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Abstract.

This study investigates the constraint provided by greenhouse gas measurements from space on surface fluxes. Imperfect

knowledge of the light path through the atmosphere, arising from scattering by clouds and aerosols, can create biases in

column measurements retrieved from space. To minimize the impact of such biases, ratios of total column retrieved CH4 and

CO2 (Xratio) have been used. We apply the ratio inversion method described in Pandey et al. (2015) to retrievals from the5

Greenhouse Gas Observing SATellite (GOSAT). The ratio inversion method uses the measured Xratio as a weak constraint on

CO2 fluxes. In contrast, the more common approach of inverting proxy CH4 retrievals (Frankenberg et al., 2005) prescribes

atmospheric CO2 fields and optimizes only CH4 fluxes.

The TM5-4DVAR inverse modeling system is used to simultaneously optimize the fluxes of CH4 and CO2 for 2009 and

2010. The results are compared to proxy inversions using model-derived-XCO2 mixing ratios (XCOmodel
2 ) from CarbonTracker10

and MACC. The performance of the inverse models is evaluated using aircraft measurements from the HIPPO, CONTRAIL

and AMAZONICA projects.

Xratio and XCOmodel
2 are compared with TCCON retrievals to quantify the relative importance of errors in these components

of the proxy XCH4 retrieval (XCHproxy
4 ). We find that the retrieval errors in Xratio (mean = 0.61 %) are generally larger than

the errors in XCOmodel
2 (mean = 0.24 % and 0.01% for CarbonTracker and MACC, respectively). On the annual time scale,15

the CH4 fluxes from the different satellite inversions are generally in agreement with each other, suggesting that errors in

XCOmodel
2 do not limit the overall accuracy of the CH4 flux estimates. On the seasonal time scale, however, larger differences

are found due to uncertainties in XCOmodel
2 , particularly over Australia and in the tropics. The ratio method stays closer to

the a priori CH4 flux in these regions, because it is capable of simultaneously adjusting the CO2 fluxes. Over Tropical South

America, comparison to independent measurements shows that CO2 fields derived from the ratio method are less realistic than20
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those used in the proxy method. However, the CH4 fluxes are more realistic, because the impact of unaccounted systematic

uncertainties is more evenly distributed between CO2 and CH4. The ratio inversion estimates an enhanced CO2 release from

Tropical South America during the dry season of 2010, which is in accordance with the findings of Gatti et al. (2014) and

Vanderlaan et al. (2015).

The performance of the ratio method is encouraging, because despite the added non-linearity due to the assimilation of Xratio5

and the significant increase in the degree of freedom by optimizing CO2 fluxes, still consistent results are obtained with respect

to other CH4 inversions.

1 Introduction

Detailed knowledge of the global distribution of surface fluxes of potent greenhouse gases (GHGs) such as CH4 and CO2 is

needed to investigate the uncertain feedback of the global carbon cycle to human disturbances. Atmospheric measurements10

of these GHGs can provide information about the atmospheric budget. Inverse modeling methods, also known as top-down

approaches, have been developed to make use of that information to obtain improved estimates of surface fluxes. Bottom-

up estimates of those fluxes are used as prior values in the top-down method, and are further improved using atmospheric

measurements. Inversions assimilating flask and/or in-situ measurements from surface networks have significantly improved

our knowledge of the sources and sinks of GHGs (Bousquet et al., 2006; Bergamaschi et al., 2010; Hein et al., 1997; Houweling15

et al., 1999; Peters et al., 2007; Chevallier et al., 2010; Gurney et al., 2008). However, many regions with a key role in the global

annual budgets of CO2 and CH4 are not adequately covered by the surface measurement network. This is especially true for

tropical regions and the Southern Hemisphere.

The Greenhouse Gas Observing Satellite (GOSAT), launched in January 2009 by the Japanese Space Agency (JAXA), is

the first satellite dedicated to monitoring GHGs from space (Kuze et al., 2009; Yokota et al., 2009; Yoshida et al., 2011).20

Onboard are the Thermal And Near Infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS)

and a dedicated Cloud and Aerosol Imager (TANSO-CAI). TANSO-FTS measures the absorption spectra of Earth reflected

sunlight in the shortwave-infrared (SWIR) spectral range, from which XCO2 and XCH4 are retrieved with global coverage.

Several inverse modeling studies have applied these measurements to derive constraints on the surface fluxes of CH4 and CO2

(Alexe et al., 2014; Basu et al., 2013; Deng et al., 2014; Maksyutov et al., 2012; Bergamaschi et al., 2013; Fraser et al., 2013;25

Houweling et al., 2015; Monteil et al., 2013; Turner et al., 2015).

Systematic errors in satellite retrievals are an important factor limiting the scientific interpretation of the data, and various

methods have been proposed to mitigate their impact on the inferred surface fluxes (Bergamaschi et al., 2007; Frankenberg

et al., 2005; Butz et al., 2010; Parker et al., 2015). An important source of systematic error is scattering of light by aerosols and

thin cirrus clouds along the measured light path. Two types of retrieval methods have been developed in the past to account30

for atmospheric scattering, referred to as the “full-physics” and “proxy” approach. The full-physics approach tries to account

for scattering-induced errors by explicitly modeling the scattering process, and retrieving scattering properties from the data

(Butz et al., 2010). The proxy method, first introduced by (Frankenberg et al., 2005), takes the ratio of XCH4 and XCO2
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retrieved at nearby wavelengths ( 1562 to 1585 nm for XCO2 and 1630 to 1670 nm for XCH4) so that path length perturbations

due to atmospheric scattering largely cancel out in the ratio (see equation 1). Xratio is multiplied with model-derived-XCO2

(XCOmodel
2 ) to derive XCH4 (XCHproxy

4 ) (see equation 2).5

Xratio =
XCH4

ns

XCO2
ns (1)

XCH4
proxy = Xratio ×XCO2

model (2)

Here, XCHns
4 and XCOns

2 are retrieved assuming a non-scattering atmosphere. XCOmodel
2 is calculated using a transport

model, normally employing CO2 surface fluxes that have been optimized using surface measurements. The atmospheric CO2

fields are sampled at the coordinates of the satellite measurements and converted to corresponding total columns using the10

retrieval-derived averaging kernels (Schepers et al., 2012).

Proxy XCH4 retrievals from GOSAT have been used in many inverse modeling studies to investigate the global surface

fluxes of CH4 (Alexe et al., 2014; Monteil et al., 2013; Fraser et al., 2013; Bergamaschi et al., 2013). These studies rely on

the assumption that the uncertainties and biases in XCOmodel
2 are relatively unimportant. Some recent studies have investigated

this assumption in further detail. Schepers et al. (2012) suggested that the errors in XCHproxy
4 are mostly dominated by the15

errors in XCOmodel
2 . Pandey et al. (2015) did a series of Observing System Simulation Experiments (OSSEs) to quantify the

impact of errors in XCOmodel
2 on inversion-derived CH4 fluxes. It was concluded that the error becomes significant when CO2

fluxes are poorly constrained by the surface measurements. Parker et al. (2015) have estimated the uncertainty in XCOmodel
2 by

comparing values from different models. They found that the uncertainty in XCOmodel
2 becomes the most important term in the

error budget of XCHproxy
4 retrieval during summer months, when the satellite instrument operates under favorable illumination20

conditions allowing accurate determination of Xratio.

