

1 **Comparison of key absorption and optical properties between pure**
2 **and transported anthropogenic dust over East and Central Asia**

3 Jianrong Bi¹, Jianping Huang^{1*}, Brent Holben², Guolong Zhang¹

4

5 ¹Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of
6 Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China

7 ²NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

8

9 *Submitted to: ACP Special Issue*

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 *Correspondence to: Jianping Huang (hjp@lzu.edu.cn)

29

30 **Abstract.** Asian dust particulate is one of the primary aerosol constituents in the
31 Earth-atmosphere system that exerts profound influences on environmental quality,
32 human health, marine biogeochemical cycle and Earth's climate. To date, the
33 absorptive capacity of dust aerosol generated from Asian desert region is still an open
34 question. In this article, we compile columnar key absorption and optical properties of
35 mineral dust over East and Central Asia areas by utilizing the multi-year quality
36 assured datasets observed at 13 sites of the Aerosol Robotic Network (AERONET).
37 We identify two types of Asian dust according to threshold criteria from previously
38 published literature. (I) The particles with high aerosol optical depth at 440 nm
39 ($AOD_{440} \geq 0.4$) and low Ångström wavelength exponent at 440-870 nm ($\alpha < 0.2$) are
40 defined as Pure Dust (PDU) that decrease disturbance of other non-dust aerosols and
41 keep high accuracy of pure Asian dust. (II) The particles with $AOD_{440} \geq 0.4$ and
42 $0.2 < \alpha < 0.6$ are designated as Transported Anthropogenic Dust (TDU), which are
43 mainly dominated by dust aerosol and might mix with other anthropogenic aerosol
44 types. Our results reveal that the primary components of high AOD days are
45 predominant by dust over East and Central Asia regions even if their variations rely
46 on different sources, distance from the source, emission mechanisms, and
47 meteorological characteristics. The overall mean and standard deviation of
48 single-scattering albedo, asymmetry factor, real part and imaginary part of complex
49 refractive index at 550 nm for Asian PDU are 0.935 ± 0.014 , 0.742 ± 0.008 ,
50 1.526 ± 0.029 , 0.00226 ± 0.00056 , respectively, while corresponding values are
51 0.921 ± 0.021 , 0.723 ± 0.009 , 1.521 ± 0.025 , and 0.00364 ± 0.0014 for Asian TDU.
52 Aerosol shortwave direct radiative effects at the top of the atmosphere (TOA), at the
53 surface (SFC), and in the atmospheric layer (ATM) for Asian PDU ($\alpha < 0.2$) and TDU
54 ($0.2 < \alpha < 0.6$) computed in this study, are a factor of 2 smaller than the results of
55 [Optical Properties of Aerosols and Clouds \(OPAC\)](#) Mineral accumulated (Mineral
56 acc.) and transported (Mineral tran.) modes. Therefore, we are convinced that our
57 results hold promise of updating and improving accuracies of Asian dust
58 characteristics in present-day remote sensing applications and regional or global

59 climate models.

60 1. Introduction

61 Airborne dust particle (also called mineral dust) is recognized as one of the most
62 important aerosol species in the tropospheric atmosphere, which accounts for about
63 30% of the total aerosol loading and extinction aerosol optical depth on a global scale
64 (Perlitz et al., 2001; Kinne et al., 2006; Chin et al., 2009; Huang et al., 2014). High
65 concentrations of dust aerosols hanging over desert source regions and invasive
66 downstream areas would seriously exacerbate air quality, degrade visibility, affect
67 transportation safety, and do adverse effects on public health during the prevalent
68 seasons of dust storms (Chan et al., 2008; Morman and Plumlee, 2013; Wang et al.,
69 2016). When mineral dusts are deposited onto the Earth's surface, they play a key role
70 in biogeochemical cycles of terrestrial ecosystem or ocean (Okin et al., 2004; Jickells
71 et al., 2005; Shao et al., 2011), as well as alter snow and ice albedo (Aoki et al., 2006;
72 Huang et al., 2011; Wang et al., 2014). Last but not least, dust particles can modulate
73 the Earth's energy budget and drive the climate change directly by scattering and
74 absorption of solar/terrestrial radiation (Charlson et al., 1992; Wang et al., 2010b;
75 Huang et al., 2014), and indirectly by acting as effective cloud condensation nuclei or
76 ice nuclei, influencing the cloud microphysics and precipitation processes
77 (Ramanathan et al., 2001; Rosenfeld et al., 2001; DeMott et al., 2003; Huang et al.,
78 2005, 2006, 2010a; Wang et al., 2010c; Creamean et al., 2013). Numerous studies
79 (Sokolik and Toon, 1999; Lafon et al., 2004, 2006) have confirmed that dust particle
80 is one kind of light absorbing substances, and its mass absorption efficiencies at 325
81 nm ($0.06\sim0.12\text{ m}^2/\text{g}$) are about 6 times larger than [that](#) at 660 nm ($0.01\sim0.02\text{ m}^2/\text{g}$),
82 owing to the greater absorbing potential of iron oxides at short wavelengths (Alfaro et
83 al., 2004). However, the way of iron oxides mixed with quartz or clay is complicated
84 and strongly impacts the resulting absorption (Claquin et al., 1998, 1999; Sokolik and
85 Toon, 1999). And these mineralogical studies indicate that a lack of consideration of
86 these mixing mechanisms is a significant limitation of the previous dust absorption
87 computations. Although the absorptive ability of dust is two orders of magnitude

88 lower than for black carbon (Yang et al., 2009), the atmospheric mass loading of the
89 former is the same magnitude larger than that of the latter, leading to the total
90 absorption in solar spectrum comparable to black carbon. Chin et al. (2009) evaluated
91 that dust may account for about 53% of global averaged aerosol absorption optical
92 depth at 550 nm, which undoubtedly changes the aforementioned
93 dust-cloud-precipitation interaction and exerts a significant effect on hydrological
94 cycle of the Earth-atmosphere system.

95 East and Central Asia territories are the major source regions of dust aerosols on
96 Earth, which produce a large amount of dust particles every year that become
97 entrained into the upper atmosphere by cold fronts (Zhang et al., 1997; Huang et al.,
98 2009, 2010a, 2014). They can travel over thousands of kilometers, even across the
99 Pacific Ocean and reach the western coast of North America about one week with the
100 prevailing westerly wind (Husar et al., 2001; Uno et al., 2009, 2011), and then modify
101 the climate and environment over extensive area of Asia-Pacific rim. Thus far, there
102 have been a great deal of fruitful field campaigns for exploring Asian dust (e.g.,
103 U.S.S.R.-U.S., ACE-Asia, ADEC, PACDEX, EAST-AIRC), however, most focus on
104 intensive observation period (Golitsyn and Gillette, 1993; Huebert et al., 2003;
105 Nakajima et al., 2003; Mikami et al., 2006; Huang et al., 2008a; Li et al., 2011) and
106 lack of long-term and quantitative knowledge of dust optical, microphysical
107 characteristics (especially absorption properties) and chemical compositions over
108 these regions. Hence, the absorptive capacity of Asian dust aerosol is still an
109 outstanding issue. The variations of dust optical features in model calculations are
110 closely related to the uncertainties in particle size distribution and prescribing a value
111 for complex refractive index. Whereas the key parameters of Asian dust aerosols in
112 present-day climate models are still prescribed to the predetermined properties of
113 Saharan mineral dust.

114 Wang et al. (2004) inferred the refractive index of pure minerals at Qira in
115 Taklimakan Desert during April 12-14, 2002 via combination of [theoretical](#)
116 [calculation](#) and composition analysis of aerosol samples, and showed that the value of
117 imaginary part is 0.00411 at 500 nm, which is consistent with the Central Asian dust

118 of 0.004 ± 0.001 (Tadzhikistan Desert; Sokolik and Golitsyn, 1993). Uchiyama et al.
119 (2005) determined the single-scattering albedo (SSA) of Aeolian dust from sky
120 radiometer and in situ measurements, and concluded that unpolluted Aeolian dust
121 (source from Taklimakan Desert) has low absorption (with SSA_{500} of $0.93 \sim 0.97$). Kim
122 et al. (2004) analyzed multiyear sky radiation measurements over East Asian sites of
123 Skyradiometer Network (Nakajima et al., 1996; Takamura et al., 2004) and showed
124 the SSA_{500} of dust particles are around 0.9 in arid Dunhuang of northwest China and
125 Mandalgoi Gobi desert in Mongolia. Bi et al. (2014) also reported the similar SSA_{550}
126 ($0.91 \sim 0.97$) of dust aerosol at Dunhuang during spring of 2012. Xu et al. (2004)
127 gained SSA_{530} of 0.95 ± 0.05 in Yulin, China, from a Radiance Research nephelometer
128 and a Particle Soot Absorption Photometer (PSAP) and suggested that both desert dust
129 and local pollution sources contributed to the aerosol loading in Yulin during April
130 2001. Whereas Ge et al. (2010) examined dust aerosol optical properties at Zhangye
131 (a semiarid area of northwest China) from multifilter rotating shadowband radiometer
132 (MFRSR) during spring of 2008 and found that although there are low aerosol optical
133 depth values (AOD_{670} ranging from $0.07 \sim 0.25$), dust particles have strong absorption
134 (with SSA_{500} of 0.75 ± 0.02) due to mixing with local anthropogenic pollutants. This
135 result is close to the New Delhi over India ($0.74 \sim 0.84$ for SSA_{500} ; Pandithurai et al.,
136 2008). Lafon et al. (2006) revealed that due to containing of less calcite and higher
137 fraction of iron oxide-clay aggregates, mineral dusts in Niger (Banizoumbou, $13^{\circ}31'N$,
138 $2^{\circ}38'E$) have much lower SSA in the visible wavelengths than that of Chinese (Ulan
139 Buh, $39^{\circ}26'N$, $105^{\circ}40'E$) and Tunisian (Maouna, $33^{\circ}01'N$, $10^{\circ}40'E$) desert locations.
140 Therefore, complete clarification of the climate-relevant impacts of Asian dust
141 aerosols requires extensive and long-term measurements of the optical, microphysical
142 and chemical properties, along with their spatial and temporal distributions.

143 There have been several world-famous aerosol long-term monitoring networks
144 over Asian region for examining aerosol features and its radiative effects, for instance,
145 AERONET—AErosol RObotic NETwork (Holben et al., 1998),
146 SKYNET—aerosol-cloud-radiation interaction ground-based observation network
147 (Nakajima et al., 1996; Takamura et al., 2004; Che et al., 2008), and

148 **CARSNET—China Aerosol Remote Sensing Network (Che et al., 2009a, 2014, 2015).**
149 In this paper, we investigate optical characteristics of Asian dust from multi-year
150 AERONET measurements at 13 sites in and around arid or semi-arid regions of East
151 and Central Asian desert sources. The key quantities include single-scattering albedo
152 (SSA), asymmetry factor (ASY), real part (Re) and imaginary part (Ri) of complex
153 refractive index, volume size distribution ($dV/dlnr$), which are needed for climate
154 simulating and remote sensing applications. We mainly compare the vital absorption
155 and optical properties between pure and transported anthropogenic dust over East and
156 Central Asia. This article is arranged as follows. Section 2 introduces the site
157 description and measurement. The identification method and detailed Asian dust
158 optical features are described in Section 3. Discussion of spectral absorption
159 behaviors of different dust aerosol types are given in Section 4 and followed by the
160 Summary in Section 5.

161 **2. Site Description and Measurement**

162 **2.1. Site Description**

163 In this article, we select 13 AERONET sites located in arid or semi-arid Asian
164 regions (see Fig. 1), which are recognized as the primarily active centre of dust storms.
165 These drylands are very sensitive to climate change and human activities and would
166 accelerate drought expansion by the end of twenty-first century (Zheng et al., 2009;
167 Huang et al., 2016). Eight sites over East Asian region are labeled with red colors, and
168 five sites over Central Asian area are labeled with blue colors. The major Great
169 deserts or Gobi deserts along with plateaus are marked with black font (e.g., Great
170 Gobi desert in Mongolia, Taklimakan Desert, Thar Desert, Karakum Desert, Tibetan
171 Plateau, Loess Plateau, and Iranian Plateau). In order to quantitatively explore
172 detailed spectral absorptive characteristics of dust aerosols over East and Central Asia,
173 we choose four East Asian sites (SACOL, Dalanzadgad, Beijing, and Yulin) and four
174 Central Asian sites (Dushanbe, Karachi, Kandahar, and IASBS). They consist of:
175 SACOL located over Loess Plateau of northwest China (Huang et al., 2008b; Guan et
176 al., 2009; Huang et al., 2010b; Wang et al., 2010a), Dalanzadgad in the Great Gobi of

177 southern Mongolia (Eck et al., 2005), Beijing in the downwind of Inner Mongolia
178 (Xia et al., 2007), Yulin on the southwestern fringe of the Mu Us desert in northwest
179 China (Xu et al., 2004; Che et al., 2009b, 2015), Dushanbe in Tadzhikistan situated at
180 the transport corridor of Central Asian desert dust (i.e. Karakum Desert; Golitsyn and
181 Gillette, 1993), Karachi located in the southern margin of Thar Desert in Pakistan and
182 about 20 km from the east coast of Arabian Sea (Alam et al., 2011), Kandahar in the
183 arid area of southern Afghanistan, IASBS on the Iranian Plateau of northwest Iran.

