

- 1 Effects of Cloud Condensation Nuclei and Ice Nucleating Particles on Precipitation
- 2 Processes and Supercooled Liquid in Mixed-phase Orographic Clouds
- 3
- 4 Jiwen Fan^{1*}, L. Ruby Leung¹, Daniel Rosenfeld², Paul J. DeMott³
- 5
- 6 ¹ Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory,
- 7 Richland, WA 99352
- 8 ² Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
- 9 ³ Department of Atmospheric Science, Colorado State University, Fort Collins, Co, 80523
- 10
- 11
- 12
- Corresponding author:
- 14 jiwen.fan@pnnl.gov

15

16 17

18

19

20

21 Abstract

22 How orographic mixed-phase clouds respond to the change of cloud condensation nuclei 23 (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production 24 mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOC and CMOC, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could 25 26 be very different. We quantify the CCN and INP impacts on supercooled water content, cloud 27 phases and precipitation for a WMOC and a CMOC case with a set of sensitivity tests. It is found 28 that deposition plays a more important role than riming for forming snow in the CMOC, while 29 the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation especially in WMOC and low INP. However, this reverses strongly for CCN > 30 31 1000 cm⁻³. We find a new mechanism through which CCN can invigorate mixed-phase clouds 32 over the Sierra Nevada Mountains and drastically intensify snow precipitation when CCN concentrations are high (1000 cm⁻³ or higher). In this situation, more widespread shallow clouds 33 34 with greater amount of cloud water form in the valley and foothills, which changes the local 35 circulation through more latent heat release that transports more moisture to the windward slope. leading to much more invigorated mixed-phase clouds over the mountains that produce higher 36 37 amounts of snow precipitation. Increasing INPs leads to decreased riming and mixed-phase 38 fraction in the CMOC but has the opposite effects in the WMOC, as a result of liquid-limited and 39 ice-limited conditions, respectively. However, it increases precipitation in both cases due to an 40 increase of deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing INPs dramatically reduces supercooled water content and increases the cloud 41 glaciation temperature, while increasing CCN has the opposite effects with much smaller 42 43 significance.

44

46 **1. Introduction**

47 Snowpack in the Sierra Nevada Mountains is California's largest source of fresh water. 48 Understanding the factors contributing to snow precipitation over the mountains has important implications to predicting the hydrology and local climate of the western U.S. This has motivated 49 a series of CalWater field campaigns carried out since 2009 to improve understanding of 50 51 processes influencing precipitation and water supply in California. Supercooled liquid occurred 52 commonly in clouds over the Sierra Nevada during the cold season (Rosenfeld et al., 2013). 53 Closely linked to precipitation is the distribution of cloud liquid and ice phases, which may be 54 influenced by supercooled liquid commonly occurring in orographic clouds (Rosenfeld et al., 55 2013). Besides precipitation, cloud radiative forcing and cloud feedback in the climate system 56 are also highly dependent on cloud phases because of the very different radiative effect of liquid 57 and ice particles. Hence understanding the key processes and factors impacting cloud phases is 58 critical, but our lack of understanding and ability to model supercooled liquid and cloud phases is limiting skillful predictions at weather and climate time scales. 59

60 Many factors such as large-scale dynamics, solar heating, and aerosol particles can 61 impact cloud properties and precipitation over the Sierra Nevada Mountains (Shen et al., 2010; 62 Rosenfeld et al., 2008). Atmospheric rivers (ARs) are one of the primary large-scale dynamical 63 features that bring large amount of water vapor from tropics to the U.S. west coast, and can 64 create extreme rainfall and floods (Bao et al 2006; Ralph et al. 2011; Neiman et al. 2010). 65 Aerosols in the atmosphere can modify cloud microphysical processes and potentially alter the 66 location, intensity, and type of precipitation (Tao et al., 2012) by acting as cloud condensation nuclei (CCN) or ice nucleating particles (INPs). In California, pollution aerosols from the 67 68 densely populated coastal plains and the Central Valley may be incorporated into the frontal 69 airmass before orographic ascent and influence precipitation in the Sierra Nevada Mountains

(Rosenfeld and Givati, 2006). Long-range transported aerosols (mainly dust particles) have also
been found to have a potential influence on clouds and precipitation in the winter and spring

seasons (Uno et al., 2009; Ault et al., 2011; Creamean et al., 2013).

73 Aerosol impacts can strongly depend on aerosol properties, but also dynamics, and 74 thermodynamics. Many studies have shown that CCN can reduce warm rain precipitation from 75 orographic clouds by reducing the efficiency of cloud droplets conversion into raindrops (e.g., 76 Lynn et al., 2007; Rosenfeld and Givati, 2006; Jirak and Cotton, 2006) and can reduce snowfall 77 precipitation due to reduced riming efficiency (Lowenthal et al., 2011; Rosenfeld et al., 2008). 78 However, some recent studies show a possibility of increased precipitation by CCN in 79 orographic mixed-phase clouds (Fan et al., 2014; Xiao et al., 2015). Other studies have shown 80 that CCN may not have significant effect on the total precipitation, but rather shift precipitation from the windward to leeward slope; a so-called "spillover effect" (Saleeby et al., 2011; 2013). 81 82 By acting as INPs, aerosols can enhance ice growth processes such as deposition and riming and 83 thereby significantly increase snow precipitation (Fan et al., 2014). Both observational and 84 modeling studies have shown that long-range transported dust particles can enhance orographic 85 precipitation in California by serving as INPs (Ault et al., 2011; Creamean et al., 2013; Fan et al., 2014). 86

Besides precipitation, aerosols may have significant impacts on cloud phase and supercooled water content (SCW) in the mixed-phase clouds, which directly change cloud radiative forcing and Earth's energy balance. Modeling studies have shown that CCN tend to increase SCW via the processes such as suppressed warm rain and/or reduced riming efficiency (Khain et al., 2009; Ilotoviz et al., 2016; Saleeby et al., 2013). A recent observational study corroborated that increasing CCN decreases the cloud glaciation temperature and thus increases

the abundance of the mixed-phase regime (Zipori et al., 2015). With abundant INPs such as dust particles, cloud glaciates at a much warmer temperature (Rosenfeld et al., 2011; Zipori et al., 2015). It is found that commonly occurring supercooled water in the clouds near the coastal regions of the western U.S. is associated with low CCN and limited INP conditions (Rosenfeld et al., 2013).

98 Recent evaluation of the Community Atmosphere Model version 5 (CAM5) with the 99 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data 100 showed that the model has insufficient liquid cloud and excessive ice cloud from the mid-101 latitudes to the polar regions, and liquid deficit bias maximizes over the Southern Ocean where 102 supercooled water is prevalent (Kay et al., 2016). For cloud model simulations with cloud-103 resolving models, ice nucleation parameterizations often need to be modified in order to produce 104 the mixed-phase clouds in the Arctic region (Fan et al., 2009; Fridlind et al., 2007). Considering 105 many microphysical processes are sensitive to aerosol types (CCN or INP), temperature, and/or 106 supersaturation (e.g., deposition growth), aerosol impacts on cloud phase can be complicated, 107 depending on cloud dynamics and thermodynamics. Our current understanding of cloud 108 microphysical processes impacting SCW and cloud phase in different meteorological 109 environments is poor. Therefore, it is important to conduct process-level studies to improve our 110 understanding.

