average levels

of 44.32 and 39.44×1013 molecules cm−2, respectively. The highest levels over refineries are found

at Tehran (34.87 ×1013 molecules cm−2) and the three main coastal Kuwait refineries of Shuaiba,420

Mina Al-Ahmadi and Mina Abdullah (30.34–30.80 ×1013 molecules cm−2). The oil port of Mina

Al-Ahmadi also has the highest median level of 30.48 ×1013 molecules cm−2. The Mecca OCGT

power plant recorded the highest level of 43.81 ×1013 molecules cm−2; other notable CHOCHO

levels over power facilities were at Tarasht Shahid Firouzi and Besat (in Tehran) with columns of

42.72 and 39.85 ×1013 molecules cm−2, respectively.425

4.2 Observed Maximum Pollution Levels

We find median maximum values range from 41–79% above the overall median VCD for NO2 (and

are highest over oil ports), 68–92% for HCHO (highest over oil ports), 118–135% for CHOCHO

(highest over refineries), and 93–318% for SO2 (highest over refineries). However, the actual max-

imum values observed can be substantially higher. For example, the three highest NO2 columns430

were found at (1) the 247.5MW Oil Besat Thermal Power Plant in Tehran, Iran (189.85 ×1014

molecules cm−2, 604% above overall median VCD), (2) the Tarasht Shahid Firouzi power plant also

in Tehran (167.78 ×1014 molecules cm−2, 522% higher), and (3) over Tehran itself (136.65×1014

molecules cm−2, 407% higher). For HCHO, the highest three maximum values are found over the

Iranian towns of (1) Shahrkord (10.49×1015 molecules cm−2, 164% higher than median VCD),435

(2) Somehsara (9.89×1015 molecules cm−2, 149%), and (3) Fuman (9.83×1015 molecules cm−2,

148%). Whilst for CHOCHO, the highest values are found in the towns of (1) Piranshahr (Iran)

which had a maximum of 112.10×1013 molecules cm−2 (499%), (2) Tafileh in Jordan (96.57×1013

molecules cm−2, 416%), and (3) Qaemshahr in Iran (80.52×1013 molecules cm−2, 330%). Lastly,

for SO2 the three highest maximum values were at the (1 & 2) Mobin Petroshimi OCGT CHP and440

Asalooyeh OCGT power plants, both in Bushehr (Iran), which had values of 2.22 DU (957%) and

2.05 (876%) respectively, and (3) the oil port at Kharg Island, which had a value of 1.98 DU (843%).

4.3 Seasonal Variability

To assess the the seasonal variability over each target we determined the average peak-to-peak dif-

ference of its corresponding time series, and used these values to compute the median seasonal445
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amplitude over all locations, within each target category. For NO2 median seasonal peak-to-peak

amplitudes are very similar irrespective of target categories. Typical amplitudes of 10–12 ×1014

molecules cm−2 are observed (about 39–46% relative to the overall median). The highest seasonal

peak-to-peak amplitude of 66 ×1014 molecules cm−2 was found over Besat Thermal Power Plant

in Iran, whereas the lowest seasonal peak-to-peak amplitude of 1.49 ×1014 molecules cm−2 was450

determined over Ataq in Yemen. Unlike NO2, HCHO exhibits greater seasonal variability (relative

to the overall median) with seasonal amplitudes that vary from 3.02–3.43×1015molecules cm−2 (or

about 60–86%) with the highest of 5.65 ×1015 molecules cm−2 over Dahuk in Iran, and a lowest of

1.20 ×1015 molecules cm−2 over Salalah OCGT power plant in Dhofar (Oman). Similarly, CHO-

CHO also exhibits large seasonal variability as median amplitudes vary from 14.38–16.48 ×1013455

molecules cm−2, or 77–88%, with the highest amplitude of 44.53 ×1013 molecules cm−2 over

Qaemshahr (Iran) and lowest amplitude over Bilin (Palestine) of 8.89 ×1013 molecules cm−2. The

seasonal variations in HCHO and CHOCHO are predominately driven by seasonal variations in bio-

genic VOC emissions (Müller et al., 2015). Even larger seasonal variability is demonstrated for SO2,

as amplitudes range from 0.21–0.44 DU (100–210%) with the lowest amplitude of 0.09 DU over Al460

Gaydah (Yemen) and highest over 1.15 DU over Shahreza (Iran). We find the SO2 and CHOCHO

retrievals are generally noisier than their NO2 and HCHO counterparts, and thus their corresponding

time series, even after outlier filtering and residual smoothing are noisier too (see e.g., Figure S3–

4). Thus, the higher seasonal amplitudes found in the CHOCHO and SO2 data, may simply reflect

larger point-to-point variability in their time series data.465

4.4 Linear Trends µ

For NO2, statistically significant real linear trends were determined for 198 of 818 urban locations

(a detection rate of 24%). However, in Palestine only 1 out of a potential 274 urban targets had a

real trend. Neglecting the Palestine results in this instance, increases the overall detection rate to

36%. The corresponding ‘detection percentages’ for oil refineries, oil ports, and power plants are470

42%, 33%, and 37% respectively (Table 1). Urban trends ranged from −3.05±0.93 to 12.23±1.54

% per year (relative to the observed median column), with the highest trend in Dahuk (Section 3.3,

Figure 3). Generally, Iraq and Iran have the highest linear NO2 trends. For example, 5 of top 7 highest

linear trends were found in Iraq, whereas 21 Iranian cities appeared in the top 50 (see Table S2).

