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Abstract. Observations of trace gases from space-based instruments offer the opportunity to constrain chemical and weather 

forecast and reanalysis models using the tools of data assimilation. In this study, Observing System Simulation Experiments 

(OSSEs) are performed to investigate the potential of high space and time resolution column measurements as constraints on 

urban NOx emissions. The regional chemistry-meteorology assimilation system where meteorology and chemical variables 

are simultaneously assimilated is comprised of a chemical transport model, WRF-Chem, the Data Assimilation Research 15 

Testbed and a geostationary observation simulator. We design OSSEs to investigate the sensitivity of emission inversions to 

the accuracy and uncertainty of the wind analyses and the emission updating scheme. We describe the overall model 

framework and some initial experiments that point out first steps toward an optimal configuration for improving our 

understanding of NOx emissions by combining space-based measurements and data assimilation. Among the findings we 

describe are the dependence of errors in the estimated NOx emissions on the wind forecast errors, showing that wind vectors 20 

with root mean standard error (RMSE) below 1 m/s allow inference of NOx emissions with RMSE less than 30 mol/(km
2
·hr) 

at the 3 km scale of the model we use. We demonstrate that our inference of emissions is more accurate when we 

simultaneously update both NOx emissions and NOx concentrations instead of solely updating emissions. Further, based on 

our analyses, we recommend carrying out meteorology assimilations to stabilize NO2 transport from the initial wind errors 

before starting the emission assimilation. We show that wind uncertainties (calculated as a spread around a mean wind) are 25 

not important for estimating NOx emissions when the wind uncertainties are reduced below 1.5 m/s. Finally, we present 

results assessing the role of separate vs. simultaneous chemical and meteorological assimilation in a model framework 

without covariance between the meteorology and chemistry.  
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1 Introduction 

Weather and climate act in concert with emissions to establish the concentrations of chemicals and aerosols in the boundary 

layer. To understand the factors that affect public health and the productivity of agriculture and animal husbandry, we 

require accurate models of both emissions and the boundary layer meteorology to define the surface layer concentrations that 5 

determine the exposure of humans, animals and plants to chemicals and aerosol. There remain substantial uncertainties in 

even the best models of emissions and even more so in the best models of boundary layer dynamics (for example, Hu et al., 

2010). Current uncertainties in the surface NO2 emission inventories in the U.S. are thought to be of order 50% (Krotkov et 

al., 2016; Travis et al., 2016). Comparable uncertainties affect estimates of the planetary boundary layer (PBL) height and 

mixing rates that redistribute emissions from the surface (Kretschmer et al., 2012, 2014; Lauvaux and Davis, 2014).  10 

Over the last decade, there has been increased use of data assimilation techniques to constrain model forecasts and 

reanalyses of atmospheric constituents (e.g. Arellano Jr. et al., 2007; Edwards et al., 2009; Claeyman et al., 2011; Lahoz et 

al., 2012; Pagowski and Grell, 2012; Bowman, 2013; Gaubert et al., 2014; Hache et al., 2014; Saide et al., 2014; Zoogman et 

al., 2014; Barré et al., 2015; Bousserez et al., 2016; Mizzi et al., 2016). Assimilation of chemicals can be extended to 

optimize model inputs, such as emissions thereby providing insight into how to improve the processes that govern the model 15 

performance (e.g. Elbern et al., 2007; Barbu et al., 2009; Chatterjee et al., 2012; Miyazaki et al., 2012b; Koohkan et al., 

2013; Yumimoto, 2013; Cui et al., 2015; Guerrette and Henze, 2015; Turner et al., 2015).  

To date most efforts to incorporate satellite remote sensing in data assimilation have focused on long-lived chemicals such as 

CO, CH4 or CO2 and regional and continental scale aspects of emissions. Processes that govern variability of emissions 

within an urban center require new approaches that use high spatial and temporal resolution models and observations. NO2 20 

has a lifetime of only a few hours and thus exhibits concentration changes that are substantial on spatial scales of 50-75 km. 

Observations of variations in NO2 are thus uniquely suited to study emissions and meteorology at the scales of cities. 

Averaged measurements of NO2 have been shown to be promising for evaluation of absolute emissions and trends (Russell 

et al., 2012; Miyazaki et al., 2016) as well as providing information on the coupling of boundary layer winds to chemical 

lifetime (Beirle et al., 2011; Valin et al., 2013). Current space based instruments have resolution that is too low to provide 25 

direct information on lifetimes and emissions from a single overpass. Instead, analyses have focused on averages of the data 

that wash out some of the key details about emission location and chemical lifetime.  

New instruments with spatial resolution of a few kilometers will soon change that situation. The TROPOspheric Monitoring 

Instrument (TROPOMI, launch date mid 2017) will be the first to provide spatial resolution sufficient to observe these NO2 

changes on a single overpass. TROPOMI will view the atmosphere from low earth orbit and provide one image per day. We 30 

also anticipate the launch of three geostationary satellites, the Geostationary Environmental Monitoring Spectrometer 

(GEMS), the Tropospheric Emissions: Monitoring of POllution (TEMPO) and Sentinel-4, which will provide observations at 
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higher temporal resolution with hourly repeat at locations in Asia, North America and Europe, respectively (Zoogman et al., 