Fan et al. (2014) conducted a study for two mixed-phase orographic cloud cases with different cloud temperatures and showed different significance of the CCN and INP impacts between the two cases. The two cases are February 15-16, 2011 (FEB16), and Mar 1-2, 2011 (MAR02). FEB16 has a cloud top temperature as cold as -32°C while the cloud top temperature of MAR02 is generally warmer than -20°C. The temperature differences at the same altitude

between the two cases are about 6-10°C. For these reasons, we will herein refer to them as cold 116 117 mixed-phase orographic clouds (CMOC) and warm mixed-phase orographic clouds (WMOC), 118 respectively. The main snow-forming mechanism in warm and cold mixed-phase orographic 119 clouds could be very different and lead to different precipitation response to changes of CCN and 120 INP. Following Fan et al. (2014) this study aims to (1) understand the dominant ice growth 121 processes in these two mixed-phase cloud systems; (2) quantify the response of precipitation to 122 the changes of CCN and INP over a wide range from extremely low to extremely high 123 concentrations, and (3) examine CCN and INP impacts on SCW and cloud phases. The same 124 WRF model with the spectral-bin microphysics (SBM) as used in Fan et al. (2014) is employed. 125 Ice nucleation is parameterized in dependence on mineral dust/biological particle concentrations 126 on the basis of observational evidence. To better realize our science goals, the simulation 127 resolution is further increased to be 1-km and the simulations are driven with the 2-km resolution 128 baseline simulation from Fan et al. (2014).

129

130 **2. Model Description and Simulation Design**

131 2.1 Model description

As in Fan et al. (2014), simulations are performed using WRF version 3.1.1 developed at the National Center for Atmospheric Research (NCAR) (Skamarock et al., 2008) coupled with a spectral-bin microphysics (SBM) model (Khain et al., 2009; Fan et al., 2012). The SBM is a fast version of the full SBM described by Khain et al. (2004), in which ice crystal and snow (aggregates) in the full SBM are calculated based on one size distribution with separation at 150 µm. ice crystal and snow are referred to as low-density ice. Graupel and hail in the full SBM are

138 grouped as high-density ice, represented with one size distribution without separation. More

details about SBM that we used in this study can be found in Fan et al. (2014).

140 As discussed in Fan et al. (2014), hereafter referred to as FAN2014, the ice nucleation 141 parameterizations in the SBM used for this study have been modified. A new ice nucleation 142 parameterization of DeMott et al. (2015; cited as DeMott et al., 2013 in FAN2014 before the 143 parameterization was published) was incorporated to SBM to investigate the impacts of dust as 144 INPs. The parameterization connects nucleated ice particle concentration under a certain 145 atmospheric condition with aerosol particle number concentration with diameter larger than 0.5 146 μm ($n_{a>0.5}m$ in Eq. 2 of DeMott et al., 2015), which is referred to as INP concentration. In FAN2014, the aerosol particles that are connected with the DeMott et al. (2015) parameterization 147 are referred to as "dust/bio" (from single particle mass spectral composition measurements), and 148 149 are based on observations from the Passive Cavity Aerosol Spectrometer Probe (PCASP) for 150 particles with diameter larger than 0.5 µm from clear-sky aircraft data. Note that the actual INP 151 number concentration in the DeMott et al. (2015) parameterization includes an exponential 152 temperature dependence that acts on aerosol concentration, and that the exponent on aerosol concentration is 1.25, but for simplicity in this paper we refer to the constant $n_{a>0.5-m}$ as the INP 153 154 concentration. It should also be noted that the parameterization is designed and implemented as 155 immersion freezing, that is, a pre-existing liquid particle (droplet or drop) is consumed for each 156 formed ice crystal determined by the parameterization (at the same time, an ice nucleus is 157 removed from the INP category). An added feature of implementation was to assume that the largest drops freeze first, followed by the smaller ones over the size spectrum of water drops 158 159 when ice nucleation occurs. This implementation yielded the majority of observed large ice 160 particles, as discussed in FAN2014. This assumption also acknowledges the expectation that the

161 largest droplets should have a higher probability of containing an INP active at a given 162 temperature. For contact freezing, we adopt the implementation of Muhlbauer and Lohmann 163 (2009) for the parameterizations described in Cotton et al. (1986) and Young (1974) to connect 164 with INP. The contribution from the contact freezing with this parameterization is negligible. As 165 described in FAN2014, INP is a prognostic variable and over-nucleation is prevented by 166 applying an upper limit of ice particle concentration.

167 **2.2 Design of numerical experiments**

168 In FAN2014, simulations were done for the two nested domains with a horizontal grid-169 spacing of 10 and 2 km, respectively. To focus on the orographic clouds over the Sierra Nevada 170 Mountains and provide a better process-level understanding, we conduct new simulations using a 171 smaller domain of 300 km \times 280 km with a grid-spacing of 1 km (the yellow box in Fig. 1a) 172 nested within the 2-km grid-spacing domain of FAN2014 (the blue box). The domain grid points 173 are 301×281 horizontally with 51 vertical levels. The initial and lateral boundary conditions are 174 produced from the baseline simulations of the 2-km grid-spacing in FAN2014 that were 175 validated by various observational data. The lateral boundary data are updated every 3-hours. 176 The RRTMG shortwave and longwave radiation schemes are used to account for aerosol-cloud-177 radiation interactions based on the droplet effective radius calculated by SBM.

CCN in the model is represented by a spectrum with 33 size bins with prognostic CCN number concentration for each bin. As stated above, the INP denotes the dust/bio particle number concentration in this region. For the purpose of this study, we conduct sensitivity tests by varying CCN and INP (i.e., dust/bio particle) concentrations over a wide range from the extremely low to extremely high concentrations as shown in Table 1. The initial CCN concentrations for the sensitivity simulations are set to be 30, 100, 300, 1000, and 3000 cm⁻³ (referred to as CCN30,

8

184 CCN100, CCN300, CCN1000, and CCN3000 respectively). For each CCN condition, simulations are conducted with the initial INP concentration of 0.1, 1, 10, and 100 cm⁻³, 185 respectively, referred to as IN0.1, IN1, IN10, and IN100. Note that 100 cm⁻³ dust/bio means ~100 186 L^{-1} actual nucleated ice particles at -20°C and 1000 L^{-1} at -25°C using DeMott et al. (2015). The 187 188 vertical profiles of CCN and INP number concentrations at the initial time are uniform below 6 189 km since observations do not show significant vertical variations as discussed in FAN2014. 190 Simulations are conducted for both cases, and start at 12:00 pm UTC and run for 12 hours since 191 the majority of the convective orographic clouds occur during this period. Note the observed CCN (INP) concentrations for CMOC and WMOC are around 30 (2) and 120 (4) cm⁻³, 192 193 respectively.

The CMOC case on FEB16 has cloud top temperatures about 10 degrees colder than the WMOC case on MAR02, and has higher relative humidity (RH) due to the lower temperature although the water vapor mixing ratio is much smaller (Fig. 1b-1d). Both cases are under the influence of atmospheric rivers that provide ample water vapor supply. We note however that the lower-level wind directions in the two cases are different, with prevailing westerly and northwesterly on FEB06, and southerly and southwesterly on MAR02.

