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Abstract. Nitrous oxide (N2O) has a high global warming potential and depletes stratospheric ozone. The U. S. Corn Belt plays 10 

an important role in the global anthropogenic N2O budget. To date, studies on local surface N2O emissions and the atmospheric 

N2O budget have commonly used Lagrangian models. In the present study, we used an Eulerian model - Weather Research and 

Forecasting Chemistry (WRF-Chem) model to investigate the relationships between N2O emissions in the Corn Belt and 

observed atmospheric N2O mixing ratios. Modeled hourly N2O mixing ratios were combined with continuous atmospheric N2O 

measurements at the KCMP tall tower in Minnesota to constrain agricultural N2O emissionsWe derived a simple equation to 15 

relate the emission strengths to atmospheric N2O mixing ratios, and used the equation and hourly atmospheric N2O 

measurements at the KCMP tall tower in Minnesota to constrain agricultural N2O emissions. The modeled spatial patterns of 

atmospheric N2O were validated evaluated against discrete observations at multiple tall towers in the NOAA flask network. After 

optimization of the surface flux, the model reproduced reasonably well the hourly N2O mixing ratios monitored at the KCMP 

tower. Agricultural N2O emissions in the EDGAR42 database needed to be scaled up by 19.0 to 28.1 fold to represent the true 20 

emissions in the Corn Belt forrom June 1-20, 2010 - a peak emission period. Optimized total mean N2O emissions were 3.00-

4.38, 1.52-2.08, 0.61-0.81 and 0.56-0.75 nmol m-2 s-1 forrom June 1-20, August 1-20, October 1-20 and December 1-20, 2010, 

respectively. The simulated spatial patterns of atmospheric N2O mixing ratios after optimization were in good agreement with 

the NOAA discrete observations during the strong emission peak in June. Such spatial patterns suggestillustrate that the 

underestimate of emissions using IPCC (Inter-governmental Panel on Climate Change) inventory methodology underestimate of 25 

emissions is not dependent on tower measurement location.  

1 Introduction 

Nitrous oxide (N2O) is an important greenhouse gas whose global warming potential is 265 times that of CO2 over a 100-year 

time horizon, and is the 3rd largest contributor to the increase in radiative forcing since 1750, only after CO2 and CH4 (Hofmann 

et al., 2006). In addition, N2O has the largest ozone depletion potential (ODP)-weighted emissions of substances that deplete 30 

stratospheric ozone (Ravishankara et al., 2009). It is inert in the troposphere with a lifetime longer than one hundred years 

(Prather et al., 2012, 2015). Globally-averaged atmospheric N2O has been increasing at a rate of 0.7 – 0.8 ppb yr-1 since late-

1970s (Prinn et al., 2000; Hall et al., 2007; Saikawa et al., 2014). 

The U.S Corn Belt is an intensively managed agricultural region, where a substantial amount of nitrogen, approximately 7.7 

Tg, is added to cropland in forms of synthetic fertilizer and manure each year (Griffis et al., 2013).  The Corn Belt plays an 35 

important role in global anthropogenic N2O emissions (Miller et al., 2012). Cropland N2O emissions is are difficult to measure 
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due to the episodic nature of the emissions and the high spatial variability (Wagner-Riddle et al., 2007; Groffman et al., 2009), 

and Corn Belt N2O emissions is are no exception.   

Bottom-up and top-down methods are used to quantify N2O emissions from the Corn Belt (Griffis et al., 2013; Zhang et al., 

2014; Chen et al., 2016) and other agricultural regions in previous studies (Corazza et al., 2011; Rees et al., 2013). The bottom-

up method determines the total emissions by multiplying N input or other activity data with an emission factor for each pathway 5 

(De Klein et al., 2006). Top-down estimates of the emissions are usually determined from observed atmospheric N2O mixing 

ratios, a transport model, and empirical equations for model optimization. Emissions inferred by the top-down method are 

generally larger than those by the bottom-up method for the Corn Belt. For example, Griffis et al. (2013) used three boundary 

layer budget methods and N2O monitored on a tall tower in Minnesota during 2010 – 2011 to do a top-down analysis, and found 

that the N2O emissions in the Corn Belt was were 3 to 9 times larger than bottom-up estimates, including estimates based on the 10 

IPCC inventory methodology and the EDGAR (Emission Database for Global Atmospheric Research) version 4.2 and GEIA 

(Global Emissions InitiAtive) databases. Kort et al. (2008) constrained the N2O emissions over the central U. S. and southern 

Canada using an inverse modeling method, and reported that emissions in EDGAR version 32FT2000 and in GEIA are 

underestimated by about three fold for May – June, 2003. Similarly, the top-down analysis of Miller et al. (2012) concluded that 

N2O emissions in EDGAR4 (version 4.0) should be scaled by factors of 6.1 and 10.1 for June, 2004 and June, 2008, respectively, 15 

for the central U. S. Most recently, Chen et al. (2016) estimated N2O emissions from the Corn Belt using a Bayesian inversion 

technique, concluding that both direct emissions from agricultural soils and indirect emissions from leaching and runoff are 

underestimated in EDGAR42, with the latter needing to be adjusted upward by 2.4 to 5.1 fold.  

In the inverse analyses cited above, different emission databases (e.g., EDGAR 32 FT2000 and GEIA in Kort et al., 2008; 

the Dynamic Land-Ecosystem Model – DLEM in Tian et al., 2010; EDGAR4, EDGAR 32 FT2000, GEIA, and DLEM in Miller 20 

et al., 2012 and Xiang et al., 2013; EDGAR42, GEIA, and IPCC in Griffis et al., 2013; EDGAR42 and Community Land Model  

in Chen et al., 2016) are used to provide the a priori estimate of surface emissions, and the meteorological fields are simulated 

using mesoscale models such as the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) or regional 

reanalysis (Miller et al., 2012). All top-down inverse modeling studies described here used The transport of N2O in the 

atmosphere is usually simulated with the Stochastic Time Inverted Lagrangian Transport (STILT) Model (Gerbig et al., 2003) to 25 

simulate the transport of N2O in the atmosphere. An advantage of using STILT to conduct the inverse modeling for N2O is that it 

needs much less computational resources than full three-dimensional Eulerian models.  

Because Langrangian modelsSTILT simulates the mixing ratio at one single point in space, itthey cannot quantify how the 

surface N2O emissions influence the spatial characteristics of atmospheric N2O mixing ratios. This problem is avoided by using 

Eulerian models. To the best of our knowledge, no modeling studies have been published on the relationship between the spatial 30 

characteristics of surface emissions and the atmospheric N2O mixing ratio at the regional scalefor the Corn Belt. It is recognized 

that some of the parameterizations in STILT, such as the turbulent velocity variance and the Lagrangian timescale, need 

refinement to improve model performance (Pillai et al. 2012), ). and Eulerian modeling can inform these refinement efforts.On 

the other hand, Eulerian models cannot distinguish the contribution of a specific source to the atmospheric concentration. Overall, 

both Lagrangian (e.g., STILT) and Eulerian (e.g., WRF-Chem) models have their advantages and disadvantages in inverse 35 

analysis, and comparing their results obtained for the same region can inform refinement efforts on these models. 