2017). The spatial resolution of these new low earth orbit (LEO) and Geostationary (GEO) instruments will be sufficient to 

provide ~10 samples within the advection distance that is determined by the chemical lifetime of NO2. This dense sampling 

will permit characterization of multi-exponential or non-exponential behavior where current analyses are typically forced to 

assume single exponential decay. To take full advantage of these measurements within a data assimilation system, we will 5 

need to model the NO2 column at similar spatial resolution. This is both because the spatial scales of important variation in 

atmospheric plumes are on the order of 4 km and because of the steep non-linearity in the lifetime of NO2 as a function of 

the NO2 concentration. For example, biases of 34% (3.3 to 5.0×10
15

 molecules/cm
2
) are found in the modeled averaged NO2 

column over Los Angeles at resolutions of 96 km compared to 12 km. For a point source, such as a power plant, model 

convergence is observed only at a grid resolution of 4 km or smaller (Valin et al., 2011).  10 

In this study, we describe a high spatial and temporal resolution chemical transport ensemble data assimilation system with 

joint assimilation of meteorology and chemistry to adjust NOx emissions on scales consistent with the temporal scale of NOx 

evolution. We use that forecast/assimilation system to investigate the factors that influence the capability of TEMPO NO2 

observations to accurately constrain NOx emissions. Our long-term goal is to estimate hour-to-hour variations in NOx 

emissions at the scale of model grid point resolution (3 km) and to use these variations to understand the processes 15 

controlling the emissions. The remainder of this paper is organized as follows: In section 2, we describe the forecast/data 

assimilation system, the system setup, observations, and the TEMPO NO2 simulator – the simulation of column NO2 that 

would be observed by TEMPO. In section 3, we describe the experimental design including a series of assimilation 

experiments that guide optimization of the emission estimation performance.   In section 4, we assess the performance of 

meteorology and chemistry assimilation. We then discuss the results and provide insight into the potential accuracy of NO2 20 

emission fields derived from geostationary NO2 observations.  We conclude in section 5. 

2 The data assimilation system 

The forecast/data assimilation system used here is WRF-Chem/DART as described by Mizzi et al. (2016). It consists of the 

following elements: the forecast model, the assimilation engine, and observations of meteorological and chemical states to be 

assimilated. 25 

2.1 WRF-Chem model description 

The core meteorological and chemical forecast model is the regional online CTM WRF-Chem v3.4.1 

(www2.acd.ucar.edu/wrf-chem). The model domain is a one-way nest with an outer domain of 12 km resolution covering 

western North America and an inner domain of 3 km resolution focused on the city of Denver, CO (Figure 1). The 3 km 

domain is 660 km by 840 km. The model has 30 vertical levels between the surface and an upper boundary of 100 mb and 10 30 

levels within the boundary layer (~1.5 km). Simulations of meteorology on the outer domain are initialized and constrained 
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at the lateral boundary by North American Regional Reanalysis (NARR) data from National Centers for Environmental 

Prediction (NCEP). The NARR data have a native horizontal resolution of 32 km with 45 pressure levels and 3 h temporal 

resolution. We use the global chemical model output from MOZART to initialize the chemical simulation on the outer 

domain and to provide the chemical boundary condition. After a spin-up time of four days on the outer domain, the inner 

domain simulation is initialized and constrained through one-way nesting in both meteorology and chemistry.  5 

Anthropogenic emissions for WRF-Chem are from the National Emission Inventory (NEI) 2011 Version 1 at native 4×4 km
2
 

resolution. The NEI 2011 provides hourly-varying emission for a typical weekday in summertime. The emissions do not 

vary from day to day. Biogenic emissions are calculated online with the simulation results by Model of Emissions of Gases 

and Aerosols from Nature (MEGAN). Fire emissions are not included. We use the widely-used regional acid deposition 

model version 2 (RADM2) as the gas phase chemical mechanism (Stockwell et al., 1990). There are 59 species and 157 10 

reactions to represent both inorganic and organic chemical reactions under tropospheric conditions. It includes the chemical 

losses of NOx through reaction with OH radical to form nitric acid, and other NOx sinks as peroxyacyl nitrates and alkyl 

nitrate. 

2.2 DART ensemble assimilation system 

WRF-Chem/DART is a regional multivariate data assimilation system developed by the National Center for Atmospheric 15 

Research (NCAR) to analyze meteorological variables and chemical variables simultaneously (Mizzi et al., 2016). We use 

the Ensemble Adjustment Kalman Filter (EAKF) in DART to analyze the states with an ensemble size of 30. Details of the 

EAKF algorithm and its implementation in DART are documented in (Anderson, 2001; Anderson and Collins, 2007; 

Anderson et al., 2009). In this study the system is extended to assimilate synthetic TEMPO NO2 column observations. As 

emissions are not prognostic variables of the forecast model, we implement a state augmentation approach to include 20 

emissions in the state variables (Aksoy, 2006). The chemical state variables include the NO2 concentration, NOx emissions. 

The meteorological state variables are U, V, W, T, QVAPOR, QCLOUD, QRAIN, QICE, QSNOW (MU and PH are used in 

vertical coordinate transforms, T2, Q2, U10, V10, PSFC used for surface data assimilation forward operators.) based on the 

settings used in meteorology data assimilation. Definitions of these variables are taken from Romine et al. (2013), and are 

given in the Appendix. Adaptive spatially and temporally varying inflation is applied to the prior state to assist in 25 

maintaining the ensemble spread. We summarize the DART configuration details in Table 2. 