- 200
- 201 3. Results
- 202 **3.1 CMOC FEB16**
- 203 **3.1.1 Precipitation and microphysical processes**

Fig. 2a shows the accumulated surface precipitation averaged over the domain for the CMOC case (FEB16). Increasing INPs generally enhances the domain-averaged precipitation except at extremely high CCN concentration (i.e., 3000 cm⁻³), as a result of increased snow

207 precipitation (Fig. 2c). The sensitivity to INP concentration gets much smaller when INPs are 10 cm⁻³ and larger. Under the low INP condition where the liquid regime is dominant, the 208 precipitation is first suppressed as CCN increase up to a polluted condition of 1000 cm⁻³ (grey 209 210 arrow). This behavior is similar to the CCN effects on shallow warm clouds. As INP is further 211 increased and mixed-phase clouds are increased, the decreased trend of precipitation with the 212 increase of CCN is changed to a monotonic increasing trend as shown by the brown arrow in Fig. 213 2a. The most significant feature of Fig. 2a is the sharp increase of surface precipitation from CCN of 1000 to 3000 cm⁻³, even at the extremely low INP condition. This is inconsistent with 214 215 our previous understanding for deep mixed-phase clouds that precipitation should be 216 significantly suppressed under the extremely polluted conditions because droplets get too small 217 to growth efficiently and the riming also becomes very inefficient (Fan et al., 2007; Li et al., 218 2008). From Figs. 2b and 2c showing the liquid and snow mass concentrations near the surface 219 (i.e., at the lowest model level of ~ 40 m above the ground), respectively, we see that (1) snow 220 dominates the precipitation for the CMOC case and the ratio of warm rain to total precipitation is 221 very small; and (2) the dramatically enhanced snow explains the sharp increase of precipitation from CCN of 1000 to 3000 cm⁻³. Note that increasing CCN enhances snow precipitation under 222 any INP condition (Fig. 2c), and warm rain is totally shut off when CCN are 1000 cm⁻³ or larger 223 at INP of 0.1 cm^{-3} (Fig. 2b) due to the much smaller sizes of droplets. 224

By looking at the in-cloud microphysical properties as shown in Fig. 3, increasing CCN enhances snow number concentration and mass mixing ratio (N_s and Q_s , respectively). Especially, we see a large increase of snow mass from CCN1000 to CCN3000. Cloud ice number concentration and mass mixing ratio (N_i and Q_i , respectively) is also increased. Note ice and snow are represented with a single size spectrum and a threshold size of 150 µm in radius is used

230 to separate them. As discussed in Section 2, the major ice nucleation is through the immersion 231 freezing of DeMott et al. (2015), and with a specification that the largest droplets freeze first 232 when ice nucleation occurs. Therefore, most of the newly-formed ice particles should be large 233 and fall into the snow bins, and so N_s and Q_s contribute more significantly to ice number and mass increase with the increase of CCN than do N_i and Q_i . As CCN increases, not only cloud 234 235 droplet number concentration (N_c) is increased, but also cloud mass mixing ratio (Q_c) . The large 236 increase of Q_c when CCN are high, which corresponds to the large increase of Q_s , will be 237 scrutinized a little later. The decrease of raindrop number concentration and mass mixing ratio (N_r and Q_r , respectively) is very sharp and warm rain becomes negligible when INP are 1 cm⁻³ or 238 239 larger (Fig. 3).

240 From the process rates of the major microphysical processes shown in Fig. 4, we see that 241 the increase of Q_c with the increase of CCN and the decrease of Q_c with the increase of INPs are 242 well explained by the condensation rate (Fig. 4a), although the changes of evaporation have the same trends as well. As shown in Figs. 4c and 4e, deposition is a more significant process than 243 riming except in the case of extremely low INP (0.1 cm⁻³) in this CMOC. Increasing CCN 244 245 enhances deposition but only enhances riming when CCN are high. The sharp increase of deposition and riming rates from CCN1000 to CCN3000 explains the sharp increase of snow 246 247 with a major contribution from deposition. How deposition and riming are enhanced so 248 significantly in this case will be elucidated in Section 3.1.2

At the extremely low INPs of 0.1 cm⁻³, the riming rate is similar to the deposition rate in this CMOC (Figs. 4c and 4e). As INPs increase, the contribution of riming is reduced significantly because of the reduction of supercooled droplets resulting from increased ice particles in the mixed-phase zone. Thus, the riming process is liquid-limited in this CMOC. As a

result of increased ice particles, deposition is enhanced significantly, and it becomes 3-4 times larger than riming when INPs are 10 cm⁻³. In the observed condition (i.e., CCN are between 30-300 cm⁻³ and INPs range between 1-10 cm⁻³), both deposition and riming contribute to the snow growth but deposition is the major player. When INPs are extremely high (100 cm⁻³), clouds glaciate very fast and liquid droplets that are available for riming are limited, therefore, its contribution is negligible (red line in Fig. 4e).

259 The Wegener-Bergeron-Findeisen (WBF) processes refer to ice depositional growth at 260 the expense of liquid through evaporation in mixed-phase clouds. So the mixed-phase cloud 261 regime where vapor pressure falls between the saturation vapor pressure over water and ice is 262 defined as the WBF regime. As CCN increase, the WBF processes gets stronger as shown in Figs. 263 5a and 5b. The ratio of the evaporation through WBF to the total evaporation is larger than 0.92 264 in all simulations (Fig. 5a), meaning that drop evaporation in this CMOC occurs predominantly in the WBF regime. There is generally only 50-70% of deposition occurring in the WBF regime 265 even when INP concentration is at 0.1 and 1 cm⁻³ (Fig. 5b), so a significant portion of deposition 266 267 occurs outside of the WBF regime, and the portion increases as INP increase. Therefore, 268 increasing INPs generally reduces the WBF regime because of the reduced liquid due to 269 enhanced depositional growth. In this CMOC, the ratio of riming occurring in the WBF regime 270 to the total riming is small (generally around 0.2-0.4 in Fig. 5c), meaning that riming mainly 271 occurs outside of the WBF regimes under any CCN and INP conditions. The ratio is increased by 272 CCN but generally decreased by INPs as a result of the increase/decrease of liquid regime, 273 respectively (Fig. 5c).

We see that all major microphysical processes (condensation/evaporation, deposition/sublimation, and riming) are highly sensitive to INPs, while generally having much

276 lower sensitivity to CCN when CCN are below 1000 cm⁻³. The sensitivity of all the major 277 microphysical processes to CCN gets much more significant when CCN are 1000 cm⁻³ and larger 278 (Fig. 4), associated with significant changes in dynamics and thermodynamics and will be 279 discussed in detail below.

280

281 **3.1.2** Mechanism of enhanced snow precipitation by highly elevated CCN concentrations

282 Since the results of significant enhanced precipitation from CCN1000 to CCN3000 are 283 unusual, besides verifying the use of identical initial and boundary meteorological conditions in 284 all the experiments to eliminate simulation differences arising from inadvertent factors, we also 285 conducted sensitivity tests by restoring the ice nucleation mechanisms to the default 286 parameterizations (i.e., Meyers et al., 1992 for condensation/deposition and Bigg (1953) for 287 immersing freezing) in the SBM but this yielded a similar conclusion. So, the significantly 288 increased snow precipitation associated with elevated CCN concentrations is not the result of the 289 particular ice-forming parameterization or the implementation approach of the parameterization.

290 Since the precipitation enhancement begins at 1400 UTC, which is a couple of hours into 291 the simulations, we focus on the time period of 14-1600 UTC and use the simulations of different CCN concentrations with INP concentrations of 1 cm⁻³ to examine the mechanism. By 292 293 taking a close look at ice nucleation (using model outputs every 6 min), we find that the total 294 nucleated ice particle number concentration is increased as CCN increase and there is a large jump from CCN1000 to CCN3000 (Fig. 6a). The increase is caused by more cloud points that 295 296 have ice nucleation occurring (Fig. 6b) and the enhanced nucleation rate (i.e., the nucleated ice 297 particles per liter air volume within a hour) in the lower altitudes (Fig. 6c). Considering that the 298 major ice formation mechanism is immersion freezing in this study, which requires the existence

of drops for primary nucleation of ice, it means that there is much more supercooled liquid cloud area/volume available for nucleation in the lower altitudes as CCN increase (Fig. 6e). As shown in Fig. 6d, the increase of cloud water (Q_c) that is supercooled, since the warmest cloud temperature is below 0°C in this case, is very significant, with a big jump from CCN1000 to CCN3000, corresponding to the large increase of snow precipitation. From CCN1000 to CCN3000, the increase of the supercooled liquid area is especially drastic (Fig. 6e).