The WRF model coupled with chemistry (WRF-Chem) has been used to simulate the flux and transport of CO2 (Ahmadov 

et al., 2009; Pillai et al., 2012) and CH4 (Beck et al., 2013), and other reactive gases. We are not aware of WRF-Chem 

applications to simulating the flux and transport of N2O. In this study, we used WRF-Chem to investigate the spatial 

characteristics and influence of Corn Belt N2O emissions on atmospheric N2O. Specifically, we aimed to: (1) establish empirical 40 
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relationships between the surface emission strength and the N2O mixing ratio in the atmospheric boundary layer from multiple 

modeling experiments; (2) estimate the actual emissions as some multiple of the agricultural N2O emissions in EDGAR42 

whereby the multiplier was obtained from via a simple inverse analysis whereby these relationships were used to force 

agreement between modeled andand the observed atmospheric N2O observed on a tall tower in Minnesota; and (3) investigate 

the spatial patterns of the N2O mixing ratio in the atmospheric boundary layer; and (4) analyze uncertainties in the inverse 5 

analysis.  

This work is complementary to a recent study completed by Chen et al. (2016). They used the Lagrangian-based STILT 

model to simulate N2O transport, and conducted an inverse analysis using the Bayesian method. The present study used Eulerian-

based WRF-Chem to model N2O transport, and used a simple empirical equation to do the inverse analysis. The inverse analysis 

in Chen et al. (2016) was based on N2O measured at a single height on a tower in Minnesota, while the present study used N2O 10 

measured at multiple heights on the same tower, and analyzed the influences of monitoring height on the inverse analysis results. 

Additionally, the modeled N2O mixing ratio in the present study was compared with observations of N2O made by NOAA using 

discrete air samples collected at multiple sites.   To our best knowledge, this study appears to be the first one that uses WRF-

Chem to do inverse analysis for N2O, analyzes the influences of monitoring height on the inverse analysis results, and illustrates 

the spatial characteristics of the influences of the Corn Belt on the atmospheric N2O concentration. Deployment of measurements 15 

made at multiple heights in inverse analysis can reduce the uncertainty in modeling transport and diffusion in the atmospheric 

boundary layer and therefore should provide better estimates of the actual emission than if only one measurement height is used.   

2 Materials and methods 

2.1 Observation 

One set of atmospheric N2O data came from observations at the KCMP radio communication tall tower (44.69° N, 93.07° W) in 20 

Minnesota, near the northern border of the Corn Belt (Fig. 1). Air was drawn from heights of 32, 56, 100, and 185 m above the 

ground into a tunable diode laser analyzer (TGA100A, Campbell Scientific Inc., Logan, Utah, USA) for continuous detection of 

the N2O mixing ratio. Measurement was made at a sampling frequency of 10 Hz and was averaged to hourly values. The 

analyzer response was calibrated with standards on the NOAA 2006A N2O mole fraction scale (Hall et al., 2007), and the hourly 

calibration precision was estimated to be 0.5 ppb. Details regarding the measurements of the N2O mixing ratio were described in 25 

Griffis et al. (2010; 2013). Data of four periods at the KCMP tower were used in the present study, namely, 1st – 20th in June, 

August, October, and December in 2010, representing early summer, late summer, fall and winter, respectively. The month of 

June 2010 had particularly large emissions (Griffis et al., 2013). 

The second dataset came from NOAA. Discrete air samples from six NOAA tall tower sites were collected daily during 

18:00 – 21:00 (UTC) at heights of 107 – 457 m above the ground. The six sites are WBI (West Branch, Iowa), LEF (Park Falls, 30 

Wisconsin), SCT (Beech Island, South Carolina), BAO (Boulder Atmospheric Observatory, Colorado), AMT (Argyle, Maine), 

and WKT (Moody, Texas; Fig. 1). N2O dry-air mole fractions were determined by gas chromatography with election capture 

detection. The analytical system was calibrated with standards on the NOAA 2006A N2O mole fraction scale. The average 

repeatability was ~0.4 ppb. 

The third set of data is hourly N2O mixing ratio monitored at Niwot Ridge (NWR), Colorado (40.04° N, 105.54° W; 35 

elevation: 3018 m), which was used as background in the present study. The analyzer response was also calibrated with 

standards on the NOAA 2006A N2O mole fraction scale. The reproducibility of N2O calibrations in the ambient range was 0.22 

ppb. 
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2.2 Model setup 

The latest version of the WRF-Chem model (version 3.7.1) was used to simulate the meteorological field, and the transport and 

mixing of N2O. In the model domain, N2O was treated as a passive tracer. Fig. 1 shows the map of the Corn Belt, the locations of 

N2O mixing ratio measurements, the modeling domains used in the present study, and the totala default prior emission flux 

density according to EDGAR42 plus EDGAR2 natural soil emissions. To represent the tall tower observations, atmospheric 5 

transport models should be configured with high spatial resolutions of 2 – 20 km (Phillai et al., 2012). In the modeling study of 

Miller et al. (2012), the outer and inner domains have a spatial resolution of 40 km and 10 km, respectively.  In the present study, 

we deployed two nested domains. The outer domain had 44 × 34189 grids with a resolution of 70 km, and the inner domain had 

34189 × 98 grids with a resolution of 10 km. Both domains had 40 vertical levels varying from the land surface to a pressure 

height of 50 hPa or approximately 20 km above the sea level. The meteorology module and chemistry module use the same mesh 10 

generation. The heights of layers 1, 2, and 3 are around 30, 100, and 190 m above the local terrain surface, respectively, so we 

compared the modeling results of these layers with observations at the height of 32, 100, and 185 m, respectively.  

Because three-dimensional modeling of the meteorological field and the tracer transport requires substantial computational 

resources, it is not feasible to do the simulation continuously for a long period (e.g., one year). Instead, the model calculation was 

performed for four select periods (1st – 20th in June, August, October, and December in 2010). The initial and boundary 15 

conditions for the meteorological field were obtained from the weather forecast model Global Forecast System 

(ftp://nomads.ncdc.noaa.gov/GFS/analysis_only).  The initial and boundary conditions for the N2O mixing ratio for each 

modeling period were obtained from Model for Ozone and Related Chemical Tracers (MOZART) version 4 

(http://www.acom.ucar.edu/wrf-chem/mozart.shtml).  Cloud microphysics was represented with the single-moment 5-class 

scheme (WSM), the boundary layer was modeled with the Yonsei University Scheme (YSU), and the land surface was modeled 20 

with the Community Land Model Version 4 (CLM4). Other model settings are shown in Table 1. 