2.2.1 Spatial localization  

In ensemble methods the correlations among spatially remote variables in the prior ensemble are regarded as spurious 

correlations due to the small ensemble size (30). To compensate for this under-sampling issue, spatial localization is 

introduced to reduce the prior correlations based on the distance between the observed/modeled state variables (Houtekamer 30 

and Mitchell 2001). In this study, we apply the fifth-order distance-dependent Gaspari and Cohn (GC) function (Gaspari et 

al., 1999) to reduce the spurious impact of observations on spatially remote state variables. The scaling distance in the GC 
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function is defined by a half-width parameter, two times which is the distance where the GC function goes to zero. With a 

data assimilation window of one hour and a maximum wind speed of 3~5 m/s, an observation of column NO2 primarily 

reflects information about emissions that occurred during the last hour and within 10 km. We use the half-width distance in 

spatial localization as 10 km and demonstrate this as the optimal value based on sensitivity experiments with localization 

distances of 5 km, 10 km, 20 km and 50 km. Because of the high density of TEMPO NO2 observations (2×4.5 km
2
), the 5 

update of chemical state variables is mostly determined by the local observations. 

2.2.2 Variable localization  

Similar to the concept of spatial localization, variable localization techniques have been introduced (Arellano Jr. et al., 2007) 

to reduce spurious correlations among observations and different types of state variables. For example, for CO2 flux 

estimation, Kang et al. (2011) showed that the performance of data assimilation using a variable localization that zeros out 10 

the prior error covariance between meteorological variables and CO2 flux is better than using a standard full covariance 

approach. Here we isolate the influence of meteorological observations on chemical variables and vice versa.  

2.3 Initial and boundary condition ensemble  

We generate the initial chemical ensemble by adding the perturbations to the mean state of the fine domain forecast. In the 

ensemble method the generated ensemble should represent the error statistics of the initial guess of the model state (Evensen 15 

2003). The correlation between perturbations of chemical state variables is modeled by a simple isotropic exponential decay 

function with a characteristic correlation length of 50 km. For the meteorology ensemble, random perturbations were added 

to each member by sampling the NCEP background error covariance using the WRF Data Assimilation System 

(http://www2.mmm.ucar.edu/wrf/users/wrfda) (Barker et al., 2012). The options used for the WRFDA settings are 

summarized in Table 3. The parameter cv_option indicates the background error options in WRFDA. With cv_option = 3, 20 

we use the NCEP background error covariance, which is estimated in grid space by what has become known as the NMC 

method. The statistics are estimated with the differences of 24 and 48-hour GFS forecasts with T170 resolution, valid at the 

same time for 357 cases, distributed over a period of one year. The parameter je_factor is the ensemble covariance weighting 

factor. This factor controls the weighting component of ensemble and static covariances. The ensemble member lateral 

boundary condition perturbations are generated in a similar manner as the initial ensemble using the fixed-covariance 25 

perturbation technique. The boundary condition for the analysis time is adjusted to match the analysis from DART.  The 

tendencies for the later times in the forecast are adjusted to match the change in the boundary condition for the analysis time. 

2.4 Emission update scheme 

By including emissions in the ensemble state vector, emissions are estimated as hourly evolving parameters. Estimation of 

time-evolving emissions using data assimilation was first presented for carbon flux estimation (Kang et al., 2011, 2012). 30 

Such an approach provides emission information beyond an average for a specific time period. NOx emissions within cities 
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show significant variation within the urban core and between the urban core and the surrounding suburbs. The observed 

columns show strong spatial variation dominated by an emission hotspot that results from the combination of spatial patterns 

in emissions and the short chemical lifetime. The goal of this work is to constrain hourly evolving emissions at the native 

model resolution. Here we start with a simple case in which the emission error is a constant fraction at all times of day with 

the prior emissions set as 70% of the truth and we investigate the ability of assimilation to recover the original emissions. 5 

A challenge for updating the emissions in the augmented state vector is the absence of an emission forecast model to evolve 

the emission variables forward in time. The bottom-up inventory to be optimized provides hourly-resolved emissions for 

each model grid point. Instead of treating the emission variables of each hour at a specific location as independent 

parameters, we update the emission scaling factors at each assimilation cycle. In our emission update scheme, the TEMPO 

NO2 observations at time i are assimilated to generate a scaling factor for emissions at time i-1. In this way, the model-10 

observation difference in the NO2 column will correct the emission of an hour ago instead of the current emission. This 

approach is reasonable because errors in NO2 concentration result from errors in previous emissions. Considering the short 

NO2 lifetime of three hours in summer daytime, emissions from the previous hour have a large contribution to the NO2 total 

mass at the current time. For a given model grid point, we define the emissions of truth (e𝑖−1
𝑡 ), prior (e𝑖−1

𝑝𝑟𝑖𝑜𝑟
) and posterior 

(e𝑖−1
𝑝𝑜𝑠𝑡

) at time i − 1. Since we start the assimilation with 70% of true emissions, we have e𝑚
𝑝𝑟𝑖𝑜𝑟

= 0.7e𝑚
𝑡  for any time m. 15 

After assimilating observations at time i, we compute the scaling factor (𝑆𝑖−1 ) for emissions at time i − 1 as follows: 

𝑆𝑖−1 =  e𝑖−1
𝑝𝑜𝑠𝑡

/e𝑖−1
𝑝𝑟𝑖𝑜𝑟

. Then we update the prior emissions at time i as e𝑖
𝑝𝑟𝑖𝑜𝑟

= 𝑆𝑖−1 · e𝑖
𝑝𝑟𝑖𝑜𝑟

. This prescription enables us to 

derive spatial 2-D emission scaling factors which play the role of an emission forecast model. 