305 What causes the drastic increase of Q_c and a more widespread supercooled liquid cloud 306 regime that is available for ice nucleation? We know that the increased drop surface area with the 307 increased CCN can increase condensation, but it cannot explain such a drastic increase of the 308 condensation rate averaged over the entire domain as shown in Fig. 6f. We find that over the domain the updraft area (i.e., grid points with $w > 1 \text{ m s}^{-1}$) is increased significantly with CCN 309 310 with a jump from CCN1000 to CCN3000 as well (Fig. 7a), but the averaged updraft velocity 311 does not change significantly (Fig. 7b), suggesting that much more convection occurs to form 312 more clouds in the domain as CCN increase, especially in CCN3000. From the spatial 313 distribution, we see that the increase of clouds is the most prominent around the valley and 314 foothills (i.e., the lower-part of the windward slope of the Mountains). The cross sections of 315 cloud water, rain and ice/snow mass mixing ratios at 1400 UTC clearly show that more clouds form over the valley and foothills in CCN3000, while in CCN30 clouds over the valley are fewer 316 317 and clouds are shallower over the valley and foothills (Fig. 8a). we see much more invigorated 318 mixed-phase clouds in CCN3000 compared with CCN30. The mixed-phase clouds start from the 319 foothills in CCN3000 (Fig. 8c), while CCN30 does not have the mixed-phase clouds present 320 until the regions above the middle and upper part of the mountain slope. This explains the 321 increased ice nucleation rate at the lower altitudes as shown in Fig. 6c.

322 Changes of cloud fields described above must involve dynamic and thermodynamic 323 changes. By examining the differences of dynamic and thermodynamic fields between CCN3000 324 and CCN30 (Fig. 9), we clearly see that a band of increased water vapor and relative humidity 325 (RH) from the valley/foothills to the mountain at the higher altitudes (Fig. 9a-b). The 326 corresponding temperature is only slightly decreased (Fig. 9c), which should not much affect the 327 saturation water pressure and ice nucleation efficiency by much. So, the increased RH is mainly 328 caused by the increased water vapor, and this increase can be up to 8% in RH (e.g., from RH of 329 70% to 78%). The large increase of Q_{γ} and RH is mainly a result of changed local circulation as 330 shown in Figs. 9d-e: the wind blowing to windward slope (zonal wind) gets stronger from 331 CCN30 to CCN3000 (within ~ 2 km above the ground) over the slope. In the cases of 332 atmospheric rivers, the stronger zonal wind transport means an increase of moisture transport to 333 the Mountains.

334 The changes of winds are only significant at the slope of the Mountains and occur only 335 after 2 h of the simulations (Fig. 10a), suggesting that it stems from more latent heat release as a 336 result of more clouds over the valley and foothills (feedbacks of radiation and precipitation take 337 much longer time especially considering the two-hour time is 4- 6 am LST). The clouds at the 338 valley/foothills locations are generally shallow. Many literature studies, including both 339 observations and model simulations, have shown that CCN enhance shallow cloud formation and 340 deepen shallow clouds (e.g., Chen et al. 2015; Yuan et al. 2011; Pincus and Baker 1994; Koren 341 et al. 2014), which can be due to various reasons such as cloud lifetime effect, enhanced 342 turbulent convection by larger entrainment rates as a result of stronger evaporation, and greater 343 latent heat release due to larger drop surface area for stronger condensation. We find that 344 condensation is indeed much enhanced over the valley/foothills from CCN30 to CCN3000 with

INP of 1 cm⁻³ (Fig. 9f), which results in much reduced supersaturation with respect to water 345 (supersaturation around the cloud base in CCN30 at 1300 UTC is about 0.28% while only 0.04% 346 347 in CCN3000). The enhanced condensation as well as the cloud lifetime effect (i.e., conversion of 348 smaller droplets into rain is slow and cloud can be sustained for a longer time) contributes to 349 more shallow clouds at the valley/foothills. The more latent heat resulting from enhanced 350 condensation leads to the change of local circulation, which transports more moisture to the 351 windward slope of the Mountain, resulting in more active mixed-phase clouds and snow 352 precipitation through enhanced deposition and riming. In addition, over the Mountains more 353 supercooled liquid would be lifted to the higher altitudes in the polluted condition, forming 354 ice/snow more efficiently through immersion freezing at the colder temperature, which 355 contributes to more snow precipitation as well.

356 It should be noted that the mixed-phase clouds over the Mountains are the key to the 357 enhanced precipitation by CCN. In the sensitivity tests based on the WMOC case where ice-358 related microphysics is turned-off (the WMOC case is chosen because ice processes are weak), precipitation is dramatically suppressed from CCN of 30 cm⁻³ to 3000 cm⁻³ (Fig. 11a) and there 359 360 is almost no precipitation at the valley and windward slope in CCN3000 due to extremely small 361 droplets. However, we still see the change of the local circulation over the slope as a result of 362 enhanced condensation (Fig. 11b). Therefore, presence of ice is a necessary condition for such a 363 large increase precipitation by CCN. Without ice processes (e.g., under the warm season with 364 warm clouds only), precipitation over the Mountains can not form efficiently in such a polluted 365 condition even with the increased moisture. But the added latent heat from condensation of vapor 366 to water is still the main energy source of the invigoration.

367

In summary, increasing CCN forms more clouds at the valley and foothills (generally

368 shallow) through much enhanced condensation, which induces a local circulation change due to 369 more latent heat release that enhances the zonal transport of moisture, leading to the invigoration 370 of the orographic mixed-phase clouds and drastically increased snow precipitation in this CMOC 371 case. Therefore, aerosol impacts on orographic mixed-phase clouds can be extraordinary in 372 extremely polluted conditions, especially under the influence of atmospheric rivers. Besides the 373 the key role of ice processes for leading to greatly enhanced precipitation, orographic dynamics 374 is another important factor since we do not see such impacts in the sensitivity tests where the 375 terrain height is set to be 600 m for the locations with a terrain height > 600 m (precipitation 376 becomes very small in those sensitivity tests and the increase from CCN30 to CCN3000 is small 377 as well).

The increases of Q_{ν} and RH are the most significant from CCN1000 to CCN3000 due to non-linearity of aerosol-cloud interactions, explaining the large increase of snow precipitation. It is worth noting in CCN3000, warm rain is completely shut off (left column in Fig. 8b), therefore, much more cloud water can be transported to higher altitudes for more immersion freezing, which further enhances the snow precipitation. This likely contributes to the steep increase in precipitation when CCN reach 3000 cm⁻³.

384

385 **3.1.3 Supercooled water content (SCW) and cloud phase**

Through changing the microphysical process rates, CCN and INP impact the cloud phases and supercooled water content (SCW). Fig. 12 shows that INPs have the most striking impact on SCW. Increasing INPs enhances ice particle formation, and then facilitates the deposition and riming processes in this CMOC as discussed in Section 3.1.1. The enhanced deposition in the WBF regime, along with riming, leads to a faster conversion of liquid to ice in

391 the mixed-phase and glaciates the clouds faster. Therefore, SCW is substantially reduced as INPs 392 increase (Fig. 12a). For example, in the case of CCN300, a significant amount of liquid mass fraction (0.1) exists at the temperature of -30°C when INP is 0.1 cm⁻³. Such temperature is 393 increased to -20, and -10°C as INPs are increased to 1 and 10 cm⁻³, respectively. In the extremely 394 high INP case (100 cm⁻³), there is nearly no supercooled water. As a result, the fractions of cloud 395 396 phases are dramatically changed (Fig. 13a). As expected, higher INP concentrations decreases 397 the fractions of liquid and mixed phases due to increasing the fraction of ice phase. In this CMOC, the cloud phases are most sensitive to INPs at relatively low concentrations. For 398 example, when INPs increase from 0.1 to 1 cm⁻³, which is likely common for this region based 399 400 on observations in the past field campaigns, the liquid phase fraction is reduced by nearly half 401 and the ice phase fraction is increased by 2 times or larger (Fig. 13a). Note that the effects of 402 INPs on cloud phase and SCW presented in this study may represent the upper limit because ice 403 formation is mainly through immersion freezing that transforms the large liquid particles to ice 404 particles when ice forms.

