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Abstract. Currently NOAA's National Weather Service (NWS) runs the HPAST dispersion model with a unit mass release
rate to predict the transport and dispersion of volcanic @sle model predictions provide information for the Voloarish
Advisory Centers (VAAC) to issue advisories to meteorobadiwatch offices, area control centers, flight informatienters,
and others. This research aims provide quantitative fetsaaf ash distributions generated by objectively and ogityresti-
mating the volcanic ash source strengths, vertical digtion and temporal variations using an observation-maodehversion
technique. In this top-down approach, a cost functionaéf;néd to mainly quantify the differences between modelipteghs
and the satellite measurements of column integrated astentmations, weighted by the model and observation urioégs.
Minimizing this cost functional by adjusting the sources\pdes the volcanic ash emission estimates. As an exam @& 19
(MOderate Resolution Imaging Spectroradiometer) sgelétrievals of the 2008 Kasatochi volcanic ash clouds aesl tio
test the HYSPLIT volcanic ash inverse system. Because th#itgaretrievals include the ash cloud top height but et bot-
tom height, there are different model diagnostic choiceswtomparing the model results with the observed mass lgadin
Three options are presented and tested. Although the emissitimates vary significantly with different options thése-
quent model predictions with the different release estwat! show decent skill when evaluated against the undasadi
satellite observations at later times. Among the threeoogtiintegrating over three model layers yields slightlitdreresults
than integrating from the surface up to the observed votcasih cloud top or using a single model layer. Inverse testssiiow
that including the ash-free region to constrain the modabisbeneficial for the current case. In addition, extra a@msts to
the source terms can be given by explicitly enforcing “nb*dsr the atmosphere columns above or below the observed ash
cloud top height. However, in this case such extra congtaire not helpful for the inverse modeling. It is also fouhdtt
simultaneously assimilating observations at differemtets produces better hindcasts than only assimilating thst reoent
observations.
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1 Introduction

Large amounts of ash particles are produced during violeltawic eruptions. After the initial ejection momentumryarg
them upwards, ash particles rise buoyantly into the atmargpirhen volcanic ash travels away from the volcano folhghe
atmospheric flow. Fine ash particles may remain in the atimaggfor days to weeks or longer and can travel thousandsle$ mi
away from the source (Rose and Durant, 2009). They haveesadserse impacts on the aviation industry, human and animal
health, agriculture, buildings, and other infrastruct(fPeata and Tupper, 2009; Gordeev and Girina, 2014; Wils@h £2011;
Horwell and Baxter, 2006; Wilson et al., 2012). To help prepfor and mitigate such impacts, it is important to not only
monitor but also forecast the volcanic ash transport angedsson.

Starting from a memorandum of understanding (MOU) signedi&en the United States National Oceanic and Atmospheric
Administration (NOAA) and the Federal Aviation Administi@n (FAA) in December 1988, the NOAA Air Resources Labora-
tory (ARL) developed a Volcanic Ash Forecast Transport Angigersion (VAFTAD) model for emergency response focusing
on hazards to aircraft flight operations (Heffter and Stunii®93). Currently NOAA's National Weather Service (NWShsu
the HYSPLIT dispersion model (Draxler and Hess, 1997; Steml., 2015a) with a unit mass release rate to qualitatipedy
dict the transport and dispersion of volcanic ash. The mpdadictions provide important information for the Volcarsh
Advisory Centers (VAAC) to issue advisories to meteorotadjiwvatch offices, area control centers, flight informatienters,
and others.

In order to quantitatively predict volcanic ash, realigaurce parameters need to be assigned to the volcanic aspara
and dispersion models. Mastin et al. (2009) compiled a figiroptions which had well-constrained source paramefdrsy
found that the mass fraction of debris finer thanu88(m63) could vary by nearly two orders of magnitude betwemalb
basaltic eruptions~ 0.01) and large silicic ones>(0.5). Default source parameters were assigned to the worldi® tth@n
1500 volcanoes. They may be used for ash-cloud modeling ¥@venbservations are available in the event of an eruption.