Overall, the median linear trend is about 3% yr−1, although for the top 50 highest ranked locations,475

the trends were of order 2–12 % yr−1, relative to each locations observed median VCD. Only two

locations showed a decrease in NO2: Aleppo (a.k.a Halab; of −2.43±1.06 % yr−1) and As-Safira

(−3.05±0.93 % yr−1), both in Syria. On a per-country basis, 75% of urban targets in Iraq had a

real increasing trend, 58% in Iran, 53% Lebanon, 50% Qatar, 44% Oman, 38% Saudai Arabia, 31%

Jordan, 22% Syria, 11% Kuwait, 4% in Israel, 3% Yemen, and Palestine <1%. No trends were480

detected in the UAE or Bahrain.
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Trends over refineries ranged from about 2–6 % yr−1, with a maximum found over the Daura

refinery, near Baghdad; its capacity is smaller than some of the larger refineries which may indicate

the influence of other nearby NO2 sources. For Iran, Iraq, and UAE, about 60% of the refineries

studied showed an NO2 increase. Trends over oil ports ranged from about 2–9 % yr−1, with highest485

trend found over Umm Qasr in Iraq. Trends over power plants ranged from about 2–8 % yr−1, with

5 of top highest 10 trends found in Iran. The highest trends for power stations were detected over

the two Sabiya plants in Kuwait which had trends of 8.13±0.14 % yr−1. Figure 4, which shows

the geographical distribution of NO2 trends (top left panel), indicates that there are several local

and regional locations where consistent increases NO2 are observed. For example, the are several490

targets with increasing trends situated close to Riyadh, Tehran, Baghdad, Muscat (in Oman), as well

as Isfahan and Yazid (both in Iran). Regional trend hot-spots include the areas south-west of Tehran,

and a thin corridor stretching from northern Jordan to Lebanon, passing through south-west Syria.

For HCHO, statistically significant real linear trends were determined for only 4% of urban loca-

tions. The corresponding trend detection percentages are 15% for oil refineries, 22% for oil ports,495

and 17% for power plants (Table 2). Urban trends ranged from 2–7 % yr−1. The highest absolute

linear urban trend was found al-Wakrah in Qatar (Figure S2), although this was only about 5% yr−1

in relative terms; the highest percentage trend was found over Attaif in Saudi Arabia (6.95±2.42 %

yr−1; see Table S2). Generally, Saudi Arabia has the highest number of settlements with increasing

HCHO trends (13 of the corresponding 34 trends found). Elsewhere there were 6 trends found in500

Oman, 5 in Qatar, 3 in Iran, 3 in UAE, 1 Iraq and 1 Israel. Only six trends were detected over oil

refineries, which ranged from 2–3.5 % yr−1, with a maximum found over the Ruwais refinery in

UAE. Only four trends over oil ports were found, which ranged from 2–4 % yr−1, with highest trend

found over the Ras Laffan port at Al Khawr (Qatar). Trends over power plants ranged from 2–7 %

yr−1, but were only found over Saudi Arabia (8 stations), Iran (5), Qatar (4), and UAE (5). Figure 4505

(top right panel) shows that the target locations with trends are mostly found along the western Gulf

coast, particularly along the Saudi Arabian coast near Ad-Dammam, and also near Doha in Qatar.

For SO2, very few trends were detected, only 2% over urban targets, 7% over refineries, 11% over

oil ports and 6% over power plants (Table 4). Over urban areas, trends ranged from−61.64±28.73 %

yr−1 in Hamismusayt (Saudi Arabia) to 118.49±42.78 % yr−1 in Azrashahr (Iran); the latter value510

is inflated by a median SO2 column of approximately zero over its location. Notably, 11 of the 18

trends were detected in Iran. Over refineries, three trends were detected of about 9–15 % yr−1. Over

oil ports, the Iranian oil ports of Bandar-e Khomeni and Kharg Island, showed decreases of about

6% yr−1. Lastly, over power plants 5 locations had decreasing trends of −7 to −22 % yr−1, and 4

stations increasing trends of about 6–305 % yr−1 (again the latter value has a median SO2 column515

of approximately zero). Figure 4 (bottom left panel) shows the geographical distribution of the SO2

trends; it is evident that several closely located targets exhibit similar trends, particularly near (1)

Abba (in southwest Saudi Arabia), (2) around Neka, Sari and Behhshahr in northern Iran, which are
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close to the Shamid Salimi power plant at Nowzarabad, and (3) Tarbiz, Azrashahr, and Maragheh in

Iran.520

For CHOCHO only two trends were detected: (1) at Al-Hawr (Qatar) of −4.58 % yr−1, and (2)

at the Ras Laffan Power plant in Qatar of −4.83 % yr−1, which are located close to each other

(Figure 4; bottom right panel).

4.5 Median Growth RatesG

Figures 5 show the growth rates that correspond to sites with statistically significant linear trends (i.e.525

where we can be sure that the trend is not attributed to variations in other retrieval parameters and

where there is enough signal in the data themselves to give a meaningful trend), and Figure 6 shows

their difference, here defined as the linear trend (in % yr−1) minus the growth rate (in % yr−1).

Differences between the linear trend and growth rate occur due to the latter tracking inter-annual

variations in the data not accounted for in the linear part of equation 1 (see Thoning et al., 1989).530

While the overall median differences are quite small (typically less than 2 % yr−1), for individual

locations they can be much larger. Typically for NO2 and HCHO, the differences can range between

±5 % yr−1 (Table S3). Such occurrences are non-negligible. For example, the NO2 linear trend and

growth rates over Ibri (in Oman), were about 3 % yr−1 and 8 % yr−1 respectively (i.e. their difference

is 5 % yr−1). For SO2 the differences can be even more substantial (i.e. tens of percent per year),535

but this is likely an effect from filtering much noisier fit residuals (e.g., as shown in Figure S4).

Furthermore, Figure 6 show that there is no clear spatial patterns or coherence to the geographical

distribution of the linear and growth differences. This raises the interesting question for AQ trend

studies: should one consider linear changes in a trace gas, or use a growth rate? The former does

not capture shorter-term variations in growth, but the latter is more susceptible to the choice of fit540

residual filter and has larger uncertainties.

5 Trends: Fact or fiction?

It is, perhaps, tempting to try explain the trends in terms of variations in underlying emissions and/or

atmospheric chemistry. However, it seems more prudent to carefully assess the validity of our pre-

sented results instead. We do this by examining our analytical uncertainties, by performing a series545

of sensitivity tests, and by discussing our results in the context of other recent satellite studies.