405 Compared with the effects of INPs, the magnitudes of CCN effects on SCW and cloud 406 phases are much smaller but still significant (the lines with same color but different line styles in 407 Fig. 12). Moreover, the sign is opposite. Increasing CCN generally increases SCW slightly (Figs. 408 12a). The impact of CCN on cloud phases is generally small, except when INPs are very low, i.e., at 0.1 cm⁻³ (Figure 13a). In this low INP case, increasing CCN increases ice phase fractions and 409 410 reduces the mixed-phase fraction when CCN are relatively low. This is because liquid clouds are 411 dominant so such clouds are sensitive to the CCN-enhanced ice nucleation as discussed in the 412 section 3.1.2.

413

414 **3.2 WMOC – MAR02**

For this warm mixed-phase cloud case, the surface accumulated precipitation is 415 suppressed by increasing CCN when CCN are lower than 1000 cm⁻³ (Fig. 14a), which is 416 417 different from the case of CMOC where the sign of CCN impact on precipitation depends on INP 418 concentration. This is because the clouds in this WMOC behave similarly as warm clouds due to 419 less efficient ice nucleation at the warm cloud temperatures. When CCN are lower than 1000 cm⁻ 420 ³, the large decrease of warm rain (Fig. 14b) overpowers the slight changes of snow precipitation 421 (Fig. 14c). Similar to the CMOC case, we see a drastic increase of surface precipitation from 422 CCN1000 to CCN3000, also due to drastic increase of snow precipitation. Increasing INPs 423 enhances surface precipitation in a more significant manner than that in CMOC. In other words, 424 the WMOC is more sensitive to INPs than the CMOC.

425 The in-cloud microphysical properties also show similar results as for the CMOC: the 426 steep increases of the snow mass and cloud water mixing ratios from CCN1000 to CCN3000 427 (Fig. 15). We have done the same investigation as in Section 3.1.1, and found the mechanism 428 causing the increased cloud water and the snow production is similar as that in CMOC, that is, 429 increasing CCN forms more shallow clouds at the large area of valley and foothills, which 430 induces a change of local circulation significantly through more latent heat release, which in turn increases the zonal transport of moisture to the windward slope of the mountains. Additionally, 431 432 more abundant warm rain is present at the wide valley area in this case when CCN is low (30 cm⁻ 433 ³) compared with the CMOC. The suppression of warm rain as CCN increase is very significant as shown in Figs. 14b and 15. Over the Mountain, this suppression increases Q_c and allows more 434 435 cloud water to be transported to the higher altitudes along the slope where immersion freezing is 436 able to occur at lower temperatures. Ice multiplication through the Hallet-Mossop

437 parameterization (Hallet and Mossop, 1974) in this WMOC contributes to ice particle concentration by 10-15% when CCN are 30 cm⁻³ and INPs are 1 cm⁻³ in our model simulation 438 439 with the fast version of SBM in which ice habits are not considered. Therefore, as more ice 440 particles form from immersion freezing when CCN increase, the ice multiplication processes 441 would further increase ice crystal formation although the contribution is relatively small in the 442 model simulation. Past observation studies suggested that ice multiplication through rime-443 spintering does occur in the orographic mixed-phase clouds of this region (Marwitz 1987; 444 Rauber 1992). We do not yet have a clear understanding of the importance of this process in 445 contributing to ice formation in reality. After more ice particles form, the subsequent ice 446 depositional and riming growth processes form efficient snow precipitation. The CCN impact on 447 local circulation change is more significant in this case compared with the CMOC, probably due 448 to much more shallow warm clouds in the valley.

449 Different from the CMOC case, riming is a more efficient ice growth process to form 450 snow than deposition in this case except when INP concentrations are extremely high (100 cm^{-3}) 451 where both riming and deposition contribute in a similar magnitude (Fig. 16). In addition, the 452 riming rate is increased as INP concentrations increase, which is opposite to that of CMOC. This 453 is because the WMOC is ice-limited and there are not enough ice particles to collide with liquid 454 particles when INP numbers are low, therefore, increasing INPs boosts ice particles and allows 455 more riming to occur. In contrast, the CMOC case is liquid-limited, so increasing INPs reduces 456 liquid particles available for riming due to ice depositional growth. We also see that 457 condensation and evaporation rates are generally more than 2 times larger in this case compared 458 with CMOC and both rates increase more significantly with CCN concentration in this WMOC. 459 This is related to the dominance of liquid clouds in the WMOC. The more significant increase of

460 condensation by increasing CCN compared with the CMOC is likely a result of the more 461 significant change of the local circulation that is associated with more shallow clouds forming at 462 the valley. Increasing INP number concentrations reduces evaporation simply because of the 463 reduction of liquid due to the increased deposition and riming.

Similarly as in the CMOC, increasing CCN enhances the WBF process for this WMOC as more droplet evaporation and ice deposition occur (Figs. 17a and 17b). With the increase of CCN, the domain-mean riming rate is not changed much until CCN of 1000 cm⁻³ (Fig. 16e), but the riming rate in the WBF regime is increased (Fig. 17c), possibly due to larger ice particles resulting from stronger deposition growth in the WBF regime.

469 Similar results regarding CCN and INP impact on supercoooled water content are 470 obtained in the WMOC case as in the CMOC case: increasing INPs dramatically reduces SCW 471 and increases cloud glaciation temperature, while increasing CCN has the opposite effect with 472 much smaller significance (Fig. 12b). Compared with the CMOC, the effects of INP on SCW are 473 a little smaller but CCN effects are a little larger. The liquid phase fraction (number fraction of cloudy grid points for which the liquid represents 99% or more of the condensate mass) 474 475 decreases significantly as INPs increase (Fig. 13b). Correspondingly the fractions of the mixed-476 phase and ice phase cloud volumes increase due to increased ice nucleation. Similar to the 477 increased riming as INPs increase, the mixed-phase fraction is increased as well in the WMOC, 478 which is opposite to the case for CMOC, as a result of the ice-limited condition in the WMOC 479 versus the liquid-limited condition in the CMOC. Note that INP effects are more significant at 480 higher INP concentrations in this case, while in CMOC the sensitivity decreases as INP increases, 481 suggesting that the optimal INP concentration for the maximum INP impact is higher in warmer 482 clouds than the colder clouds, because of less efficient ice formation at the warmer cloud

483	temperatures. The CCN impacts on cloud phase are more significant in this WMOC compared
484	with those in CMOC. The decreased liquid cloud fraction with the increase of CCN is a
485	consequence of the large increase of ice phase fraction resulting from more active cold-cloud
486	processes, since the total cloud fraction sums up to 1 (Fig. 13b).

- 487
- 488 **4. Conclusions and Discussion**

489 Extending the previous study of Fan et al. (2014), we conducted new simulations at 490 higher resolution and further sensitivity studies based around the same two mixed-phase 491 orographic clouds forming on the Sierra Nevada barrier under the influence of atmospheric rivers 492 that were our focus from the CalWater 2011 field campaign, to quantify the response of 493 precipitation to changes of CCN and INP and to examine CCN and INP impacts on SCW and 494 cloud phases. The two mixed-phase cloud cases have contrasting thermodynamics and dynamics: 495 FEB16 has cold cloud temperatures and northwesterly wind flow at lower-levels (i.e., CMOC), 496 while MAR02 has about 10 °C warmer cloud temperatures and southerly wind flow (i.e., 497 WMOC).