With the advancement of remote sensing techniques, seseliave played an important role in detecting and monigorin
volcanic ash clouds (Seftor et al., 1997; Ellrod et al., 200&rgola et al., 2004). An automated volcanic ash cloudctiete
system has been developed and continuously improved @asat al., 2006, 2013, 2015a, b). In addition to detectimg) a
monitoring ash cloud, satellite measurements allow mahygksid characteristics to be quantified. For instance, WiehRose
(1994) used two-band data from NOAA Advanced Very high Resmh Radiometer (AVHRR) to retrieve total mass of a
volcanic ash cloud from the August 19, 1992 Crater Peak{Syalcano, Alaska eruption. Using multi-spectral satellitata
from the AVHRR-2 and ATSR-2 instruments, Prata and Gran0Q@rovided a quantitative analysis of several properties
of the Mt Ruapehu, New Zealand, ash cloud, including masdinga cloud height, ash cloud thickness, and particle adiu
The quantified ash cloud parameters can be directly insertedransport and dispersion models as ‘virtual sourcasfriom
the vent. Wilkins et al. (2014, 2016) applied this techniqoehe eruption of Eyjafjallajokull in 2010 using infraretR)
satellite imagery and the NAME model. It was also applied bgv@ord et al. (2016) to the 2008 Kasatochi eruption usireg th
HYSPLIT model.
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Under a general data assimilation and inverse modelingdveork, satellite measurements can be used to constrain the
model and estimate emission parameters using variousitpas For instance, Stohl et al. (2011) applied an invarsaleme
to the Eyjafjallajokull eruption using a Lagrangian disgien model with satellite data and demonstrated the effiettiss of
the method to yield better quantitative volcanic ash préahs. Schmehl et al. (2012) proposed a variational tealenifat uses
a genetic algorithm (GA) to assimilate satellite data teedatne emission rates and the steering winds. A HYSPLITrswe
system based on a four-dimensional variational data alssiom approach has been built and successfully appliedtimate
the cesium-137 releases from the Fukushima Daiichi Nudheaver plant accident in 2011 (Chai et al., 2015). The present
work further develops on the HYSPLIT inversion system taneate the time- and height-resolved volcanic ash emissite r
by assimilating satellite observations of volcanic ashe $jstem is tested with the 2008 Kasatochi eruption usingatedlite
retrievals from passive IR sensors.

The paper is organized as follows. Section 2 describes ttedligaobservations of volcanic ash, HYSPLIT model and
configuration, and the inverse modeling methodology. $ac3i presents emission inversion results and Section 4 siissu
the corresponding volcanic ash forecasts with the estishstarce terms. A summary is given in Section 5.

2 Methodology
2.1 Satellite observations

The volcanic ash observations are based on MODIS retriénats Terra and Aqua satellites. They include ash mass lgadin
cloud top height, and effective particle radius. Pavolaial. (2013, 2015a, b) described the details of the retrimedhodol-

ogy and how the ash cloud observations are derived from thieved parameters such as radiative temperature andigityiss
Here volcanic ash observations of the 2008 Kasatochi enuti five different instances are utilized. The observatioere
projected to a latitude-longitude grid with a resolution0o®5° in latitude and in0.1° longitude. Figure 1 shows volcanic
ash mass loadings and ash cloud top heights of five granude$. granule contains 6 minutes of data and it covers an area
of approximately 1500 km along the orbit and 1650 km wide.e\tbtat the satellite observations outside the shown domain
are discarded. As the discarded data are mostly locatedndpeiithe volcano vent, they are not expected to provide Wisefu
information to estimate the source strength. The placegeavbatellite retrievals did not detect existence of ash sher
mass loading. It will be shown later that such ash-free mgimay be used along with the observed ash cloud to congein t
dispersion model. Note that the ash-free regions do noyappkgions with missing ash mass loadings due to metedigabg
cloud or other reasons. Table 1 shows the observation tidenamber of grid cells with and without ash detected for each
granule. Itis seen that the clear regions dominate thelisa@bservations. Integrated mass loadings based on thlitsedata