5.1 Uncertainties

Calculated uncertainties in the linear trend and other derived curves mostly reflect the noise of the

trace gases time series. For NO2, and considering only those locations with real statistically signifi-

cant trends, we find the median uncertainty in the linear trend is about 1%. The median uncertainties550

are about 4% for the trend curves, 6–7% for the smoothed curves, 5–6% in the growth curves, and
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about 6–8% seasonal-cycles, respectively. For HCHO, corresponding values are very similar; 5% in

the trend curves, 7% in the smoothed, 7% in the growth and 9% in the seasonal curves, with the me-

dian uncertainty in the linear trend about 1%. For CHOCHO, uncertainties are slightly higher, being

10% in the trend curves, 15% in the smoothed, 14% in the growth and 18% in the seasonal curves.555

The median uncertainty in the linear trend is about 2%. The uncertainties are noticeably higher for

SO2, with errors of 10–23% in the trend curves, 15–34% in the smoothed, 14–32% in the growth

and 18–40% in the seasonal curves. The median uncertainty in the SO2 linear trend is about 2–5%.

Thus for the most part, the uncertainties in the linear trends are comparable or smaller than than

the trends themselves. However, uncertainties in the growth rates are comparable or higher than the560

derived average growth trends.

5.2 Sensitivity Tests

Subtle differences in the data analysis approach may affect the choice of locations where trends

are detected, or may change existing trend directions and magnitudes. Given this situation several

additional tests were carried out to determine the sensitivity of our results to various parameters.565

These are outlined below. Tables S4–S7 record how many trends were now detected in each test, and

whether or not they were previously detected in the default approach (as outlined in Section 3.3).

– Test 1: Construct each 10-year time series using a mask of ±4 grid-cells (∼20 km radius

around each target), instead of the default ±2 grid-cells (∼10 km radius around each

target).570

For NO2, there were 22 and 12 extra trends detected over urban and power plants, respectively,

compared to our default analysis (shown in Table 1). The number of NO2 trends detected over

oil ports and refineries were unchanged. However, some trends previously detected were now

missing, compensated by new trends over other locations. For example, in the case of urban

targets, 170 locations in this test were also previously detected in the default scenario, but 28575

of the previous trends were missing, and 50 new trends detected (see Table S34). Nevertheless,

median linear trends were of similar order (about −2 to 10 % yr−1). The highest urban NO2

trends were still at Dahuk and Irbil (in Iraq), but marginally changed from 12.23±1.54 % yr−1

to 10.39±1.42 % yr−1, and from 8.76±1.17 % yr−1 to 8.18±1.16 % yr−1, respectively. Umm

Qasr and Zubayr oil terminals were still the highest ranked oil ports, at 8–9 % yr−1. Similarly,580

the Sabiya CGGT and OCGT power plants still had the highest trend of about 8 % yr−1.

For HCHO this resulted in an extra 25 trends being detected (spread over all categories);

nevertheless the median linear trends were still about 2–3 % yr−1. The majority of trends

previously found in the default case were still present in this test. However, notably, the number

of detections over oil ports doubled from 4 to 8, with the highest trend now found over Sitrah585

in Bahrain 4.03±1.14% (the trends over the Ras Laffan and Al-Ruwais oil ports were now
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displaced to second and third highest). That said, both al-Wakarah and Doha still had the

highest (absolute) trends for cities (of about 3–4 % yr−1), and again the Ras Abu Fountas

OCGT power plant in Doha (Qatar) also topped the highest ranked trends over power stations.

For SO2 the highest urban trends were still over Ilam and Tabriz (Iran), and also Baghdad590

and Irbil (Iraq). Although 18 urban trends were still detected, only 9 were previously found

in the default scenario (including those over Sari, Neka and Maragheh), thus 9 new trend

locations were found. Over oil ports the highest trend was now over Umm Qasr relative trend

of 23.09±5.87 % yr−1, as a trend was now not detected at Bandar-e Khomeni (BIK); Kharg

Island still reported a decrease of about −6 % yr−1. SO2 trends were found over the same595

three refineries, and were still about 9–12 % yr−1. Median trends over urban areas changed

from 9.8 to 12.0 % yr−1, but refineries and power plants remained at about 9 and 6 % yr−1,

respectively. The Sabiya CGGT and OCGT power plants in Kuwait were still the highest-

ranked trends.

For CHOCHO, in addition to the trend of al-Hawr, only an extra urban trend at Shushtar (Iran)600

of −5.33±2.58 % yr−1 was detected. An additional trend at the Ras Laffan (Qatar) refinery

was also found of about -4.27±1.91 % yr−1; the trend over the Ras Laffan power stations was

also present as in the default scenario.

In summary, although increasing the averaging radius to ∼20 km around each target has a

small impact on overall median trends, it can result in differences at individual locations.605

Generally however, most of the trends found in the default approach were still present.

– Test 2: Use of different cloud fraction filters

For this test, we used only OMI NO2 and HCHO observations with a cloud fraction ≤40% in

the analysis; CHOCHO and SO2 and were untested, as the use of a strict cloud threshold is

advised (Krotkov, 2014).610

For NO2, there were 45 fewer trends detected in total (mostly over urban locations, 165 com-

pared to 198 previously). The majority of trends in the default analysis were still present -

hence the relative median trends were still about 3–4 % yr−1. Furthermore, the top ten urban

ranked trends were also mostly unchanged, as were those over oil ports, refineries and power

plants compared to the default scenario.615

For HCHO there were two less detections in total, with the highest urban trend found over

Ardebil (Iran) at 7.06±2.53 % yr−1. Again the majority of locations with trends were consis-

tent with those detected in the default scenario; hence the median trends are still about 3 %

yr−1.