184 **2.2. Sun Photometer Measurements**

185 AERONET is an internationally federated global ground-based aerosol monitoring
186 network utilizing Cimel sun photometer, which comprises more than 500 sites all over
187 the world (Holben et al., 1998). The Cimel Electronique sun photometer (CE-318)
188 takes measurements of sun direct irradiances at multiple discrete channels within the
189 spectral range of 340-1640 nm, which can be calculated aerosol optical depth (AOD)
190 and columnar water vapor content (WVC) in centimeter. Furthermore, the instrument
191 can perform angular distribution of sky radiances at 440, 675, 870, and 1020 nm
192 (nominal wavelengths), which can be simultaneously retrieved aerosol volume size
193 distribution, complex refractive index, single-scattering albedo, and asymmetry factor
194 under cloudless condition (Dubovik and King, 2000; Dubovik et al., 2002a, 2006).
195 The total accuracy in AOD for a newly calibrated field instrument is about
196 0.010-0.021 (Eck et al., 1999). The retrieval errors of SSA, ASY, Ri, and Re are
197 anticipated to be 0.03-0.05, 0.04, 30%-50%, and 0.025-0.04, respectively, relying on
198 aerosol types and loading (Dubovik et al., 2000). It should be borne in mind that these
199 uncertainties are **valid for** $AOD_{440} \geq 0.4$ and for solar zenith angle $> 50^\circ$ (Level 2.0
200 product), and the retrieval errors will become much greater when $AOD_{440} < 0.4$. The
201 datasets of selected 13 AERONET sites in this study come from the Level2.0 product,
202 which are pre- and post-field calibrated, automatically cloud screened, and
203 quality-assured (Smirnov et al., 2000). In addition, a mixture of randomly oriented
204 polydisperse spheroid particle shape assumption with a fixed aspect ratio distribution
205 is applied to retrieve key optical properties of Asian dust (Dubovik, et al., 2002a,
206 2006). Fu et al. (2009) have concluded that Mie-based single-scattering properties of

207 spheroidal dust aerosols are well suited in radiative flux calculations.

208 **3. Asian Dust Optical Properties**

209 A great amount of publications have verified that mineral dust aerosols are
210 commonly predominant by large particles with coarse mode (radii $>0.6\text{ }\mu\text{m}$), which are
211 the essential feature differentiating the dust from fine-mode dominated biomass
212 burning and urban-industrial aerosols (Dubovik et al., 2002b; Eck et al., 2005; Bi et
213 al., 2011, 2014; Kim et al., 2011; [Che et al., 2013](#)). In other word, the values of
214 Ångström exponent at 440-870 nm (α) for dust aerosols usually range between -0.1 to
215 0.6. As pointed out by Smirnov et al. (2002) and Dubovik et al. (2002b), sea salt
216 aerosol is also dominant by coarse mode and has small Ångström exponent ($\sim 0.3-0.7$)
217 but with low AOD_{440} ($\sim 0.15-0.2$) [compared with](#) dust aerosol. Moreover, the selected
218 desert locations in this study are mostly not affected by sea salt. By virtue of these
219 differences, we can distinguish Asian dust aerosols from other fine-mode dominated
220 non-dust particles. The criteria of two thresholds are put forward. (I) The particles
221 with high aerosol optical depth at 440 nm ($\text{AOD}_{440}\geq 0.4$) and low Ångström
222 wavelength exponent at 440-870 nm ($\alpha<0.2$) are defined as Pure Dust (PDU) that
223 keep high accuracy of pure Asian dust and eliminate most fine mode aerosols. (II) The
224 particles with $\text{AOD}_{440}\geq 0.4$ and $0.2<\alpha<0.6$ are designated as Transported
225 Anthropogenic Dust (TDU), which are mainly dominated by dust and might mix with
226 other anthropogenic aerosol types during transportation. The definition of
227 anthropogenic dust in this study is different from earlier [literature](#) (Tegen and Fung,
228 1995; Prospero et al., 2002; Huang et al., 2015), which define that anthropogenic dust
229 is primarily produced by various human activities on disturbed soils (e.g., agricultural
230 practices, industrial activity, transportation, desertification and deforestation). It is still
231 a huge challenge to discriminate between natural and anthropogenic components of
232 dust aerosols by using current technology, AERONET products or in-situ
233 measurements. Recently, Ginoux et al. (2012) first estimated that anthropogenic
234 sources globally account for 25% based on Moderate Resolution Imaging
235 Spectroradiometer (MODIS) Deep Blue dust optical depth in conjunction with other

236 land use data sets. Huang et al. (2015) proposed a new algorithm for distinguishing
237 anthropogenic dust from natural dust by using Cloud-Aerosol Lidar and Infrared
238 Pathfinder Satellite Observation (CALIPSO) and planetary boundary layer (PBL)
239 height retrievals along with MODIS land cover data set. They revealed that
240 anthropogenic dust produced by human activities mainly comes from semi-arid and
241 semi-humid regions and is generally mixed with other types of aerosols within the
242 PBL that is more spherical than natural dust. Thereby, we assume that anthropogenic
243 dust aerosol originated from Asian arid or semi-arid areas has got smaller size
244 distribution (thus larger Ångström exponent) than that of pure natural dust.

245 Before insight into dust aerosol optical characteristics, we first analyze the
246 occurrence frequency of Asian dust over the study region that significantly affects the
247 intensity and distribution of mineral dust loading. Figure 2 depicts the total number
248 days of each month for Pure Dust ($\alpha < 0.2$) and transported Anthropogenic Dust
249 ($0.2 < \alpha < 0.6$) at selected four East Asian sites and four Central Asian sites. The dust
250 events at four East Asian sites primarily concentrate on springtime and corresponding
251 peak days for PDU and TDU both appear in April. This is greatly attributed to the
252 intrusion of dust particles during spring when dust storms are prevalent over these
253 regions (Wang et al., 2008). For SACOL and Beijing sites, both the PDU and TDU
254 days also occur in whole year except for autumn when is the rainy season, which is
255 linked with long-range transport of dust particulates from desert source areas and
256 locally anthropogenic dust (e.g., agricultural cultivation, overgrazing, desertification,
257 industrial and constructed dust in urbanization). Shen et al. (2016) have demonstrated
258 that urban fugitive dust generated by road transport and urban construction
259 contributes to more than 70% of particulate matter ($PM_{2.5}$) in northern China. The
260 dust episodes in Dushanbe of Tadzhikistan mostly happen from July to October,
261 which are the peak seasons of dust storms (Golitsyn and Gillette, 1993). For Karachi
262 site in Pakistan, the dust activities take place in spring and summer seasons. This is
263 because the region is not affected by the summer monsoon, leaving the land surface
264 sufficiently dry, and hence susceptible to wind erosion by strong winds and
265 meso-scale thunderstorm events typical of this time of year (Alizadeh Choobari et al.,

266 2014). In addition, the transport of summer dust plumes from the Arabian Peninsula
267 can partially contribute dust particles to Karachi site. Note that the occurred months of
268 PDU cases are nearly different from TDU cases at Dalanzadgad, Kandahar, and
269 IASBS sites, suggesting that dust aerosols over these areas are rarely affected by
270 anthropogenic pollutants. For Kandahar site in Afghanistan, the limited sampling days
271 to some extent may affect the statistical results. Generally, the aforementioned
272 occurrence frequency of dust storms over diverse sites are principally dependent on
273 different climatic regime and synoptic pattern, for instance, geographical location,
274 atmospheric circulation, wet season and dry season.

275 Table 1 summarizes the site information, sampling period, overall average optical
276 properties at 550 nm (e.g., SSA, ASY, Re, Ri, and Ångström exponent at 440-870 nm)
277 for Asian PDU ($\alpha < 0.2$), and total number of PDU and TDU ($0.2 < \alpha < 0.6$) days. Note
278 that dust optical feature at a common 550 nm wavelength is utilized here, which can
279 be derived from logarithmic interpolation between 440 and 675 nm. It is worth
280 pointing out that the absorption and optical properties of dust aerosols at two
281 Dunhuang sites exhibit consistent features despite of different sampling periods,
282 which indicate that the chemical composition of dust aerosol at Dunhuang area
283 remains relatively stable.

284 The SSA or Ri of complex refractive index can characterize the absorptive
285 capability of dust aerosols, and determine the sign (cooling or heating, depending on
286 the planetary albedo) of the radiative forcing (Hansen et al., 1997). Both two
287 quantities are mainly relied on the ferric oxide content in mineral dust (Sokolik and
288 Toon, 1999). Figure 3 illustrates the overall average spectral behavior of key optical
289 properties for PDU ($\alpha < 0.2$) and TDU ($0.2 < \alpha < 0.6$) at selected four East Asian sites.
290 The SSA, ASY, Re and Ri of complex refractive index as a function of wavelength
291 (440, 675, 870, and 1020 nm) are presented. For all cases, the spectral behaviors of
292 aerosol optical parameters exhibit similar features, which can be representative of
293 typical patterns of Asian dust. The SSA values systematically increase with
294 wavelength at 440-675 nm and keep almost neutral or slight increase for the
295 wavelengths greater than 675 nm, which is consistent with the previous results of dust

aerosols (Dubovik et al., 2002b; Eck et al., 2005; Bi et al., 2011). In contrast, an opposite pattern is displayed by imaginary part of refractive index, namely, Ri values dramatically decrease from 440 nm to 675 nm, and preserve invariant from 675 nm to 1020 nm. These variations indicate that Asian dust aerosols have got much stronger absorptive ability at shorter wavelength. Alfaro et al. (2004) implied that the absorption capacity of soil dust increase linearly with iron oxide content, [and estimated SSA at 325 nm \(~0.80\) is much lower than that at 660 nm \(~0.95\)](#). Sokolik and Toon (1999) revealed that ferric iron oxides (e.g., hematite and goethite) are often internally mixed with clay minerals and result in significant dust absorption in the UV/visible wavelengths. Hence, the spectral variations of SSA and Ri with wavelengths are attributable to the domination of coarse-mode dust particles that have larger light absorption in the blue spectral band as mentioned above. It is worth noting that spectral ASY values remarkably reduce from 440 nm to 675 nm, and are almost constant at 675-1020 nm range. This suggests that Asian dust aerosols have much stronger scattering at 440 nm than other longer visible wavebands, due to the contribution of coarse mode particles. By contrast, the spectral behavior of Re is not obvious for PDU and TDU at all sites, and the mean Re values at 440 nm vary between 1.50 and 1.56. Although there are 18 years continuous AERONET datasets at Dalanzadgad site, the effective days of PDU and TDU are only 8 and 6 days, respectively, almost appearing in springtime period. There are no identifiable differences for dust absorption properties between PDU and TDU cases for Dalanzadgad, which indicates again that the site is hardly influenced by anthropogenic pollutants. The spectral discrepancies of optical characteristics between PDU and TDU at other three sites show much more apparent than Dalanzadgad, which is ascribed to these regions are not only affected by dust aerosols, but also including local anthropogenic emissions, for instance, urban-industry, coal fuel combustion, biomass burning, mobile source emissions, and agricultural dust (Xu et al., 2004; Xia et al., 2007; Che et al., 2015; Bi et al., 2011; Wang et al., 2015).

Figure 4 is the same as Figure 3, but for selected four Central Asian sites. The wavelength dependencies of PDU and TDU cases at Central Asian sites are consonant

326 with that of East Asian sites, despite of somewhat different variations of magnitude
327 and amplitude. This is expected, because the East Asian desert sites are very close to
328 the Central Asian desert locations and remain similar chemical compositions of dust
329 aerosols (Wang et al., 2004). The spectral behaviors of dust optical properties for
330 PDU at Kandahar and IASBS sites are nearly the same as TDU cases, which agrees
331 well with the consistent variability of occurrence of dust storms. The wavelength
332 dependency of dust characteristics for PDU at Dushanbe and Karachi presents large
333 differences with TDU case, which is also likely due to the influence of local
334 anthropogenic pollutions. Furthermore, the standard deviation of PDU is far less than
335 that of TDU at all wavelengths, suggesting that the robustness of PDU recognition
336 method.

337 Particle size distribution is another critical agent for deciding the optical and
338 radiative properties of dust aerosol. Nakajima et al. (1996) and Dubovik and King
339 (2000) uncovered that based on the spherical Mie theory, the retrieval errors of
340 volume size distribution do not exceed 10% for intermediate particle size ($0.1 \leq r \leq 7$
341 μm) and may greatly increase to 35-100% at the edges of size range ($r < 0.1 \mu\text{m}$ or $r > 7$
342 μm). As mentioned above, a polydisperse, randomly oriented spheroid method is
343 utilized in this study, which is demonstrated to remove the artificially increased size
344 distribution of fine particle mode with $\text{AOD}_{440} \geq 0.4$ and for solar zenith angle $> 50^\circ$.
345 Additionally, the large errors at the edges do not significantly affect the derivation of
346 the main features of the particle size distribution (concentration, median and effective
347 radii, etc.), because typical dust aerosol size distributions have low values at the edges
348 of retrieval size interval (Dubovik et al., 2002a). Figure 5 delineates the overall
349 average columnar aerosol volume size distributions ($dV/dlnr$, $0.05 \mu\text{m} \leq r \leq 15 \mu\text{m}$) for
350 Pure Dust ($\alpha < 0.2$) and Transported Anthropogenic Dust ($0.2 < \alpha < 0.6$) at selected 13
351 AERONET sites. Corresponding AOD_{440} and effective radius of coarse mode (r_{coarse})
352 in μm are also shown. It is apparent that the $dV/dlnr$ exhibits a typical bimodal
353 structure and is dominant by coarse mode for PDU and TDU at all sites. The $dV/dlnr$
354 peak of coarse mode particle varies dramatically and appears at a radius $r_{Vc} \sim 2.24 \mu\text{m}$
355 for all PDU cases and $r_{Vc} \sim 2.0-3.0 \mu\text{m}$ for TDU cases, while the corresponding peak of

356 fine mode particle arises at a radius $r_{vf} \sim 0.09\text{-}0.12 \mu\text{m}$. The $dV/dlnr$ peak and
357 effective radius (r_{coarse}) of coarse mode particles strikingly increase with the increase
358 of AOD ascribed to the intrusion of dust particles. For instance, the AOD_{440} , $dV/dlnr$
359 peak values of coarse mode, and r_{coarse} for PDU at Minqin site are 0.48, $0.31 \mu\text{m}^3/\mu\text{m}^2$,
360 and $1.74 \mu\text{m}$, respectively, and corresponding values are 1.13, $0.77 \mu\text{m}^3/\mu\text{m}^2$, and $1.93 \mu\text{m}$
361 at Lahore site, as shown in Fig. 5(a). The average volume median radii of
362 fine-mode and coarse-mode particles for PDU are $0.159 \mu\text{m}$ and $2.157 \mu\text{m}$,
363 respectively, and $0.140 \mu\text{m}$ and $2.267 \mu\text{m}$ for TDU (see Table. 2). The mean volume
364 concentration ratio of coarse mode to fine mode particles (C_{vc}/C_{vf}) for Pure Dust is
365 about 18 (varying between 11~31) over East and Central Asia, which is close to the
366 average of ~ 20 at Dunhuang_LZU during the spring of 2012 (Bi et al., 2014), and
367 much less than that over Saharan pure desert domain (~ 50) (Dubovik et al., 2002b).
368 The $dV/dlnr$ peak of coarse mode for TDU is clearly smaller than that for PDU, and
369 corresponding mean C_{vc}/C_{vf} value is 9 ($\sim 5\text{-}11$). We attribute the high fractions of
370 coarse-mode particles to high AOD and low Ångström exponent values.