are also listed in Table 1. They decrease from 9.68 kg for the first granule (G1) to 3.25108 kg for the last granule (G5).
This probably reflects the gradual loss of the total volcasic mass due to deposition. Note the total mass is likelfthlig

underestimated for the second granule (G2) where the isaielt sight of the eastern edge of the ash cloud.
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Figure 1. MODIS volcanic ash mass loadings (left) and ash cloud top height(right}l [fsben top to bottom following their observation

time (see Table 1 for detail). “+” shows the location of Kasatochi volc&201(714N, 175.5183W). Note that the satellite observations to

the left of the map domain are not used in this paper. 4
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Table 1. Description of MODIS ash cloud observations. “Ash cells” and “cledistshow number of grid cells with and without ash
detected, respectively. Total mass is obtained by integrating mass |lsawiegthe observed region.

Observation time Ash cells | Clear cells| Total mass (kg)
G1 | 1340Z on 8 August, 2008 3778 92230 9.68x10®
G2 | 0050Z on 9 August, 2008 9604 56161 6.69x10°
G3 | 1250Z on 9 August, 2008/ 13226 107104 5.37x10°
G4 | 0000Z on 10 August, 200§ 13876 98686 3.72x10%
G5 | 1150Z on 10 August, 2008 15088 100211 3.25x108

2.2 HYSPLIT model configuration

In this study, volcanic ash transport and dispersion areateadusing the HYSPLIT model (Draxler and Hess, 1997, 1998;
Stein et al., 2015a). A large number of three-dimensionglraagian particles are released from the source locatidrpas-
sively follow the wind afterward. A random component basadazal stability is added to the mean advection velocityaote

of the three-dimensional wind component directions to ateuthe dispersion. Ash concentrations are computed byrsngn
each particle’s mass as it passes over a concentrationgjtidnd dividing the result by the cell’'s volume.

Both NOAA's Global Data Assimilation System (GDAS) (Klegdtal., 2009) and the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA Interim global atmospheaoatysis (Dee et al., 2011) were used as inputs for HYSPLIT.
The basic information of the two data sets is listed in Tabl€He concentration grid is set @05° resolution in latitude and
0.1° in longitude with a vertical spacing of 2 km extending frone 8urface to 20 km.

A total of 290 independent HYSPLIT simulations were run with a unit entissiate released from all possible combinations
of 29 different hours from 192, August 7, 2008 to 23Z, Augus808, and 10 different 2000m layers. Note that at the first
layer, particles are released from the top of the vent, 30(avea sea level to 2000m, while at other layers particle sgsa
are uniformly distributed throughout the layer at the ceiwtethe grid as a line source. In each simulation, particlefoor
different sizes are released as different pollutants witfer@nt fall speeds according to Stokes’s law (Heffter &dnder,
1993). At all release time and height combinations, therimttions to the total mass are assumed constant, at 0.8%, 6.
25.4%, and 67.0% for particle sizes of Quf, 2.0um, 6.0um, 20.0um, respectively. The same particle size distribution was
originally used in the NOAA ARL VAFTAD model (Heffter and Stder, 1993). Webley et al. (2009) evaluated the sensitivity
of the grain size distribution on the modeled ash cloud anddcthat this pre-defined distribution is sufficient for HASP
volcanic ash simulation. MODIS effective particle radii {¢) are retrieved to describe the ash particle size distioinsti
However,r. ;s greater than 15-20n are not retrieved since the retrievals cannot be perforregally whenr.;; exceeds
15um (Pavolonis et al., 2013).



Table 2. Description of GDAS and ECMWF meteorological data.