2.5 Synthetic meteorological and chemical observations 

Observations assimilated include meteorological observations and NO2 column retrievals from the TEMPO OSSE. For 20 

meteorological observations, we assimilated synthetic observations of temperature, wind and humidity from the NCEP 

Meteorological Assimilation Data Ingest System (MADIS) (https://madis.noaa.gov/). MADIS is a meteorological 

observational database and data delivery system that provides observations that cover the globe. MADIS ingests data from 

NOAA data sources and non-NOAA providers, decodes the data then encodes all of the observational data into a common 

format with uniform observational units and time stamps. For wind observations, the assimilated observation types include 25 

standard aviation routine weather report (METAR), wind profilers, aircraft-based observations (ACARS), national mesonet 

data and satellite data. Among them the mesonet wind data is the most abundant with ~1000 observations located in the 

mapping domain in Figure 2. The observation errors are the default values from the DART facility that are defined based on 

NCEP statistics (Romine et al., 2013) 

The GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission (Fishman et al., 2012) aims at improving our 30 

understanding of both coastal ecosystems and air-quality from regional to continental scales. As the first phase of the GEO-

CAPE implementation, TEMPO (Zoogman et al., 2017), launch date circa 2019, will provide hourly measurements of NO2, 
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HCHO, tropospheric ozone, aerosols, and cloud parameters during the daytime. TEMPO will measure solar back scattered 

light in the UV-Vis spectral range. Implemented on a geostationary platform, TEMPO retrievals will achieve hourly 

observations of NO2 vertical column density (VCD) at a native spatial resolution of 2×4.5 km during the day-lit period. 

TEMPO’s high spatiotemporal resolution will allow a more detailed assessment of emission inventories, e.g. urban scale and 

large power plant NO2 emissions and mobile emissions that show significant spatial and temporal variations due to urban 5 

transit patterns, than is possible with existing LEO observations. 

As the TEMPO has not been launched yet, we generate synthetic TEMPO NO2 observations by simulating the instrument’s 

observing characteristics. We carried out a model run, i.e. a forward integration of WRF-Chem for the period from July 2
nd

 

to July 7
th

 2014 with NO2 emissions specified by NEI 2011 (‘truth’).  In the NO2 retrieval algorithm, a layer dependent Box-

Air Mass Factor (BAMF) represents the sensitivity of the retrieved NO2 in a specific layer to the true value in the 10 

atmosphere. The BAMF of NO2, as an optically thin absorber, is a vector and determines the measurement sensitivity to NO2 

molecules at 35 pressure levels. In the calculation of BAMFs, we follow the latest version of the NASA standard product 

retrieval (Level 2, Version 2.1, Collection 3) algorithm (Bucsela et al., 2013) assuming the TEMPO measurement has similar 

characteristics to OMI. We assume clear-sky conditions for all observing scenes. Cloudy-sky scenes affect only the number 

of observations available as the cloudy scenes are usually discarded in the data filtering process. Without running a radiative 15 

transfer code, the elements of the BAMF vector are computed as a function of solar zenith angle (SZA), viewing zenith angle 

(VZA), relative azimuth angle (RAA), terrain reflectivity (Rt), terrain pressure (Pt), atmospheric pressure level, (p) and the 

NO2 profile (Bucsela et al., 2013). The viewing parameters are computed by simulating the viewing geometry based on the 

location of ground pixels in relation to the observing instrument. The geometry related parameters (SZA, VZA and RAA) are 

computed hourly for each TEMPO observation using Matlab functions sun_position.m and geodetic2aer.m with inputs of the 20 

location and time of each TEMPO observation, and the location (36.5°N, 100°W) and altitude (35,786 km) of the TEMPO 

sensor. The terrain reflectivity and terrain pressure are sampled from the WRF-Chem nature run (NR, see section 3) for each 

TEMPO pixel.  All the parameters have an hourly frequency consistent with the TEMPO temporal observing pattern. 

Consequently, the NO2 profile with high-spatial-temporal resolution captures the diurnal variation of NO2 and its urban-rural 

contrast. This contrast is essential to accurate interpretation of the measured spectrum (Russell et al., 2011; Laughner et al., 25 

2016). 

To generate synthetic TEMPO data, the modeled 3-D concentration fields from the NR are sampled in as similar a manner to 

the planned TEMPO measurements as the transport model permits: using the computed BAMF vertically; hourly frequency; 

2×4.5 km nadir resolution and variations following the Earth’s curvature horizontally. Figure 2 shows an example of the 

spatial distribution of TEMPO data over Denver, CO.  30 

We describe the observation error as a relative value (𝜎𝑟𝑒𝑙) and a random draw from a Gaussian distribution to avoid using a 

fixed value. The magnitude of the relative mean uncertainty of the NO2 column is different between clean and polluted areas 

(Boersma et al., 2004). We follow their categorization of clean versus polluted regions and summarize the mean and 

standard deviation of a Gaussian distribution for each scenario in Table 4. For polluted regions, we give mean uncertainty of 
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7.5%, which is lower than the 35% minimum in the OMI NO2 retrievals.  First, most of these errors are systematic affecting 

comparison of different cities but have smaller variation across a single, small area scene of observations. Second, a 

relatively lower observation error improves the efficiency of data assimilation and helps to examine the sensitivity to other 

parameters. Finally, as TEMPO is expected to be operational no sooner than 2018, it is reasonable to expect the retrieval 

error which is dominated by the air mass factor (AMF) in regions with large columns will be reduced as a result of future 5 

improvements in AMF simulation (Laughner et al., 2016). The synthetic observations assimilated are obtained by sampling 

the NR using the TEMPO observation simulator and adding observation error as y𝑜𝑏𝑠 =  N(y𝑡𝑟 , σ2) , where y𝑡𝑟  is the 

TEMPO NO2 observations sampled from the truth, and σ is the observation error standard deviation computed as σ =  y𝑡𝑟 ∙

𝜎𝑟𝑒𝑙 . 