371 In this paper, we postulate that Asian dust particles only possess scattering and
372 absorption characteristics. And the absorption AOD value (AAOD) at a specific
373 wavelength can be obtained from SSA and AOD, namely, $AAOD_{\lambda} = (1 - SSA_{\lambda}) \times AOD_{\lambda}$,
374 where λ is the wavelength. Thereby, the corresponding absorption Ångström exponent
375 at 440-870 nm (AAE) is calculated from spectral AAOD values by using a log-linear
376 fitting algorithm. Figure 6 outlines the total average Ångström exponent (α) and
377 absorption Ångström exponent at 440-870 nm, volume concentration of coarse mode
378 in $\mu\text{m}^3/\mu\text{m}^2$, and volume median radius of coarse mode in μm for TDU ($0.2 < \alpha < 0.6$)
379 and PDU ($\alpha < 0.2$) at selected AERONET sites. There are very big differences of all
380 quantities between PDU and TDU cases, except for some sites (e.g., Dunhuang and
381 Minqin). The primary reason is that we only acquire limited datasets of dust days
382 during spring time at Dunhuang and Minqin sites, which are hardly affected by other
383 anthropogenic pollutants. The AE values of TDU show remarkable changes among
384 each site, ranging from 0.24 to 0.44, whereas corresponding values of PDU keep
385 comparatively slight variations for selected 13 sites ($\sim 0.04\text{-}0.15$). Furthermore, all the

AAE values of PDU are greater than 1.5, ranging between 1.65 and 2.36, and the AAE of TDU vary from 1.2 to 2.3. We can conclude that the Asian pure dust aerosols have got AE values smaller than 0.2 and corresponding AAE larger than 1.50, which is another typical feature distinguishing with other non-dust aerosols. Yang et al. (2009) attributed the high AAE values of dust aerosol in China to the presence of ferric oxides. It is evident that volume concentrations of coarse mode for PDU are significantly higher than TDU case, which is expected for the more coarse-mode particles in PDU. While the volume median radius of coarse mode for TDU is greater than PDU case, although there are some smaller values for TDU at Dalanzadgad and Yulin sites. This is owing to dust particles at these sites usually mix with other anthropogenic aerosol species and substantially enhance their median radii.

Figure 7 characterizes the overall mean optical properties (e.g., SSA, ASY, Re, and Ri) at 440 nm for selected 13 sites. In general, the absorption capacity of PDU is less than that for TDU. That is, higher SSA and smaller Ri values for PDU, except for Dalanzadgad site. A reasonable interpretation is that threshold criterion method for PDU in this study has effectively eliminated the fine mode aerosols, which are mostly the much stronger absorbing aerosols (e.g., soot and biomass burning aerosol) over East and Central Asia but weaker absorbing pollution aerosols (i.e., sulfate and nitrate) over Dalanzadgad. Wu et al. (2012, 2014) have documented that sulfate and nitrate in background atmosphere most likely originated directly from surface soil at the north and south edges of Taklimakan desert and comprised steadily about 4% of dust particulate matters, which could partially explain our results. Additionally, the overall mean ASY and Re of PDU are greater than that of TDU, which again verifies that the Asian pure dust has got much stronger forward scattering ability than the mixture of Asian dust. Note that the standard deviation of SSA and Ri for PDU is a factor of two to four lower than those from TDU. And the total average values of SSA, ASY, Re, and Ri at 550 nm wavelength for Asian PDU are 0.935 ± 0.014 , 0.742 ± 0.008 , 1.526 ± 0.029 , and 0.00226 ± 0.00056 , respectively, while corresponding values are 0.921 ± 0.021 , 0.723 ± 0.009 , 1.521 ± 0.025 , 0.00364 ± 0.0014 for TDU. Yang et al. (2009) took advantage of various in situ aerosol optical and chemical measurements at

416 Xianghe, China during the EAST-AIRC campaign, and deduced a refractive index of
417 1.53-0.0023i at 550 nm of dust aerosol, which is close to the result of PDU in this
418 study. Nevertheless, the TDU case should be much closer to actual airborne dust
419 aerosol in the real world. When the elevated dusts over desert source regions are
420 transported eastward, they generally mix with other chemical species and react
421 heterogeneously with anthropogenic pollutants, and thus may significantly modify
422 their chemical composition and microphysical properties (Arimoto et al., 2004).
423 Recently, Kim et al. (2011) presented that the annual mean SSA, ASY, Re, and Ri of
424 complex refractive index for nearly pure Saharan dust are 0.944 ± 0.005 , 0.752 ± 0.014 ,
425 1.498 ± 0.032 , and 0.0024 ± 0.0034 at 550 nm, respectively, which are close to our
426 results of pure Asian dust but exist some differences of quantitative values and
427 spectral behaviors.

428 Average spectral optical properties (at 440, 675, 870, and 1020 nm) for PDU and
429 TDU over East and Central Asian regions are tabulated in Table 2. To our knowledge,
430 this is the first built on Asian dust optical characteristics utilizing multiyear and
431 multi-site AERONET measurements, which will hopefully improve uncertainties of
432 Asian dust shortwave radiative forcing in current regional and global climate models.

433 **4. Discussion**

434 Figure 8 describes the mean spectral behaviors of Re, RI, and SSA for Asian Pure
435 Dust ($\alpha < 0.2$) in this study along with published dust results over various geographical
436 locations (Carlson and Caverly, 1977 or C77; Patterson et al., 1977 or P77; WMO,
437 1983; Hess et al., 1998 or OPAC; Dubovik et al., 2002b or Persian Gulf; Alfaro et al.,
438 2004 or Ulan Buh Desert; Wang et al., 2004 or ADEC; Todd et al., 2007 or T07). It is
439 well known that a lot of present-day dust models commonly take advantage of the
440 Optical Properties of Aerosols and Clouds (OPAC, Hess et al., 1998) or World
441 Meteorological Organization (WMO, 1983) databases. Curves C77 and P77 show the
442 complex refractive index of Saharan dust in Cape Verde Islands, Barbados West
443 Indies, Tenerife Canary Islands obtained from laboratory analysis by Carlson and
444 Caverly (1977) and Patterson et al. (1977), respectively. Curve P77 gives one of the

most widely used datasets of Ri value in the range 300-700 nm. Curve Persian Gulf(98-00) displays the refractive index and SSA of dust over Bahrain-Persian Gulf Desert during period of 1998-2000 derived from Dubovik et al. (2002b). Curve T07 shows the optical properties of mineral dust over Bodélé Depression of northern Chad during 2005 retrieved from Cimel sun photometer by Todd et al. (2007). And the curves ADEC and Ulan Buh exhibit the dust absorptive properties over aforementioned Taklimakan Desert and Ulan Buh Desert of northwest China by Wang et al. (2004) and Alfaro et al. (2004). Figure 8(a) presents that the spectral behaviors of Re have relatively slight variations with values ranging from 1.50-1.56 apart from T07 that shows lower Re values of 1.44-1.47. Todd et al. (2007) utilized Scanning Electron Microscope (SEM) analysis of airborne dust material and confirmed that the mineral dust is dominated by fragmented fossil diatoms from the dry lake bed of the Bodélé Depression, which is to some extent different from the typical desert soil. As shown in Figure 8(b), wavelength dependences of Ri exhibit comparably greater differences in UV wavebands. In mid-visible and near infrared, our results are slightly larger than Persian Gulf (98-00) and T07 that are retrieved from Cimel sun photometer, but still comparable. It is very distinct that the absorbing ability of Asian pure dust ($\alpha<0.2$) in the whole spectrum range is about a factor of 4 smaller than current dust models (WMO, 1983; Hess et al., 1998), and is a factor of 2 to 3 lower than the results from in situ measurements combined with laboratory analysis or model calculations (Carlson and Caverly, 1977; Patterson et al., 1977; Wang et al., 2004). Meanwhile, the wavelength dependences of SSA agree well with Persian Gulf (98-00) and Ulan Buh Desert, but are much higher than OPAC. The discrepancy increases dramatically with decreasing wavelength. Such big differences of dust absorption capacity for diverse dust models (OPAC and WMO) and researches will certainly lead to different radiative impacts on regional or global climate change.

Figure 9 draws the aerosol shortwave direct radiative effects (ARF) at the top of atmosphere (TOA), at the surface (SFC), and in the atmospheric layer (ATM) for Asian Pure Dust ($\alpha<0.2$) and Transported Anthropogenic Dust ($0.2<\alpha<0.6$) acquired in this study, and corresponding ARF values for OPAC Mineral accumulated (Mineral

475 acc.) and transported (Mineral tran.) modes are also presented for comparison. We
476 make use of the Santa Barbara Discrete-ordinate Atmospheric Radiative Transfer
477 model (SBDART, Ricchiazzi et al., 1998) to calculate the ARF, which has been
478 proved to be a reliable software code and widely used for simulating plane-parallel
479 radiative fluxes in the Earth's atmosphere (Halthore et al., 2005; Bi et al., 2013). The
480 main input parameters of spectral AOD, surface albedo, WVC, and columnar ozone
481 amount are prescribed to same values (e.g., 0.72, 0.30, 1.0 cm, and 300 DU for input
482 [AOD₄₄₀, surface albedo, WVC, and ozone amount](#)), and the spectral SSA, ASY, Re,
483 and Ri values are obtained from aforementioned various dust models. It is evident that
484 Earth's energy budget is modulated and redistributed by different absorbing properties
485 of mineral dusts. The results indicate that the cooling rate at SFC (negative radiative
486 forcing) gradually increases with PDU ($\alpha < 0.2$), TDU ($0.2 < \alpha < 0.6$), OPAC Mineral
487 accumulated and transported dust modes. By contrast, the cooling intensity at TOA
488 gradually decreases with diverse dust cases, and even becomes positive radiative
489 forcing for OPAC transported dust mode, with ARF varying from -15.6, -13.8, -6.9,
490 and +0.24 Wm⁻², respectively. Therefore, the heating intensity in the atmospheric
491 layer sharply increases from +22.7, +29.5, +46.6, and +58.3 Wm⁻². The heating rate in
492 ATM for OPAC Mineral (acc. and tran.) modes is about two-fold greater than Asian
493 dust cases (PDU and TDU). Such large diabatic heating rates might warm the dust
494 layer, suppress the development of convection under the lower atmosphere, thus exert
495 profound impacts on the atmospheric dynamical and thermodynamic structures and
496 cloud formation together with the strength and occurrence frequency of precipitation
497 (Rosenfeld et al., 2001; Huang et al., 2010a; Creamean et al., 2013). Hence, accurate
498 and reliable absorbing characteristics of Asian dust should be considered in
499 present-day regional climate models.

500 5. Summary

501 In this study, we have proposed two threshold criteria to discriminate two types of
502 Asian dust: Pure Dust (PDU, $\alpha < 0.2$) and Transported Anthropogenic Dust (TDU,
503 $0.2 < \alpha < 0.6$). [PDU](#) can represent nearly “pure” dust in desert source regions and

504 decrease disturbance of other non-dust aerosols, which would also exclude some fine
505 mode of dust particles. The spectral behaviors of TDU exhibit similar variations with
506 PDU, but show much stronger absorption and weaker scattering than PDU cases.
507 There are two markedly identifiable characteristics for Asian PDU. (I) spectral SSA
508 values systematically increase with wavelength from 440 nm to 675 nm and remain
509 almost neutral or slight increase for the wavelength greater than 675 nm, whereas an
510 opposite pattern is shown for imaginary part of refractive index. (II) Asian pure dust
511 aerosols have got AE values smaller than 0.2 and AAE larger than 1.50. Compared
512 with current common dust models (e.g., OPAC and WMO), Asian dust aerosol has
513 relatively weak absorption for wavelengths greater than 550 nm (SSA~0.96-0.99), but
514 presents a moderate absorption in the blue spectral range (SSA₄₄₀~0.92-0.93). The
515 overall average values of SSA, ASY, Re, and Ri at 550 nm wavelength for Asian PDU
516 are 0.935±0.014, 0.742±0.008, 1.526±0.029, and 0.00226±0.00056, respectively,
517 while corresponding values are 0.921±0.021, 0.723±0.009, 1.521±0.025,
518 0.00364±0.0014 for TDU.

519 It should be noted that the definition of anthropogenic dust in this paper is
520 ambiguous, and TDU here represents more accurately dominant dust mixing with
521 other anthropogenic aerosols. It is very difficult to quantify the anthropogenic
522 contribution due to large uncertainties in defining the anthropogenic fraction of
523 ambient dust burden (Sokolik et al., 2001; Huang et al., 2015). Diverse human
524 activities (e.g., agricultural cultivation, desertification, industrial activity,
525 transportation, and construction in urbanization) in vulnerable environments might
526 modify the land use and Earth's surface cover, and would affect the occurred
527 frequency and intensity of anthropogenic dust. Hence, the optical features of
528 anthropogenic dust aerosols are dependent on the source regions and chemical
529 compositions. However, as concluded by Huang et al. (2015), anthropogenic dust
530 generated by human activities mainly comes from semi-arid and semi-humid regions
531 (Guan et al., 2016) and is generally mixed with other types of aerosols within the PBL.
532 And we primarily investigated dust aerosols in arid or semi-arid regions over East and
533 Central Asia, where are somewhat disturbed by human activities. Therefore, the key

534 optical properties of TDU derived from this study should to some extent contain the
535 anthropogenic fraction. To fully elucidate exact optical properties of anthropogenic
536 dust, we need to explore detailed morphology, mineralogy, and chemical
537 compositions by means of in situ measurements, laboratory analysis, active and
538 passive remote sensing methods (e.g., multi-wavelength lidar, AEROENT, MODIS)
539 as well as model calculations.