Thus, in summary, increasing the cloud fraction for NO2 and HCHO slightly decreases the620

number of trends found, and on average, has a small impact on overall median trends. Differ-

ences at individual locations can still occur, compared to the default approach.
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In another test, we also applied a stricter effective cloud fraction filter of 10% to all species

- for SO2 this correspond to a cloud radiance fraction of 20% - although this may introduce

a clear-sky bias relative to all-sky conditions (Krotkov et al., 2016). This had little impact on625

SO2 although fewer trends in total were detected for NO2 (232) and HCHO (59); no trends

were found for CHOCHO. Generally, most of the highest ranked trends for each species were

very similar to the default scenario. This indicates that a 20% cloud fraction filter is likely

an optimum choice for detecting air-quality trends over this region without affecting trend

magnitudes.630

– Test 3: Use of OMI detector rows totally unaffected by the row-anomaly (rows 5-23)

Despite the use of the static masks and OMI level-1B XTrackQualityFlags in the data gridding

(Section 3.1), statistically significant sampling trends are present for a number of locations

where VCD trends occur (Tables 1–4). Therefore, we repeated our analysis but using only

data from OMI’s unaffected rows.635

However, despite using data from the unaffected detector rows, we still find sampling trends

present in some time series. For example, for NO2 227 statistically significant VCD trends

were now detected in total, but 57 of those had a sampling trend. As a consequence, for NO2

only 136 ‘real’ trends in total were detected (instead of 278; see Table 1), in particular over

100 less trends were found over settlements, and nearly half the amount over power plants.640

Nevertheless, trends were found over the same locations (especially in the top 20 ranked urban)

with median trends now 3.0–6.5 % yr−1 (was 3–4 % yr−1). The Daura refinery (near Baghdad)

and the Umm Qasr port still had the highest trends of these categories (but now of 5.78±0.95

and 7.76±0.91 % yr−1, respectively).

For HCHO, only 38 trends were detected in total (was previous total was 70), in particular, 27645

urban and 16 power plant trends previously detected were now missing. Median linear trends

about 3.0–5.0 % yr−1, with the highest urban trends now found over over Sarepol (7.39±3.41

% yr−1) and Torbatejam (8.41±2.60 % yr−1), both in Iran.

For SO2 there were 7 fewer trends detected in total, but notably 9 of the default of 18 urban

trends were still detected. Median trends were about −7 to 13 % yr−1 (formerly −7 to 10 %650

yr−1). Urban trends now ranged from about −12 to 150 % yr−1, and power plants −7 to 75

% yr−1. A decrease of about 7 % yr−1 was found over Kharg Island port, as was an increase

of 9.69±2.40 % yr−1 over the Daura refinery.

For CHOCHO, only two trends over the towns of Ardebil (of about 25 % yr−1) and Shushtar

(of about −18 % yr−1), both in Iran, were detected.655

Thus, in summary, we find that using less observations results in fewer trends being detected

(since there are less observations in averaging which increases the noise). Furthermore, we

find that use of the unaffected rows results in slightly higher median trends overall. Selection
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of different detector rows also changes the pixel sizes included in the analysis, which may

impact the results.660

– Test 4: Increased smoothing of gridded monthly averages

To further reduce noise in the gridded data we increase the degree of smoothing by using a

larger Gaussian filter of 0.35◦×0.35◦ with a 2-σ width. This had a small effect on our results,

as the total number of trends detected for all species and categories was more or less the

same in the default scenario, and nearly all the trends locations in the default scenario are still665

detected. Median trends were also unchanged.

– Test 5: No filtering for outliers in VCD time series analysis

Whilst filtering for VCD outliers in the time series fitting is advantageous in improving the

modelling fitting, it may also remove genuine data points that may affect trend detection.

For NO2 the number of detections and their locations are approximately the same, albeit with670

27 new urban trends replacing 26 default trends. Tehran is now the top-ranked city (in absolute

terms) although its relative trend of 8.82±2.59 % yr−1 is still less than that found at Dahuk

(15.86±2.33 % yr−1). Considering all target categories, we find median trends range from

about −2 to 16 % yr−1 (as opposed to about −3 to 12 % yr−1). Similarly for HCHO, the

number of detections and their locations are approximately the same, and the range of trends675

is unchanged.

For the most part SO2 trends are also in the same places, with a few exceptions over urban and

power plant targets. Trends over urban and refinery targets cover a higher range−23 to 148 %

yr−1, and 10–20 % yr−1, respectively, than previously. This results in higher median values

of 14 and 15 % yr−1 for these categories (compared to the default case). Median values over680

oil ports and power plants are unchanged.

Lastly, for CHOCHO, only one urban trend was now detected over Shushtar (Iran) at−8.65±3.83

% yr−1, and two extra trends were found over the closely located power plants both at the Az

Zour plant complex in Mina Said (Kuwait), which had a trend of −3.64±1.75 % yr−1.

In summary, not filtering for VCD outliers only has a small effect on our results. Typically,685

most trends in the default scenario are detected, albeit with some changes in trend magnitudes

(mostly for NO2 and SO2).

– Test 6: Focus only on cities with >500,000 people using a spatial mask of ±16 grid-cells

(∼80 km radius around each target)

In this test we focused on the integrated signals from large population centres, which corre-690

spond to 32 targets only. For NO2 there are 22 trends detected (a detection rate of 69%), for

HCHO there were 9 trends (32% detection rate), and SO2 3 trends were found (9% detection

rate). No trends were found for CHOCHO.
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We find NO2 trends are similar to those found in the default analysis. For example, trends over

Tehran, Baghdad, Riydah, Kirkuk, Orumiyeh (Iran), Isfahan and Ad-Dammam are approxi-695

mately the same, although at Irbil the linear trend is now 6 % yr−1; previously it was about 9

% yr−1.

For HCHO there were three locations which could be compared to the default case. These

were: Attaif (now 3 % yr−1 was previously 7 % yr−1), Abu Zabi (now 2 % yr−1 was 3%

yr−1) and Addammam (still about 3% yr−1), but there were 6 new trend locations found with700

trends from 2–3 % yr−1, consistent with HCHO trends over other urban settlements.