The lower boundary condition for N2O was a predetermined surface emission flux, which was constant in time but varied 

spatially. Both the EDGAR and the GEIA databases have surface emission data for the Corn Belt, and both have more detailed 

and reasonable spatial distributions than DLEM (Miller et al., 2012).  .; Because In comparison, EDGAR needs less magnitude 

correction than GEIA in inverse modeling (Miller et al., 2012; Griffis et al., 2013), so we used the latest version of EDGAR 25 

(version 4.2) as the default flux boundary condition. EDGAR42 N2O emission data has a spatial resolution of 0.1° × 0.1°, close 

to the resolution of our inner model domain. The total EDGAR42 N2O emissions (annual mean flux density) for the outer 

domain is are 0.083 nmol m-2 s-1, and corresponding value for the Corn Belt is are 0.21 nmol m-2 s-1. Agricultural sources of N2O 

include manure management, agricultural soil, indirect emissions from agriculture, and agricultural biomass burning. The total 

agricultural emissions rate is are 0.15 nmol m-2 s-1 for the Corn Belt (Supplementary Figure S1). The natural soil emission rates 30 

are 0.036 and 0.038 nmol m-2 s-1 for the outer domain and the Corn Belt, respectively. The spatial distribution of the sum of the 

EDGAR42 flux and natural soil emissions is shown in Fig. 1.  

2.3 Experimental design 

Because N2O is inert in the troposphere, changes in its mixing ratio C are primarily controlled by variations in the surface source 

strength F and atmospheric transport. However, the relationship between C and F is not a 1:1 correspondence. Because of 35 

influences of wind direction and turbulentvertical diffusion and convection, we do not expect the C enhancement in the 

atmospheric boundary layer to double in response to a doubling of F in the Corn Belt. Here we established the relationship 

between C and F using results of multiple model runs. Three different modeling experiments were conducted for each of the four 

study periods. The first run was a background simulation using the natural soil emissions and EDGAR42 non-agricultural 
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emissions for both domains. The resulting N2O mixing ratio is taken as the background, Cb. The second model run was a default 

simulation driven by natural soil emissions and the total EDGAR42 emissions (agricultural and non-agricultural) in both 

domains. The third run was a scaled simulation whereby the surface flux in the grid cells belonging to the Corn Belt in the inner 

domain was the sum of natural soil emissions, EDGAR42 non-agricultural emissions, and a multiple of EDGAR42 agricultural 

emissions. The multiplier values are 3, 6, 12, and 25, the exact choice depending on the modeling period (Table 2). For the grid 5 

cells not belonging to the Corn Belt in the inner domain and the grid cells in the outer domain, the multiplier values are set to one. 

In the EDGAR inventory, the N2O emission is determined with the IPCC-type methodology using agricultural activity data and 

standardized emission factors. Our study makes two implicit assumptions (1) that these emission factors are biased similarly in 

all model grids in the Corn Belt; and (2) that the observed concentration is equally sensitive to emissions everywhere in the Corn 

Belt.  10 

The preset multipliers in Table 2 represent our first guess values. The actual multiplier values are constrained by the 

concentration observations at the KCMP tower. First, wWe define the concentration enhancement, C, for the grid cell 

containing KCMP tower as the difference in N2O mole fraction between the default or scaled simulation and the background 

simulation. Let concentration multiplier MC be the ratio of C from the scaled simulation to that from the default simulation and 

MF be the emission flux multiplier.  The two multipliers are related to one another as 15 

MC – 1 = a (MF – 1)                                                                      (1) 

where the empirical coefficient a (< 1) was determined with a least squares procedure from the modeled concentration data.  The 

scaled simulations with multipliers of 3, 6, 12, and 25 are used to find parameter a in Equation (1).   

Next, 2.4 A simple inverse analysis 

wWe used the observed enhancement, C, defined as the actual concentration observed at the KCMP tall tower minus a 20 

background concentration and adjusted for a small spatial gradient in the modeled N2O mixing ratio between KCMP and the 

background concentration site from the background simulation, to constrain the flux multiplier (and the surface emission flux). A 

numerical example is given in the Supplementary Information on how this is done. The background concentration was observed 

at NWR, which is upwind of and outside the Corn Belt (Supplementary Table S1). The background value was calculated as a 3-

day running mean. Another advantage of using NWR as opposed other NOAA monitoring sites is that the observation at NWR is 25 

continuous in time whereas measurements at other sites are made only once or twice per day.  Griffis et al. (2013) and Chen et al. 

(2016) also used the observation at NWR as the background concentration. 

If the EDGAR42 emission flux is accurate and the model is perfect, the observed C should match with the concentration 

enhancement from the default model simulation. Any disagreement is caused either by model errors or by errors in the surface 

flux. Here we assume that the flux errors are solely responsible for the disagreement, leaving the discussion of model errors to a 30 

later part of the paper. Not surprisingly, the C from the default simulation is always lower than the observed C, meaning that 

the EDGAR42 emission flux is biased low. To find a correction factor, we should ideally run the WRF-Chem in an iterative 

fashion, by adjusting the surface flux repeatedly until the modeled C matches the observed C. However, this procedure is 

computationally prohibitive.  Instead, we resorted to a simple two-step method. First, the concentration multiplier MC was 

determined by dividing the mean observed C with the mean modeled C from the default simulation for each modeling period. 35 

Second, the MC value was used in Equation (1) to find the emission multiplier MF. The EDGAR42 agricultural emission flux 

times MF is then regarded as the true agricultural flux.  

An implicit assumption in this simple inverse analysis is that MCC should respond linearly to changes in the MFsurface 

flux. The Because N2O is an inert gas, following results illustrate that this assumption is generally satisfied (see Fig. 2 3 below).       
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3 Results 

In this section, we first compare the modeled mixing height with those derived from other data products to evaluate the accuracy 

of the modeled N2O transport in the atmosphere. We then discuss the relationship between the modeled concentration 

enhancement and the flux enhancement; these results are used to establish Equation (1). The constrained emission flux values are 

given next. After that, we compare the modeled mixing ratio with the hourly observations at the KCMP tower and the modeled 5 

mixing ratio spatial distribution with those observed at multiple NOAA flask sites. Finally, we present the spatial distribution of 

the modeled atmospheric N2O mixing ratio in the Corn Belt.   

3.1 Mixing height 

A key factor in inverse analysis is the accuracy of the modeled atmospheric N2O transport and turbulent mixing. One source of 

model error stems from the vertical transport calculation. Previous studies have shown that the parameterizations of the PBL in 10 

WRF-Chem affects modeled scalar concentrations in the atmospheric boundary layer (Kretschmer et al., 2012). If vertical 

mixing is too strong, the emitted N2O will spread over a deeper boundary layer, potentially causing a low bias in the modeled C 

near the surface. The YSU scheme adopted in this study has been used successfully in previous WRF simulations (e.g., Pillai et 

al., 2012). Accuracy assessment results from Pillai et al. (2012) indicate that WRF-Chem using the YSU scheme can capture the 

hourly fluctuations of passive tracers at different heights near the ground.    15 

The sensitivity to the diffusion scheme is manifested in the predicted mixed layer height zi because a high bias in zi will 

lead to a low bias in C and vice versa. In an inverse modeling analysis of carbon monoxide, Kim et al. (2013) presented the 

diurnal cycle of zi from four different meteorological simulations for the KCMP tower site, namely, EDAS (Eta Data 

Assimilation System), NARR (North American Regional Reanalysis) from the National Centers for Environmental Prediction 

(NCEP), BRAMS (Brazilian developments on the Regional Atmospheric Modeling System), and GEOS-5 (Goddard Earth 20 

Observing System Model, version 5). Their inverse analysis yields surface carbon monoxide emission estimates with reasonable 

accuracy, achieving an R2 value of 0.48 between the measured and the simulated CO mixing ratios. Fig. 2 compares our modeled 

zi diurnal cycle with those derived for 2009 from the three meteorological simulations (EDAS, NARR, and GEOS-5) in Kim et al. 