540

541 *Acknowledgements.* This work was jointly supported by the National Science Foundation of
542 China (41521004, 41305025, 41575015 and 41405113), the Fundamental Research Funds for the
543 Central Universities lzujbky-2015-4 and lzujbky-2016-k01, and the China 111 Project (No. B
544 13045). We thank the GSFC/NASA AERONET group for processing the AERONET data
545 (<http://aeronet.gsfc.nasa.gov>). The authors would like to express special thanks to the
546 principal investigators (Hong-Bin Chen, Philippe Goloub, Bernadette Chatenet, Xiao-Ye Zhang,
547 Laurent Gomes, Sabur F. Abdullaev, and Hamid Khalesifard) and their staff for effort in
548 establishing and maintaining the instruments at AERONET sites used in this work. We appreciate
549 the MODIS and TOMS teams for supplying the satellite data. We would also like to thank all
550 anonymous reviewers for their constructive and insightful comments.

551

552 **References**

553 Alam, K., Trautmann, T., and Blaschke, T.: Aerosol optical properties and radiative forcing over
554 mega-city Karachi, *Atmos. Res.*, 101, 773-782, doi:10.1016/j.atmosres.2011.05.007, 2011.

555 Alfaro, S. C., Lafon, S., Rajot, J. L., Formenti, P., Gaudichet, A., and Maillé, M.: Iron oxides and
556 light absorption by pure desert dust: An experimental study, *J. Geophys. Res.*, 109, D08208,
557 doi:10.1029/2003JD004374, 2004.

558 Alizadeh Choobari, O., Zawar-Reza, P., and Sturman, A.: The global distribution of mineral dust
559 and its impacts on the climate system: A review, *Atmos. Res.*, 138, 152-165,
560 doi:10.1016/j.atmosres.2013.11.007, 2014.

561 Aoki, T., Motoyoshi, H., Kodama, Y., Yasunari, T. J., Sugiura, K., and Kobayashi, H.:
562 Atmospheric aerosol deposition on snow surfaces and its effect on albedo, *SOLA*, 2, 13-16,

563 doi:10.2151/sola.2006-004, 2006.

564 Arimoto, R., X. Y. Zhang, B .J. Huebert, C. H. Kang, D. L. Savoie, J. M. Prospero, S. K. Sage, C.
565 A. Schloesslin, H. M. Khaing, and S. N. Oh: Chemical composition of atmospheric aerosols
566 from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia, *J. Geophys. Res.*, 109,
567 D19S04, doi:10.1029/2003JD004323, 2004.

568 Bi, J., Huang, J., Fu, Q., Wang, X., Shi, J., Zhang, W., Huang, Z., and Zhang B.: Toward
569 characterization of the aerosol optical properties over Loess Plateau of Northwestern China, *J.*
570 *Quant. Spectrosc. Radiat. Transfer.*, 112, 346-360, doi:10.1016/j.jqsrt.2010.09.006, 2011.

571 Bi, J., Huang, J., Fu, Q., Ge, J., Shi, J., Zhou, T., and Zhang, W.: Field measurement of clear-sky
572 solar irradiance in Badain Jaran Desert of Northwestern China, *J. Quant. Spectrosc. Radiat.*
573 *Transf.*, 122, 194-207, doi:10.1016/j.jqsrt.2012.07.025, 2013.

574 Bi, J., Shi, J., Xie, Y., Liu, Y., Takamura, T., and Khatri, P.: Dust aerosol characteristics and
575 shortwave radiative impact at a Gobi Desert of Northwest China during the spring of 2012. *J.*
576 *Meteo. Soc. Jp*, 92A, 33-56, DOI:10.2151/jmsj.2014-A03, 2014.

577 Carlson, T. N. and Caverly, R. S.: Radiative characteristics of Saharan dust at solar wavelengths, *J.*
578 *Geophys. Res.*, 82(21), 3141-3152, 1977.

579 Chan, C. -C., Chuang, K. -J., Chen, W. -J., Chang, W. -T., Lee, C. -T., and Peng, C. -M.:
580 Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in
581 Taiwan, *Environ. Res.*, 106, 393-400, 2008.

582 Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr., J. A., Hansen, J. E., and
583 Hofmann, D. J.: Climate forcing by anthropogenic aerosols, *Science*, 255, 423-430,
584 doi:10.1126/science.255.5043.423, 1992.

585 Che, H., Shi, G., Uchiyama, A., Yamazaki, A., Chen, H., Goloub, P., and Zhang, X.:
586 Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL
587 sunphotometer over Beijing, China, *Atmos. Chem. Phys.*, 8, 3199-3214,
588 doi:10.5194/acp-8-3199-2008, 2008.

589 Che, H., et al.: Instrument calibration and aerosol optical depth validation of the China Aerosol
590 Remote Sensing Network, *J. Geophys. Res.*, 114, D03206, doi:10.1029/2008JD011030, 2009a.

591 Che, H., Zhang, X., Alfraro, S., Chatenet, B., Gomes, L., and Zhao, J.: Aerosol optical properties
592 and its radiative forcing over Yulin, China in 2001 and 2002, *Adv. Atmos. Sci.*, 26(3), 564-576,

593 doi:10.1007/s00376-009-0564-4, 2009b.

594 Che, H., Wang, Y., Sun, J., Zhang, X., Zhang, X., and Guo, J.: Variation of aerosol optical
595 properties over the Taklimakan Desert in China, *Aerosol Air Qual. Res.*, 13, 777-785,
596 doi:10.4209/aaqr.2012.07.0200, 2013.

597 Che, H., Xia, X., Zhu, J., Li, Z., Dubovik, O., Holben, B., Goloub, P., Chen, H., Estelles, V.,
598 Cuevas-Agulló, E., Blarel, L., Wang, H., Zhao, H., Zhang, X., Wang, Y., Sun, J., Tao, R., Zhang,
599 X., and Shi, G.: Column aerosol optical properties and aerosol radiative forcing during a serious
600 haze-fog month over North China Plain in 2013 based on ground-based sunphotometer
601 measurements, *Atmos. Chem. Phys.*, 14, 2125-2138, doi:10.5194/acp-14-2125-2014, 2014.

602 Che, H., Zhang, X.-Y., Xia, X., Goloub, P., Holben, B., Zhao, H., Wang, Y., Zhang, X.-C., Wang,
603 H., Blarel, L., Damiri, B., Zhang, R., Deng, X., Ma, Y., Wang, T., Geng, F., Qi, B., Zhu, J., Yu,
604 J., Chen, Q., and Shi, G.: Ground-based aerosol climatology of China: aerosol optical depths
605 from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013, *Atmos. Chem.*
606 *Phys.*, 15, 7619-7652, doi:10.5194/acp-15-7619-2015, 2015.

607 Chin, M., Diehl, T., Dubovik, O., Eck, T. F., Holben, B. N., Sinyuk, A., and Streets, D. G.: Light
608 absorption by pollution, dust, and biomass burning aerosols: a global model study and
609 evaluation with AERONET measurements, *Ann. Geophys.*, 27, 3439-3464,
610 doi:10.5194/angeo-27-3439-2009, 2009.

611 Claquin, T., Schulz, M., Balkanski, Y., and Boucher, O.: Uncertainties in assessing radiative
612 forcing by mineral dust, *Tellus Ser. B*, 50, 491-505, 1998.

613 Claquin, T., Schulz, M., and Balkanski, Y.: Modeling the mineralogy of atmospheric dust sources,
614 *J. Geophys. Res.*, 104, D18, 22243-22256, 1999.

615 Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White, A.
616 B., Ralph, F. M., Minnis, P., Comstock, J. M., Tomlinson, J. M., and Prather, K. A.: Dust and
617 biological aerosols from the Sahara and Asia influence precipitation in the western U.S.,
618 *Science*, 339, 1572-1578, doi:10.1126/science.1227279, 2013.

619 DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., Prenni,
620 A. J., and Kreidenweis, S. M.: African dust aerosols as atmospheric ice nuclei, *Geophys. Res.*
621 *Lett.*, 30(14), 1732, doi:10.1029/2003GL017410, 2003.

622 Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical

623 properties from Sun and sky radiance measurements, *J. Geophys. Res.*, 105(D16),
624 20673-20696,
625 doi:10.1029/2000JD900282, 2000.

626 Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., and Slutsker, I.:
627 Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network
628 (AERONET) Sun and sky radiance measurements, *J. Geophys. Res.*, 105(D8), 9791–9806,
629 doi:10.1029/2000JD900040, 2000.

630 Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I., Yang, P., and Slutsker,
631 I.: Non-spherical aerosol retrieval method employing light scattering by spheroids, *Geophys.*
632 *Res. Lett.*, 29(10), 1415, doi:10.1029/2001GL014506, 2002a.

633 Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and
634 Slutsker, I.: Variability of absorption and optical properties of key aerosol types observed in
635 worldwide locations, *J. Atmos. Sci.*, 59, 590–608, 2002b.

636 Dubovik, O., Sinyuk, A., Lapyonok, T. Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F.,
637 Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W. J., Leon, J. –F., Sorokin, M., and
638 Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in
639 remote sensing of desert dust, *J. Geophys. Res.*, 111, D11208, doi:10.1029/2005JD006619,
640 2006.

641 Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., and
642 Kinne, S.: Wavelength dependence of the optical depth of biomass burning, urban and desert
643 dust aerosols, *J. Geophys. Res.*, 104, 31 333-31350, 1999.

644 Eck, T. F., et al.: Columnar aerosol optical properties at AERONET sites in central eastern Asia
645 and aerosol transport to the tropical mid-Pacific, *J. Geophys. Res.*, 110, D06202,
646 doi:10.1029/2004JD005274, 2005.

647 Fu, Q., Thorsen, T., Su, J., Ge, J., and Huang, J.: Test of Mie-based single-scattering properties of
648 non-spherical dust aerosols in radiative flux calculations, *J. Quant. Spectroc. Radiat. Transf.*,
649 110, 1640-1653, doi:10.1016/j.jqsrt.2009.03.010, 2009.

650 Ge, J., Su, J., Ackerman, T. P., Fu, Q., Huang, J., and Shi, J.: Dust aerosol optical properties
651 retrieval and radiative forcing over northwest China during the 2008 China-U.S. joint field
652 experiment, *J. Geophys. Res.*, 115, D00K12, doi:10.1029/2009JD013263, 2010.

653 Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-scale attribution of
654 anthropogenic and natural sources and their emission rates based on MODIS Deep Blue aerosol
655 products, *Rev. Geophys.*, 50, RG3005, doi:10.1029/2012RG000388, 2012.

656 Golitsyn, G. and Gillette, D. A.: Introduction: A joint Soviet-American experiment for the study of
657 Asian desert dust and its impact on local meteorological conditions and climate, *Atmos.*
658 *Environ.*, 27A, 16, 2467-2470, 1993.

659 Guan X., Huang, J., Guo, N., Bi, J., and Wang, G.: Variability of soil moisture and its relationship
660 with surface albedo and soil thermal parameters over the Loess Plateau, *Adv. Atmos. Sci.*, 26(9),
661 692-700, doi:10.1007/s00376-009-8198-0, 2009.

662 Guan, X., Huang, J., Zhang, Y., Xie, Y., and Liu, J.: The relationship between anthropogenic dust
663 and population over global semi-arid regions, *Atmos. Chem. Phys.*, 16, 5159-5169,
664 doi:10.5194/acp-16-5159-2016, 2016.

665 Halthore, R. N., et al.: Intercomparison of shortwave radiative transfer codes and measurements, *J.*
666 *Geophys. Res.*, 110, D11206, doi:10.1029/2004JD005293, 2005.

667 Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response, *J. Geophys. Res.*, 102,
668 6831-6864, 1997.

669 Hess, M., Kopke, P., and Schult, I.: Optical properties of aerosols and clouds: The software
670 package OPAC, *Bull. Amer. Meteor. Soc.*, 79, 831-844, 1998.

671 Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A.,
672 Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, F., and Smirnov, A., AERONET—A
673 federated instrument network and data archive for aerosol characterization, *Remote Sens.*
674 *Environ.*, 66, 1-16, 1998.

675 Huang, J., Minnis, P., Lin, B., Yi, Y., Khaiyer, M. M., Arduini, R. F., Fan, A., and Mace, G. G.:
676 Advanced retrievals of multilayered cloud properties using multispectral measurements, *J.*
677 *Geophys. Res.*, 110, D15S18, doi:10.1029/2004JD005101, 2005.

678 Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., and Ayers, J. K.: Satellite-based
679 assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia,
680 *Geophys. Res. Lett.*, 33, L19802, doi:10.1029/2006GL026561, 2006.

681 Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhang, Q., Yi, Y., and Ayers, J. K.: Long-range
682 transport and vertical structure of Asian dust from CALIPSO and surface measurements during

683 PACDEX, *J. Geophys. Res.*, 113, D23212, doi:10.1029/2008JD010620, 2008a.

684 Huang, J., Zhang, W., Zuo, J., Bi, J., Shi, J., Wang, X., Chang, Z., Huang, Z., Yang, S., Zhang, B.,
685 Wang, G., Feng, G., Yuan, J., Zhang, L., Zuo, H., Wang, S., Fu, C., and Chou, J.: An overview of
686 the semi-arid climate and environment research observatory over the Loess Plateau, *Adv. Atmos.*
687 *Sci.*, 25, 906-921, doi:10.1007/s00376-008-0906-7, 2008b.