3 Assimilation experiments 10 

We begin by performing OSSEs in the context of a perfect model. The original NEI 2011 is used as the emission input for 

the NR without any emission perturbation. We consider the NR as the true atmosphere and sample meteorological and NO2 

observations from the NR. The control run (CR) is a parallel model calculation to the NR and suffers from imperfect model 

input and parametrization. The differences between the NR and the CR in this study are the emission inputs and the initial 

conditions for the meteorology. We begin by creating a NR and a CR simulation on the outer domain of 12 km resolution 15 

(d01) without assimilating observations using a simulation setup as described above in section 2.1. We impose a difference 

to the CR by using emissions in the CR that are scaled to be 70% of the NR emissions. We apply the identical forecast model 

(WRF-Chem) for both the NR and the CR to isolate the behavior of the ensemble filter algorithm from the influence of the 

model errors. Then the NR and the CR on the inner domain of 3km (d02) are initialized from the corresponding d01 

simulations respectively on 06:00 local time (LT) on July 2
nd

 2014. At the time of initialization, the NR and CR on d02 share 20 

the same meteorological fields and differ in NOx concentrations due to different emission inputs. Our next step is to generate 

a 30-member ensemble from the CR. We use WRFDA to generate an ensemble in meteorological variables (Barker et al., 

2012). For chemical states, we give an ensemble in NOx emissions and concentrations using the method described above in 

section 2.3. The forecast of the CR ensemble is the prior estimate of the states and will be combined with the observations in 

the assimilation cycle to yield the posterior states. By comparing the posterior emissions with the “true emission”, we 25 

evaluate the data assimilation performance. We run assimilation experiments from 10:00 LT 2014/07/02 to 18:00 LT 

2014/07/05 with an assimilation window of one hour. We assimilate ~20,000 weather observations in each assimilation 

window and ~9,000 TEMPO NO2 column observations in each daytime assimilation window. 

We design a series of experiments to explore the optimal approach to estimate NOx emissions as shown in Table 1. In all 

experimental runs, we bias the CR initial emissions to be 30% below the reference emissions and examine the ability of the 30 

assimilation to recover the reference emissions. First, a reference assimilation run (REF) is conducted without including the 

meteorological ensemble so that the NR and CR ensembles have identical meteorological simulations. This shows the best 
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case scenario to constrain emissions assuming no errors associated with meteorology. In practice, the modeled meteorology 

is different from the true atmosphere due to errors in the model initial conditions, parameterizations and resolutions. In a 

more realistic simulation case labelled as ENS, we initialize both the meteorology and the NOx emissions using an ensemble 

in which both weather observations and TEMPO NO2 columns are assimilated. In ENS.1 the CR ensemble is generated by 

adding perturbations to the CR mean state. In this example, the CR ensemble mean meteorology is very close to the NR 5 

because CR and NR differ in NOx emissions only. For the chemistry, the assimilated TEMPO NO2 observations are allowed 

to update both the NO2 concentration and the NOx emissions every hour. In ENS.2 we allow NO2 observations to update 

NOx emissions but not the NOx concentrations and keep the meteorology assimilation the same as ENS.1. By comparing 

ENS.1 and ENS.2 we evaluate the additional benefits of updating concentrations when observations are assimilated to 

constrain emissions. In ENS.3, we use the meteorology of the next day to initialize the CR ensemble so that there is some 10 

difference between the CR ensemble mean and the NR in the meteorology. To be specific, the CR meteorology ensemble on 

2014/07/03 9:00 LT is used as the CR ensemble on 2014/07/02 9:00 LT. This is to mimic our imperfect knowledge of the 

atmospheric state and its uncertainty. ENS.1 and ENS.3 differ only in the meteorology of the initial ensemble. By comparing 

these two runs, we evaluate the sensitivity of the NO2 assimilation to the initialization of the meteorology. Our final 

experiment REA mimics a general approach to a chemistry-only data assimilation where the meteorology is extracted from 15 

an existing reanalysis. REA reinitializes the meteorological state every hour with the best estimate of meteorological states 

generated by ENS.1. By design, REA has a single run of meteorology but uses an ensemble of NO2 emissions and 

concentrations that are affected by assimilation of TEMPO NO2 observations.  As in ENS.1, REA includes simultaneous 

updates to emissions and concentrations. 

4 Results 20 

We evaluate the assimilation result by comparing with the NR states. We calculate the root mean square errors (RMSE) of 

observed quantities by √∑ (𝑦𝑖
𝑚 − 𝑦𝑖

𝑡)2𝑛
𝑖 𝑛⁄ , where 𝑦𝑖

𝑚  and 𝑦𝑖
𝑡  are the model and true values for the ith observation 

respectively, and n is the total number of observations of interest. We also calculate the RMSE of model states 

by√∑ (𝑥𝑖
𝑚 − 𝑥𝑖

𝑡)2𝑛
𝑖 𝑛⁄ , where 𝑥𝑖

𝑚 and 𝑥𝑖
𝑡 are the model and true states at the ith model grid point respectively, and n is the 

total number of grid points of interest. For the wind variable, the grid points of interest are all the points located within a sub-25 

model space as shown in Figure 2, containing the lowest 10 model levels vertically. Because NOx is located mostly in the 

boundary layer, the NO2 transport error is determined by the meteorological errors in the lowest 10 model levels.  For NOx 

emission variables, the grid points of interest are categorized as emission points with emissions greater than 50 mol/(km
2
·hr). 