For SO2 only Tarbiz has trend that was previously detected (61 % yr−1), but now with a value

of 37 % yr−1. We now find two other trends of about 15 % yr−1 at Kermanshah (Iran) and 22

% yr−1 at al-Mawsil (Mosul,Iraq).

In summary, for NO2 and HCHO, we find that the trend detection percentages (relative to the705

32 targets) increase, but generally the trends over co-existing locations found in the default

analysis do not really change.

Therefore, whilst different approaches in the time series analysis may, in some cases, affect trends

found over individual locations, overall there are a large number of targets (per gas species) where

trends of approximately the same magnitude are consistently detected. This gives some level of710

confidence in the robustness of the trend analysis.

5.3 Comparative Studies

Another way to corroborate our results is through comparison to other similar independent stud-

ies. For example, Duncan et al. (2016) performed NO2 trend analysis for the world’s major cities

using the official NASA product, as described in Bucsela et al. (2013), available from the NASA715

Goddard Earth Sciences Data Active Archive Centre (http://disc.sci.gsfc.nasa.gov). In that study,

monthly mean values were based on the average of OMI data falling within 0.3◦×0.3◦ boxes cen-

tred over the cities. We find good agreement in trend magnitudes (within cited errors) for Tehran,

Baghdad, Kirkuk, Kuwait City, Beirut, Aleppo, Mecca (not classified in our analysis as a ‘real’

trend) and Jerusalem (not classified here as significant). There is disagreement at Mosul (4.43±1.18720

% yr−1, here 2.14±1.02 % yr−1) and Riyadh (0.00±1.19 % yr−1, here 3.27±0.85 % yr−1), Homs

(−0.81±0.99 % yr−1, here 1.26±0.74 % yr−1 and classified as real but not significant), and Dam-

ascus (−3.72±1.10 % yr−1, here −0.65±0.92 % yr−1 classified as not significant or real). These

small discrepancies likely occur because of the different choices of OMI data set and different anal-

ysis methodology.725

Furthermore, the analysis of SCIAMACHY NO2 over 2002–2012 by Schneider et al. (2015),

revealed relative trends of 3.2±1.1 % yr−1 over Tehran, 2.1±1.1 % yr−1 over Riyadh, and 8.5±1.2

% yr−1 over Baghdad, which are compatible with our NO2 trends. Similarly, a top-down multi-
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species inversion involving OMI DOMINO NO2 columns by Miyazaki et al. (2016) indicated NOx

emissions trends of 3.7 % yr−1 for Tehran and 4.7 % yr−1 for Kuwait City; which are broadly730

consistent with our results. However, Miyazaki et al. (2016) also found an emissions trend of −6.0

% yr−1 for Dubai, whereas we find a NO2 trend of −0.56±1.05 % yr−1 (classed as real but not

significant).

We have also compared our results with the global catalogue of SO2 emission sources produced

by Fioletov et al. (2016). Over the Middle East we were able to identify thirty corresponding targets,735

for which we compared the linear trends of the derived SO2 emissions to our derived SO2 trace gas

trends. We find five locations where the SO2 trends in both studies agree (within errors), and where

we class the trends as real and significant. For example, there is excellent agreement at Kharg Island

(here −6.89±2.20% yr−1 versus −7.84±2.50 % yr−1) and the Besat power plant in Tehran (in this

study 3.54±3.35% yr−1, versus 3.86±3.61% yr−1). However, we also find good agreement at an740

additional 16 sites, where we class the trends as real but not significant, thus indicating the good

correspondence between the two independent studies.

Lastly, both Lelieveld et al. (2015) and Duncan et al. (2016) have used independent economic

and social information to attempt an interpretation of observed changes in OMI NO2 and SO2 over

the Middle East. We have further compared our derived trends to the linear growth in the Organi-745

sation of Petroleum Exporting Countries (OPEC) oil production and demand data, and additionally,

population, GDP per capita (GDP), and energy consumption per capita (EC) data, from the World

Data Bank (http://data.worldbank.org). We find such comparisons, are at the very least, difficult to

interpret. For example, over 2005–2014 Iran’s GDP grew by 2.8 % yr−1, inline with the NO2 and

HCHO median linear trends of 2–4 % yr−1, but its oil production fell by −2.5 % yr−1 conflicting750

with the increasing OMI trace gas trends found over refineries.

6 Summary and Outlook

We have performed a robust and detailed time series analysis on 10 years of OMI trace gas obser-

vations of NO2, HCHO, SO2, and CHOCHO, to assess changes in local air-quality for over 1000

urban, oil and energy target locations over the Middle East during the period 2005–2014.755

We find the highest average pollution levels of HCHO, SO2, and CHOCHO are over the major

oil ports and refineries, compared to urban areas and power plants. For HCHO and CHOCHO, the

average trace columns are about 15–25% higher over the oil ports and refineries, whereas for SO2

the columns are about 60–80% higher. In contrast, NO2 is found to be slightly higher over the urban

areas and oil ports by about 5–15%. The highest average pollution levels over urban settlements are760

typically in Bahrain, Kuwait, Qatar, and UAE. Other notable pollutant hotspots include: (1) Kuwait

City, Tehran and Mecca; (2) the west coast of Yemen where HCHO levels are high, and (3) elevated
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SO2 near Rasanjan and over Kharg Island. We find the observed vertical columns can exceed average

levels by about 40–320%, depending on the trace gas species.