688 Huang, J., Fu, Q., Su, J., Tang, Q., Minnis, P., Hu, Y., Yi, Y., and Zhao, Q.: Taklimakan dust
689 aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation
690 model with CERES constraints, *Atmos. Chem. Phys.*, 9, 4011-4021,
691 doi:10.5194/acp-9-4011-2009, 2009.

692 Huang, J., Minnis, P., Yan, H., Yi, Y., Chen, B., Zhang, L., and Ayers, J. K.: Dust aerosol effect on
693 semi-arid climate over Northwest China detected from A-Train satellite measurements, *Atmos.*
694 *Chem. Phys.*, 10, 6863-6872, doi:10.5194/acp-10-6863-2010, 2010a.

695 Huang, J., Fu, Q., Zhang, W., Wang, X., Zhang, R., Ye, H., and Warren, S. G.: Dust and black
696 carbon in seasonal snow across northern China, *Bull. Amer. Meteor. Soc.*, 92, 175-181,
697 doi:10.1175/2010BAMS3064.1, 2011.

698 Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over East
699 Asian arid and semiarid regions, *J. Geophys. Res.*, 119, 11398-11416,
700 doi:10.1002/2014JD021796, 2014.

701 Huang, J. P., Liu, J. J., Chen, B., and Nasiri, S. L.: Detection of anthropogenic dust using
702 CALIPSO lidar measurements, *Atmos. Chem. Phys.*, 15, 11653-11665,
703 doi:10.5194/acp-15-11653-2015, 2015.

704 Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland expansion under climate
705 change, *Nature Clim. Change*, 6(2), 166-171, doi:10.1038/nclimate2837, 2016.

706 Huang, Z., Huang, J., Bi, J., Wang, G., Wang, W., Fu, Q., Li, Z., Tsay, S.-C., and Shi, J.: Dust
707 aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint
708 dust field experiment, *J. Geophys. Res.*, 115, D00K15, doi:10.1029/2009JD013273, 2010b.

709 Huebert, B. J., Bates, T., Russell, P. B., Shi, G., Kim, Y. J., Kawamura, K., Carmichael, G., and
710 Nakajima, T.: An overview of ACE-Asia: Strategies for quantifying the relationships between
711 Asian aerosols and their climatic impacts, *J. Geophys. Res.*, 108(D23), 8633,
712 doi:10.1029/2003JD003550, 2003.

713 Husar, R. B., Tratt, D. M., and Schichtel, B. A., et al.: Asian dust events of April 1998, *J. Geophys.*
714 *Res.*, 106, D16, 18317-18330, 2001.

715 Jickells, T., An, Z., Andersen, K., Baker, A., Bergametti, G., Brooks, N., Cao, J., Boyd, P., Duce,
716 R., Hunter, K., Kawahata, H., Kubilay, N., laRoche, J., Liss, P., Mahowald, N., Prospero, J.,
717 Ridgwell, A., Tegen, I., and Torres, R.: Global iron connections between desert dust, ocean
718 biogeochemistry, and climate, *Science*, 308, 67-71, doi:10.1126/science.1105959, 2005.

719 Kim, D.-H., Sohn, B. -J., Nakajima, T., Takamura, T., Takemura, T., Choi, B. -C., and Yoon, S. -C.:
720 Aerosol optical properties over east Asia determined from ground-based sky radiation
721 measurements, *J. Geophys. Res.*, 109, D02209, doi:10.1029/2003JD003387, 2004.

722 Kim, D., Chin, M., Yu, H., Eck, T. F., Sinyuk, A., Smirnov, A., and Holben, B. N.: Dust optical
723 properties over North Africa and Arabian Peninsula derived from the AERONET dataset, *Atmos.*
724 *Chem. Phys.*, 11, 10733-10741, doi:10.5194/acp-11-10733-2011, 2011.

725 Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S. E., Berntsen, T., Berglen, T.
726 F., Boucher, O., Chin, M., Collins, W., Dentener, F., Diehl, T., Easter, R., Feichter, J., Fillmore,
727 D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Herzog, M., Horowitz, L., Isaksen,
728 I., Iversen, T., Kirkevåg, A., Kloster, S., Koch, D., Kristjansson, J. E., Krol, M., Lauer, A.,
729 Lamarque, J. F., Lesins, G., Liu, X., Lohmann, U., Montanaro, V., Myhre, G., Penner, J., Pitari,
730 G., Reddy, S., Seland, O., Stier, P., Takemura, T., and Tie, X.: An AeroCom initial assessment –
731 optical properties in aerosol component modules of global models, *Atmos. Chem. Phys.*, 6,
732 1815-1834, doi:10.5194/acp-6-1815-2006, 2006.

733 Lafon, S., Rajot, J.-L., Alfaro, S. C., and Gaudichet, A.: Quantification of iron oxides in desert
734 aerosol, *Atmos. Environ.*, 38, 1211-1218, 2004.

735 Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S., and Gaudichet, A.: Characterization of iron
736 oxides in mineral dust aerosols: Implications for light absorption, *J. Geophys. Res.*, 111,
737 D21207, doi:10.1029/2005JD007016, 2006.

738 Li, Z., Li, C., Chen, H., Tsay, S.-C., Holben, B., Huang, J., Li, B., Maring, H., Qian, Y., Shi, G.,
739 Xia, X., Yin, Y., Zheng, Y., and Zhuang, G.: East Asian Studies of Tropospheric Aerosols and
740 their Impact on Regional Climate (EAST-AIRC): An overview, *J. Geophys. Res.*, 116, D00K34,
741 doi:10.1029/2010JD015257, 2011.

742 Mikami, M., Shi, G. Y., Uno, I., Yabuki, S., Iwasaka, Y., Yasui, M., Aoki, T., Tanaka, T. Y.,

743 Kuroski, Y., Masuda, K., Uchiyama, A., Matsuki, A., Sakai, T., Takemi, T., Nakawo, M., Seino,
744 N., Ishizuka, M., Satake, S., Fujita, K., Hara, Y., Kai, K., Kanayama, S., Hayashi, M., Du, M.,
745 Kanai, Y., Yamada, Y., Zhang, X. Y., Shen, Z., Zhou, H., Abe, Q., Nagai, T., Tsutsumi, Y., Chiba,
746 M., and Suzuki, J.: Aeolian dust experiment on climate impact: An overview of Japan-China
747 joint project ADEC, *Global Planet. Change*, 52, 142-172, doi:10.1016/j.gloplacha.2006.03.001,
748 2006.

749 Morman, S. A. and Plumlee, G. S.: The role of airborne mineral dusts in human disease, *Aeolian*
750 *Res.*, 9, 203-212, 2013.

751 Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., and Holben, B.: Use of sky brightness
752 measurements from ground for remote sensing of particulate polydispersions, *Appl. Opt.*,
753 35(15), 2672-2686, doi:10.1364/AO.35.002672, 1996.

754 Nakajima, T., Sekiguchi, M., Takemura, T., Uno, I., Higurashi, A., Kim, D., Sohn, B. J., Oh, S. -N.,
755 Nakajima, T. Y., Ohta, S., Okada, I., Takamura, T, and Kawamoto, K.: Significance of direct and
756 indirect radiative forcings of aerosols in the East China Sea region, *J. Geophys. Res.*, 108(D23),
757 8658, doi:10.1029/2002JD003261, 2003.

758 Okin, G. S., Mahowald, N., Chadwick, O. A., and Artaxo, P.: Impact of desert dust on the
759 biogeochemistry of phosphorus in terrestrial ecosystems, *Global Biogeochem. Cycles*, 18,
760 GB2005, doi:10.1029/2003GB002145, 2004.

761 Pandithurai, G., Dipu, S., Dani, K. K., Tiwari, S., Bisht, D. S., Devara, P. C. S., and Pinker, R. T.:
762 Aerosol radiative forcing during dust events over New Delhi, India, *J. Geophys. Res.*, 113,
763 D13209, doi:10.1029/2008JD009804, 2008.

764 Patterson, E. M., Gillette, D. A., and Stockton, B.: Complex index of refraction between 300 and
765 700 nm for Saharan aerosols, *J. Geophys. Res.*, 82(21), 3153-3160, 1977.

766 Perlitz, J., Tegen, I., and Miller, R. L.: Interactive soil dust aerosol model in GISS GCM, 1.
767 Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols, *J. Geophys. Res.*,
768 106, D16, 18167-18192, 2001.

769 Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.: Environmental
770 characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total
771 ozone mapping spectrometer (TOMS) absorbing aerosol product, *Rev. Geophys.*, 40(1), 1002,
772 doi:10.1029/2000RG000095, 2002.

773 Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the
774 hydrological cycle, *Science*, 294, 2119-2124, doi:10.1126/science.1064034, 2001.

775 Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A research and teaching software
776 tool for plane-parallel radiative transfer in the Earth's atmosphere, *Bull. Amer. Meteor. Soc.*, 79,
777 2101-2114, 1998.

778 Rosenfeld, D., Rudich, Y., and Lahav, R.: Desert dust suppressing precipitation: A possible
779 desertification feedback loop, *Proc. Natl. Acad. Sci. U.S.A.*, 98, 5975-5980, 2001.

780 Shao, Y., Wyrwoll, K.-H., Chappel, A., Huang, J., Lin, Z., McTainsh, G., Mikami, M., Tanaka, T.,
781 Wang, X., and Yoon, S.: Dust cycle: An emerging core theme in Earth system science, *Aeolian*
782 *Res.*, 2, 181-204, 2011.

783 Shen, Z., Sun, J., Cao, J., Zhang, L., Zhang, Q., Lei, Y., Gao, J., Huang, R., Liu, S., Huang, Y.,
784 Zhu, C., Xu, H., Zheng, C., Liu, P., and Xue, Z.: Chemical profiles of urban fugitive dust PM2.5
785 samples in Northern Chinese cities, *Sci. Total Environ.*, 569-570, 619-626,
786 doi:10.1016/j.scitotenv.2016.06.156, 2016.

787 Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., and Slutsker, I.: Cloud screening and quality
788 control algorithms for the AERONET database, *Remote Sens. Environ.*, 73, 337-349, 2000.

789 Smirnov, A., Holben, B. N., Kaufman, Y. J., Dubovik, O., Eck, T. F., Slutsker, I., Pietras, C., and
790 Halthore, R.: Optical properties of atmospheric aerosol in maritime environments, *J. Atmos.*
791 *Sci.*, 59, 501-523, 2002.

792 Sokolik, I. N. and Golitsyn, G.: Investigation of optical and radiative properties of atmospheric
793 dust aerosols, *Atmos. Environ.*, 27A, 16, 2509-2517, 1993.

794 Sokolik, I. N. and Toon, O. B.: Incorporation of mineralogical composition into models of the
795 radiative properties of mineral aerosol from UV to IR wavelengths, *J. Geophys. Res.*, 104, D8,
796 9423-9444, 1999.

797 Sokolik, I. N., Winker, D. M., Bergametti, G., Gillette, D. A., Garmichael, G., Kaufman, Y. J.,
798 Gomes, L., Schuetz, L., and Penner, J. E.: Introduction to special section: Outstanding problems
799 in quantifying the radiative impacts of mineral dust, *J. Geophys. Res.*, 106, D16, 18015-18027,
800 2001.

801 Takamura, T., Nakajima, T., and SKYNET community group: Overview of SKYNET and its
802 Activities, *Opt. Puray Apl.*, 37, 3303-3308, 2004.

803 Tegen, I. and Fung, I.: Contribution to the atmospheric mineral aerosol load from land surface
804 modification, *J. Geophys. Res.*, 100, 18707-18726, doi:10.1029/95JD02051, 1995.

805 Todd, M. C., Washington, R., Martins, J. V., Dubovik, O., Lizcano, G., M'Bainayel, S., and
806 Engelstaedter, S.: Mineral dust emission from the Bodélé Depression, northern Chad, during
807 BoDEx 2005, *J. Geophys. Res.*, 112, D06207, doi:10.1029/2006JD007170, 2007.

808 Uchiyama, A., Yamazaki, A., Togawa, H., Asano, J., and Shi, G.-Y.: Single scattering albedo of
809 Aeolian dust as inferred from sky-radiometer and in situ ground-based measurement, *SOLA*,
810 Vol. 1, pp. 209-212, doi:10.2151/sola.2005-054, 2005.

811 Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z.,
812 Hara, Y., and Sugimoto, N.: Asian dust transported one full circuit around the globe, *Nature
813 Geosci.*, 2, 557-560, doi:10.1038/NGEO583, 2009.

814 Uno, I., Eguchi, K., Yumimoto, K., Liu, Z., Hara, Y., Sugimoto, N., Shimizu, A., and Takemura, T.:
815 Large Asian dust layers continuously reached North America in April 2010, *Atmos. Chem.
816 Phys.*, 11, 7333-7341, 2011.

817 Wang, G., Huang, J., Guo, W., Zuo, J., Wang, J., Bi, J., Huang, Z., and Shi, J.: Observation
818 analysis of land-atmosphere interactions over the Loess Plateau of northwest China, *J. Geophys.
819 Res.*, 115, D00K17, doi:10.1029/2009JD013372, 2010a.

820 Wang, H., Shi, G. Y., Aoki, T., Wang, B., and Zhao, T. L.: Radiative forcing due to dust aerosol
821 over east Asia-north Pacific region during spring, 2001, *Chin. Sci. Bull.*, 49(20): 2212-2219,
822 2004.

823 Wang, H., Zhang, X., Gong, S., Chen, Y., Shi, G., and Li, W.: Radiative feedback of dust aerosols
824 on the East Asian dust storms, *J. Geophys. Res.*, 115, D23214, doi:10.1029/2009JD013430,
825 2010b.

826 Wang, W., Huang, J., Minnis, P., Hu, Y., Li, J., Huang, Z., Ayers, J. K., and Wang, T.: Dusty cloud
827 properties and radiative forcing over dust source and downwind regions derived from A-Train
828 data during the Pacific Dust Experiment, *J. Geophys. Res.*, 115, D00H35,
829 doi:10.1029/2010JD014109, 2010c.