Our analysis does not include emissions below 50 mol/(km
2
·hr) because the observations over such low emission regions 

have large uncertainty and are not constrained. We also analyze the uncertainty of the prior and posterior estimates. The 30 

uncertainty is expressed by the 1-σ standard deviation of the ensemble. 
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4.1 Wind assimilation  

The success of ensemble-based assimilation relies on how well the ensemble system represents the uncertainty. One way to 

test the success of an OSSE is to compare the RMSE computed with respect to the “true” observations with the ensemble 

spread directly. Figure 3 shows the evolution of the RMSE and spread for mesonet observations of zonal wind for ENS.1 and 

ENS.3. Overall, for each experiment the variation and magnitude of prior ensemble spread are similar to those of the prior 5 

RMSE, indicating that the ensemble develops a good amount of spread for the success of OSSE.  

We find the errors in the observation space of mesonet winds are reduced by 50% on average from the prior to the posterior. 

The prior wind RMSE exhibits the peaks in the afternoon and this results in the largest error reduction. The posterior wind 

RMSE shows a temporal average of 0.39 m/s and 0.47 m/s in ENS.1 and ENS.3 respectively. Because ENS.1 is initialized 

with a meteorology ensemble with its mean close to the truth, the wind RMSE on the first day is low and gradually grows to 10 

about 1 m/s. In contrast, the prior wind RMSE in ENS.3 is as high as 2 m/s on the first day as a result of using an initial 

meteorology ensemble that is very different from the truth. The wind RMSE evolution in the two experiments becomes very 

similar after the afternoon of the third day of assimilation, 2014/07/04. We conclude that the ensemble wind assimilation 

system performance is independent of the initialization approach after the first day. 

4.2 TEMPO NO2 assimilation  15 

We assimilate hourly TEMPO NO2 column observations and take their difference with the modeled column to correct the 

predicted NO2. Figure 4 shows the TEMPO NO2 column RMSE evolution for all experiments. With perfect knowledge of 

meteorology, REF shows significant reduction in TEMPO NO2 RMSE in the first three update cycles, and succeeds in 

recovering the true emissions (Figure 5). The prior TEMPO NO2 RMSE in the last three days varies below 3×10
14

 

molecules/cm
2
 as a result of perfect NO2 transport and improved emissions. This ideal case with the assumption of perfect 20 

meteorology sets the upper limit of error reduction in NO2 concentrations by assimilating the TEMPO NO2 observations. 

Compared with REF, ENS.1 shows prior TEMPO NO2 RMSE of 5~10×10
14

 molecules/cm
2
 due to the errors in NO2 

transport and emissions. By assimilating NO2 observations, the TEMPO NO2 RMSE is reduced by more than 50% from the 

prior to the posterior indicating the potential of TEMPO NO2 observations to improve the modeled atmospheric NO2 

composition for the chemical reanalysis product. Without updating the NO2 concentrations in ENS.2, there is no reduction in 25 

the TEMPO NO2 RMSE as expected. We find the TEMPO NO2 RMSE varies above 1×10
15

 molecules/cm
2
, being the largest 

among all experiments because the emission estimations show very poor results (shown in section 4.3).  The TEMPO NO2 

RMSE development in ENS.3 is very similar to ENS.1 except for the first day when ENS.3 shows higher errors in the wind 

field, which contribute to the NO2 transport errors. We find the NO2 forecast using a single meteorology field in REA is very 

similar to the ensemble NO2 forecast in ENS.1. This is because there is very little difference between the one-hour 30 

meteorology forecast and the ensemble forecast. In addition, the emission estimation results are also very similar. This is 

different from the previous study on CO2 forecasts which showed that for a 6-hour forecast, the CO2 transport driven by a 
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single meteorological field has weaker vertical mixing and a stronger CO2 vertical gradient when compared to the mean of 

the ensemble CO2 forecasts initialized by the ensemble meteorological field (Liu et al., 2011). 

We compare the TEMPO NO2 column spread in REF and ENS.1 in Figure 6. For both experiments, the prior NO2 column 

spread varies with a magnitude that is similar to the prior RMSE (Figure 4), which is the range desired for the NO2 ensemble 

spread. The NO2 forecast uncertainty represented by the NO2 ensemble spread results from the uncertainties in NO2 transport 5 

and emissions since the uncertainties in chemical production and removal processes are not included in this study. The 

uncertainties in NO2 transport are determined by the prior wind ensemble spread, which is widest in the afternoon and stays 

as low as ~ 0.5 m/s at other times for zonal wind (Figure 3). The prior NOx emission uncertainties are 60% after inflation 

(Figure 5). Under these circumstances, the mean prior TEMPO NO2 column spread is 4.55×10
14

 molecules/cm
2
 in REF 

which does not include NO2 transport uncertainties, and is 7.03 ×10
14

 molecules/cm
2 

in ENS.1 which takes uncertainties in 10 

transport and emissions into account. The difference indicates that NO2 transport contributes to 35% of the total NO2 forecast 

uncertainties in our assimilation setup. The TEMPO NO2 column spread in REF is very stable because it is determined by 

the constant emission spread of 60%. ENS.1 shows fluctuations in the evolution of TEMPO NO2 column spread which 

corresponds to the wind spread variation with increasing spread in the afternoon.  