Our analysis shows that NO2 linear trends over urban locations range from about −3 to 12 %765

yr−1, although only two locations showed a decrease in NO2. Linear trends over oil refineries and

oil ports are about 2–6 % yr−1 and 2–9 % yr−1, respectively. Trends over power plants range from

2–8 % yr−1, with 5 of the topmost 10 trends found in Iran. For HCHO, we find urban trends are

2–7 % yr−1. Only six trends of 2–3.5 % yr−1 were detected over oil refineries, and only four trends

of 2–4 % yr−1 were detected over oil ports. Trends over power plants ranged from 2–7 % yr−1.770

The increasing HCHO trends are mostly found along the western Gulf coast, particularly along the

Saudi Arabian coast near Ad-Dammam, and also near Doha in Qatar. Very few SO2 trends were

detected. Over urban areas, trends ranged from about −60 to 120 % yr−1, with 11 of the 18 trends

were detected in Iran. However, some of the high relative SO2 trends can be attributed to median

levels of approximately zero over the location. Over refineries, three trends were detected of about775

9–15 % yr−1, whilst the Iranian oil ports of Bandar-e Khomeni and Kharg Island, showed decreases

of about 6% yr−1. Apart from two locations, we find CHOCHO levels are not changing over the

Middle East. Derived growth rates, are, on average, very similar to the fitted linear trends, although

difference can occur for individual locations, particularly for SO2. We find our derived linear trends

are generally consistent with other independent OMI trend studies over this region.780

Therefore, based on this analysis, we can conclude that for a large number of locations, air-quality

has deteriorated over 2005–2014. Whilst effective regulatory measures have been established in

some countries, it is clear that effective pollutant emission controls are required to limit health im-

pacts on the region’s population. Whether this goal is achievable is an open question, especially

in countries experiencing civil unrest (e.g., Iraq, Syria, Yemen, Palestine) or increasing economic785

growth (e.g., Iran).

In the near future, the TROPospheric Ozone Monitoring Instrument (TROPOMI), which is ex-

pected to be launched in 2016 and has a smaller spatial observational footprint compared to OMI,

should further help evaluate changes in air-quality at local scales. However, it is important that such

future measurements are carefully validated and integrated with in-situ measurements and chemical790

transport models, so that they can be utilised properly to influence air-quality policy decision-making

in Middle Eastern countries.
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Figure 1. The OMI 2005 annual mean distributions of NO2, HCHO, SO2, and CHOCHO. The OMI data

have been averaged onto a 0.05◦×0.05◦ grid using observations with cloud fractions < 20% and and solar

zenith angles ≤ 70◦. Observations affected by the row-anomaly are excluded, as described in Section 3.1, and

the gridded data have been smoothed with a 0.15◦ × 0.15◦ Gaussian filter of 1-σ width (2-σ for CHOCHO).
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Figure 2. Left: the geographical distributions of the target locations showing cities/towns (in red) as specified

by the GRUMP v1 settlement point data base (Balk et al., 2006; SEDAC, 2015) oil refineries (in blue) (based

on Kootungal, 2010), and oil ports and power plants based on the Global Energy Observatory (GEO) online

resource (http://globalenergyobservatory.org). Right: OMI 2005 NO2 annual mean of over northern Iran, with

a spatial filtering mask applied to extract observations over urban centres (see Section 3.2). The OMI data have

been averaged onto a 0.05◦×0.05◦ grid using observations with cloud fractions < 20% and and solar zenith

angles ≤ 70◦. Observations affected by the row-anomaly are excluded, as described in Section 3.1, and have

been smoothed with a 0.15◦ × 0.15◦ Gaussian filter of 1-σ width.
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Figure 3. An example of a time series fit to observed NO2 data over Dahuk, Iraq, as outlined in Section 3.3. Top

panel: the monthly OMI NO2 vertical columns are indicated by dark grey filled circles, whilst the light grey

filled circles represent the fitting residual, which has been smoothed with a short-term 200-day filter (dashed

blue line) and long-term 667-day filter (red dashed line). The solid red line is the long-term trend FT (t), given

by the linear component of the fitted function F (t) (equation 1) plus the residual filtered using the long-term

filter. The solid blue line is the smoothed fitted curve FS(t) given by F (t) plus the residual filtered using the

short-term filter. Middle panel: The NO2 vertical column growth rate in ×1015 molecules cm−2 yr−1, which is

the derivative of the long-term trend FT (t) shown in the top-panel. Bottom panel: the de-trended seasonal cycle

FC(t) which is the difference between the long-term trend and the smoothed function fit (i.e. FS(t)−FL(t)).

This represents the annual seasonal oscillation with any long-term trend removed. The dark grey filled circles

are the fitted harmonic components of F (t).
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Figure 4. Geographical distribution of locations with statistically significant linear trends in NO2 (top left),

HCHO (top right), SO2 (bottom left), and CHOCHO (bottom right) expressed in percent per year, relative to

each location’s 2005–2014 median vertical column.
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Figure 5. Geographical distribution of locations with statistically significant linear trends in NO2 (top left),

HCHO (top right), SO2 (bottom left), and CHOCHO (bottom right) but here showing the growth rate expressed

in percent per year, relative to each location’s 2005–2014 median vertical column.
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Figure 6. Geographical distribution of locations with statistically significant linear trends in NO2 (top left),

HCHO (top right), SO2 (bottom left), and CHOCHO (bottom right), but here showing the linear trend (in

percent per year) minus the growth rate (in percent per year).
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Table 1. Statistical summary of the DOMINO NO2 vertical column density (VCD) analysis conducted at an

approximate 10 km radius over the target locations. Statistical values are shown for those locations which have

a real VCD trend, i.e. those locations without a corresponding trend in either the air mass factor (AMF), cloud

fraction (CFR), cloud-top pressure (CTP), or number of samples (SAM). Values in parentheses correspond to

statistics for all locations of a given category. VCD values are given in 1014 molecules cm−2 and IQR is the

inter-quartile range.