Data set Horizontal Vertical pressure levels Output in-
resolution terval
GDAS 19 %x1° every 25 hPa from 1000 to 900 hPa, every 50 hPa from 900 &hours

50 hPa, and 20 hPa
ECMWF 0.75° x 0.75° | every 25 hPa from 1000 to 750 hPa, every 50 hPa from 750 @hours
250 hPa, every 25 hPa from 250 to 100 hPa, 70 hPa, 50 hPa,

30 hPa, and 20 hPa

2.3 Model diagnostic

As shown in Section 2.1, satellite observations provideraghs loadings and ash cloud top heights after detectingrasie
are several options to construct the model counterpartstfeerved ash cloud mass loadings. Three different modghdstic
choices are tested here. In the first option, model volcasticcancentrations from the ground or sea level up to the maget
where the observed cloud top height resides are integratemidulate the mass loadings by the model simulation. Is¢leend
option, the single model layer where the retrieved cloudhejght resides is used to construct the mass loadings. Haowev
the retrieved cloud top heights are associated with unicd¢iga. Pavolonis et al. (2013) showed that the retrieveddltop
height had a low bias of 0.77 km relative to lidar. Crawforékt(2016) compared MODIS cloud top height retrievals with
CALIOP vertical profiles of the same event. In general, theD®top heights agree well with the top aerosol level indidat
by CALIOP profiles but can be off by several kilometers. WhenLG2P shows two levels of ash, the MODIS top height falls
between them. In addition, the cloud top height retriewgtécially lie in the middle of thick ash cloud layers ratheathat the
top (Pavolonis et al., 2013). To compensate for such urioéga in ash cloud top height position, the third option ésigned

to integrate model volcanic ash concentrations over thregaayers, i.e. from one layer below to one layer above thed:
top layer.

When ash is not detected, grid cells are flagged as clear dir@shThis is equivalent to zero mass loading for the entire
atmospheric column at such a location. In this case, the hvod@terpart is obtained by integrating simulated conegitns
from the surface to the domain top. Constraining the moaelkition with these zero-value observations is expectéutio
remove spurious sources from which the transport and dispemill likely generate additional ash clouds which ard no
observed.

At locations where ash is detected, the observations caartiesf exploited to provide additional constraints. As aelstud
top heights are provided along with the mass loadings, thdigate that no ash is above the cloud top. However, no irdton
can be inferred for the region below the cloud top. As a resath ash cell actually generates two pieces of information
Besides the observed volcanic ash cloud mass loadingsanedtiearlier, clear atmospheric columns above the cloudstop

the other implicit piece of information that can be used irig=ion inversion as well. Similar to using zero-value olbagons
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at ash-free locations, the integrated mass loadings ahewsh cloud top may also be used to filter out unlikely souktten
the “observed” ash cloud is assumed to be limited to one simgidel layer or three layers, it is also possible to add me-as
below-cloud constraints in the inverse modeling. Althosgbh constraints are based on an assumption that is notsatvay
it will be tested nonetheless.

In addition to detected ash and clear cells, another saeeaists when satellite observations cannot provide pestr
negative answers for ash detection, e.g., due to meteadcalagoud obstruction. In such a case, no useful inforntatian be
used to constrain the model. For the 2008 Kasatochi erupdigerlying meteorological clouds were nearly absent arid va

observations appear across the satellite swaths.
2.4 Transfer Coefficient Matrix (TCM)

A transfer coefficient matrix (TCM) 0290 columns can be generated using all or a subset of the reegtiftDDIS observa-
tions listed in Table 1 and the results of &) HYSPLIT simulations with unit emission. A transfer coeféiot in the TCM is
essentially the mass loadings at an observation pointlleabiv represents resulted from a dispersion run with a umiggion

that the column indicates.

Figure 2 shows the two-dimensional transfer coefficientites averaged over all ash pixels for five granules. As asfean
coefficient corresponds to the mass loadings resulted fromitaash release rate, integrating over more model layerddvo
produce larger transfer coefficients. It is clearly seer tha single layer option, shown as the middle column in Feg2y
has the averaged TCMs with the lowest values. Figure 2 alsasithat integrating from surface up to ash cloud top layer
generally results in TCMs with the largest values amongttheet options. As the option to add over three layers (rightroa
in Figure 2) includes a layer above the cloud top layer thabisincluded in option 1, transfer coefficients at the uppgets
may have larger values. Note that a block of zero transfeffic@nts after 10Z August 8 appear for G1. Ash releases after
the observation time of G1 do not affect G1 observations.diditeon, releases need time to travel to the observed locati
Figure 2 shows that, as expected, the averaged transfdictemts tend to be smaller for later observations due toedispn.
The averaged TCMs using ECMWF meteorological data (not shavensimilar to the GDAS results shown here.