In an attempt to avoid the biases introduced by errors in XCOmodel
2 , Fraser et al. (2014) developed the ‘ratio’ method, which

simultaneously constrains CO2 and CH4 fluxes by assimilating Xratio on the sub continental scale using the ensemble Kalman

filter. Pandey et al. (2015) also developed a similar ratio inversion method for jointly optimizing the surface fluxes of CH4 and

CO2 on the model grid scale using a variational optimization method. Fraser et al. (2014) compared posterior CH4 and CO225

flux uncertainties derived from a ratio inversion with traditional CH4 proxy and CO2 full-physics inversions and reported a

larger reduction in uncertainty than the two in the tropics for the fluxes of both tracers.

This study extends the work of Pandey et al. (2015), by separately inverting real GOSAT measurements of Xratio and

XCHproxy
4 in a consistent and comparable framework to investigate the following questions: 1) How do errors in XCOmodel

2

influence the results of a XCHproxy
4 inversion? 2) How does the Xratio inversion system developed by Pandey et al. (2015) per-30

form using real data? The performance of the inversions is evaluated using independent aircraft measurements. We provide an

estimate of the posterior uncertainties of the Xratio inverted fluxes using the Monte-Carlo method described by Chevallier et al.

(2007).
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This paper is organized as follows. The following section explains the methods used in this study. Subsection 2.1 describes

the inverse model and the a priori flux assumptions. Subsection 2.2 lists the measurements that are assimilated in the inversions

and used for validation. Subsection 2.3 provides an overview of the inversions performed in the study. Section 3 presents the5

inversion results and Section 4 discusses their implications for the use of satellite retrievals in inversion studies. Finally, we

give the overall conclusions of this work.

2 Method

We invert GOSAT-retrievals of Xratio, and XCHproxy
4 , each together with flask-air CH4 and CO2 measurements from the NOAA

Global Greenhouse Gas Reference Network (GGGRN) to provide monthly surface fluxes of CO2 and CH4 using the TM5-10

4DVAR inversion system (Meirink et al., 2008). This is done as follows:

1. GOSAT-retrieved total column measurements of Xratio are compared to measured ratios of XCH4:XCO2 from the Total

Carbon Column Observing Network (TCCON) of ground based sun-tracking Fourier Transform Spectrometers (FTSs)

(Wunch et al., 2011).

2. GOSAT Xratio measurements are bias corrected by fitting a linear function of surface albedo to the residual differences15

between GOSAT and TCCON. This done in Xratio space.

3. GOSAT Xratio measurements are multiplied by XCOmodel
2 to generate XCHproxy

4 measurements. Two different versions of

XCOmodel
2 are used [see Section 2.2] to investigate the sensitivity to model errors.

4. The XCHproxy
4 and Xratio measurements are inverted along with surface observations and the resulting posterior surface

fluxes are integrated over the TRANSCOM regions (see supplementary Figure 4).20

5. The posterior flux uncertainty for all inversions is quantified using a Monte-Carlo approach (see Appendix B) for con-

sistent comparison.

6. The performance of the inversions is evaluated and compared using independent aircraft measurements.

The remainder of this section explains these steps in further detail.

2.1 Inversion setup25

We use the TM5-4DVAR inversion modeling system. It is comprised of the Tracer Transport Model version 5 (TM5, Krol et al.

(2005)) coupled to a variational data assimilation system (4DVAR, Meirink et al. (2008) ). TM5 simulates the spatiotemporal

distribution of a tracer in the atmosphere for a given set of fluxes. In this study, TM5 is run at a 6 o×4o degree horizontal

resolution and 25 vertical hybrid sigma pressure levels from the surface to the top of the atmosphere. The meteorological fields

for this offline model are taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim30

reanalysis Dee et al. (2011).
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CH4 fluxes are optimized as a single flux category, representing the sum of all processes. For CO2, biospheric and oceanic

fluxes are optimized separately. The a priori CH4 fluxes used in the study are the same as used in Houweling et al. (2014),

except for the Anthropogenic emissions. We use the v.4.2FT2010 version of EDGAR (European Commission, Joint Research

Centre (JRC)/Netherlands Environmental Assessment Agency), whereas Houweling et al. (2014) uses 4.1 version (http://5

edgar.jrc.ec.europa.eu). The a priori CO2 fluxes come from CarbonTracker, CT2013B Peters et al. (2007), in which biosphere

fluxes are based on the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model (CASA), fire fluxes are based on

Global Fire Emissions Database v3.1 (GFED) and ocean fluxes are based on Jacobson et al. (2007). Fossil fuel emissions

in CarbonTracker are based on the Miller module (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2013B_doc.php#tth_

sEc5) The a priori flux covariance matrix is constructed assuming relative flux uncertainties of 50%, 84% and 60% per grid10

box and month for the total CH4, biospheric CO2, and oceanic CO2 categories, respectively. The fluxes are assumed to be

correlated temporally using an exponential correlation function with temporal scales of 3, 3, and 6 months, respectively, and

spatially with Gaussian functions using corresponding length scales of 500, 500 and 3000 km for total CH4, biospheric CO2,

and oceanic CO2, respectively.

2.2 Measurements15

Here we give a brief account of the measurements that were assimilated (GOSAT and NOAA) or used for validation (TCCON

and aircraft-measurements).

2.2.1 GOSAT

The XCHns
4 and XCOns

2 terms in equation 1 were taken from the RemoTec XCH4 Proxy retrieval v2.3.5 (Butz et al., 2011).

More information about the dataset can be found in Product User Guide on the ESA GHG CCI website (www.esa-ghg-cci.20

org/?q=webfm_send/180). The RemoTeC algorithm uses GOSAT TANSO-FTS NIR and SWIR spectra to retrieve simulta-

neously XCHns
4 and XCOns

2 assuming a non-scattering atmosphere (Schepers et al., 2012). Xratio values were translated into

XCHproxy
4 using XCOmodel

2 derived from the following: 1. Monitoring Atmospheric Composition and Climate (MACC) Re-

analysis CO2 product (www.copernicus-atmosphere.eu). It uses Laboratoire de Météorologie Dynamique transport model

(LMDZ) (Chevallier, 2013). The corresponding XCHproxy
4 product will be referred to as XCHma

4 . 2. CarbonTracker-2013B25

(http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). These CO2 fields are calculated using the TM5 model as used in this

study. The corresponding XCHproxy
4 product will be referred to as XCHct

4 .