4.3 NOx emission estimation  15 

We show the time evolution of the averaged urban emissions for all experiments in Figure 5. For all experiments, the 

posterior emission ensemble spread is reduced compared to the prior spread, suggesting the effectiveness of assimilated NO2 

columns in constraining the emission uncertainties. In making these comparisons, we ignore the emission correction of the 

first assimilation cycle, since the first update produces a significant over-correction to emissions because of the accumulated 

underestimation of the NO2 concentrations. By neglecting the first update, the prior emission ensemble mean of the second 20 

cycle is still 70% of the truth. During the nighttime when TEMPO observations are not available, we calculate the ratio of 

posterior ensemble mean to the truth in the last cycle of daytime and use this together with the nighttime true emissions to 

derive the ensemble mean for the nighttime emissions. The prior and posterior emission ensemble of each nighttime hour is 

the same. 

Not surprisingly, under the condition of perfect knowledge in meteorological fields, assimilating TEMPO NO2 observations 25 

successfully improves the emissions within the first few updates. The estimated emissions agree well with the true emissions 

throughout the assimilation period. This demonstrates the capability of a geostationary NO2 column observing system to 

constrain city-scale emissions and the reliability of the ensemble-based assimilation method to project the observed 

information to emissions. 

We find the errors in estimated emissions correlate with the wind errors. In ENS.1, the posterior emission is corrected to the 30 

truth at the second cycle and stays close to the truth throughout the first day. The good performance on the first day benefits 

from an initial meteorology ensemble with its mean close to the truth. For the following three days, the emission estimates 

succeed in recovering the true emissions during the morning and show deviations from the truth in the afternoon as a result 
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of the increased error in boundary layer winds.  Figure 7 shows the dependence of errors in the inverted emissions to the 

prior wind RMSE. The emission errors show high sensitivity to the wind errors with the slope of the regression line of 32.5 

mol·km
-2

hr
-1

/(m·s
-1

). With the RMSE of model predicted wind vectors of 1 m/s, the errors in the estimated emissions are 30 

mol·km
-2

hr
-1

 on average.  For the daytime cycles, the prior emission ensemble spread after inflation is approximately 60% 

and is reduced by more than half after assimilation (Figure 5). Even though the posterior ensemble mean does not match 5 

with the truth in the afternoon, the truth falls within the range of the posterior ensemble spread with a few exceptions. 

We find the simultaneous update of emission and concentration performs better than the emission update only scheme with 

an hourly assimilation window. ENS.2 is a parallel assimilation run with ENS.1 but updates emissions only. As shown in 

Figure 5, the estimated emissions have very large differences from the truth and the posterior ensemble spread does not 

cover the truth. For example, at 10:00 July 3
rd

, the posterior ensemble mean (red) is very close to the truth. As a result of this, 10 

we have a very good prior ensemble estimate (black) at 11:00. However, the posterior emission at 11:00 is largely 

underestimated compared with the truth. This is because the posterior emissions from 7:00 to 9:00 are overestimated which 

results in overestimated NO2 concentrations at 10:00 and 11:00. As a result, even though the prior emissions from 10:00 to 

11:00 are good, the model still overestimates NO2 at 11:00 due to the NO2 overestimation at 10:00. Without updating the 

concentrations, the observed differences in NO2 columns are dominated by the NO2 concentration errors of an hour ago and 15 

should not be attributed to the emissions. 

We also find that the emission estimation should start after the meteorology assimilation becomes stable. As a comparison to 

ENS.1, ENS.3 is initialized with a meteorology ensemble that is very different from the truth. On the first day, the prior wind 

RMSE varies from 1 m/s to 2 m/s (Figure 3) and leads to enhanced NO2 transport errors. As a result, the emission 

estimations are not successful for the first day. After the afternoon of the second day (07/03), the wind RMSE evolution is 20 

similar between ENS.1 and ENS.3 and as a result, the emission estimations perform in a similar way. We recommend 

allowing meteorology assimilations to stabilize from the initial transport errors before assimilating chemical observations to 

constrain the emissions. 

With an hourly re-initialization of meteorology, the NO2 transport error statistics are not important to emission estimation if 

the current practice of using a single meteorological field to transport NO2 is adopted. The emission estimation performance 25 

in REA is very similar with that in ENS.1 (Figure 5). This is because the difference in the one-hour NO2 forecast driven by 

an ensemble meteorological field and a single ensemble mean field is very small. Though the wind uncertainties represented 

by the meteorological ensemble reach 1.5 m/s in the afternoon, our results show that the information of wind uncertainties is 

not important for estimating NOx emissions.  

Finally we examine the emission estimation performance in ENS.1 at the scale of the model grid (3 km). As shown in Figure 30 

8, the true emission shows high spatial variation from city center to suburban as well as distinct point emission sources. In 

the example of the emission estimate at 9:00 am, the posterior emission recovers the truth very well with the posterior RMSE 

of 21.6 mol/(km
2
·hr).  In contrast, the emission estimate at 4:00 pm shows RMSE of 46.5 mol/(km

2
·hr) due to relatively high 

wind errors. The posterior underestimates the emissions significantly all over the city except for the regional overestimation 
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in the east. The emission hot spot of ~250 mol/(km
2
·hr) in the city center is not fully represented in the posterior estimate. In 

conclusion, when wind errors are low, the difference between posterior emission and the truth can be reduced to ± 25 

mol/(km
2
·hr) at most grid points. With high wind errors that difference varies significantly from point to point and grows as 

large as 100 mol/(km
2
·hr). 