2.5 Emission Inversion

Following a general top-down approach, the unknown emistg@ams are obtained by searching for the emissions thatdvoul
provide the model predictions which most closely match theeovations. In the current application with the known aola
location, the emission rates vary with time and releasehteiyVith the potential emission time period divided intotfurly
intervals and the release heights separated into 10 videigars, the discretized two-dimensional unknown emiss$ias290
components to be determined.

Similar to Chai et al. (2015), the unknown releases can heeddbdy minimizing a cost functional that integrates theetif
ences between model predictions and observations, davsatif the final solution from the first guessriori), as well as
other relevant information written into penalty terms (Bgl1991). For the current application, the cost functigfi# defined

as,
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Figure 2. Averaged TCMs using GDAS meteorological data with three different optio calculating model mass loadings (Column 1:

integrating from surface to observed cloud top; Column 2: calculated $amgle layer where the observed cloud top height resides; Column

3: integrating over three layers centered at the observed cloud top).|&gevrs 1-5 (from top to bottom) correspond to observations G1-5.
8
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whereg;; is the discretized two-dimensional emission over M=29 Baamd N=10 Iayequfj is the first guess oa priori
estimate andrfj is the corresponding error variance. Note that we assumaerbertainties of the release at each time-height
are independent of each other so that only the diagonal @rmf the typicala priori error covariance matrix appears in
Equation 1. For emission points at which the release gesemad simulated ash corresponding to any of the assimilated
observations, the first guesses remain unchanged. To awo&hlistic release rates for such emission points, we chose
small constant emission rate v6* g/hr (~ 2.8 x 10~2kg/s) at all hours and layers as the first guess. Large uncertaintie
are given in the following tests to reflect the fact thatdittbas known for the mass emission ratgs.anda?, are the mass
loadings simulated by HYSPLIT and retrieved by MODIS, retjpely. The observations here refer to both the volcanit as
mass loadings for the ash cloud and the zero values for thére@shiegions which are later included as extra constramts
Section 4.3. Zero mass loadings also include those cadzlilater the atmospheric columns above or below ash clouds as
discussed earlier in Section 24, includes the variances of the observational and repretsentrors. For simplicitye?,

are referred as observational errors hereafter and arengskto be uncorrelated. Dubuisson et al. (2014) studiedeim®te
sensing of volcanic ash plumes from SEVIRI, MODIS and IASitinments. The total uncertainty in MODIS mass loading
resulted from errors in the input atmospheric parametech @18 ash layer altitude, particle size distribution, andiga
composition was estimated to be50%. Their inter-comparison among six satellite configurasishows a standard deviation

of 0.3 g/m? for the mean mass loading estimates. In this study, the witsenal errors are estimated usiag = 0.50 x a2, +

0.3 g/m?. No smoothness penalty term is included in the cost funatibacause of the abrupt nature of the volcanic eruptions.
A large-scale bound-constrained limited-memory quasisffda code, L-BFGS-B (Zhu et al., 1997) is used to minimize the
cost functionalF defined in Equation 1. The maximum number of cost functionaluations is set ag50 for cases in
Section 3 and 2500 for those in Section 4. To ensure non-wega} solutions from the optimizationy;; is converted to
In(g;;) as input to the L-BFGS-B routine. An alternative to this isogaing theg;; > 0 with lower bounds enabled by the
L-BFGS-B routine. As they solve the same mathematical grobkthese two ways are expected to arrive at the same answer
with enough iterations. Chai et al. (2015) provides a dethdiscussion on the conversion of control and metric véegab
Although they showed that using logarithmic concentratidferences in the cost functional performed better thaedliy
using concentration differences in their application, lingarithmic conversion on the metric variahig, is not beneficial

for the current application. It is because the range of tHeardc ash mass loadings here is much smaller than that of the
Cs-137 air concentrations encountered in their applicafio addition, the utilization of zero mass loadings in masy-free
regions prohibits usingn(a?, ). In this study, the mass loadings are directly compareddretst functional without logarithmic

conversion.
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3 Emission estimates

The emission estimates obtained by minimizing the the aasttional 7 introduced in Equation 1 highly depend on the
uncertainties given to tha priori and observations. Sensitivity tests are first performedtanging the magnitudes of the

a priori error variances while the observational error estimat®fixed. Chai et al. (2015) demonstrated that the emission
inversion results were not sensitive to the first guess oéthiessions when large uncertainties are presumed.