Both data assimilation systems optimized the CO2 fluxes using surface measurements of CO2. For GOSAT measurements,

we only used the high-gain soundings from GOSAT under cloud free conditions from nadir mode. This was done to avoid

any systematic inconsistency among the operation modes of TANSO. Figure 1 shows the spatial coverage of the GOSAT30

dataset used in our inversions. Systematic mismatches between NOAA-optimized and GOSAT-optimized TM5 CH4 fields

were observed by Monteil et al. (2013). We apply another bias correction (in addition to TCCON-based bias correction applied

to Xratio) to Xratio and XCHproxy
4 by comparing them to total column CH4 and CO2 optimized via an inversion using TM5-

4DVAR and NOAA flask-air data (see Appendix A).

5
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2.2.2 TCCON5

TCCON is a global network of ground-based FTS instruments, for measuring the total column abundance of several gases,

including XCO2 and XCH4, in the near nfrared region of the electromagnetic spectrum (Wunch et al., 2011). These mea-

surements are the standard for validating total column retrievals from greenhouse gas observing satellites such as GOSAT.

We validate XCHns
4 , XCOns

2 , Xratio, XCOma
2 , XCOct

2 with corresponding values of XCH4, XCO2 and XCH4:XCO2 measured

by TCCON at 12 sites using the GGG2014 release of TCCON dataset (see Figure 1 and section 3.1). An albedo-based bias10

correction was applied to GOSAT-retrieved Xratio to account for mismatch with TCCON Xratio. (see Appendix A).

2.2.3 NOAA

High accuracy surface measurements of CH4 and CO2 were used from NOAA’s GGGRN (http://www.esrl.noaa.gov/gmd/ccgg/

index.html ). The standard scales used for CO2 is the WMO X2007 scale and for CH4 is WMO X2004 scale. Only the sites

with continuous data coverage (on a roughly weekly basis) without gaps in the time period of 1 June 2009 to 31 Dec 2010 were

included. A total of 8552 CH4 observations and 7843 CO2 observations were used from the same 51 sites. Figure 1 shows the

location of the observation sites. 1 σ uncertainties of 0.25 ppm and 1.4 ppb were assigned to CO2 and CH4 measurements,

respectively (Basu et al., 2013; Houweling et al., 2014). Note that our system also assigns modeling errors to each observation,

depending on simulated local gradients in mixing ratio (Basu et al., 2013). Modeling error values have a mean of 27.5 ppb,5

2.72 ppm ( and 1 σ of 25.5 ppb, 4 ppm) for CH4 and CO2, respectively.

2.2.4 Aircraft Measurements

Airborne measurements from various aircraft measurement projects were used to test the inversion optimized model (see

section 3.2.5). The following projects have been used:

1. HIAPER Pole-to-Pole Observations (HIPPO) from Wofsy et al. (2012a).10

2. Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) from Machida et al. (2008).

3. IPEN aircraft measurements over Brazil (referred as AMAZONICA) from Gatti et al. (2014).

HIPPO provides in-situ measurements covering the vertical profiles of CO2 and CH4 over the Pacific spanning a wide range

in latitude (approximately pole-to-pole), from the surface up to the tropopause. We used data from the HIPPO 2 (October

26, 2009 to December 19, 2009) and HIPPO 3 (March 20, 2010 to April 20, 2010) campaigns. The continuous in-situ mea-15

surements of CH4 and CO2 that were used have been bias corrected with flask air samples that were collected during each

flight and analyzed at NOAA (Wofsy et al., 2012b).This allows us to make consistent comparison with our inversions models,

as all of them assimilate NOAA flask measurements. CONTRAIL makes use of commercial airlines to measure in-situ CO2

by continuous measurement equipment (Machida et al., 2008). For some of the CONTRAIL flights CH4 measurements are

also available from flask-air samples. We use data from a lower-troposphere greenhouse-gas sampling program as part of the20

6
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Figure 1. Measurements used in this study. a) The crosses indicate the locations of NOAA/ESRL surface sampling sites. The lengths of

the vertical and horizontal bars are proportional to the number of CO2 and CH4 measurements, respectively. b) The number of GOSAT

soundings binned at 1◦× 1◦for the time period of June 2009 to December 2010; c) Flight tracks of the aircraft campaigns HIPPO 2 and 3

(blue), CONTRAIL CO2 (olive), CONTRAIL CH4 (red), and AMAZONICA (green); d) The locations of the TCCON measurement sites.

The numbers (1- 12) refer to corresponding entries in Table 1. The size of the purple rectangles is proportional to the number of collocated

high-gain GOSAT soundings

AMAZONICA project, over the Amazon Basin in 2010, measuring bi-weekly vertical profiles of CO2 and CH4 from above

the forest canopy to 4.4 km above sea level at four locations: Tabatinga (TAB), RioBranco (RBA), Alta Floresta (ALF), and

Santarem (SAN) (Gatti et al., 2014). The coverage of all aircraft measurements that were used in this study is shown in Figure

1.

2.3 Inversion Experiments25

The following inversions have been performed:

1. SURF: Inversions assimilating flask air measurements of CH4 or CO2 to constrain surface fluxes of CH4 or CO2, re-

spectively.

2. RATIO: Inversion assimilating Xratio and flask air measurements of CH4 and CO2 to constrain surface fluxes of CH4 and

CO2.30

3. PR-MA: Inversion assimilating proxy XCHma
4 and flask air measurements of CH4 to constrain surface fluxes of CH4.

4. PR-CT: Inversion assimilating proxy XCHct
4 and flask air measurements of CH4 to constrain surface fluxes of CH4.
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To assess the relative performance of each inversion, we validate atmospheric concentrations as simulated using the opti-

mized fluxes from the different inversions with aircraft measurements. We define a normalized (i.e., divided by n) chi-square

statistic to quantify the agreement between the optimized model and aircraft measurements.5

κ=
1

n
(y−Hx)TR−1(y−Hx), (3)

Where y is a vector of the aircraft measurements, n is the length of y. Hx is the TM5 simulation sampled at the measurement

coordinates. The covariance matrix R represents the expected uncertainty in the model–data mismatch. Its diagonal elements

are calculated as the sum of the model representation error of TM5 and the measurement uncertainty; all non-diagonal elements

are zero.10

3 Results

3.1 GOSAT-TCCON comparison

TCCON measurements are used to investigate the errors in GOSAT-retrieved XCH4. Each term on the right hand side of

equation 2 contributes to the uncertainty in XCHproxy
4 . To quantify these error contributions, we compare TCCON measurements

of Xratio, XCH4 and XCO2 to corresponding co-located GOSAT-retrievals . The validation is carried out for the time period of15

1st June 2009 to 31st December 2013, for which both proxy datasets (XCHma
4 and XCHct

4 ) are available. Table 1 shows mean

differences per TCCON station, expressed as fractional differences to facilitate the comparison of quantities with different

units. As expected, the largest differences between GOSAT and TCCON are found for XCOns
2 and XCHns