(2013) and with the 3-hourly NCEP-NARR data for the four exact 20-day periods in 2010 (Supplementary Figure S2). In this 

comparison, we omitted the BRAMS data because its zi value is unreasonably high (Kim et al., 2013).  Our modeled mean 25 

diurnal cycles of the mixing height during 1st – 20th in June, August, and October are broadly consistent with the results of 

NARR and with those reported by Kim et al. (2013). Even though the results in Kim et al. (2013) are for complete seasons in 

2009 and the results in the present study are for shorter periods in 2010, this is a valid comparison because our summer periods 

occurred at the beginning and the end of the season and our fall period was in the middle of the season. For December 1st – 20th, 

our zi value is biased high by ~ 400 m and shows smaller diurnal variations in comparison with NARR. For this reason, we are 30 

less confident about the inverse result for this time period than for the other three time periods.  

3.1 2 Emission enhancement versus concentration enhancement at the KCMP site 

Because the KCMP tower is close to the northern boundary of the Corn Belt (Fig. 1), south wind is expected to cause larger N2O 

mixing ratio enhancement than north wind. In Fig. 2a3a-c, the modeled C at the height of 185 m from the scaled simulation 

with a flux multiplier MF of 25 is plotted against the modeled C from the default simulation for the time period from June 1 to 35 

20, 2010.  Each data point represents one hourly value. The data are sorted into three wind direction groups (90° – 270°, 270° – 

90°, and 0° – 360°).  Of the three wind groups, south wind with direction of 90° – 270° resulted in the largest N2O mixing ratio 
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enhancement (Fig. 2b3b).  The regression slope for this wind direction range is 18.66. In other words, at the flux multiplier MF of 

25, the concentration enhancement multiplier MC is 18.66. The concentration multiplier is 11.47 for north wind (wind direction 

range 270° – 90°; Fig 2c3c) and is 15.71 if all wind directions are considered (Fig. 2a3a).  

Similar analysis was applied to the other three modeling periods, each yielding a MC value for each wind sector at the set 

MF value given in Table 2. When the MC versus MF data pairs are put together for all four periods, a clear linear relationship is 5 

evident (Fig. 2d3d-f). Equation (1) with a coefficient value a of 0.740 best describes this relationship for south winds according 

to the least squares regression. The coefficient value is 0.470 for north winds and 0.631 for all wind directions. The value a of 

0.740 for south winds is used for the inverse analysis presented below, because the observed N2O mixing ratio could reasonably 

reflect emissions from the Corn Belt only during southerly winds.  

3.2 3 Constrained agricultural emissions  10 

Because the KCMP site is close to the northern boundary of the Corn Belt, the observed N2O mixing ratio could reasonably 

reflect emissions from the Corn Belt only during southerly winds. Therefore, data obtained for southerly flow were used to 

constrain the surface emission. As explained in Section 2.43, the concentration multiplier MC was computed as the ratio of the 

mean C observed in south wind at the 185 m height to the mean C from the default model simulation at the same height and 

also in south wind conditions. This MC value was then used in Equation (1) with a = 0.740 to find the flux multiplier MF. For 15 

example, for June 1-20, the concentration multiplier is 21.0, and the optimized flux multiplier is 28.1. A numerical example is 

given in the online Supplementary Information that outlines all the steps involved in this calculation.    

Table 2 shows the constrained N2O emissions from the Corn Belt using the N2O mixing ratio monitored at the height of 185 

m on the KCMP tower. The constrained agricultural N2O emissions for the 1st – 20th in June, August, October, and December are 

4.29, 1.99, 0.72, and 0.66 nmol m-2 s-1, respectively.    20 

3.3 4 Comparison of observed and adjusted model N2O concentration 

Fig. 3 4 shows the observed (grey line), modeled (red line), and the adjusted model (blue line) N2O mixing ratio enhancement at 

185 m on the KCMP tower. The modeled and adjusted C here is the concentration difference between the KCMP site and the 

NWR site. The modeled C using a prior (default) emissions is the enhancement from the default simulation and plus a small 

concentration difference between the KCMP site and the NWR site from the background simulation, and the adjusted model C 25 

is the enhancement from the default simulationdefault C times the appropriate concentration multiplier plus the concentration 

difference between the KCMP site and the NWR site from the background simulation.  The modeled C using the a default prior 

emissions is clearly smaller than observation for all four periods (Fig. 34). For example, for the model period June 1-20, the 

default model C value is 0.180.26 and 0.190.35 ppb for all wind directions and for south wind, respectively, whereas the 

observed mean C is 4.95 and 5.44 ppb, respectively. The south wind results yield a concentration multiplier of 28.1. After the 30 

adjustment, the modeled mixing ratio enhancements are much closer to the observations than those from the default simulation. 

The adjusted model C can roughly reproduce the temporal fluctuations of the observed C at the KCMP site, although the 

substantial noises, characterized by  (abrupt increases and decreases) in the observation, result in low correlation coefficients 

between the simulated and the observed time series. 

As shown in Fig. 2a3a-c, wind direction clearly affects the simulated C. For the four study periods, the mean simulated 35 

C under north wind conditions was roughly half of that under south wind conditions. The wind direction influence is also 
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evident in the hourly time variations of C. For example, southern wind (wind direction 90° – 270°) prevailed during the four-

day period from day of year 280 to 284, and the mixing ratio showed a gradual increasing trend with time.    

Another factor that drives the temporal fluctuations of C is the diurnal change of vertical mixing which is stronger in the 

day than at night. The larger daytime vertical diffusivity corresponds to the smaller modeled N2O mixing ratio enhancement near 

the land surface. The intensity of vertical mixing can be reflected by the mixed layer height. The linear correlation coefficient 5 

between the modeled mixed layer height and the hourly modeled N2O mixing ratio enhancement from the default simulationC 

was -0.45 and -0.19 for the KCMP grid at heights of 32 m and 185 m in August, respectively. The corresponding correlation 

values were -0.53 and -0.35 in October, -0.35 and -0.12 in June, and -0.32, and -0.15 in December. All of these correlations are 

significant (confidence level p < 0.01). 