In the sensitivity tests, ash cloud data at G1 and G2 are dagdch Note that the zero mass loading values for ash-free
regions are not used here. Lamgriori error variances are presumed, withy ~ 10'? g/hr (= 2.8 x 10° kg/s) andr;; ~ 101°
g/hr (= 2.8 x 10 kg/s). In these cases, the HYSPLIT simulated mass loadiegs galculated by integrating from the surface
to observed ash cloud top heights at the ash cells. Figure8sstinat the emission inversion results are slightly déferfrom
each other when thepriori errors are assumed differently, as expected. Howeverlaipatterns are apparent for both cases
with the differenta priori error variances. A peak release greater than 5000 kg/s enadx$ at 04Z August 8, 2008 at the
6—8 km layer for both cases. This demonstrates that the Emisstimates are most decided by the satellite data \&lpeiori
errors are assumed large enough. Note that a largeiori term with a smallea priori error variances in Equation 1 typically
helps the minimization procedure in emission inversionc8ithe results using the tveopriori errors are similar, tha priori
error variances are set as; ~ 102 g/hr (=~ 2.8 x 10° kg/s) in the following tests.

Waythomas et al. (2010) characterize the eruption by thremexplosive events and two smaller events. Events 1 and 2
started at 2201Z on Aug. 7 and 0150Z on Aug. 8, respectivdlgse two events reached 14 km and produced water-rich but
ash-poor clouds. Event 3 happened at 0435Z on Aug. 8. It gateash-rich cloud that rose up to 18 km. About 16 hours of
continuous ash emission was punctuated with events 4 an@AL.a% and 1142Z on Aug. 8.

Figure 4 shows the emission estimates using all three aptionalculating model mass loadings. The zero values for ash
free regions are not used here. The emission results ardicagly different with different options. For the case whehe
model counterparts of the satellite mass loadings arerdday integrating from surface to cloud top, the ash rekeatmted
at 01Z, August 8, 2008 from the 8-10 km layer. The emissiostethfor four hours and extended to multiple layers, reaghin
up to the 14-16 km layer, and down to the 4—6 km layer. After trlvathout ash, moderate volcanic ash releases continued
for six hours until 12Z on August 8, and mainly between 8-16 knsmall ash emission of less than 80 kg/s is seen at the
12-14 km layer starting at 15Z for 1 hour. If the model masslilogs are obtained by only considering a single layer where
the cloud top height resides, the resulting release soarogstare limited to layers between 12—16 km. The ash relstated
at 03Z, August 8, and lasted for three hours before resungagawo hours later. With emission on and off for the next two
hours at the 14-16 km layer, the ash release continued fou&lamd peak at 14—15Z7, August 8 at the 12—-14 km layer. There
is also an isolated emission point at the 14-16 km layeristpat 23Z, August 8 for an hour. In the last case where the inode
mass loadings are calculated by integrating over threadagentered at the cloud top layer, the ash releases ardcdthyst
different from the first two cases. The ash releases starhreadier, at 20Z, August 7 and the release heights are witt@n
14-18 km range. The release then extended to more layerthéuatain sources went lower. This lasted for 13 hours before
stopping at 9Z on August 8. A second spurt of ash releasedtattl1Z from the 14-16 km layer and remained above 12 km

10
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Figure 3. Volcanic ash release results with differenpriori error estimations (Topr;; ~ 2.8 x 10° kg/s; Bottom:o;; ~ 2.8 x 10° kg/s).
The TCMs for the emission inverse were generated using HY SPLITwitha&5DAS meteorological data. Only ash cells of the satellite data
at G1 and G2 are used in the emission inverse. Model counterpartbtaiaesl by integrating from surface to ash cloud top heights at ash

cells.
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before pausing again five hours later. Several weaker ashge$ are found between 14—18 km layers at later times fr@m 19
on August 8 to 0Z on August 9.