830 Wang, X., Huang, J., Ji, M., and Higuchi, K.: Variability of East Asia dust events and their
831 long-term trend, *Atmos. Environ.*, 42, 13, 3156-3165, doi:10.1016/j.atmosenv.2007.07.046,
832 2008.

833 Wang, X., Doherty, S. J., and Huang, J.: Black carbon and other light-absorbing impurities in
834 snow across Northern China, *J. Geophys. Res.*, 118, 1471-1492, doi:10.1029/2012JD018291,
835 2013.

836 Wang, X., Pu, W., Shi, J., Bi, J., Zhou, T., Zhang, X., and Ren, Y.: A comparison of the physical
837 and optical properties of anthropogenic air pollutants and mineral dust over Northwest China, *J.*
838 *Meteorol. Res.*, 29, 180-200, doi:10.1007/s13351-015-4092-0, 2015.

839 Wang, Y., Wang, R., Ming, J., Liu, G., Chen, T., Liu, X., Liu, H., Zhen, Y., and Cheng, G.: Effects
840 of dust storm events on weekly clinic visits related to pulmonary tuberculosis disease in Minqin,
841 China, *Atmos. Environ.*, 127, 205-212, 2016.

842 World Meteorological Organization (WMO), Report of the Experts Meeting on Aerosols and Their
843 Climatic Effects, WCP-55, Geneva, Switzerland, 1983.

844 Wu, F., D. Zhang, J. Cao, H. Xu, and Z. An: Soil-derived sulfate in atmospheric dust particles at
845 Taklimakan desert, *Geophys. Res. Lett.*, 39, L24803, doi:10.1029/2012GL054406, 2012.

846 Wu, F., D. Zhang, J. Cao, T. Zhang, and Z. An: Background-like nitrate in desert air, *Atmos.*
847 *Environ.*, 84, 39-43, 2014.

848 Xia, X., Chen, H., Goloub, P., Zhang, W., Chatenet, B., and Wang, P.: A compilation of aerosol
849 optical properties and calculation of direct radiative forcing over an urban region in northern
850 China, *J. Geophys. Res.*, 112, D12203, doi:10.1029/2006JD008119, 2007.

851 Xu, J., Bergin, M. H., Greenwald, R., Schauer, J. J., Shafer, M. M., Jaffrezo, J. L., and Aymoz, G.:
852 Aerosol chemical, physical, and radiative characteristics near a desert source region of
853 northwest China during ACE-Asia, *J. Geophys. Res.*, 109, D19S03, doi:10.1029/2003JD004239,
854 2004.

855 Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J.: Attribution of aerosol light absorption to
856 black carbon, brown carbon, and dust in China—interpretations of atmospheric measurements
857 during EAST-AIRE, *Atmos. Chem. Phys.*, 9, 2035-2050, doi:10.5194/acp-9-2035-2009, 2009.

858 Zhang, X., Arimoto, R., and An, Z.: Dust emission from Chinese desert sources linked to
859 variations in atmospheric circulation, *J. Geophys. Res.*, 102, D23, 28041-28047,
860 doi:10.1029/97JD02300, 1997.

861 Zheng, Z., Ren, H., and Huang, J.: Analogue correction of errors based on seasonal climatic
862 predictable components and numerical experiments, *Acta Physica Sinica*, 58(10), 7359-7367,

863 2009.

864 **Figure captions**

865

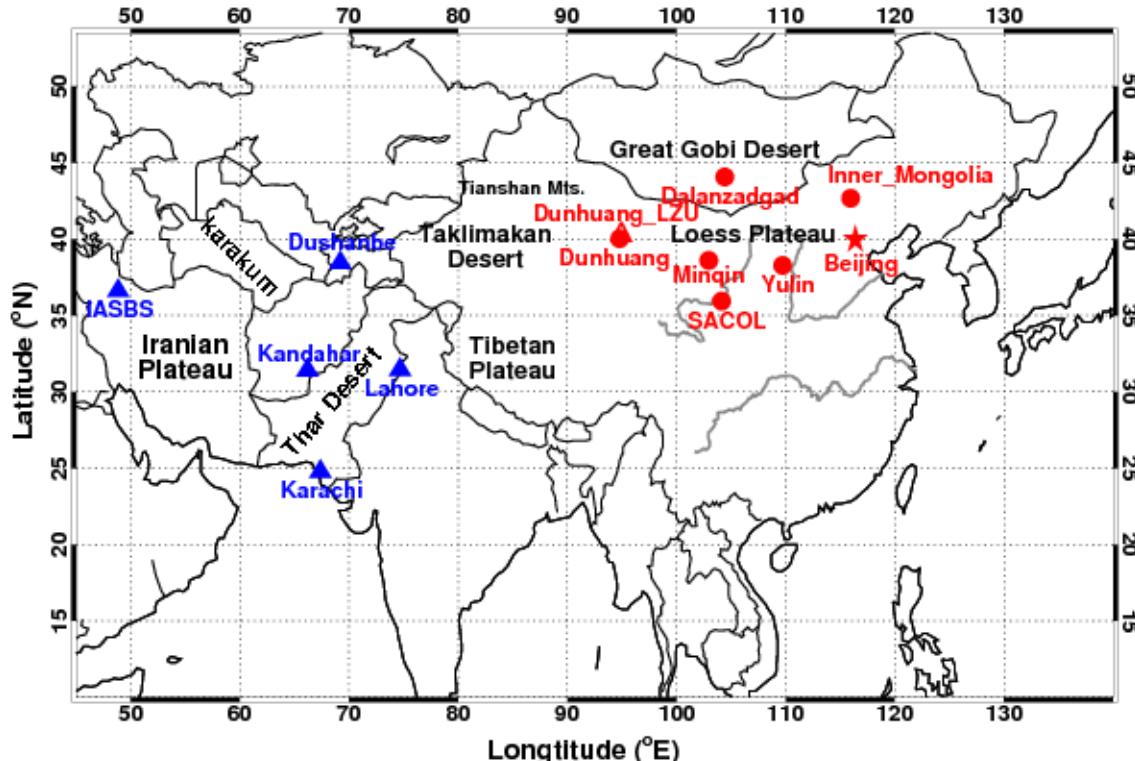
866 **Table 1.** Overall average and standard deviation of key optical properties at 550 nm (e.g.,
 867 single-scattering albedo, asymmetry factor, real part and imaginary part of complex refractive
 868 index) for Asian pure Dust (PDU). Ångström wavelength exponent (α) is in the range of 440-870
 869 nm. Minimum and maximum values of the optical properties are in parenthesis for each
 870 corresponding column. Measuring period and the total number of PDU ($\alpha<0.2$) and Transported
 871 Anthropogenic Dust (TDU, $0.2<\alpha<0.6$) days are in the parenthesis for the first and last column,
 872 respectively.

Site (sampled period)	SSA (min, max)	ASY (min, max)	Re (min, max)	Ri ($\times 10^{-3}$)	Ångström (440-870 nm)	PDU/days (TDU)
SACOL (2006-2012)	0.932 \pm 0.018 (0.888, 0.971)	0.741 \pm 0.012 (0.715, 0.771)	1.534 \pm 0.044 (1.438, 1.60)	2.251 \pm 0.788 (0.913, 5.51)	0.120 \pm 0.049 (0.0, 0.198)	38 (97)
Dalanzadgad (1997-2014)	0.930 \pm 0.012 (0.912, 0.949)	0.746 \pm 0.010 (0.724, 0.766)	1.512 \pm 0.046 (1.447, 1.60)	2.407 \pm 0.414 (1.649, 3.19)	0.127 \pm 0.079 (-0.06, 0.199)	8 (6)
Beijing (2001-2015)	0.917 \pm 0.020 (0.863, 0.963)	0.742 \pm 0.012 (0.716, 0.769)	1.557 \pm 0.043 (1.401, 1.60)	2.801 \pm 0.865 (1.032, 6.20)	0.117 \pm 0.067 (-0.048, 0.199)	46 (67)
Yulin (2001-2002)	0.907 \pm 0.024 (0.863, 0.952)	0.748 \pm 0.010 (0.731, 0.771)	1.559 \pm 0.038 (1.476, 1.60)	3.564 \pm 1.589 (1.370, 7.92)	0.077 \pm 0.068 (-0.024, 0.188)	13 (16)
Dushanbe (2010-2015)	0.941 \pm 0.012 (0.916, 0.959)	0.739 \pm 0.011 (0.710, 0.765)	1.529 \pm 0.041 (1.436, 1.60)	2.011 \pm 0.551 (1.022, 3.475)	0.128 \pm 0.054 (-0.02, 0.198)	26 (95)
Karachi (2006-2014)	0.945 \pm 0.012 (0.916, 0.977)	0.741 \pm 0.011 (0.714, 0.767)	1.518 \pm 0.030 (1.449, 1.60)	1.938 \pm 0.561 (0.758, 3.439)	0.141 \pm 0.041 (-0.005, 0.20)	83 (286)
Lahore (2007-2015)	0.930 \pm 0.014 (0.901, 0.957)	0.740 \pm 0.010 (0.721, 0.765)	1.519 \pm 0.038 (1.432, 1.60)	2.253 \pm 0.611 (1.207, 3.623)	0.136 \pm 0.052 (0.023, 0.198)	26 (248)
IASBS (2010-2013)	0.933 \pm 0.017 (0.883, 0.958)	0.725 \pm 0.011 (0.704, 0.746)	1.572 \pm 0.024 (1.525, 1.60)	2.290 \pm 0.845 (1.245, 5.029)	0.098 \pm 0.050 (0.021, 0.195)	19 (12)
Kandahar (2008/04-06)	0.925 \pm 0.013 (0.903, 0.955)	0.729 \pm 0.017 (0.700, 0.768)	1.534 \pm 0.035 (1.492, 1.60)	2.855 \pm 0.775 (1.445, 4.65)	0.147 \pm 0.054 (0.00, 0.199)	10 (4)
Dunhuang (2001/03-05)	0.947 \pm 0.015 (0.918, 0.970)	0.745 \pm 0.013 (0.723, 0.761)	1.547 \pm 0.037 (1.494, 1.60)	1.714 \pm 0.697 (1.014, 3.14)	0.039 \pm 0.029 (-0.003, 0.091)	6 (0)
Dunhuang_LZU (2012/04-05)	0.958 \pm 0.007 (0.951, 0.968)	0.741 \pm 0.021 (0.707, 0.771)	1.495 \pm 0.042 (1.451, 1.580)	1.589 \pm 0.292 (1.092, 1.84)	0.153 \pm 0.026 (0.117, 0.184)	5 (4)
Inner_Mongolia (2001/04-05)	0.948 \pm 0.012 (0.930, 0.960)	0.751 \pm 0.006 (0.743, 0.759)	1.499 \pm 0.042 (1.426, 1.54)	1.641 \pm 0.457 (1.169, 2.45)	0.069 \pm 0.054 (0.011, 0.165)	4 (1)
Minqin (2010/05-06)	0.945 \pm 0.002 (0.942, 0.947)	0.756 \pm 0.014 (0.740, 0.764)	1.469 \pm 0.023 (1.449, 1.494)	2.036 \pm 0.220 (1.883, 2.29)	0.119 \pm 0.023 (0.103, 0.146)	2 (0)
Overall Mean	0.935\pm0.014	0.742\pm0.008	1.526\pm0.029	2.258\pm0.556	0.113\pm0.033	PDU
Overall Mean	0.921\pm0.021	0.723\pm0.009	1.521\pm0.025	3.643\pm1.372	0.355\pm0.06	TDU