Accurate assessment of the model performance in reproducing the atmospheric N2O mixing ratio is difficult at hourly 10 

intervals because of large measurement noises. Here we compare the observed daily mean values with the daily simulated mean 

values using the default prior emissions, and the adjusted results (Fig. 45). Without the flux adjustments, the modeled daily mean 

C is aboutround one fifth ofan order of magnitude smaller than the observed value. After the adjustments, the model result is 

closer to the observation, with a linear regression slope of 0.7675, and R2 also improved from 0.01 02 before the adjustments to 

0.3135. Here one single concentration multiplier MC value obtained for south wind conditions (e.g., MC = 21.0 for June 1 - 20) 15 

was used to make the concentration adjustment to all hourly model values for each period, regardless of actual wind direction, 

and the daily mean adjusted value was based on these hourly adjusted values. If the adjustments are made separately to southern 

winds and to northern winds using the two different regression equations (Figure 2e and 2f), the adjusted daily model mean C is 

improved even further: the regression slope of the adjusted model C against the observed C is 0.94 90 and the R2 is 0.3432.  

The improvement brought by the optimization to the correlation between the modeled and observed concentrations is 20 

similar to that reported by Kim et al. (2013) for CO measured at the same tower. Their optimization improved their R2 from 0.29 

to 0.48, with an improvement of 0.19. The improvement of R2 for N2O in the present study is 0.33 (from 0.02 to 0.35). The R2 

value reported by Xiang et al. (2013) between optimized simulation results and the observation for the atmospheric N2O 

concentration in California is 0.29 – 0.33, and is similar to ours.  The remaining variations, not explained by the model, may be 

caused by the model’s inherent limitation in terms of simulating boundary layer transport processes and by errors in the spatial 25 

distribution of the prior emissions. 

 

3.4 5 Spatial variations of modeled N2O concentration  

Currently, there are only a few stations monitoring atmospheric N2O concentration in or near the Corn Belt. Detailed information 

on the spatial distribution of N2O can help experimentalists position their observational sites strategically. It also reveals the 30 

spatial extent of the influences of local emissions on the atmosphere. Fig. 5a 6a illustrates the mean modeled C during June 1 – 

20 for the modeling area from the scaled simulation run with a flux multiplier of 25.0, and Fig. 5b 6b shows similar results as Fig. 

5a 6a but only for UTC hours 19 and 20. In Fig. 6b, the modeled C value is interpolated to the measurement height of each site. 

The experimental flux multiplier of 25.0 is reasonably close to the optimized flux multiplier of 28.1. The actual concentration 

values at the tower sites in Fig. 6b are shown in Table 3.  According to Table 3 and Fig. 6b, the modeled C with MF = 25.0 35 

agrees reasonably well with the observations at WBI, LEF, SCT, and BAO for June 1st – 20th. Both the observed and modeled 

C are largest at WBI, which is close to the center of the Corn Belt, among the six NOAA-PFP sites. The next highest C is 

found at LEF, although a high model bias is evident there. The modeled and observed mean C of these four sites located in the 

model domain are 1.51 and 1.27 ppb, respectively.  
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For August, October, and December with much weaker emissions than in June, the agreement between the observed and 

modeled C is not as good. The observed N2O mixing ratio at WBI near the center of the Corn Belt is even smaller than that at 

the background during October 1-20, as indicated by the negative C (Table 3), which is unreasonable and suggests large 

uncertainties in the concentration measurements. The largest disagreement occurred in the October period: the modeled mean C 

with MF = 3.0 is 0.81 ppb for the four sites in the model domain but the observed mean C is actually 0.01 ppb.  5 

By measuring spatial variations in atmospheric N2O, an observational network consisting of multiple sites has the potential 

to help constrain inverse analysis using Eulerian tracer transport models, if the measurement reflects true natural variations and is 

unaffected by measurement uncertainties. Given the flask measurement uncertainties noted above, such N2O inversion would be 

difficult for low emission periods. The large measurement uncertainties may have explained why Miller et al. (2012) limited 

their geostatistical inversion to an early summer period. 10 

In Fig. 5a6a, the maximum mean enhancement is 5.92 ppb, found at 93.20°W and 42.12° N, which is near the center of the 

Corn Belt and 286 km south of the KCMP tower. The mean modeled C for the whole Corn Belt is 4.15 ppb at the height of 185 

m above the ground, illustrating a clear influence of the Corn Belt on atmospheric N2O.  

The mean modeled C at the KCMP tower is 3.69 ppb, slightly lower than the observed value of 4.95 ppb. Two reasons 

may explain this low bias. The fFirst minor reason is that , the results shown in Fig. 5 6 were from the scaled simulation with an 15 

experimental flux multiplier of 25.0, and this multiplier is slightly smaller than the optimized flux multiplier MF value of 28.1 

determined in post-simulation analysis. Second, the flux multiplier was calibrated to match the modeled results to observations 

during southerly winds, instead of all-wind conditions.  

The modeled C distribution resembles a rectangle that surrounds the Corn Belt, with a narrow dimension in the south-

north direction and a wide dimension in the east-west direction, implying a larger spatial gradient in the south-north direction 20 

than in the east-west direction. 

4 Discussion 

4.1 Model accuracy  

A key factor in inverse analysis is modeling accuracy. One source of model error stems from the vertical diffusion calculation. 

Previous studies have shown that the scheme describing diffusion in WRF-Chem affects modeled scalar concentrations in the 25 

atmospheric boundary layer (Kretschmer et al., 2012). If diffusion is too strong, the emitted N2O will spread over a deeper 

boundary layer, potentially causing a low bias in the modeled C near the surface. The YSU diffusion scheme adopted in this 

study has been used successfully in previous WRF simulations (e.g., Pillai et al., 2012). Accuracy assessment results from Pillai 

et al. (2012) indicate that WRF-Chem using the YSU scheme can capture the hourly fluctuations of passive tracers at different 

heights near the ground.    30 

The sensitivity to the diffusion scheme is manifested in the predicted mixed layer height zi because a high bias in zi will 

lead to a low bias in C and vice versa. In an inverse modeling analysis of carbon monoxide, Kim et al. (2013) presented the 

diurnal cycle of zi from four different meteorological simulations for the KCMP tower site, namely, EDAS (Eta Data 

Assimilation System), NARR (North American Regional Reanalysis) from the National Centers for Environmental Prediction 

(NCEP), BRAMS (Brazilian developments on the Regional Atmospheric Modeling System), and GEOS-5 (Goddard Earth 35 

Observing System Model, version 5). Their inverse analysis yields surface carbon monoxide emission estimates with reasonable 

accuracy, achieving an R value of 0.69 between the measured and simulated CO mixing ratios. Fig. 6 compares our modeled zi 

diurnal cycle with those derived for 2009 from the three meteorological simulations (EDAS, NARR, and GEOS-5) in Kim et al. 
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(2013) and with the 3-hourly NCEP-NARR data for the four exact 20-day periods in 2010. In this comparison we omitted the 

BRAMS data because its zi value is unreasonably high (Kim et al., 2013).  Our modeled mean diurnal cycles of the mixing height 

during 1st – 20th in June, August, and October are broadly consistent with the results of NARR and with those reported by Kim et 

al. (2013). Even though the results in Kim et al. (2013) are for complete seasons in 2009 and the results in the present study are 

for shorter periods in 2010, this is a valid comparison because our summer periods occurred at the beginning and the end of the 5 

season and our fall period was in the middle of the season. For December 1st – 20th, our zi value is biased high by ~ 400 m and 

shows smaller diurnal variations in comparison with NARR. For this reason, we are less confident about the inverse result for 

this time period than for the other three time periods. 