4 . In general, XCOns
2

(mean= -1.57%) shows larger relative differences than XCHns
4 (mean =-0.95%). A latitudinal dependence can be observed,

with increasing biases towards stations at higher latitudes. This can be explained by increased aerosol scattering at larger sun20

angles, as the light path through the atmosphere is longer. For all the stations, the mean difference is negative which is expected

for aerosol scattering-induced errors at the low surface albedos of the TCCON sites (Houweling et al., 2004). The smaller bias

values for Xratio than XCOns
2 and XCHns

4 confirm that scattering-induced errors cancel out in the ratio, which motivated the

proxy approach (Frankenberg et al., 2005). Overall, we observe that Xratio (mean bias = 0.59 %) is the larger contributor to the

error in XCHproxy
4 than MACC (XCOma

2 , mean bias =0.01%) and CarbonTracker (XCOct
2 , mean bias =0.24%).25

3.2 Inversion results

3.2.1 Assimilation statistics

Figure 2 summarizes the statistics of the model – measurement comparison. The prior Xratio mismatches typically fall in the

range ± 1% (with mean = 0.007 ppb/ppm and 1 σ = 0.043 ppb/ppm). The inversions reduce the average mismatch by about a

factor of 10, and the variation of single column mismatches by about a factor of 2. The XCHproxy
4 of PR-CT and PR-MA have30

bimodal prior mismatches, because the a priori model overestimates the north-south gradient of CH4. The bottom panels of
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Table 1. TCCON validation of the components of XCHproxy
4 (see Equation 2). The numbers represent mean percentage differences with

TCCON (weighted with TCCON + GOSAT error). A negative number means that the satellite retrieval is lower than TCCON. Data from

these stations was used: Sodankyla (Kivi et al., 2014), Bialystok Deutscher et al. (2014a), Bremen (Deutscher et al., 2014b), Garmisch

(Sussmann and Rettinger, 2014), Karlsruhe (Hase et al., 2014), Parkfalls (Wennberg et al., 2014a), Orleans (Warneke et al., 2014), Tsukuba

(Morino et al., 2014), Lamont (Wennberg et al., 2014b), Darwin (Griffith et al., 2014a), Lauder (Sherlock et al., 2014), Wollongong (Griffith

et al., 2014b) are arranged from north to south. (for TCCON site locations see Figure 1).

Station No. of collocated measurements
Mean differences

with TCCON ( %)

XCO2
ns XCH4

ns Xratio XCO2
ct XCO2

ma

Sodankyla 434 -3.03 -2.81 0.21 0.68 0.34

Bialystok 731 -2.46 -1.79 0.62 0.31 0.05

Bremen 426 -1.81 -0.99 0.76 -0.05 -0.32

Garmisch 1295 -1.93 -1.09 0.76 0.40 0.05

Karlsruhe 1244 -1.74 -1.00 0.69 0.15 -0.25

Parkfalls 2174 -1.23 -0.43 0.75 0.22 0.11

Orleans 808 -1.53 -0.75 0.75 0.21 -0.09

Tsukuba 135 -1.87 -1.24 0.63 0.57 -0.03

Lamont 5617 -0.73 -0.03 0.68 0.07 -0.00

Darwin 1065 -0.67 -0.19 0.47 0.02 0.14

Lauder 110 -1.05 -0.57 0.46 0.14 0.03

Wollongong 1515 -0.81 -0.45 0.35 0.10 0.00

Figure 2 show mismatches between TM5 and surface flask measurements of CH4 and CO2. The CH4 a priori measurement

mismatch has a mean of -18.30 ppb and a 1 σ of 42.30 ppb. The RATIO, SURF, PR-CT, and PR-MA inversions are all able to

fit the NOAA data to a similar extent, reducing the a priori differences by more than a factor of 20. CO2 flask measurements

are assimilated in SURF and RATIO. Both inversions reduce the a priori mismatch (mean = -2.12 ppm, 1 σ = 3.88 ppm), with

RATIO (mean = -0.04 ppm, 1 σ = 3.69 ppm) fitting the CO2 flask data as well as SURF (mean = -0.06 ppm, 1 σ = 3.72 ppm).5

3.2.2 CH4 fluxes

Optimized annual CH4 fluxes, integrated over the TRANSCOM regions are shown in the left panel of Figure 3. The fluxes

obtained with the RATIO inversion are on average more similar to fluxes from other GOSAT inversions than to the surface

inversion, with a few exceptions. Differences between satellite and surface inversion are most prominent over Tropical South

America, where the latter is closer to the prior, which can likely be explained by the lack of surface measurement coverage.10

We will return to the inversion results for Tropical South America in section 3.2.6, where validation results are shown using

aircraft data.
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Figure 2. Fit residuals, comparing the performance of different inversions. The top three rows show the difference between TM5-4DVAR and

GOSAT measurements (Xratio for RATIO, XCHproxy
4 for PR-CT and PR-MA), using a priori (left) and a posteriori (right) fluxes. The bottom

row shows histograms of measurement–model mismatches between TM5-4DVAR and NOAA surface measurements in 400 bins between

±10 σ range of the a priori mismatch.

The most significant difference between the satellite inversion and SURF is found for Temperate Eurasia, where SURF re-

duces the CH4 emissions from 121 Tg/y in the prior estimate to 66 Tg/y. When satellite data are added, the fluxes increase again

to 100 Tg/y in the region. The large flux correction in the SURF inversion is compensated by increases in other TRANSCOM15

regions of 5-10 Tg/y (see for example Temperate North and South America). In those regions satellite inversions remain closer
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Figure 3. Annual fluxes of CH4 integrated over different regions. The black line on each bar represents the ± 1 σ uncertainty.

to the prior than the SURF inversion, which may well be driven by the much smaller flux corrections for Temperate Eurasia.

The exception is Europe, where the satellite inversions show larger reductions of up to 15 Tg/y. The large adjustments over

Temperate Eurasia are analyzed further in section 3.2.7. PR-CT and PR-MA result in relatively similar posterior annual fluxes

for all regions. RATIO is in good agreement with the proxy inversions except for Tropical South America and Southern Africa.

The right panel of Figure 3 shows annual fluxes integrated over large regions on the globe. We find a consistent adjustment in

the north-south gradient of CH4 compared to the prior in all inversions, corresponding to an emission shift from the Northern

to the Southern Hemisphere of approximately 50 Tg/y. This might be due to an overestimation of the a priori emissions from

northern wetlands, as discussed in (Spahni et al., 2011). A bias in inter-hemispheric transport in TM5 is not a likely cause,5

since the use of ECMWF archived convective fluxes in TM5 has been shown to lead to a realistic simulation of the north-south

gradient of SF6 (Vanderlaan et al., 2015). Houweling et al. (2014) found similar CH4 emission shifts between the hemispheres,

after bringing the inter-hemispheric transport in agreement with SF6 using a parameterization of horizontal diffusion.