5 Summary and conclusions 5 

In this study, we explore an approach to estimate NOx emissions by assimilating column NO2 and meteorological 

observations in system comprised of the regional CTM, WRF-Chem, and the DART-EAKF. This ensemble-based data 

assimilation system allows the flexibility to assimilate observations of meteorological and chemical variables on various 

space and time scales. Our approach anticipates the future availability of long-term, high spatial resolution, and frequent 

repeats of multiple species from satellites, such as TEMPO. 10 

Previous work has shown that NOx concentrations and columns vary at fine scales necessitating high spatiotemporal 

resolution to make use of them in the assimilation. In the coupled chemical and meteorological data assimilation system, we 

apply an OSSE framework to estimate NOx emissions in Denver by jointly assimilating MADIS observation of 

meteorological variables as well as future TEMPO NO2 columns. In the meteorological assimilation we successfully reduced 

the posterior wind RMSE below 0.5 m/s in Denver to better represent the NO2 transport. The prior wind RMSE and spread 15 

show peaks in the afternoon thus increasing the errors in NO2 transport. We find that the meteorological uncertainties 

contribute 35% to the total NO2 forecast uncertainties considering the emission uncertainties of 60%. Assimilation of 

TEMPO NO2 columns reduces errors in the predicted NO2 concentration by more than 50%, which demonstrates the 

potential of future geostationary observations to constrain the NO2 chemical weather. 

One of the goals of this work is to investigate the optimal strategy to estimate NOx emissions. We test the upper limit of 20 

emission constraints from TEMPO NO2 observations in an ideal case assuming no errors associated with the modeled 

meteorology. In the experiment of joint assimilation of meteorology and chemical NO2, we find that the estimate of 

emissions is most successful in the morning but degrades in the afternoon when the prior wind RMSE grows above 1 m/s. 

Considering the dependence of errors in estimated emissions on the wind forecast errors, we recommend guaranteeing the 

accuracy in modeled wind and achieving wind RMSE below 1 m/s for the success of chemical assimilation to infer 25 

emissions at the 3-km scale of our model grid. We show that the simultaneous update of NOx emissions and concentrations 

outperforms the approach of updating emissions only. We recommend carrying out meteorology assimilations to stabilize 

from the initial transport errors before starting the emission inversion.  

We would like to point out that the covariance of error statistics between wind and NO2 are not utilized in the OSSE 

assimilation in this paper. Results on carbon and weather assimilation show that the variable localization scheme zeroes out 30 

the background error covariance among prognostic variables that are not physically related, thus reducing sampling errors 

(Kang et al., 2011). Specifically, they find that covariance between carbon fluxes and meteorological variables should be 
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neglected. However, the same result might not obtain for short-lived chemicals. The extent to which chemical observations 

can be used to improve the assimilation of meteorological variables and vice-versa in a situation where we do not zero the 

covariance in the errors should be pursued in future research. 
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Table 1. The experimental set up of each assimilation run. The three ensemble runs assimilate NO2 observations every hour, 

and differ in treatment of meteorology forecast.  
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Table 2. DART configurations. 
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Table 3. WRFDA configurations. 
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Table 4. Relative observation uncertainty 𝜎𝑟𝑒𝑙  in synthetic TEMPO NO2 column for each scenario. 
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Figure 1. Model domain setup with 12 km outer domain and 3 km inner domain (white square). Data assimilation is 

performed on the inner domain. Meteorological observations on the inner domain are assimilated. TEMPO NO2 observations 

inside the red rectangle are assimilated.  
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Figure 2. Example of synthetic TEMPO NO2 column observations over Denver, CO at 17:00 LT July 2
nd

 in 2014. 
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Figure 3. Time evolution of prior (black) and posterior (red) RMSE and spread of surface mesonet zonal wind observation 

in Denver from July 2
nd

 10:00 to 5
th

 18:00 for ENS.1 (top) and ENS.3 (bottom).  
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Figure 4. Time evolution of prior (black) and posterior (red) RMSE of Denver TEMPO NO2 column observation from July 

2
nd

 10:00 to 5
th

 18:00 for REF, ENS.1, ENS.2, ENS.3 and REA (from top to bottom). 
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Figure 5. Time evolution of averaged Denver city emission of prior (black), posterior (red) and truth (green) for REF, 

ENS.1, ENS.2, ENS.3 and REA (from top to bottom).The error bar is defined by the ensemble spread and represents the 

uncertainty of the prior and posterior estimates.  
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Figure 6. Time evolution of prior (black) and posterior (red) spread of Denver TEMPO NO2 column observation from July 

2
nd

 10:00 to 5
th

 18:00 for REF (top) and ENS.1 (bottom). 
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Figure 7. The scatter plot between the prior RMSE of boundary layer wind vectors and urban NOx emission posterior RMSE 

over four-day daytime assimilation time period in ENS.1. 
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Figure 8. The emission estimation results in ENS.1 at 9:00 am (top) 4:00 pm (bottom) on July 3
rd

 of truth, posterior and the 

difference between truth and posterior (from left to right). The unit is mol km
-2

hr
-1

. 

 