We also assessed model accuracy by comparing the simulated C with measurements of N2O in discrete samples collected 

at sites in NOAA’s tall tower network (Fig. 5b and Table 3). In this comparison, the modeled C value is the average of UTC 10 

hours 19 and 20 and interpolated to the measurement height of each site. Fig.5b was produced from the model simulation with an 

experimental flux multiplier of 25.0 which is reasonably close to the optimized flux multiplier of 28.1. In Table 3, two model 

values are given, one from the default simulation with the experimental MF = 1 and the other from the simulation whose MF is 

closest to the optimized MF for the given period. The modeled C with MF = 25.0 agrees reasonably well with the observations at 

WBI, LEF, SCT, and BAO for June 1st – 20th. Both the observed and modeled C are largest at WBI, which is close to the center 15 

of the Corn Belt, among the six NOAA-PFP sites. The next highest C is found at LEF, although a high model bias is evident 

there. The modeled and observed mean C of these four sites located in the model domain are 1.51 and 1.27 ppb, respectively.  

For August, October, and December with much weaker emissions than in June, the agreement between the observed and 

modeled C is not as good. The observed N2O mixing ratio at WBI near the center of the Corn Belt is even smaller than that at 

the background during October 1-20, as indicated by the negative C (Table 3), which seems unreasonable. Large variations in 20 

the concentration measurements are a potential cause of this problem. For example, the standard deviation of the measurement at 

WBI is 0.76 ppb for October 1 – 20, 2010, which is larger than the concentration enhancement we tried to model. Furthermore, 

the number of samples (27 points per period on average) is not large enough to reduce the standard error or variability of the 

measurement mean value.  The largest disagreement occurred in the October period: the modeled mean C with MF = 3.0 is 0.81 

ppb for the four sites in the model domain but the observed mean C is actually 0.01 ppb.  25 

By measuring spatial variations in atmospheric N2O, an observational network consisting of multiple sites has the potential 

to help constrain inverse analysis using Eulerian tracer transport models. Given the flask measurement variability, such N2O 

inversion would be difficult for low emission periods. The large measurement variability may have explained why Miller et al. 

(2012) limited their geostatistical inversion to an early summer period. In this regard, the continuous observations at KCMP and 

NWR are more appropriate for inverse analysis because they produce more robust mean values than the flask observations.   30 

4.2 1 Sensitivity to measurement height 

The analysis presented above is based on observations from 185 m on the KCMP tower. The inverse analysis was also repeated 

with observations from the heights of 32 m and 100 m. The optimized flux multipliers are summarized in Table 2. It is 

interesting that the optimized flux multiplier or the constrained emission flux increases with the observational height. The 

constrained flux is lowest if KCMP data obtained at 32 m were used and largest for data at 185 m. Theoretically, the constrained 35 

emissions should be independent of mixing ratio observation height if the N2O mixing ratio is perfectly simulated. To help 

explain the height dependence, we compared the observed and modeled vertical N2O mixing ratio gradients between 32 m and 

185 m (Supplementary Figure S3). Both observed and modeled gradients were close to zero during the majority of the daytime 

periods (11:00 - 18:00 local time), with the mean value of (concentration at 32 m minus that at 185 m) 0.03 (observation) and 



11 

0.25 ppb (model) during 11:00 - 18:00 for June 1-20, illustrating strong vertical mixing in daylight hours. Here the model result 

was based on the simulation with an experimental flux multiplier of 25.0. During this period, the nighttime (21:00 - 06:00) 

gradient is greater, with the mean value of 1.44 ppb according to the observation and 5.47 ppb according to the model simulation.  

A similar diurnal pattern of the N2O concentration gradient is also reported by Zhang et al. (2014). In the present study, the 

difference in vertical gradient between simulation and observation during night (5.47 ppb versus 1.44 ppb) is much larger than 5 

that during daytime (0.25 ppb versus 0.03 ppb), and contributes the most to the height dependence of the constrained emission 

flux.  

We suggest that the bias in the modeled mixing ratio gradient and the height dependence of the constrained emission flux 

are mainly consequences of different footprints between the monitoring heights. According to STILT modeling results, the 

footprint for the height of 100 m at KCMP covers most of the continental U. S., and that for 185 m is at the continental scale 10 

(Kim et al., 2013; Chen et al., 2016), both of which are larger than the Corn Belt itself. As shown by Kort et al. (2008) and Miller 

et al. (2012), emissions outside the Corn Belt are probably underestimated by EDGAR database too. In other words, the 

concentration enhancement observed at 100 and 185 m at KCMP had contributions from agricultural sources both within and 

outside the Corn Belt, although being closer to the observation tower, the latter should outweigh the former. But in our analysis, 

adjustment was made only to the sources within the Corn Belt. To compensate for the EDGAR bias outside the belt, a large flux 15 

multiplier is required to force agreement between the modeled concentration and the observation at 100 or 185 m. Evidently, at 

nighttime when vertical mixing is weak, this large flux adjustment causes the modeled concentration at 32 m to increase more 

than that at 185 m, resulting in a high bias in the modeled concentration gradient. In this regard, the emission flux constrained 

with the data obtained at 32 m reflects more local sources than those constrained with the data obtained at higher levels, and may 

be a more accurate estimate of the emissions in the Corn Belt, considering that the landscapes around the KCMP tower are 20 

representative of the entire Corn Belt (Griffis et al., 2013). In view of this height dependence, the true flux mostly likely lies in 

the range of the optimized flux values based on measurements at these heights.   

 

4.3 2 Comparison with other emissions estimates 

According to our inverse analysis, agricultural N2O emissions in the Corn Belt are 19.0 to 28.1 times the default EDGAR42 25 

agricultural emissions during June 1 – 20, 2010, corresponding to an actual emission flux density of 2.91 – 4.29 nmol m-2 s-1, 

with the upper and lower bounds determined by the concentration observed at 185 and 32 m, respectively. The total emissions, 

including agricultural, natural soil and non-agricultural sources is are 3.00 – 4.38 nmol m-2 s-1. Using a nocturnal boundary layer 

method, Griffis et al. (2013) estimated that the Corn Belt emissions flux isare ~2.0 – 2.5 nmol m-2 s-1 in June and July 2010, 

which is ~0.5 – 1.0 nmol m-2 s-1 smaller than the lower bound of this study. From the results presented in Kort et al. (2008), we 30 

infer that their constrained N2O emissions is are about 0.56 nmol m-2 s-1 in May – June, 2003 for the Corn Belt. Miller et al. 

(2012) reported that maximum emissions occurred in June in both 2004 and 2008, and their constrained emissions in June, 2008 

is are approximately 1.20 nmol m-2 s-1 for the Corn Belt.  