Urban Refinery Oil Ports Power Plants

# locations 818 41 18 155

# locations with trends

VCD 318 32 13 112

VCD and AMF 71 7 2 19

VCD and CFR 24 6 3 19

VCD and CTP 14 5 2 9

VCD and SAM 35 5 2 18

VCD only 198 17 6 57

Observed VCD

Median 18.27 (28.31) 26.74 (27.10) 33.00 (28.19) 27.22 (24.32)

IQR 15.00 (18.29) 15.78 (15.78) 11.45 (12.18) 14.20 (14.16)

Maximum 136.65 (136.65) 87.90 (87.90) 64.92 (100.72) 189.85 (189.85)

Minimum -4.87 (-10.61) -6.63 (-6.63) 10.55 (5.94) -6.63 (-6.63)

Seasonal Amplitude

Median 8.82 (12.38) 11.86 (11.86) 11.54 (11.83) 11.02 (10.52)

IQR 5.30 (8.01) 9.78 (8.77) 6.93 (5.28) 6.03 (6.60)

Maximum 38.88 (38.88) 33.05 (33.05) 18.50 (21.30) 46.32 (66.32)

Minimum 3.07 (1.49) 4.62 (3.28) 7.05 (5.76) 4.34 (1.68)

Linear Trend

Median 0.58 (0.26) 0.84 (0.81) 1.05 (0.97) 0.89 (0.65)

IQR 0.48 (0.49) 0.69 (0.66) 2.16 (1.26) 0.45 (0.68)

Maximum 2.77 (3.14) 2.65 (2.65) 3.12 (3.35) 2.65 (3.34)

Minimum -0.75 (-0.75) 0.57 (-0.23) 0.74 (-0.01) 0.25 (-0.72)

Growth Rate

Median 0.64 (0.42) 0.83 (0.70) 0.95 (0.89) 0.82 (0.62)

IQR 0.56 (0.52) 0.71 (0.95) 2.59 (1.68) 0.64 (0.83)

Maximum 2.82 (4.89) 1.74 (2.55) 3.44 (4.31) 2.95 (3.91)

Minimum -0.91 (-0.98) 0.19 (-0.57) 0.51 (0.14) -0.33 (-0.84)

Median Errors

Linear trend 0.19 (0.27) 0.27 (0.27) 0.29 (0.28) 0.27 (0.25)

Trend Curve 0.80 (1.13) 1.13 (1.13) 1.20 (1.16) 1.14 (0.99)

Smoothed Curve 1.13 (1.68) 1.38 (1.63) 1.84 (1.78) 1.70 (1.53)

Growth Curve 1.14 (1.60) 1.59 (1.59) 1.70 (1.64) 1.61 (1.40)

Seasonal Curve 1.39 (2.02) 1.74 (1.95) 2.20 (2.13) 2.03 (1.84)
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Table 2. Statistical summary of the SAO HCHO vertical column density (VCD) analysis conducted at an ap-

proximate 10 km radius over the target locations. Statistical values are shown for those locations which have a

real VCD trend, i.e. those locations without a corresponding trend in either the air mass factor (AMF), cloud

fraction (CFR), cloud-top pressure (CTP), or number of samples (SAM). Values in parentheses correspond to

statistics for all locations of a given category. VCD values are given in 1015 molecules cm−2 and IQR is the

inter-quartile range.

Urban Refinery Oil Ports Power Plants

# locations 818 41 18 155

# locations with trends

VCD 63 13 6 40

VCD and AMF 9 1 0 6

VCD and CFR 8 4 0 9

VCD and CTP 0 0 0 0

VCD and SAM 16 4 2 6

VCD only 34 6 4 26

Observed VCD

Median 4.36 (3.73) 3.95 (4.12) 4.51 (4.32) 4.13 (3.70)

IQR 1.03 (0.53) 0.67 (0.78) 0.80 (0.51) 0.88 (0.95)

Maximum 8.99 (10.49) 7.95 (9.10) 8.58 (8.91) 8.89 (9.22)

Minimum -0.80 (-3.11) 0.84 (-1.53) 1.00 (0.15) -0.80 (-1.53)

Seasonal Amplitude

Median 3.19 (3.13) 2.85 (3.27) 3.45 (3.43) 3.07 (3.02)

IQR 0.85 (1.09) 0.65 (1.15) 0.70 (1.31) 0.69 (0.95)

Maximum 4.15 (5.65) 3.27 (4.54) 4.08 (4.40) 4.54 (4.89)

Minimum 1.51 (1.37) 2.46 (1.55) 3.17 (2.33) 1.83 (1.20)

Linear Trend

Median 0.11 (0.02) 0.12 (0.07) 0.14 (0.08) 0.13 (0.04)

IQR 0.04 (0.06) 0.05 (0.06) 0.04 (0.06) 0.06 (0.09)

Maximum 0.22 (0.22) 0.15 (0.18) 0.16 (0.16) 0.22 (0.22)

Minimum 0.09 (-0.12) 0.07 (-0.02) 0.11 (-0.01) 0.08 (-0.11)

Growth Rate

Median 0.13 (0.01) 0.08 (0.08) 0.15 (0.10) 0.16 (0.05)

IQR 0.09 (0.10) 0.04 (0.10) 0.06 (0.14) 0.11 (0.13)

Maximum 0.33 (0.33) 0.15 (0.26) 0.16 (0.18) 0.32 (0.32)

Minimum -0.00 (-0.50) 0.02 (-0.06) 0.08 (-0.04) 0.02 (-0.15)

Median Errors

Linear trend 0.05 (0.05) 0.04 (0.05) 0.05 (0.05) 0.05 (0.05)

Trend Curve 0.19 (0.23) 0.19 (0.20) 0.20 (0.21) 0.20 (0.21)

Smoothed Curve 0.30 (0.35) 0.30 (0.32) 0.31 (0.32) 0.31 (0.32)

Growth Curve 0.27 (0.32) 0.27 (0.29) 0.28 (0.29) 0.28 (0.29)

Seasonal Curve 0.36 (0.41) 0.36 (0.38) 0.36 (0.38) 0.37 (0.38)
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Table 3. Statistical summary of the NASA SO2 vertical column density (VCD) analysis conducted at an ap-

proximate 10 km radius over the target locations. Statistical values are shown for those locations which have a

real VCD trend, i.e. those locations without a corresponding trend in either the cloud fraction (CFR), cloud-top

pressure (CTP), or number of samples (SAM). Values in parentheses correspond to statistics for all locations of

a given category. VCD values are given in DU, and IQR is the inter-quartile range.