873

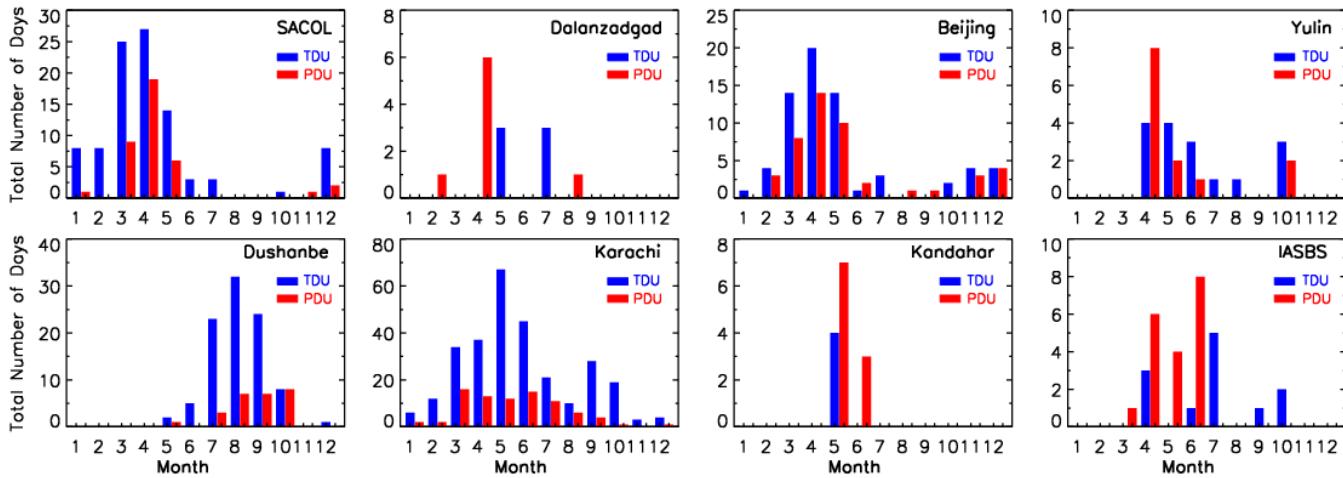
874

875

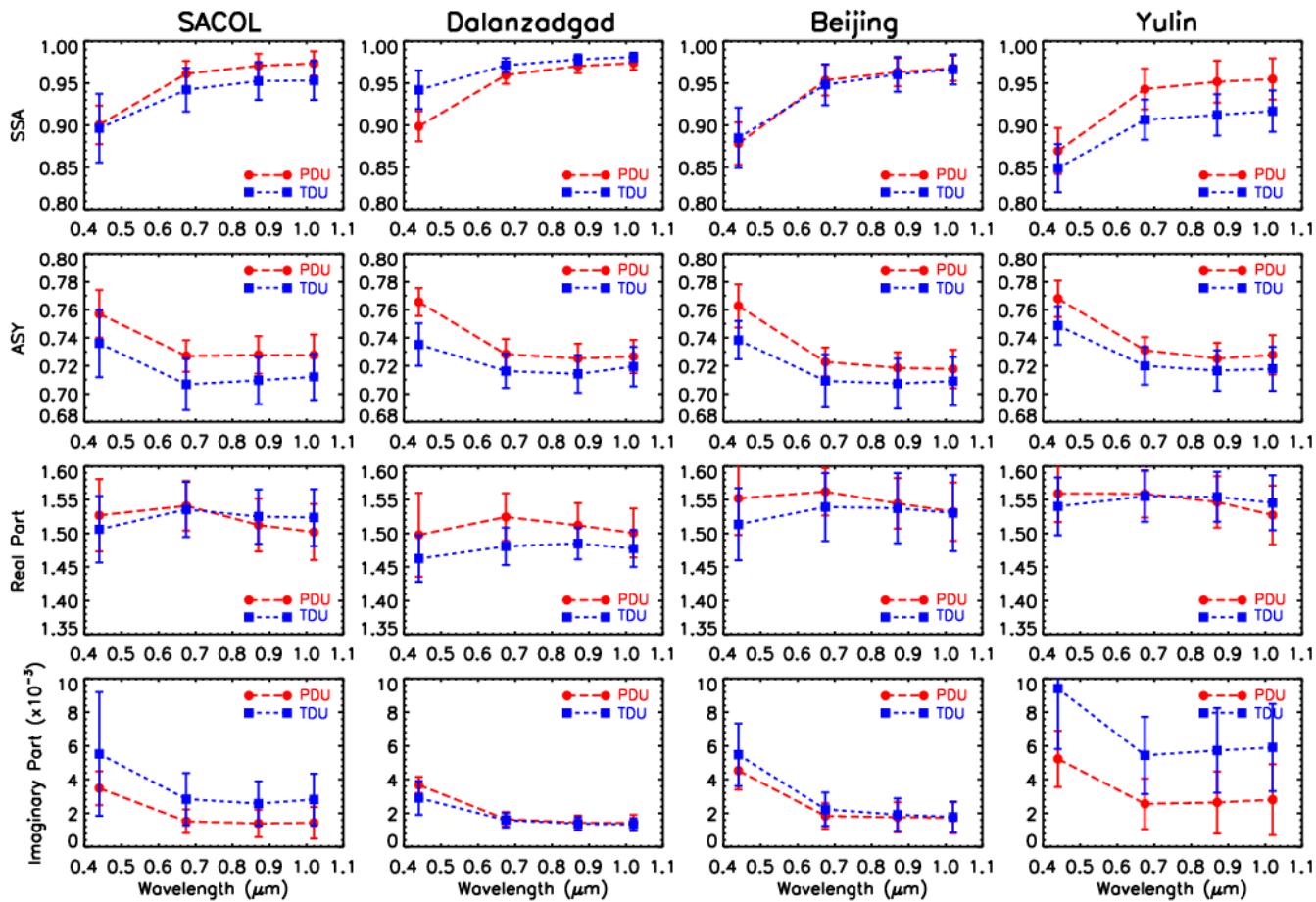

876

877 **Table 2.** Spectral optical properties of Pure Dust ($\alpha < 0.2$) and Transported Anthropogenic Dust
878 ($0.2 < \alpha < 0.6$) averaged for 13 sites over East and Central Asia areas.

Asian Dust	Pure Dust ($\alpha < 0.2$)	Transported Anthropogenic Dust ($0.2 < \alpha < 0.6$)
$\omega_0(440/675/870/1020)$	$0.906/0.962/0.971/0.975 \pm 0.009$	$0.897/0.943/0.954/0.959 \pm 0.019$
$Re(440/675/870/1020)$	$1.520/1.533/1.517/1.503 \pm 0.026$	$1.509/1.533/1.532/1.525 \pm 0.027$
$Ri(440/675/870/1020) \times 10^{-3}$	$3.413/1.574/1.449/1.449 \pm 0.450$	$5.064/2.737/2.510/2.486 \pm 1.300$
$ASY(440/675/870/1020)$	$0.758/0.727/0.724/0.726 \pm 0.008$	$0.736/0.711/0.710/0.712 \pm 0.009$
$r_{Vf} (\mu\text{m})$; σ_f	0.159 ± 0.029	0.140 ± 0.011
$r_{Vc} (\mu\text{m})$; σ_c	2.157 ± 0.112	2.267 ± 0.214
$Cvf (\mu\text{m}^3/\mu\text{m}^2)$	0.037 ± 0.011 ; $0.06 \times \tau(1020) - 0.001$	0.038 ± 0.011 ; $0.12 \times \tau(1020) - 0.014$
$Cvc (\mu\text{m}^3/\mu\text{m}^2)$	0.632 ± 0.167 ; $0.88 \times \tau(1020) - 0.07$	0.343 ± 0.084 ; $0.90 \times \tau(1020) - 0.06$
Cvc/Cvf	17.9 (11~31)	9.1 (5~11)


879 Each variable is accompanied by a standard deviation (e.g., ± 0.01). r_{Vf} and r_{Vc} are the volume
880 median radii of fine-mode and coarse-mode particles in μm ; Cvf and Cvc denote the volume
881 concentrations of fine-mode and coarse-mode particles in $\mu\text{m}^3/\mu\text{m}^2$, respectively. The dynamic
882 dependencies of dust optical properties are exhibited as functions of AOD_{1020} , with correlation
883 coefficients greater than 0.93 for all cases.

884



885

886 **Figure 1.** Geographical location of selected 13 AERONET sites in this study. Eight sites over East
887 Asian region are labeled with red colors, and five sites over Central Asian region are labeled with
888 blue colors. The major Great deserts or Gobi deserts along with plateaus are marked with black
889 font.

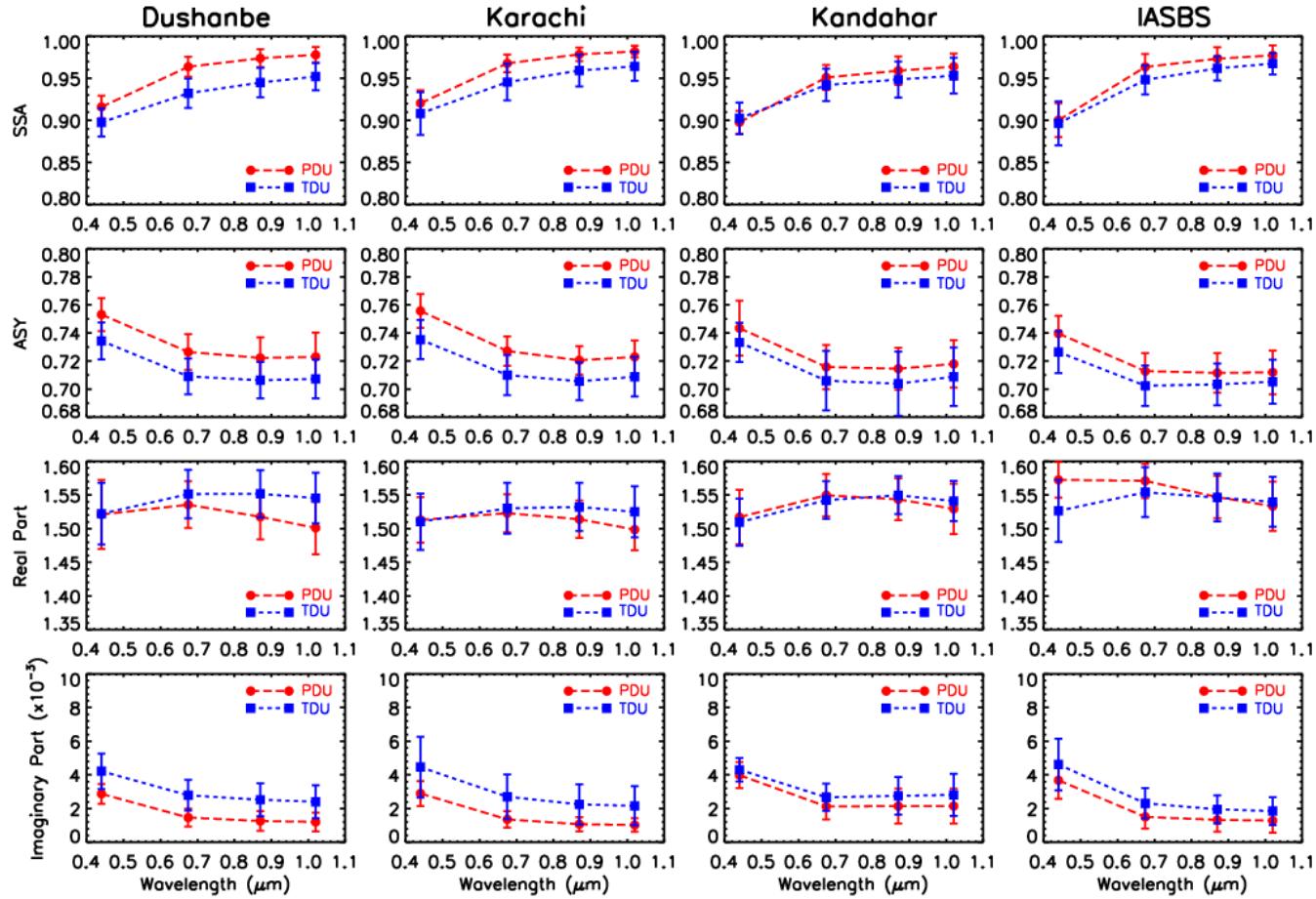
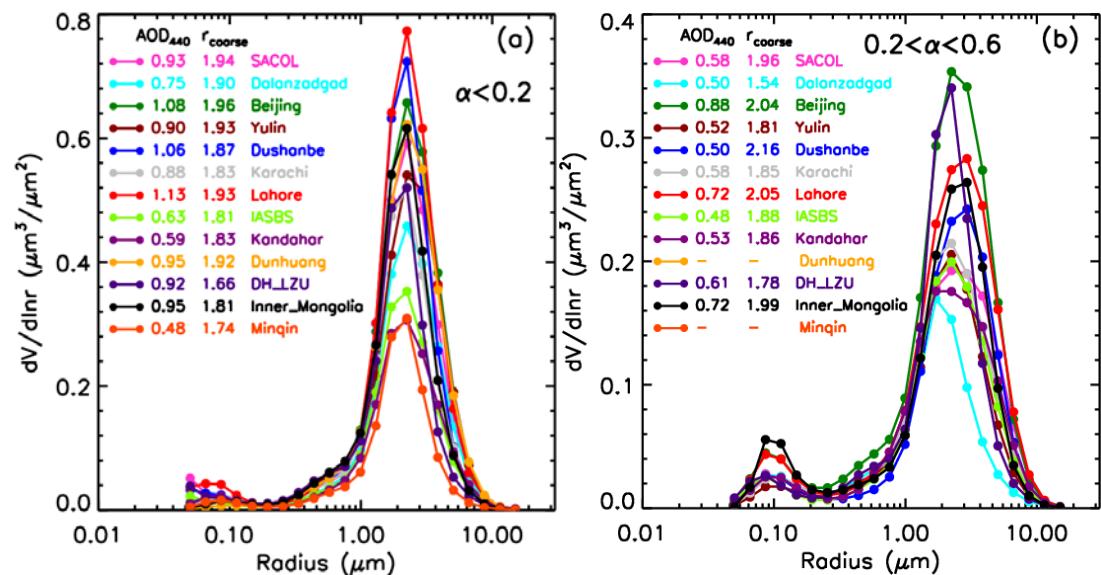

Figure 2. Occurrence frequency of total number days for Pure Dust ($\alpha < 0.2$, PDU with red color) and Transported Anthropogenic Dust ($0.2 < \alpha < 0.6$, TDU with blue color) at selected four East Asian sites (top panel) and four Central Asian sites (bottom panel).