The differences between the present study and the previous studies are partly caused by the different spatial scales involved. 

In both the studies by Kort et al. (2008) and Miller et al. (2012), a singlethe emission scaling is applied to the entire modeling 35 

region (the continental U. S. and southern Canada in Kort et al., 2008; the central U. S. in Miller et al., 2012), instead of scaling 

the emissions for the Corn Belt only as in the present study. If they scaled the emissions for the Corn Belt only, the resulting 

emission flux would have probably been larger.   
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The annual N2O emission flux from Corn Belt calculated using the IPCC inventory methodology is 0.19 nmol m-2 s-1 

(Griffis et al., 2013), slightly smaller than the annual flux from Corn Belt in EDGAR42 – 0.21 nmol m-2 s-1. The constrained 

annual N2O emission flux over the central U. S. in Miller et al. (2012) is around 0.40 nmol m-2 s-1, namely, around two times that 

from the IPCC inventory methodology. The constrained N2O emission fluxes during the four study periods in the present study 

are all larger than those for the same periods in Miller et al. (2012), so the constrained N2O emission fluxes from the Corn Belt 5 

are clearly larger than the values in EDGAR42 and those calculated using the IPCC inventory methodology. 

Different study duration, time of the year, and study year also contribute to the different constrained emissions between the 

present and the former studies. In the present study, the early summer study period (June 1-20, 2010) is short and is timed with 

highest emission events. If we average the early summer and late summer (August 1 – 20), the emission flux is reduced to 2.26 – 

3.23 nmol m-2 s-1. Additionally, Kort et al. (2008) studied 2003 and Miller et al. (2012) studied 2008. The differences in the 10 

emission flux can be a result of increasing emissions with time.  Based on our ongoing study, the N fertilizer input to the Corn 

Belt has averaged 6.2 ± 0.9 Tg N per year, and the trend is about 0.08 Tg N per year increase. 

Our simulation results illustrate that the emission strength decreases quickly after August (Table 3; Fig. 34), and such 

seasonal changes in 2010 in the present study are consistent with the results for other years in former inverse studies. For 

example, a quick decrease of N2O emission strength since August also occurred in 2008 (Miller et al., 2012) and in 2009 (Zhang 15 

et al., 2014). 

Our study confirms that the emission database EDGRA42 significantly underestimates agricultural N2O emissions in the 

Corn Belt. Although our simple inverse analysis cannot identify which agricultural emission categories suffer biases, two recent 

studies indicate that the underestimation occurs to the indirect emissions associated with runoff and leaching. Turner et al. (2015) 

measured N2O emissions from headwater streams in the Corn Belt, and reported that the IPCC indirect emission factors for rivers 20 

are underestimated up to nine fold in southern Minnesota. Using the STILT model and a Bayesian inversion technique, Chen et 

al. (2016) reported that the indirect emission flux in the Corn Belt is 2.4 – 5.1 fold as large as that estimated by the IPCC 

inventory methodology. Complementary to former Lagrangian approaches, the Eulerian approach used here places a spatially 

explicit constraint on the underestimate problem, illustrating that the IPCC methodology underestimate is not dependent on 

tower measurement location, i.e. WBI and KCMP would yield similar conclusions. 25 

4.3 Other sources of uncertainty 

Errors in the inverse analysis can arise from uncertainties in the model simulations and in the observed concentration. A large 

source of modeling uncertainties is related to the uniform scaling factor applied to the agricultural emissions in all the grid cells 

in the Corn Belt. Since sources closer to the observation tower have a stronger influence on the observed concentration than 

those farther away, a uniform scaling may bring some uncertainty into the inverse analysis. Miller et al. (2012) reported that the 30 

spatial patterns of the N2O fluxes from both geostatistical and Bayesian inversions are strongly similar to that of nitrogen 

fertilizer application rate. We have analyzed the agricultural emission strength and the fertilization data and presented the results 

as functions of distance from the KCMP tower in the south wind sector (90° – 270°; Supplementary Figure S4). The two 

quantities show strongly similar overall decreasing trends as the distance from the KCMP tower increases, thus confirming that 

the dominant driver of spatial variations in N2O agricultural emission is N fertilizer use. Within the radius of about 500 km from 35 

the tower, the emission strength and the fertilizer application rate are approximately constant with distance, noting that 500 km is 

the distance from the KCMP tower to the south boundary of the Corn Belt. Because of the lack of sensitivity to distance within 

the Corn Belt, the uncertainty caused by the uniform scaling of the prior is probably not too large.   
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To further investigate the inverse uncertainty, we have done additional modeling simulations by applying the scaling to the 

agricultural emissions in the whole modeling domain (including both the inner and the outer domain), instead of the Corn Belt 

only. The results, summarized in Supplementary Table S2, show that changes to the optimized flux is less than 14%. We have 

also done simulations by using the spatial distribution of the N2O emission that strictly follows the spatial distribution of the 

fertilization rate. The results illustrate that changes to the optimized flux is less than 10% (Supplementary Table S3). 5 

Another uncertainty in the modeling and the subsequent inverse analysis is the model background. Unlike some other 

modeling studies (e.g., Kort et al. 2008), here we compare the modeled N2O concentration enhancement, instead of the absolute 

concentration itself, with the observation. The concentration enhancement is calculated as the difference in the N2O mole fraction 

between the default or scaled simulation and the background simulation. The main purpose of doing this is to limit the effect of 

air mass origin. This effect is further reduced by using the initial and boundary conditions produced by a global model 10 

(MOZART4, http://www.acom.ucar.edu/wrf-chem/mozart.shtml).   

The observation background is also a source of inverse uncertainty. In the present study, we used NWR as the background 

site for reasons stated in Section 2.3. We have also used AMT located downwind of the simulation domain (Fig. 1) as the 

background site to investigate the uncertainty caused by the background mixing ratio. The N2O mixing ratio is nearly the same 

between the two background sites during June and December, but the mixing ratio at AMT is 0.6 – 0.8 ppb lower than at NWR 15 

in August and October (Supplementary Figure S5). The relative change in the optimized flux is 7 – 8% and 0 – 3% in June and 

December, respectively, and is 20 – 25% and 32 – 38% in August and October, respectively (Supplementary Table S4). 

Uncertainties also exist in the monitoring data obtained at the KCMP tower. The abrupt increases and decreases by as much 

as 31 ppb in less than 2 hours in the observed N2O mixing ratio (e.g., at day of year 160 and 164, Fig. 3a) are clearly 

measurement noise related to the sampling and calibration procedures. Such large measurement noises may be one reason for 20 

why even after optimization, the correlation between the modeled and observed concentrations is not very strong. 