Urban Refinery Oil Ports Power Plants

# locations 818 41 18 155

# locations with trends

VCD 24 3 3 14

VCD and AMF 0 0 0 0

VCD and CFR 0 0 0 0

VCD and CTP 0 0 0 0

VCD and SAM 6 0 1 5

VCD only 18 3 2 9

Observed VCD

Median 0.17 (0.11) 0.30 (0.28) 0.63 (0.28) 0.29 (0.16)

IQR 0.23 (0.09) 0.33 (0.31) 0.11 (0.21) 0.27 (0.24)

Maximum 1.22 (1.79) 1.05 (1.85) 1.98 (1.98) 1.17 (2.22)

Minimum -0.61 (-1.36) -0.22 (-0.64) -0.02 (-0.40) -0.46 (-0.46)

Seasonal Amplitude

Median 0.33 (0.21) 0.36 (0.44) 0.55 (0.39) 0.37 (0.28)

IQR 0.21 (0.09) 0.13 (0.26) 0.11 (0.20) 0.19 (0.28)

Maximum 0.69 (1.15) 0.47 (1.13) 0.77 (0.86) 0.51 (1.14)

Minimum 0.17 (0.09) 0.34 (0.16) 0.33 (0.20) 0.18 (0.12)

Linear Trend

Median 0.021 (-0.002) 0.028 (0.001) -0.041 (-0.002) 0.026 (-0.001)

IQR 0.023 (0.008) 0.022 (0.023) 0.009 (0.025) 0.046 (0.011)

Maximum 0.044 (0.044) 0.042 (0.042) -0.024 (0.028) 0.028 (0.031)

Minimum -0.024 (-0.041) 0.019 (-0.016) -0.059 (-0.059) -0.023 (-0.023)

Growth Rate

Median 0.015 (-0.002) 0.036 (0.003) -0.052 (-0.002) 0.005 (-0.003)

IQR 0.032 (0.011) 0.034 (0.027) 0.002 (0.034) 0.032 (0.017)

Maximum 0.048 (0.051) 0.046 (0.046) -0.049 (0.047) 0.036 (0.057)

Minimum -0.056 (-0.056) 0.012 (-0.045) -0.055 (-0.055) -0.012 (-0.039)

Median Errors

Linear trend 0.009 (0.007) 0.010 (0.010) 0.014 (0.010) 0.010 (0.008)

Trend Curve 0.039 (0.030) 0.042 (0.041) 0.062 (0.044) 0.039 (0.035)

Smoothed Curve 0.058 (0.046) 0.066 (0.061) 0.091 (0.068) 0.064 (0.053)

Growth Curve 0.056 (0.042) 0.060 (0.058) 0.087 (0.063) 0.056 (0.050)

Seasonal Curve 0.070 (0.055) 0.079 (0.072) 0.110 (0.081) 0.075 (0.064)
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Table 4. Statistical summary of the BIRA CHOCHO vertical column density (VCD) analysis conducted at an

approximate 10 km radius over the target locations. Statistical values are shown for those locations which have

a real VCD trend, i.e. those locations without a corresponding trend in either the air mass factor (AMF), cloud

fraction (CFR), cloud-top pressure (CTP), or number of samples (SAM). Values in parentheses correspond to

statistics for all locations of a given category. VCD values are given in 1013 molecules cm−2 and IQR is the

inter-quartile range.

Urban Refinery Oil Ports Power Plants

# locations 818 41 18 155

# locations with trends

VCD 8 0 0 4

VCD and AMF 5 0 0 3

VCD and CFR 1 0 0 1

VCD and CTP 0 0 0 0

VCD and SAM 1 0 0 0

VCD only 1 0 0 1

Observed VCD

Median 18.22 (16.18) NaN (19.95) NaN (20.84) 18.26 (17.88)

IQR NaN (4.58) NaN (9.61) NaN (8.72) NaN (8.60)

Maximum 33.76 (112.10) NaN (63.18) NaN (57.19) 35.50 (80.37)

Minimum 0.18 (-66.32) NaN (-23.96) NaN (-21.89) 2.63 (-44.75)

Seasonal Amplitude

Median 9.50 (15.03) NaN (16.48) NaN (14.38) 11.77 (16.32)

IQR NaN (6.54) NaN (4.78) NaN (4.80) NaN (5.74)

Maximum 9.50 (44.53) NaN (28.34) NaN (21.10) 11.77 (32.14)

Minimum 9.50 (8.89) NaN (9.56) NaN (9.93) 11.77 (9.12)

Linear Trend

Median -0.83 (-0.22) NaN (-0.05) NaN (-0.01) -0.88 (-0.10)

IQR NaN (0.66) NaN (0.49) NaN (0.53) NaN (0.57)

Maximum -0.83 (3.02) NaN (0.40) NaN (0.30) -0.88 (0.87)

Minimum -0.83 (-1.38) NaN (-1.03) NaN (-0.77) -0.88 (-1.29)

Growth Rate

Median -0.16 (-0.38) NaN (-0.12) NaN (-0.13) -1.46 (-0.22)

IQR NaN (1.06) NaN (0.98) NaN (0.83) NaN (1.10)

Maximum -0.16 (3.85) NaN (1.26) NaN (0.83) -1.46 (2.05)

Minimum -0.16 (-2.96) NaN (-1.70) NaN (-1.52) -1.46 (-1.95)

Median Errors

Linear trend 0.42 (0.58) NaN (0.53) NaN (0.50) 0.44 (0.55)

Trend Curve 1.79 (2.49) NaN (2.28) NaN (2.11) 1.83 (2.41)

Smoothed Curve 2.84 (3.95) NaN (3.59) NaN (3.38) 2.79 (3.66)

Growth Curve 2.53 (3.52) NaN (3.22) NaN (2.98) 2.58 (3.40)

Seasonal Curve 3.35 (4.68) NaN (4.23) NaN (3.99) 3.34 (4.38)
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