The three emission estimates in Figure 4 do not reproducerthpion as described by Waythomas et al. (2010), but manage
to capture some characteristics of the eruption. Withofarination on the vertical profiles of the ash cloud, how thessna
loadings are interpreted greatly affect the release estisnas shown by the drastic differences between the essnshbwn
in Figure 4. Thus, it is difficult to generate reliable andaete actual volcanic ash emission estimates if the asli cledical
structures are undetermined. However, it will be shownrl#iat such emission estimates can still help improve ashdclo

forecasts.

4 Ash predictions with top-down emission estimates

A series of tests were performed to find the best inverse niaglsketup. In Section 4.1, the evaluation metrics are desdri
In Section 4.2, the choices of calculating the model copates of the satellite mass loadings are compared. In Sedtity
whether to use ash-free region to constrain the model istigegted. In Section 4.4, the effect of keeping older olterns

when newer observations become available is discussed.
4.1 Evaluation metrics

For model evaluation, total column mass loadings are cocistd by integrating predicted concentrations from théaserto

the domain top. They are used to compare with the satelligerations in each granule shown in Figure 1, including both
ash and clear points. Using total column mass loadingsadstéany of the options described in Section 2.4 aims to peovi

a fair comparison among the three options by avoiding theptexities associated with the vertical structures of thieamnic

ash cloud. Note that Crawford et al. (2016) excluded massib2lkm when integrating the model results to obtain the mass
loadings because the satellite retrieval is less sensdtilmv-level ash. Such exclusion may improve the evaluattatistics but

it is not expected to affect the inter-comparison betweéerint model runs. Mean bias (MB), fractional bias (FBptrmean
square error (RMSE), normalized RMSE (NRMSE), and Pearsorelation coefficient (R) are calculated. FB and NRMSE
are scaled by the average of model and observation meardditioa, critical success index (CSl) defined below is cltad

for ash detection.

Nrit

CSI =
NFalseAlarm + NHit + Nl\liss

)

A threshold of 0.1g/m?, the approximate lower limit of the MODIS satellite data, setused to categorize ash existence
for both model predictions and observationNgy;;, NraiscAiarm, @aNd N5 denote the numbers of grid points where ash is
predicted and observed, ash is predicted but not obsemddsh is observed but not predicted by model, respectively.

Following Draxler (2006), Kolmogorov-Smirnov paramet&SP) and “Rank” are calculated. KSP measures the largest
difference between the cumulative distribution functiofshe model predictions and observations. As shown in BEquda,

12
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Figure 4. Volcanic ash release estimates with different options in model mass loadiaglation. From top to bottom: integrating from
surface to cloud top (same as Figure 3 top), calculated for a single ldarewhe cloud top height resides, and integrating over three layers

centered at the cloud top layer. 13



10

15

20

25

30

the “Rank” adds up four components which all range fi®to 1. The larger “Rank” values indicate better overall perfonoa
of the model results.

FB
Rank:R2+(1—%)+CSI+(1—KSP) (3)

4.2 Model mass loadings

The HYSPLIT predictions using the estimated source ternes asimilating G1 and G2 observations are evaluated stgain
the satellite observations of G2, G3, G4, and G5, respdgtiXote that the zero mass loadings for ash-free regionsate
used here. The three options to calculate the model ash oedisds discussed earlier are employed in the inverse nmgdel
The statistics are listed in Table 3.