5 Summary 

In the present study, we investigated the relationships between the N2O emissions from the Corn Belt and the atmospheric N2O 

mixing ratio using the WRF-Chem model, derived simple empirical equations for relating changes in the atmospheric mixing 

ratio to changes in the surface emission flux, and used the hourly N2O mixing ratio monitored at the KCMP tower to constrain 25 

the agricultural N2O emissions. The key findings are summarized as follows: 

 By treating N2O as an inert tracer, the WRF-Chem model could simulate atmospheric N2O at high temporal (hourly) 

and spatial (10 km) resolutions and with reasonable accuracy. Following surface flux optimization, the model explained 

3135% (185 m) – 3538% (32 m) of the observed variations in the daily mean N2O mixing ratio at KCMP.  

 The EDGAR42 database underestimated agricultural N2O emissions in the Corn Belt for all four model periods (1st to 30 

20th in June, August, October and December, 2010). The largest bias occurred in June: a simple inverse analysis 

indicates that actual agricultural emissions were 19.0 to 28.1 times EDGAR42 emissions.  

 According to our inverse analysis, the total mean emissions, including natural soil emissions and total EDGAR42 

emissions (agricultural and non-agricultural), was were 3.00-4.38, 1.52-2.08, 0.61-0.81 and 0.56-0.75 nmol m-2 s-1 in 

June, August, October and December 2010, respectively. The lower and upper bounds of these ranges were determined 35 

with observations at 32 m and 185 m on the KCMP tower, respectively.   

 The simulated spatial patterns of atmospheric N2O mixing ratios are in good agreement with observations from discrete 

air samples made by the NOAA during June, which is a strong emission peak. In the other three modeling periods, the 
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modeled mixing ratio and the network observations show some disparity.  The IPCC underestimate of agricultural N2O 

emissions in the Corn Belt using IPCC inventory methodology is not dependent on tower measurement location. 
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Table 1.  WRF- Chem model configuration. 

Basic equations Non-hydro mode 

Time-integration scheme  Runge-Kutta 3rd order 

Time step for integration 120 s 

Microphysics WRF Single-Moment (WSM) 5-class scheme 

Longwave radiation Rapid Radiative Transfer Model (RRTM) 

Shortwave radiation Goddard Shortwave scheme 

Cumulus Grell-Devenyi ensemble scheme 

Boundary-layer Yonsei University Scheme (YSU) scheme 

Surface-layer Monin-Obukhov Similarity scheme 

Land-surface Community Land Model Version 4 (CLM4) 
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Table 2. Experimental and optimized flux multiplier MF. Values in brackets are constrained agricultural emission flux in units of 

nmol m-2 s-1. 

Time June 1 – 20  August 1 – 20 October 1 – 20 December 1 – 20 

Experimental 0, 1, 25 0, 1, 12 0, 1, 3 0, 1, 6 

 

Optimized a 19.0 (2.91) 9.3 (1.43) 3.4 (0.52) 3.0 (0.47) 

Optimized b 22.5 (3.44) 11.6 (1.77) 3.8 (0.59) 3.6 (0.55) 

Optimized c 28.1 (4.29) 13.0 (1.99) 4.7 (0.72) 4.3 (0.66) 

Notes: a, b, c: using observation data at heights of 32, 100, and 185 m, respectively. 
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Table 3. Modeled and observed N2O mixing ratio enhancements (ppb) for 1900 and 2000 UTC from NOAA. Measurements 

from Niwot Ridge (NWR) were used as background to determine the enhancement.  

 Within modeling domain Outside modeling domain 

Site ID WBI LEF SCT BAO Mean 

C 

AMT WKT Mean 

C Sample height (m) 378.9 396 304.8 300 107 457.1 

June 1 – 20 Observation 3.28 0.80 0.79 0.22 1.27 0 0.46 0.23 

Model with MF =1 0.14 0.17 0.28 0.14 0.18 – – – 

Model with MF =25 3.67 1.26 0.90 0.20 1.51 – – – 

August 1 – 20 Observation 0.69 -0.04 0.40 0.35 0.35 -0. 77 0.02 0.02 

Model with MF = 1 0.44 0.13 0.36 0.12 0.26 – – – 

Model with MF = 12 2.82 0.87 0.41 0.15 1.06 – – – 

October 1 – 20 Observation -0.03 -0.55 0.50 0.11 0.01 -0.79 -0.35 -0.57 

Model with MF = 1 0.86 0.56 0.58 0.21 0.55 – – – 

Model with MF = 3 1.52 0.85 0.66 0.22 0.81 – – – 

December 1 – 20 Observation 0.99 0.43 1.26 0.61 0.82 0.49 0.79 0.64 

Model with MF = 1 1.22 0.36 0.85 0.14 0.64 – – – 

Model with MF = 6 2.98 0.55 1.25 0.15 1.23 – – – 

Notes: AMT – Argyle, Maine, Central Daylight Time (CDT) = UTC – 4; BAO – Boulder Atmospheric Observatory, Colorado, 

CDT = UTC – 6; LEF – Park Falls, Wisconsin, CDT = UTC – 5; SCT – Beech Island, South Carolina, CDT = UTC – 4; WBI – 

West Branch, Iowa, CDT = UTC – 5; WKT – Moody, Texas, CDT = UTC – 5. 5 
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Figure 1. Locations of the N2O monitoring sites, scope of the Corn Belt, modeling domains, and the priordefault N2O emission 

flux in nmol m-2 s-1. KCMP – Minnesota; NWR –Niwot Ridge, Colorado; AMT – Argyle, Maine; BAO – Boulder Atmospheric 

Observatory, Colorado; LEF – Park Falls, Wisconsin; SCT – Beech Island, South Carolina; WBI – West Branch, Iowa; WKT – 

Moody, Texas. 5 
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Figure 2. Simulated mixing height at the KCMP tower site in the present study (blue lines) and in Kim et al. (2013) (grey, black, 

and green lines) and the NCEP-NARR data (dots).  
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Figure 23. Relationships of for different model runs between concentration multiplier and experimental flux multiplier. The 

modeled N2O mixing ratio enhancement C was obtained from default and scaled simulations for 185 m at the KCMP tower. 

The scale simulation shown in panels a – c uses a multiplier of 25.0. The regression slope in panels a – c is represented by the 5 
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black circle in panels d – f. The hollow dots and dot lines in sub-figure (e) show how the emission flux multiplier MF (the dot on 

x axis) is induced via the concentration multiplier MC (the dot on y axis) for October 1-20. 
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Figure 34. Comparison of N2O mixing ratio enhancement (C) between observation (grey line), default model simulation (red 

line), and the scaled model simulation (blue line) for the height of 185 m at the KCMP tower site. Periods with south wind (wind 

direction: 90 – 270º) are marked by dots. 
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Figure 45. Correlations between the observed and scaled daily N2O mixing ratio enhancement (C) at the KCMP tower at 185 

m. 

 

 

 5 
Figure 56. Spatial characteristics of the mean modeled N2O mixing ratio enhancement during June 1 – 20: (a) modeled results 

for all hours; (b) modeled results for UTC hours 19 and 20 only. 
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Figure 6. Simulated mixing height at the KCMP tower site in the present study (blue lines) and in Kim et al. (2013) (grey, black, 

and green lines) and the NCEP-NARR data (dots).  

 