It is found that, in the CMOC case, deposition contributes more significantly to snow production than the riming because deposition process is efficient at the cold cloud temperatures (from -22 to -32 °C) in this case. In the WMOC, riming generally contributes more significantly because the deposition growth process is less efficient at the warmer temperatures (generally warmer than -20 °C in this case), except in the extremely high INP case where both riming and deposition contribute similarly.

504 We find that increasing INP concentrations enhances snow precipitation on the windward 505 slope of the Sierra Nevada Mountains in both CMOC and WMOC cases. With the increase of

506 INPs, the increased ice nucleation via immersion freezing enhances snow formation by 507 intensifying depositional growth of ice in the CMOC while both deposition and riming 508 contribute in the WMOC. Increasing INPs reduces riming in the CMOC, because of the liquid-509 limited condition in which more efficient depositional growth at higher INP number 510 concentrations glaciates clouds and reduces liquid particles available for riming. However, in the 511 ice-limited conditions of WMOC, increasing INPs boosts ice particle concentrations so that more 512 riming can occur in a liquid-rich condition. For the same reason, increasing INPs suppresses the 513 WBF processes due to reduced liquid particles.

514 The CCN impacts on precipitation are complicated, depending on cloud temperature, and concentrations of CCN and INP. When CCN are lower than 1000 cm⁻³, boosting CCN 515 516 concentrations slightly increases snow precipitation, but the total precipitation can be increased 517 or decreased depending on INP concentrations in the CMOC. In contrast, in the WMOC, 518 increasing CCN suppresses the total precipitation due to the large suppression of warm rain 519 production. We find a drastic increase of snow precipitation by increasing CCN when CCN are high (1000 cm⁻³ or larger), consistently in both CMOC and WMOC, as a result of increased 520 521 deposition and riming rates. The mechanism by which this occurs is through increasing CCN 522 forming more shallow clouds at the wide valley area and foothills, which induces a change of 523 local circulation through more latent heat release and increases the zonal transport of moisture to 524 the windward slope of the Mountains. This results in much more invigorated mixed-phase clouds 525 with enhanced deposition and riming processes and therefore much more snow precipitation. 526 Additionally, over the mountains, the suppression of warm rain as CCN increase allows more 527 cloud droplets to be transported to the higher altitudes where immersion freezing is able to occur 528 efficiently, contributing to the enhanced snow as well. This effect is most significant when warm

529 rain is completely shut off at CCN of 1000 cm^{-3} and higher.

530 Increasing INP concentrations dramatically reduces supercooled water content and 531 increases cloud glaciation temperature, while increasing CCN has the opposite effect but with 532 much smaller significance. As expected, the fraction of liquid phase clouds is decreased and the 533 ice phase fraction is increased by increasing INP in both cases. However, we see a decreased 534 fraction of mixed-phase clouds by INP in the CMOC but increased in the WMOC, relating to the 535 liquid-limited condition in the former where increasing ice formation enhances cloud glaciation, 536 while the ice-limited condition in the latter in which more liquid clouds are converted to mixed-537 phase clouds as INPs increase. Compared with the effects of INPs, the magnitudes of CCN 538 effects on SCW and cloud phases are much smaller and the signs are opposite. Increasing CCN 539 generally enhances SCW in both cases. The relative fractions of cloud phases are not much 540 impacted by CCN in the CMOC, except when INP is very low (i.e., 0.1 cm⁻³). However, in the 541 WMOC, increasing CCN evidently decreases liquid cloud fraction but increases ice phase 542 fraction. Thus, cloud phases in the WMOC have a large sensitivity to CCN compared with 543 CMOC.

544 This study provides a better understanding of the CCN and INP effects on orographic 545 mixed-phase cloud properties and precipitation. The result that CCN dramatically increase snow precipitation over the mountains when CCN are high (1000 cm⁻³ or larger) as a result of modified 546 547 cloud properties at the valley and foothills is different from previous modeling studies in the 548 literature. The mechanism for the drastic increase of the snow precipitation by CCN at the very 549 polluted condition is new, and it suggests a strong impact of the shallow clouds at the valley and 550 foothills on the mixed-phase clouds and precipitation over the mountains. It is worthy noting that 551 we do not see such a significantly increased precipitation by CCN in the sensitivity tests without

552 ice-related processes or without topography, suggesting that ice processes in the mixed-phase

clouds and orographically-forced dynamics are the key factors for such CCN effects.

Over the region of Sierra Nevada Mountains, CCN of above 1000 cm⁻³ would be an 554 555 extreme condition. Therefore, this mechanism would not occur usually and the change of precipitation would not be much when CCN is less than 1000 cm⁻³ as shown in Fig. 2a and 14a 556 557 in the normal conditions over this region. It is shown precipitation suppression by CCN in the 558 relatively warm situations, in agreement with the observations of Rosenfeld and Givati (2006). However, for many polluted regions such as China and India where CCN of above 1000 cm⁻³ are 559 560 quite common, this mechanism may have very important implications for orographic 561 precipitation extremes and water cycles.

It should be noted that the results of CCN and INP impacts on the precipitation and supercooled water content may represent an upper limit since the major ice nucleation in the simulations is through immersion freezing that converts largest liquid drops into ice or snow directly when ice nucleation occurs, leading to very efficient conversion of liquid to ice/snow and then strong ice growth processes to form snow.

567 In our study, we do not see significant spillover effect of snowfall (i.e., decrease at the 568 windward slope and increase at the leeside slope by increasing CCN) as found in Saleeby et al. 569 (2011). Precipitation mainly forms on the windward slope of the Sierra Nevada Mountains and 570 the increase of the snow precipitation is more significant on the windward slope than on the lee 571 side in both cases. The different results between our study and Saleeby et al. (2011) could be 572 related to different locations of the clouds over the mountain and/or different mountain 573 topography, or the presence of a low-level barrier jet in the atmospheric river environment that 574 reduces the cross barrier flow.

575

576 Acknowledgements

- 577 This study was supported by the California Energy Commission (CEC) and the Office of Science
- 578 of the U.S. Department of Energy as part of the Regional and Global Climate Modeling program.
- 579 PNNL is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-
- 580 76RLO1830.

581

582 References

- 583 Ault, A. P., Williams, C. R., White, A. B., Neiman, P. J., Creamean, J. M., Gaston, C. J., Ralph,
- F. M., and Prather, K. A.: Detection of Asian dust in California orographic precipitation, J.
 Geophys. Res., 116, D16205, doi:10.1029/2010JD015351, 2011.
- Bao, J.-W., Michelson, S. A., Neiman, P.J., Ralph, F. M., and Wilczak, J. M.: Interpretation of
 enhanced integrated water vapor bands associated with extratropical cyclones: Their
- formation and connection to tropical moisture, Mon. Wea. Rev., 134, 1063-1080,
- 589 doi:10.1175/MWR3123.1, 2006.
- 590 Cesana, G., and Chepfer, H.: Evaluation of the cloud thermodynamic phase in a climate model
- using CALIPSO-GOCCP, J. Geophys. Res. Atmos., 118, 7922–7937,
- 592 doi:10.1002/jgrd.50376, 2013.
- 593 Chen, Y.-C., Christensen, M. W., Diner, D. J., and Garay, M. J.: Aerosol-cloud interactions in
- ship tracks using Terra MODIS/MISR: J, Geophys. Res., 120, 2819-2833,
- doi:10.1002/2014jd022736, 2015.
- 596 Cotton, W., Tripoli, G., Rauber, R., and Mulvihill, E.: Numerical simulation of the effects of
- 597 varying ice crystal nucleation rates and aggregation processes on orographic snowfall, J.
- 598 Climate Appl. Meteor., 25, 1658–1680, 1986.
- 599 Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White,
- A. B., Ralph F. M., Minnis P., Comstock, J. M., Tomlinson, J. M., and Prather, K. A.: Dust
- and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western
- 602 U.S., Science, 339, 1572-1578, DOI: 10.1126/science.1227279, 2013..
- 603 DeMott, P. J., Prenni, A. J., McMeeking, G. R., Tobo, Y., Sullivan, R. C., Petters, M. D.,
- Niemand M., Möhler, O., and Kreidenweis, S. M.: Integrating laboratory and field data to
- quantify the immersion freezing ice nucleation activity of mineral dust particles, *Atmos.*
- 606 Chem. Phys., 15, 393–409, 2015.
- 607 Fan, J., Leung, L. R., DeMott, P. J., Comstock, J. M., Singh, B., Rosenfeld, D., Tomlinson, J. M.,
- 608 White, A., Prather, K., Minnis, P., Ayers, J. A., and Min, Q.: Aerosol Impacts on California
- 609 Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range
- 610 Transported Dust, Atmos. Chem. Phys., 14, 81-101, 2014.