Next we shift focus to seasonal differences between the inversion-derived methane fluxes (see Figure 4). Also on the seasonal

scale, RATIO resembles the two PROXY inversions more than SURF. In Boreal North America, the satellite inversions that10

assimilate GOSAT soundings are in better agreement with the prior. We observe an increase in summertime CH4 fluxes in

SURF estimates for Boreal and Temperate North America. The differences in annual mean fluxes discussed earlier for Tropical

South America and Temperate Eurasia do not show a seasonal dependence. Large differences in seasonality are obtained for

Australia and the African regions, which also show important differences between the two proxy inversions (see Section 3.2.4).

In Southern Africa, all inversions show increased CH4 fluxes compared to the prior estimate; however, small differences can be15

seen between the two proxy inversions, especially in 2010. SURF remains in good agreement with PRIOR, which is expected

as no surface observations are available to constrain the fluxes in this region.
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Figure 4. Monthly fluxes of CH4 integrated over TRANSCOM regions. The vertical lines represent a 1 σ uncertainty of the monthly fluxes.

The gray region in each plot represents the period in which no measurements are assimilated.

3.2.3 CO2 fluxes

Annual CO2 fluxes from the SURF and RATIO inversions, integrated over TRANSCOM regions, are shown in Figure 5.

Overall, we find good consistency between the results from RATIO and SURF except for Temperate Eurasia, where RATIO20

results in a higher CO2 uptake of 0.5 PgC/y. Corresponding reductions in CH4 fluxes are found for this region in the RATIO

inversion. This can be understood by realizing that the satellite information that is used consists of the ratio of CH4 and CO2

columns. A RATIO inversion can simultaneously reduce the CO2 and CH4 fluxes over a region without changing the Xratio in

the atmosphere. SURF points towards a natural sink of 0.5 PgC/y in Boreal North America. RATIO and the a priori are carbon

neutral in this region. This agreement is also seen on the CH4 side of the RATIO inversion. Only small differences between5

the posterior and prior fluxes of SURF and RATIO are found over the oceans except for the Temperate North Pacific, which is

neutral in both inversions compared to a sink of -0.5 PgC/y in the prior fluxes, and in Tropical India which is turned into a net

sink. Interestingly, RATIO leads to posterior fluxes for Europe that are close to carbon neutral for the analysis period. This is in

12



Figure 5. Annual fluxes of CO2 (excluding fossil fuel emissions) integrated over different regions.

contrast with the findings of several inversions using GOSAT full physics XCO2 retrievals, suggesting a largely underestimated

European carbon sink of the order of 1 PgC/y (Basu et al., 2014; Chevallier et al., 2014; Reuter et al., 2014; Houweling et al.,10

2015).

The RATIO and SURF inversions increase the global CO2 sink of the terrestrial biosphere compared with the a priori fluxes.

This is primarily caused by the bottom-up CASA model, which has been reported to underestimate the carbon uptake of the

Northern biosphere sink in summer season (Yang et al., 2007).Basu et al. (2013) also find a global natural sink of 3 to 4 PgC/y

for GOSAT and NOAA inversions. This natural sink is needed to fit the atmospheric growth rate of CO2 in the presence of5

about 9 PgC/yr anthropogenic emissions. The Southern Hemisphere land is turned into a source of 1 PgC/y in both inversions.

3.2.4 Errors in COmodel
2

In this Section, we analyze the differences between the two proxy retrievals (XCHct
4 and XCHma

4 ) and how they propagate

into posterior CH4 fluxes. Note that these differences arise only from differences in XCOmodel
2 , and therefore large differences

between the XCHproxy
4 measurements point towards high uncertainties in the model representations of atmospheric CO2. Figure10

6 further displays the result of these inversions. We find a mean difference between XCHma
4 and XCHct

4 of -2.36 ppb and a σ

of 4.55 ppb. This is caused by mean differences between XCOma
2 and XCOct

2 of -0.50 ppm and a σ of 0.97 ppm (not shown in

the Figure). We find a seasonal variation in the difference with the largest amplitudes of about 10 ppb in the northern tropics.

The phasing varies with latitude, with positive values during boreal summer to autumn. The smallest differences are found in

the Southern Hemisphere. The bottom panel of Figure 6 shows how this seasonal pattern propagates into the posterior CH415
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Figure 6. Top: Zonally averaged differences in CH4 column mixing ratio between the two XCHproxy
4 retrievals (XCHma

4 - XCHct
4 ). Bottom:

Corresponding differences in a posteriori CH4 flux between the proxy inversions using these data (PR-MA minus PR-CT).

fluxes. The seasonal and latitudinal variation in the CH4 flux difference follows the variation in the XCHproxy
4 difference, with

an amplitude of 0.5 Tg/month/gridcell. The regions without satellite data coverage, i.e. below 60◦ S and above 60◦ N, show

smaller differences in the optimized fluxes.

PR-CT and PR-MA yield different CH4 fluxes in Northern Africa and Australia (see Figure 4). We plot these fluxes with

the corresponding regional averaged XCH4 values in Figure 7. For Northern Africa, the difference in XCHproxy
4 of up to 10

ppb around January 2010 gives rise to a difference in the monthly posterior flux of 1 Tg/month. In Australia, XCHma
4 and

XCHct
4 are in relatively good agreement with each other, with differences within 2 ppb. However, because the a priori emission
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Figure 7. The top panels shows the posterior monthly fluxes integrated over TRANSCOM region. Bottom panels show the time series of

the mean of XCHproxy
4 over Northern Africa and Australia. The dotted line in the bottom panels denotes the mean of a priori modeled XCH4

sampled at GOSAT sites.

from this region is very small, the difference in the optimized seasonal cycle of fluxes nevertheless becomes relatively large.

In particular PR-MA causes significant deviations from the a priori, with decreases in the posterior fluxes during Australian5

summer, and large increases during winter. Another reason for these flux adjustments is the limited land area in the Southern

Hemisphere that is available for CH4 flux adjustments (over the open ocean the a priori flux uncertainties are small limiting

their adjustment).

(Detmers et al., 2015) reported an enhanced CO2 sink over Central Australia in the second half of 2010 lasting until 2012,

caused by an increase in vegetation due to enhanced precipitation during La-Nina conditions. If not properly represented in

inversions using surface measurements, this negative CO2 anomaly causes XCOmodel
2 to be overestimated. In that case, the

anomaly propagates to the proxy retrievals resulting in overestimation of XCHproxy
4 , leading to overestimated a posteriori CH45

fluxes. RATIO estimates a significantly stronger sink of CO2 in agreement with (Basu et al., 2013) (see supplementary Figure

2). This results in lower CH4 fluxes in the RATIO inversion (see Figure 4), demonstrating how the RATIO inversion method

can avoid shortcomings in the proxy inversions in regions where CO2 is poorly constrained by surface data.
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Figure 8. Validation of inversion-optimized concentration fields of CO2 and CH4 with air-borne measurements.