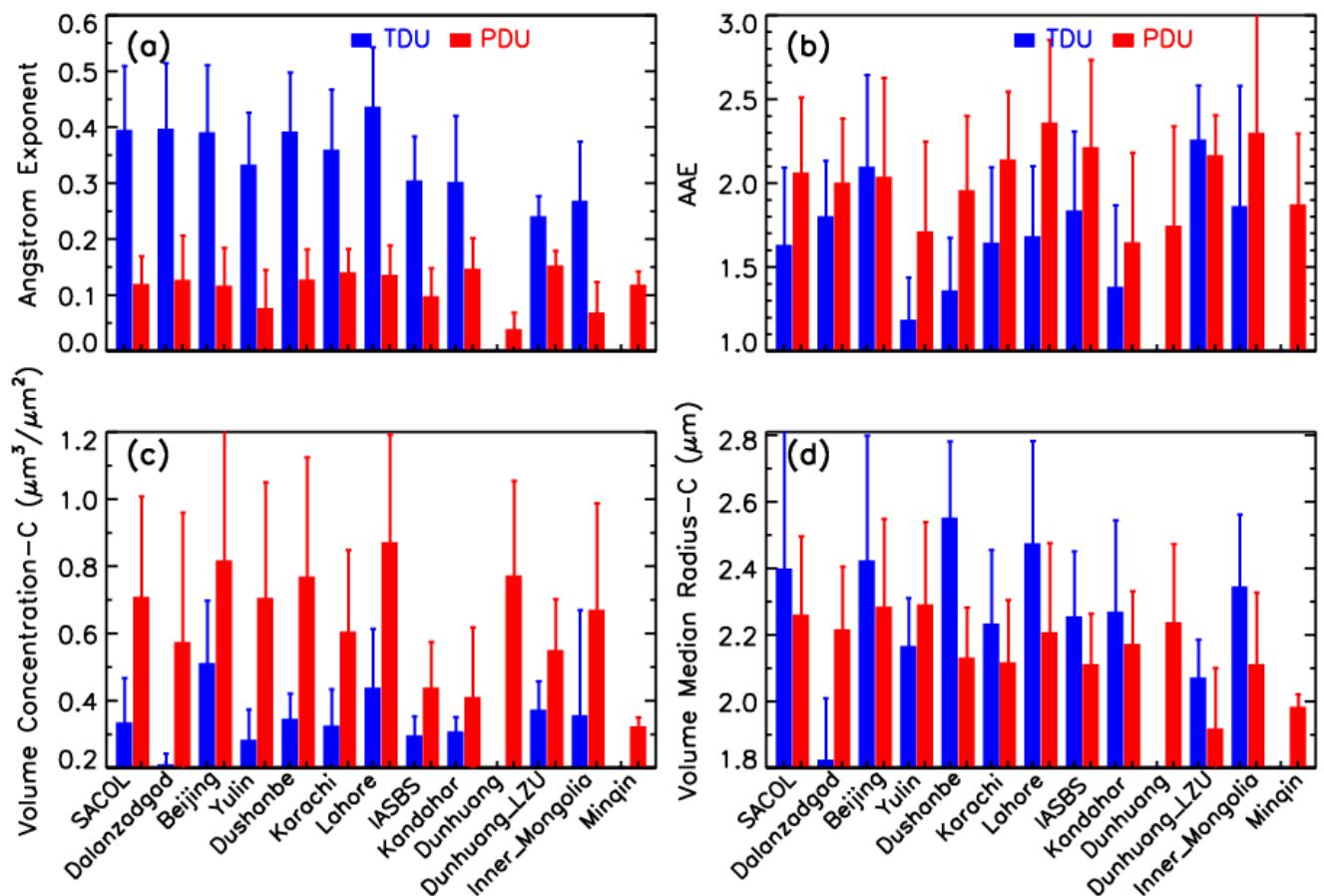
Figure 3. Overall average spectral behavior of key optical properties for Pure Dust ($\alpha < 0.2$, PDU with red circle) and Transported Anthropogenic Dust ($0.2 < \alpha < 0.6$, TDU with blue square) at selected four East Asian sites (SACOL, Dalanzadgad, Beijing and Yulin). The error bars indicate

901 plus or minus one standard deviation.


902

903

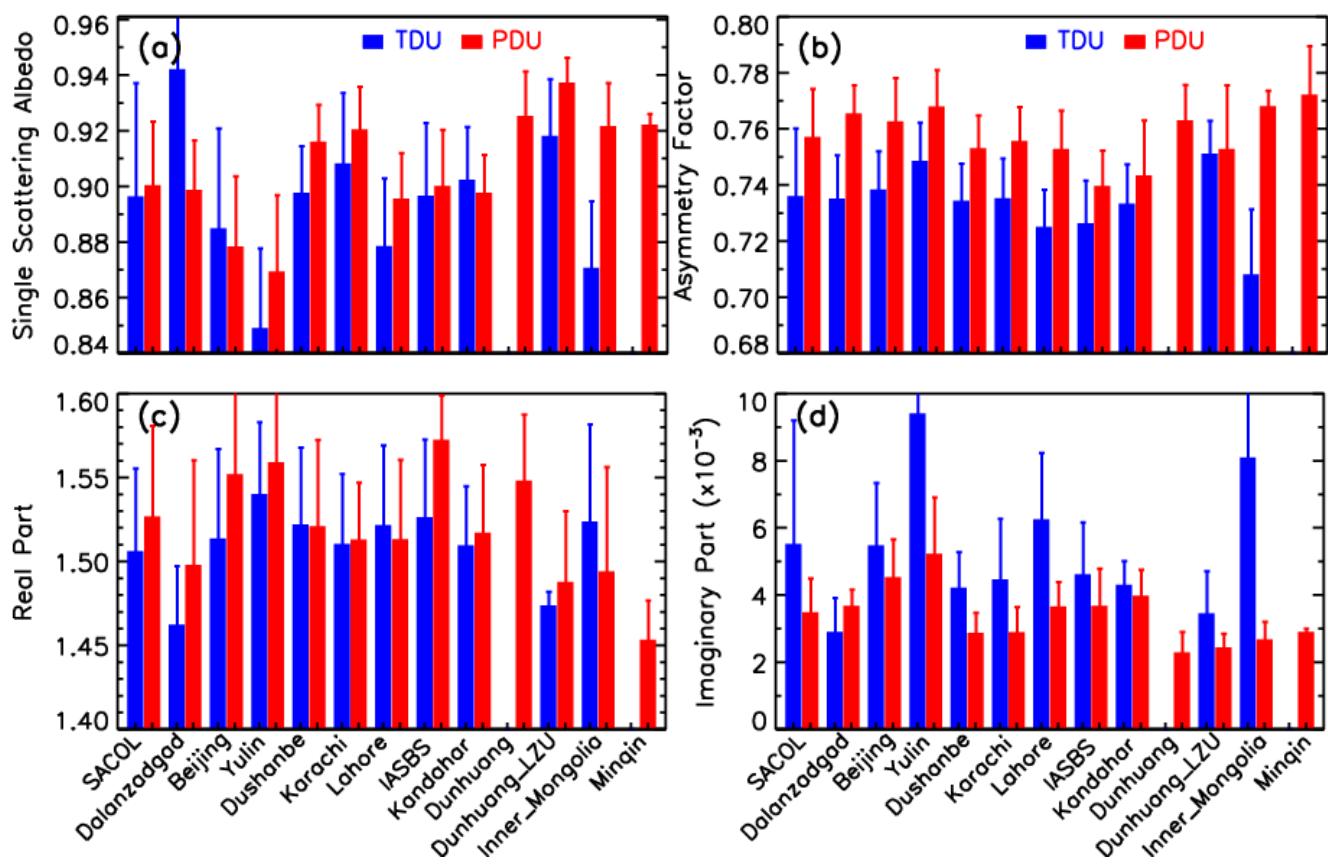
904 **Figure 4.** The same as Figure 3, but for selected four Central Asian sites (Dushanbe, Karachi,
905 Kandahar and IASBS).


906

907

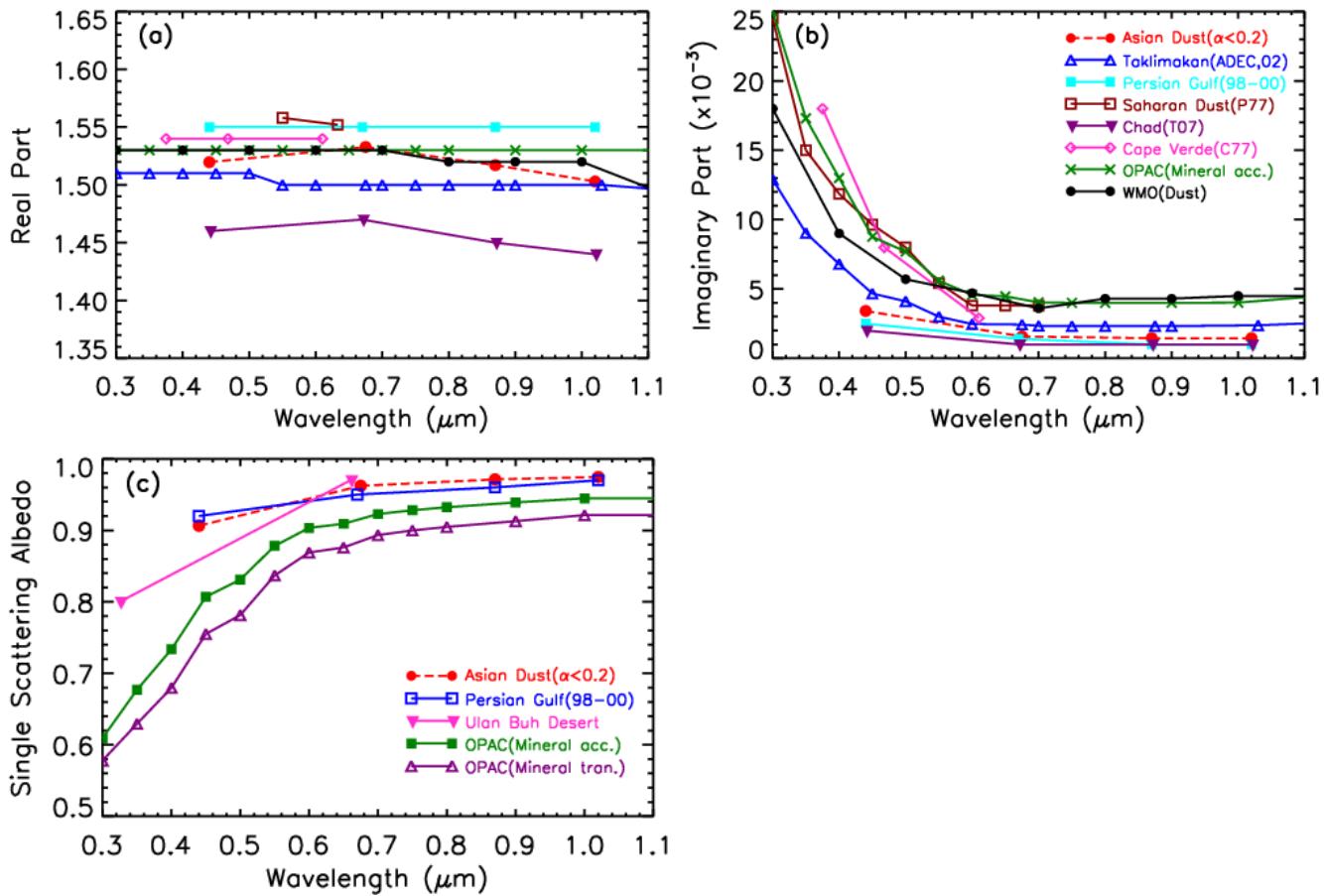
908 **Figure 5.** Overall average of aerosol volume size distributions in the entire atmospheric column
909 for (a) Pure Dust ($\alpha < 0.2$) and (b) Transported Anthropogenic Dust ($0.2 < \alpha < 0.6$) at selected 13

910 AERONET sites. Corresponding aerosol optical depth at 440 nm (AOD_{440}) and effective radius of
 911 coarse mode (r_{coarse}) in μm are also shown. Note that the “-” in Figure 5(b) represents that
 912 missing data for AOD_{440} and r_{coarse} at Dunhuang and Minqin sites.


921
 922 **Figure 6.** Total average values of (a) Ångström exponent (440-870 nm), (b) absorption Ångström
 923 exponent at 440-870 nm (AAE), (c) volume concentration of coarse mode ($\mu\text{m}^3/\mu\text{m}^2$), and (d)
 924 volume median radius of coarse mode in μm for Transported Anthropogenic Dust ($0.2 < \alpha < 0.6$,
 925 blue color) and Pure Dust ($\alpha < 0.2$, red color) at 13 selected AERONET sites. The error bars
 926 indicate plus or minus one standard deviation.

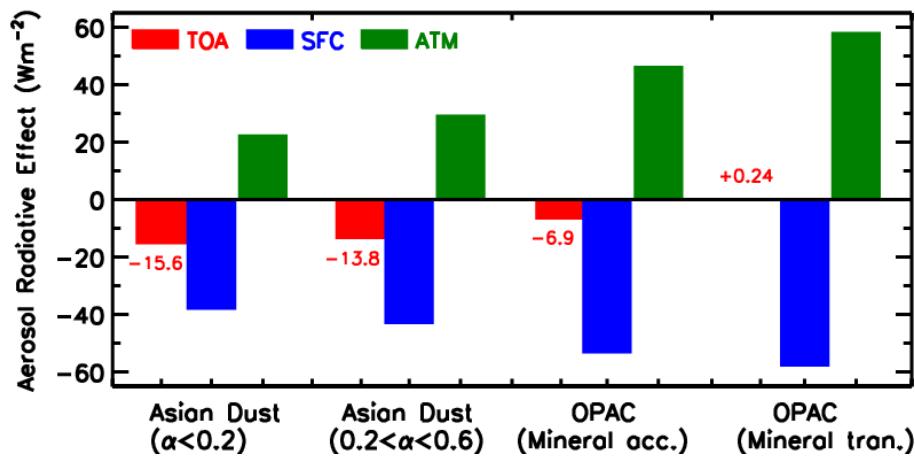
933
934
935
936
937
938
939
940
941

942


943

944 **Figure 7.** The same as Figure 5, but for (a) sing-scattering albedo, (b) asymmetry factor,
945 (c) real part and (d) imaginary part of complex refractive index at 440 nm.

946
947
948
949
950
951
952
953
954
955
956
957


958
959
960
961
962
963
964
965
966
967

968
969
970
971
972
973
974
975
976
977
978
979
980
981

Figure 8. Mean spectral behaviors of (a) real part, (b) imaginary part of complex refractive index, and (c) single-scattering albedo for Asian Pure Dust ($\alpha < 0.2$) calculated for 13 AERONET sites, and results of current common dust models (OPAC, WMO), Bahrain-Persian Gulf of Desert dust (1998–2000), Saharan dust (Chad, Cape Verde Islands), and Chinese Gobi desert (Taklimakan, Ulan Buh Desert) are also shown for comparison.

982
983
984
985
986
987
988

989
990 **Figure 9.** Aerosol shortwave direct radiative effects at the top of the atmosphere (TOA, red color),
991 at the surface (SFC, blue color), and in the atmospheric layer (ATM, green color) for Asian Pure
992 Dust ($\alpha < 0.2$) and Transported Anthropogenic Dust ($0.2 < \alpha < 0.6$) computed in this study, and
993 corresponding values for OPAC Mineral accumulated (Mineral acc.) and transported (Mineral
994 tran.) modes are also presented for comparison.

995