- Fan, J., Leung, L. R., Li, Z., Morrison, H., Chen, H., Zhou, Y., Qian, Y., and Wang, Y.: Aerosol
- 612 impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics,
- 613 J. Geophys. Res., 117, D00K36, doi:10.1029/2011JD016537, 2012.
- 614 Fan, J., Ovtchinnikov, M., Comstock, J., McFarlane, S. A., and Khain, A.: Ice Formation in
- 615 Arctic Mixed-Phase Clouds Insights from a 3-D Cloud-Resolving Model with Size-
- 616 Resolved Aerosol and Cloud Microphysics, J. Geophys. Res., 114, D04205,
- 617 doi:10.1029/2008JD010782, 2009.
- Fan, J., Zhang, R., Li, G., and Tao, W.-K.: Effects of aerosols and relative humidity on cumulus
 clouds, J. Geophys. Res., 112, D14204, doi:10.1029/2006JD008136, 2007.
- 620 Fridlind, A. M., Ackerman, A. S., McFarquhar, G., Zhang, G., Poellot, M. R., DeMott, P. J.,
- 621 Prenni, A. J., and Heymsfield, A. J.:, Ice properties of single-layer stratocumulus during the
- 622 Mixed-Phase Arctic Cloud Experiment: 2. Model results, J. Geophys. Res., 112, D24202,
- 623 doi:10.1029/2007JD008646, 2007.
- Hallett, J., and S. C. Mossop: Production of secondary ice particles during the riming process,
 Nature, 249(5452), 26-28, 1974.
- 626 Ilotoviz E., Khain, A. P., Benmoshe, N., Phillips, V. T. J., and Ryzhkov, A.V.: Effect of
- Aerosols on Freezing Drops, Hail, and Precipitation in a Midlatitude Storm, Journal of the
 Atmospheric Sciences, 73(1), 109-144, 2016.
- Jirak, I. L., and Cotton, W. R.: Effect of air pollution on precipitation along the Front Range of
 the Rocky Mountains, J. Appl. Meteor. Climatol., 45, 236–245, 2006.
- Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., and Eaton B.,
- Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using
 spaceborne lidar observations, J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024699,
- 634 2016.
- Khain, A. P., Pokrovsky, A., Pinsky, M., Seifert, A., and Phillips, V.: Simulation of effects of
 atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics
 mixed-phase cumulus cloud model. Part I: Model description and possible applications, J.
- 638 Atmos. Sci., 61, 2963–2982, 2004.
- 639 Khain, A., Leung. L. R., Lynn, B., and Ghan, S.: Effects of aerosols on the dynamics and
- 640 microphysics of squall lines simulated by spectral bin and bulk parameterization schemes, J.
- 641 Geophys. Res., 114, D22203, doi:10.1029/2009JD011902, 2009.

- 642 Koren, I., Dagan G., and Altaratz O.: From aerosol-limited to invigoration of warm convective
- 643 clouds. Science, 344, 1143-1146, doi:10.1126/science.1252595, 2014.
- Li, G., Wang, Y., and Zhang, R.: Implementation of a two-moment bulk microphysics scheme to
- the WRF model to investigate aerosol-cloud interaction, J. Geophys. Res., 113, D15211,
- 646 doi:10.1029/2007JD009361, 2008.
- Lowenthal, D. H., Borys, R. D., Cotton, W., Saleeby, S., Cohn, S. A., and Brown, W. O. J.: The
- altitude of snow growth by riming and vapor deposition in mixed phase orographic clouds,
 Atmos. Environ., 45(2), 519–522, doi:10.1016/j.atmosenv.2010.09.061, 2011.
- 650 Lynn, B., Khain, A., Rosenfeld, D., and Woodley, W. L.: Effects of aerosols on precipitation
- 651 from orographic clouds, J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537, 2007.
- Marwitz, J. D., Deep Orographic Storms over the Sierra Nevada. Part II: The Precipitation
 Processes, J. Atmos. Sci., 44(1), 174–185, 1987.
- Meyers, M. P., DeMott, P. J., and Cotton, W. R.: New primary ice-nucleation parameterizations
 in an explicit cloud model, J. Appl. Meteor., 31, 708–721, 1992.
- 656 Muhlbauer, A., and Lohmann, U.: Sensitivity studies of aerosol cloud interactions in mixed-
- phase orographic precipitation, J. Atmos. Sci., 66(9), 2517–2538,
- 658 doi:10.1175/2009JAS3001.1., 2009.
- 659 Neiman, Paul J., Sukovich, E. M., Ralph, F. M., Hughes, M.: A Seven-Year Wind Profiler-
- Based Climatology of the Windward Barrier Jet along California's Northern Sierra Nevada.
- 661 Mon. Wea. Rev., 138, 1206–1233, 2010.
- Pincus, R., and Baker, M. B.: Effect of Precipitation on the Albedo Susceptibility of Clouds in
 the Marine Boundary-Layer. Nature, 372, 250-252, doi: 10.1038/372250a0, 1994.
- Ralph, F. M., Neiman, P. J., Kiladis, G. N., Weickman, K., and Reynolds, D. W.: A multi-scale
- observational case study of a Pacific atmospheric river exhibiting tropical-extratropical
- connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 1169-1189,
- doi:10.1175/2010MWR3596.1, 2011.
- Rauber, R.: Microphysical Structure and Evolution of a Central Sierra Nevada Orographic Cloud
 System, J. Appl. Meteor., 32, 3-24, 1992.
- 670 Rosenfeld, D., and Givati, A.: Evidence of orographic precipitation suppression by air pollution-
- 671 induced aerosols in the western United States, J. Appl. Meteorol. Climatol., 45(7), 893–911,
- 672 doi:10.1175/JAM2380.1., 2006.