PR-CT and PR-MA have opposite seasonal cycles, which may be due to their XCOmodel
2 components, which are derived using

different ecosystem models. Carbontracker uses a priori natural fluxes from a CASA simulation driven by actual climatological10

information, whereas MACC uses only the climatology of natural fluxes. Therefore, the inter-annual variability of the inverted

fluxes in MACC is driven by measurements only. Since the surface network does not pose strong constraints on the Australian

carbon budget, the differences are driven by the prior fluxes of the two models, which may be more realistic in Carbontracker

in this case.

3.2.5 Aircraft Validation

To further investigate the performance of our inversions, we validate the inversion-optimized CH4 and CO2 mixing ratios

against independent aircraft measurements obtained during the projects described in section 2.2. The results of the HIPPO and5

CONTRAIL validation are shown in figure 8 and the values for κ for CH4 and the root mean square difference (RMSD) for

CO2 are given in 9. κ values are not calculated for CO2 because we do not have the CO2 model representation errors used in

MACC and CarbonTracker. More details on statistics of the validation are provided in Table 1.

The difference between HIPPO and PRIOR reflects the overestimated north-south gradient that is found using a priori CH4

fluxes, as already discussed in section 3.2.2. In addition, PRIOR shows a uniform bias of 13.5 ppb. SURF and RATIO correct10
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Figure 9. Summary of aircraft validation results per project for CH4 (left panel, expressed as κ) and CO2 (right panel, expressed as RMSD)

for the whole inversion time period i.e. from 1/1/2009 to 31/12/2010.

the north-south gradient and reduce biases to 5.56 and 6.68 ppb, respectively. All the models are performing equally well in

terms of κ. The original MACC and CarbonTracker CO2 fields have RMSD values of 1.08 and 1.09 ppm, respectively, which

is lower than the RMSD of RATIO (1.64 ppm) and SURF (1.65 ppm). We suggest that CarbonTracker and MACC have a better

representation of CO2 than PR-CT, PR-MA and SURF as they assimilate a larger number of flask measurements sites and also

few continuous in-situ sites.

Compared with the large CONTRAIL dataset of CO2 measurements, only a limited number of CH4 measurements are

available, mostly over the Pacific Ocean (see Figure 1). We observe the same north-south gradient mismatch with PRIOR as

seen in the comparison to HIPPO. PR-CT is able to improve the PRIOR κ of 6.99 to 4.56, followed in order of decreasing5

performance by PR-MA (4.71), SURF (5.33), and RATIO (5.47). The values of κ are larger than 1, which points to significant

errors in all the inversion results. The RMSD of the different inversions are comparable. The large dataset of CONTRAIL CO2

measurements covers a much larger area, including flight tracks to Europe and South East Asia. Our validation shows a mean

error of 2.23 ppm in PRIOR. The NOAA and RATIO inversions reduce this bias to -0.43 ppm and -0.41 ppm, respectively.

However, similar to the HIPPO validation, MACC (mean bias = -0.2 ppm) and CarbonTracker-derived CO2 (mean bias = 0.1110

ppm) fields are in better agreement with the CONTRAIL measurements than the other inversions.

3.2.6 Tropical South America

Tropical South America contains the Amazon basin, which is a large reservoir of standing biomass and contains one of the

largest wetlands in the world. Therefore, it plays an important role in the annual global budget of both CO2 and CH4. Inversion

results for the region have been validated using AMAZONICA measurements (see Supplementary Figure 5 and Supplementary15
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Table 1). Generally, the model results using PRIOR emissions underestimate the measured CH4 mixing ratios (mean offset=

-32.02 ppb). All inversions correct this offset, with SURF performing best (mean offset= -14.18 ppb). RATIO closely follows

SURF with a mean mismatch of -17.18 ppb. The proxy inversions have a higher mismatch than RATIO and SURF, with means

of -20.30 and -24.11 ppb respectively for PR-MA and PR-CT. The κ values for the AMAZONICA CH4 measurements (see

Figure 9) again show that fluxes from RATIO lead to lower mismatches than those from PR-CT and PR-MA. RATIO predicts

this region as a significantly high CH4 source for the first half of 2010 (see Figure 4), and is in good agreement with aircraft

measurements.

To check whether this is caused by errors in XCOmodel
2 , we perform similar comparisons using AMAZONICA CO2 measure-5

ments. We find that the two original models represent CO2 about equally well in terms of RMSD (see Supplementary Table 1).

Therefore, the higher mismatch of PR-CT and PR-MA for CH4 is not due to a poor representation of the XCOmodel
2 over the

region. This raises the question why RATIO performs better? In sections 3.1, we observe that the error in COmodel
2 is generally

lower than the error in the GOSAT Xratio retrievals (see section 3.1. In proxy inversions, this retrieval error ,which is coming

from Xratio (see equation 2), is directly transferred to CH4 fluxes, whereas in RATIO it is distributed over the CH4 and CO210

part of the state vector. The high posterior CO2 flux uncertainties for RATIO in the region support this further (see Figure 5).

Flux maps of the region show that the satellite inversions provide a more spatially resolved adjustment of the CH4 fluxes

than SURF (see Supplementary Figure 3). The satellite inversions estimate higher fluxes in the northwest corner of the region

near Columbia. Similar increases have been reported in earlier studies assimilating satellite retrieved XCH4 (Monteil et al.,

2013; Frankenberg et al., 2006). The spatial pattern of the flux adjustment suggests that the proxy inversions compensate the15

increase over Columbia by reducing the fluxes in the Amazon Basin, which is less well covered by satellite retrievals due to

frequent cloud cover. This may explain why the proxy inversions end up underestimating the observations inside the Basin.

SURF is mainly constrained by the large-scale inter-hemispheric gradient. This leads to a different pattern of flux adjustments,

increasing only the fluxes in the southern part of the region while keeping the fluxes in Amazon Basin close to the prior.

This solution brings SURF in relatively close agreement with the measurements. RATIO also shows a flux enhancement in20

Columbia, but at the same time represents the Amazon Basin better than the proxy inversions, likely because of its larger

number of degrees of freedom in modifying regional flux patterns of both CO2 and CH4.

Gatti et al. (2014) and Vanderlaan et al. (2015) reported an anomalous natural source of CO2 in the region in 2010, also using

AMAZONICA aircraft measurements. In this study, RATIO predicts a more enhanced CO2 natural source than the SURF and

PRIOR. RATIO (RMSD =3.23 ppm) is also in better agreement in terms of RMSD with AMAZONICA CO2 data than SURF25

(RMSD=3.31 ppm) and PRIOR (3.38 ppm). This demonstrates, like in the case of Australia, that the RATIO method is capable

of informing us about the CO2 fluxes, from which the CH4 flux estimation benefits also.

3.2.7 Temperate Eurasia

As mentioned in section 3.2.2, SURF leads to a drastic emission reduction in Temperate Eurasia, whereas all satellite inversions

show comparatively smaller decreases. Here, we investigate this in further detail by analyzing the inversion-optimized fits to30

the NOAA measurements at five surface sites located in this region (Figure 10). We find large mismatches between the a priori

18



Figure 10. Inversion-optimized fits to surface measurement sites in Temperate Eurasia. The numbers in the plots are the mean bias of models

with measurements.

simulated concentrations and the measurement at these sites, with mean offsets ranging between 29.1 ppb at Mt. Waliguan and

174 ppb at Shangdianzi. All inversions correct for this mismatch by decreasing the regional emissions. Surprisingly enough,

the satellite inversions are able to fit the flask measurements even better than SURF, despite smaller corrections to the fluxes.

For example, the mean posterior mismatch at Shangdianzi is 24.3 ppb for SURF, and only 7.5 ppb to 9.8 ppb for the satellite

inversions. A possible explanation is the double counting of surface data in the satellite inversions, because the satellite data

have been bias corrected using an inversion that was already optimized using surface data. However, the bias correction is5

only applied as a zonal and annual mean. All inversions show similar reductions in the fluxes from eastern Temperate Eurasia

(mostly China) to match the NOAA measurements. However, the satellite inversions tend to compensate for this flux decrease

over China by increased fluxes in India and the central part of Temperate Eurasia.
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4 Disscussion

We have demonstrated that the application of the ratio method to GOSAT data yields realistic solutions for CO2 and CH410

fluxes. Its performance is comparable, and may in some regions even be better than the proxy inversion method. This is an

important finding because the Xratio retrieval approach provides a useful alternative to the full-physics method in that cloud

filtering is less critical. In the case of GOSAT, it increases the number of useful measurements by about a factor of two (Butz

et al., 2010; Fraser et al., 2014). At the same time, the RATIO inversion method avoids using the model-derived-CO2 fields as

a hard constraint, which is the an important limitation of the proxy method.

The realistic performance of the ratio method is certainly not a trivial outcome, since it prompts the user for specification of

new uncertainties influencing the way in which measurement information is shared between CH4 and CO2. The joint CO2 and5

CH4 inversion problem has a larger number of degrees of freedom, as a result of which CH4 flux adjustments can compensate

for errors in CO2 and vice versa. Assimilating surface measurements helps decoupling CH4 and CO2, which works best in

regions that are relatively well covered by the surface network.

In other regions, the method can be improved further by accounting for correlations between a priori fluxes of CH4 and

CO2. This study does not specify such correlations, which corresponds to the assumption that a priori CO2 and CH4 flux10

uncertainties are independent of each other. Fraser et al. (2014) accounted for a priori uncertainty correlations for biomass

burning fluxes of CO2 and CH4, based on the available information about emission ratios. Imposing such a priori constraints

increased posterior uncertainty reduction compared to other methods for both CH4 and CO2 in some regions.

It is noteworthy that the inversions are run assuming uncorrelated measurements and a perfect transport. Also, as we are

not optimizing the atmospheric sink of CH4, all the information from its budget is used to constrain the surface fluxes. Hence,15

the estimates of posterior uncertainties tend to be optimistic in this study. The χ2 statistic indicates whether the assumed

measurement and prior errors are statistically consistent (Meirink et al., 2008). We find χ2/ns = 0.93 for RATIO, 0.96 for PR-

CT, 0.93 for PR-LM and 1.14 for SURF in the CH4 inversions (ns is the number of observations assimilated in the inversion).

This shows that we are not drastically underestimating the prior uncertainties in our CH4 inversions.

One problem with the ratio method is the assimilation of Xratio over oceans. The uncertainty of CH4 fluxes over the open20

oceans is relatively small. As a result, the model-data mismatch over the ocean is mostly accounted for by adjusting the CO2

fluxes, which has a larger a priori uncertainty. At the same time, CO2 fluxes over oceans tend to be very sensitive to small and

systematic model-data mismatches of a few tenths of a ppm (Basu et al., 2013). Any bias in atmospheric transport, affecting

both CO2 and CH4 is projected on the CO2 fluxes, which may lead to rather unrealistic estimates of the annual CO2 exchange

over oceanic regions. Palmer et al. (2006) proposed to account for cross correlations in the model representation error between25

the components of a dual tracer inversion, which could reduce this problem.

Our surface-only inversion shows a large decrease in the fluxes from Temperature Eurasia. To better understand this, we

look at results of other recently published CH4 inversion results. We group the studies into three groups: 1. Studies not using

EDGAR v4.2 as prior, comprising of Houweling et al. (2014); Monteil et al. (2013); Bruhwiler et al. (2014); Fraser et al. (2013);

2. Studies using EDGAR v4.2 but not assimilating the Shangdianzi site, comprising of Alexe et al. (2014); Bergamaschi et al.30
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(2013); 3. Studies using EDGAR v4.2 and assimilating Shangdianzi site comprising of this work and Thompson et al. (2015).

The inversions of group 1 do not show a systematic reduction in fluxes of Temperate Eurasia. Inversions of Group 3 tend to

reduce the emissions from the region the most, whereas, group 2 reduces emissions by an intermediate amount. This outcome

is partly explained by the EDGAR 4.2 emissions being substantially higher in Temperate Eurasia than previous EDGAR

versions, as found also by Bergamaschi et al. (2013). In addition, however, these increased emissions have the largest impact

on surface-only inversions assimilating measurements from the Shangdianzi site, possibly due to a nearby hot spot in EDGAR

v4.2. The hotspot is located near Jiexiu in the Shanxi province (112E, 37N), and has coal emissions of 10.83 Tg/yr for the year5

2010 from a 10 × 10 km grid. According to the EDGAR team (G. Meanhout, personal communication), this unrealistically

high local source of CH4 is the consequence of disaggregating large emission from Chinese coal mining using the limited

available information on the location of the coal mines. Thompson et al. (2015), the other study in group 3, show a large a

priori mismatch with a root mean square error of 103 ppb at Shangdianzi. Their inversions reduce an a priori East Asian CH4

emission of 82 Tg/y by 23 Tg/y, with large adjustments in the emissions from rice cultivation. Further research is needed10

to investigate the implications of the shortcoming of EDGAR v4.2. It is noteworthy, however, that when satellite data are

assimilated in these studies, the improved regional coverage reduces the impact of this local disaggregation problem on the

estimated regional emissions.

5 Conclusions

This study investigated the use of GOSAT-retrived-Xratio for constraining the surface fluxes of CO2 and CH4. First, we validated15

the XCH4, XCO2 and Xratio retrievals, as well as the model-derived-XCO2 fields used in the proxy methods, using TCCON

measurements. This analysis confirmed that biases in non-scattering XCH4 and XCO2 retrievals largely cancel out in Xratio.