- 673 Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A.,
- and Andreae, M. O.: Flood or drought: How do aerosols affect precipitation?, Science, 321,
- 675 1309 1313, doi:10.1126/science.1160606, 2008.
- 676 Rosenfeld, D., Yu, X., Liu, G., Xu, X., Zhu, Y., Yue, Z., Dai, J., Dong, Z., Dong, Y., and Peng,
- 677 Y.: Glaciation temperatures of convective clouds ingesting desert dust, air pollution and
- 678 smoke from forest fires, Geophys. Res. Lett., 38, L21804, doi:10.1029/2011GL049423, 2011
- 679 Rosenfeld, D., Rei, Chemke, DeMott, P., Sullivan, R. C., Rasmussen, R., McDonough, F.,
- 680 Comstock, J., Schmid, B., Tomlinson, J., Jonsson, H., Suski, K., Cazorla, A., and Prather, K.,
- The common occurrence of highly supercooled drizzle and rain near the coastal regions of
- the western United States, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50529, 2013.
- 683 Saleeby, S. M., Cotton, W. R., and Fuller, J. D. The Cumulative Impact of Cloud Droplet
- Nucleating Aerosols on Orographic Snowfall in Colorado, Journal of Applied Meteorology
 and Climatology, 50(3), 604-625, 2011.
- 686 Saleeby, S. M., Cotton, W. R., Lowenthal, and Messina, J.: Aerosol Impacts on the
- 687 Microphysical Growth Processes of Orographic Snowfall, J. Appl. Meteorol. Climatol., 52,
 688 834–850, 2013.
- Shen, X., Wang, Y., Zhang, N., and Li, X.: Precipitation and cloud statistics in the deep tropical
 convective regime, J. Geophys. Res., 115, D24205, doi:10.1029/2010JD014481, 2010.
- Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols on convective
- 692 clouds and precipitation, Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369, 2012.
- Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z.,
- Hara, Y., and Sugimoto, N.: Asian dust transported one full circuit around the globe, Nat.
 Geosci., 2(8), 557–560, doi:10.1038/ngeo583, 2009.
- Kiao, H., Yin, Y., Jin, L., Chen, Q., and Chen, J.: Simulation of the effects of aerosol on mixed-
- 697 phase orographic clouds using the WRF model with a detailed bin microphysics scheme, J.
- 698 Geophys. Res. Atmos., 120, 8345–8358, doi:10.1002/2014JD022988, 2015.
- 699 Young, K. C.: A numerical simulation of wintertime, orographic precipitation. Part I:
- Description of model microphysics and numerical techniques. J. Atmos. Sci., 31,1735–1748,
- 701 1974.

Yuan, T., Remer, L. A., and Yu, H.: Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train. Atmos. Chem. Phys, 11, 704 7119-7132, 2011.
Zipori, A., Rosenfeld, D., Tirosh, O., Teutsch, N., and Erel, Y.: Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures, J. Geophys. Res. Atmos., 120, 9653–9669, doi:10.1002/2015JD023270, 2015
708
709 710

- 711 Table 1 Model simulations that are run for different CCN and dust concentrations. Please note
- that INP denotes dust/bio particle number concentration with particle size > $0.5 \mu m$ for use in the
- parameterization of DeMott et al. (2015), as described in FAN2014.
- 714

		INP (cm ⁻³)			
		0.1	1	10	100
	30	x	x	x	x
	100	x	x	x	x
CCN (cm⁻³)	300	x	x	x	x
	1000	x	х	x	x
	3000	x	x	x	x

715

Fig. 1 (a) The simulation domain (yellow box), and the vertical profiles of (b) the temperature, (c) RH, and (d) water vapor for CMOC (FEB16) and WMOC (MAR02).(b)-(d) are domain mean values during the model simulation time period. The blue box in (a) denotes the domain of 2 km resolution simulations done in FAN2014.

Fig. 2 (a) The domain-mean accumulated surface precipitation, and the accumulated (b) rain and (c) snow mass concentrations at the lowest model level (~ 40 m above the surface) during the simulation time period for CMOC. All domain- mean calculation excludes the lateral boundary grid points in this study.

Fig. 3 The number concentrations (top row) and mass mixing ratios (bottom row) of droplet (1st column), rain (2nd column), cloud ice (3nd column), and snow (4th column) for CMOC. The data are averaged over the grid points over the domain by excluding the lateral boundary grid points below the 7 km altitude and over the simulation time by excluding the initial two hours.

Fig. 4 The microphysical process rates of (a) condensation, (b) evaporation, (c) deposition, (d) sublimation, and (e) riming for CMOC. The model outputs for the process rates are in every 6 min frequency, and the data shown in the plots were processed in the same way as Fig. 3.

Fig. 5 (a) The ratio of evaporation occurring in the WBF regime that is defined as the grid points where the WBF processes occur) to the total evaporation for the CMOC case. (b) and (c) are the same as (a), except for deposition and riming, respectively. Data were processed in the same way as Fig. 3.

Fig. 6 Vertical profiles of (a) total nucleated ice particles, (b) the total grid points where ice nucleation occurs, (c) the ice nucleation rate averaged over the total ice nucleation grid points, (d) domain-mean cloud water content (Q_c), (e) the total grid points that have liquid (i.e., the liquid water mixing ratio is larger than 1.e-5 kg kg⁻¹), and (f) the domain-mean condensate rate during 1400-1600 UTC for the CMOC case.

Fig. 7 (a) The fraction of updraft grid points with vertical velocity larger than 1 m s^{-1} relative to the total domain grid points, and (b) the mean updraft velocity for the grid points larger than 1 m s^{-1} over 1400-1600 UTC for the CMOC case.

Fig. 8 The west-east cross section of (a) cloud water content, (b) rain water content, and (c) ice and snow water content for CCN30 (left) and CCN3000 (right) with INP of 1 cm⁻³ at 1400 UTC averaged over the 20 km wide area zonally for the CMOC.

Fig. 9 Differences of (a) water vapor, (b) RH, (c) temperature, (d) U-component of the wind, (f) V- component of the wind, and (f) condensation rate between CCN3000 and CCN30 with INP of 1 cm⁻³ for the CMOC. The cross section area is same as Fig. 8. The time is at 1400 UTC except that the condensation rate used for the difference calculation is the sum of that from 1300-1400 UTC to show an accumulated value over 1-hour period before 1400 UTC.

Fig. 10 The spatial distribution of wind field at about 1.7 km above the ground for (a) CMOC and (b) WMOC at 1400 UTC. The red color denotes CCN3000 and black color denotes CCN30 with INP of 1 cm⁻³. The blue cycle is to mark the area with significant changes of wind (i.e., over the wind ward slope of the Mountain).

Fig. 11 Results for the two simulations without ice-related microphysics, i.e., CCN30IN1_noice and CCN3000IN1_noice, which are based on CCN30IN1 and CCN3000IN1, respectively, for the WMOC case: (a) the domain averaged accumulated precipitation, and (b) the spatial distribution of wind field at about 1.7 km above the ground at 1400 UTC. The red color on (b) denotes CCN3000IN1_noice and black color denotes CCN30IN1_noice.

Fig. 12 The liquid mass fraction vs. temperature for the (a) CMOC and (b) WMOC over the simulation time by excluding the initial two hours. The liquid mass fraction is calculated for each temperature bin of a 2 K interval based on the total liquid water mixing ratio (droplets + raindrops) divided by the total condensate mixing ratio. The different line styles denote different CCN concentrations and different colors denote different INP concentrations.

Fig. 13 The fraction of the liquid phase (left), ice phase (middle), and mixed-phase (right) for the (a) CMOC and (b) WMOC over the simulation period by excluding the initial two hours. The cloud phase for each cloud grid point that has a total condensate mass of larger than 1×10^{-5} kg kg⁻¹ is identified based on the ratio of liquid to ice water mixing ratios. If the ratio is larger than 0.99 or smaller than 0.01, the grid point is identified as liquid phase or ice phase, respectively. Between these values is identified as mixed-phase. The fraction for each cloud phase is calculated by the number of grid points identified for the phase divided by the total number of the grid points of all three phases. So, the fractions of all three add up to 1 for each simulation case.

Fig. 14 Same as Fig. 2, except for the WMOC case.

Fig. 15 Same as Fig. 3, except for the WMOC.

Fig. 16 Same as Fig. 4, except for the WMOC.

Fig. 17 Same as Fig. 5, except for the WMOC.