Xratio has a larger mean bias than model-derived-XCO2 from CarbonTracker and MACC, suggesting that mostly retrieval

biases, rather than CO2 model errors, limit the performance of the proxy method. This is true especially at large temporal

and spatial scale. To account for biases in GOSAT-retrieved Xratio a TCCON-derived correction was applied as a function of20

surface albedo, resulting in a mean adjustment of -0.74%. An additional correction was applied to Xratio, XCHct
4 and XCHma

4 to

account for a bias between NOAA-optimized-CH4 fields in TM5 and TCCON observed XCH4, amounting to -0.76%, -0.80%

and 0.59%, respectively.

We optimized monthly CH4 and CO2 fluxes for the year 2009 and 2010 by assimilating GOSAT-retrieved-Xratio data us-

ing the TM5-4DVAR inverse modeling system. Additional inversions, assimilating XCHproxy
4 and NOAA surface flask mea-25

surements were performed in a similar setup for comparison. The posterior uncertainties of the fluxes are calculated with a

Monte-Carlo approach.

Overall, the ratio and proxy inversions show similar results for annual CH4 fluxes. Significant seasonal differences in CH4

are found between the two proxy inversions for TRANSCOM regions Northern Africa and Australia, which can be traced

back to differences in XCOmodel
2 . The CO2 models show a systematic difference in the seasonal cycle of CO2, resulting in a30

seasonally varying mismatch in the northern tropics. The ratio method has the advantage that it allows adjustment of the CO2
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fluxes, whereas the proxy inversions can only account for this mismatch by adjusting CH4. For Australia, the proxy inversions

predict an anomalous CH4 increase in the second half of 2010. This difference can be explained by errors in XCOmodel
2 , which

does not account for the anomalous carbon sink reported by Detmers et al. (2015) for lack of surface measurement coverage.

The ratio method has the build-in flexibility needed to attribute the anomaly to CO2 instead of CH4 and is therefore is not

affected.

Inversions using satellite data show a better agreement among each other compared to the NOAA-only inversions, which use

only surface data. This is true in particular for Temperate Eurasia, where the NOAA-only inversion reduces the annual CH4 flux

by as much as 55 Tg/y, relative to an a priori flux of 121 Tg/y. This is traced back to a large overestimation of atmospheric CH4

concentration in the prior model at NOAA sites in the region, especially at Shangdianzi, where the prior model overestimates

the data by 179 ppb on average. When satellite measurements are assimilated, the CH4 flux reduction for Temperate Eurasia is

limited to 21 Tg/y, while accounting for the a priori mismatch in Shangdianzi.

We validated the inversion-optimized atmospheric tracer fields, as well as the CarbonTracker and MACC CO2 fields used in5

the proxy inversions, against three independent aircraft measurement projects. For CH4, the ratio and NOAA-only inversions

showed a lower mismatch with HIPPO and AMAZONICA measurements than the two proxy inversions. Further analysis

shows that this is not due to a better representation of atmospheric CO2 in the ratio inversion. However, the ratio inversion

accounts for inconsistent constraints from Xratio by correcting both CH4 and CO2 fluxes, whereas the proxy inversions can only

attribute such constraints to CH4 fluxes. The ratio inversion predicts an enhanced CO2 natural source in this region during 201010

compared with the NOAA-only and a priori model. This is accordance with the findings of Gatti et al. (2014) and Vanderlaan

et al. (2015), and is also supported by the AMAZONICA aircraft measurements. Overall, this study shows that the ratio method

is capable of informing us about surface fluxes of CH4 and CO2 using satellite measurements, and that it provides a useful

alternative for the proxy inversion method.
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Figure 11. Linear regression analysis between GOSAT – TCCON Xratio with Surface albedo at 1593 nm.

Appendix A: Bias correction5

We apply a two-step correction to reduce the influence of biases in our inversions:

1. TCCON-based: Residual biases in Xratio remain that are not accounted for by taking the ratio between XCHns
4 and

XCOns
2 . The standard bias correction procedure in the RemoTeC XCHproxy

4 retrieval assumes a linear dependence on

surface albedo (Guerlet et al., 2013). However, this procedure would also correct biases in XCOmodel
2 , which are not

expected to vary with surface albedo. Therefore, we apply the albedo-based bias correction only to the GOSAT-measured-10

Xratio. To determine the bias correction, we use GOSAT retrievals that are co-located with TCCON measurements, i.e.

they are within 5 degrees latitude and longitude and within 2 hours of TCCON measurements. The relationship between

surface albedo at 1593 nm and the monthly difference between GOSAT and TCCON is shown in Figure 11 . A global

bias correction function is obtained by linear regression, results in a mean adjustment of -0.74% of GOSAT Xratio.
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Figure 12. NOAA based bias correction applied to XCH4 in the PR-CT inversion

2. NOAA-based: A systematic mismatch between the NOAA and GOSAT-optimized TM5 CH4 fields has been dis-

cussed in Monteil et al. (2013). The cause of this problem is still unresolved, but may be explained in part by transport

model uncertainties in representing XCH4 in the stratosphere. Several other studies have reported similar biases and5

applied NOAA-based bias corrections, in addition to the TCCON derived retrieval corrections, in order to restore con-

sistency between the observational constraints provided by surface and total column measurements (Alexe et al., 2014;

Houweling et al., 2014; Basu et al., 2013). We use a similar procedure for Xratio and XCHproxy
4 data by comparing the

TCCON-corrected GOSAT retrievals to the NOAA-optimized TM5 model. The mean difference is corrected using a

linear function of latitude. This results in a mean adjustment of -0.76 % in Xratio, -0.59% in XCHma
4 and -0.80% in XCHct

4

(See Figure 12 and 13)

Appendix B: Posterior Uncertainty

As discussed in Pandey et al. (2015), the Xratio inversion problem is weakly non-linear and is solved using the quasi–Newtonian

optimizer M1QN3. The standard implementation of M1QN3 does not provide an estimate of posterior uncertainty. Therefore,5
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Figure 13. NOAA based bias correction applied to Xratio in the RATIO inversion

we use the Monte-Carlo approach as described in Chevallier et al. (2007) to calculate posterior flux uncertainties. For the linear

SURF and proxy inversions, which use the conjugate gradient optimization method. The posterior flux uncertainties of these

inversions are derived using the same approach to keep the comparison between the uncertainties consistent. A sensitivity test

has been performed to determine the size of the ensemble needed to properly capture the 1 σ of the prior fluxes. Figure 14

shows the results of this experiment. We choose an ensemble size of 24 for our experiments which gives a 1 σ estimate with10

14.4 % uncertainty.
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Figure 14. The gray lines represent the percentage error of σ of ensemble size n from the σ of ensemble size of 200 of the a priori CH4

flux integrated over TRANSCOM regions. The dark black line represents the average deviation in the grey lines. Green line represent the

analytical variation of the uncertainty of 1 σ (Bousserez et al., 2015). A constant difference of approx. 6% between the estimates comes from

the finite size of the largest sample (200).
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