Comparing against the G2 observation, Table 3 shows theqriating over three model layers yields (option M1) slightl
better results based on most statistics. It is true for cadthsboth GDAS and ECMWF meteorological fields. The advantage
of M1 option is not apparent when comparing against otheewfagions. Based on Rank, the ECMWF cases are better than
the GDAS cases against G2, but the Ranks for ECMWF casesatates faster with time, and become worse than the GDAS
cases when model output is compared to G4 and G5 observalibasmodel predictions have the best statistics compared
against G4 than against the other satellite granules (G2a@BG5). The case with GDAS meteorological fields and thesthr
layer mass loading option M1 has the best Rank of 3.02 (FB®&0.72, CSI=0.62, KSP=0.10). If only G2 observations
were assimilated, the model performance would be expectgeak when compared against G2. However, as both G1 and
G2 observations are assimilated, this is no longer true.efteet of assimilating different observations will be dissed later
in Section 4.4. Table 3 shows that the model tends to underast the ash mass loadings of G2 and G3 and then mostly
overestimate the ash mass loadings of G4 and G5. It resuthg ibest FB against G4 for GDAS cases and the best FB against
G3 for ECMWEF cases as the FB signs change. Since the volcamiwiglisperse with time, the average mass loadings get
smaller. This is reflected in a basic trend of decreasing R8A8iEh time although the NRMSEs slightly increase.

While different evaluation metrics may not always agree wileh other, the overall performance parameter Rank prsvide
a simplified way to compare model results. Only Ranks aredistnd used to compare model predictions hereafter. Using
HYSPLIT ensembles, Stein et al. (2015b) estimated the taioéies of the Rank as 0.08, 0.08, 0.09, 0.08, 0.11, andfor07
6 different tracer releases. The uncertainties of the Rankhke current application could vary but they are not expattd be
too different.

4.3 Extra constraints

As discussed in Section 2.3, ash-free regions indicaterness loadings for the entire atmospheric columns. Cloutiéights
can also be used to enforce ash-free atmospheric columme a&blzanic ash cloud. In addition, ash-free atmospheliigrons
below the ash cloud may be assumed if an ash cloud thickness$inisated. Note that the term “above or below ash cloud” is
in relation to the chosen model cloud diagnostic. For instaif M1 option is chosen, above and below ash cloud comssrai
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are enforced over the model layers outside the three askslay#hether such extra constraints benefit the inverse nragleli
is tested here using the 22 inverse cases listed in TableetRanks evaluated against G2-5 are listed. It is found thahwh
the additional constraints of including the clear pixeldside the ash cloud are used, the Ranks decrease. This hadds t
against G2-4, for all three mass loading calculation ogtiamd for both sets of meteorological data. Two exceptiomfoand
against G5 for the ECMWEF cases with the MO and M1 options, irctviitanks increase from 2.17 to 2.32 and 2.28 to 2.38,
respectively. Enforcing the extra constraints of the asle-fegions makes the inversion results very sensitiveedrimsport
errors since the HYSPLIT simulated ash plume outside the MO&3h cloud starts to affect the emission inversion results
Table 4 shows that the emission inversion with extra comgaf clear pixels using ECMWF data performs better thangsi
GDAS data except a single case with the MA option against G4.

Adding the extra constraints of a clear column above the Emld@gain generally causes a decrease in Rank. An exception
is the ECMWEF case with the M1 option (three model layers usedrfass loading calculation) in which the extra “top”
constraint results in a marginally better predictions eattd against G5 (Rank 2.39 versus 2.38). It is found thaE @MW F
cases perform better than all their GDAS counterparts afieing the “top” constraints. When the constraints of cledumn
below ash cloud are further added for the MO and M1 optioresréinks decrease significantly, especially for the MO option
which a single model layer is used to construct the model noasings. Clearly, model and observation uncertaintie® i@
be carefully addressed to take advantage of the extra eamistin order to benefit the emission inversion. This rezgifurther
investigation in future studies.

4.4 Older observations

As newer observations become available, whether to inctbdeolder observation in the assimilation remains a questio
Table 5 lists statistics of 10 cases evaluated against s@u5 using both GDAS and ECMWEF fields. In the inverse modelin
only ash pixels were used and the model mass loadings anglai@id by integrating over three layers centered at thedclou
top layer (M1 option). It is found that assimilating G2 and @#&lds greater Ranks when comparing against G3 and G4
observations than assimilating G2 alone. At G5, theretig litifference between the two strategies. Note that atstimy G2
alone helps to get better statistics against the same @temrs than assimilating G1 and G2 at the same time, alththigh
does not help the forecasts of G3 about 12 hours later.

After G3 is available, three strategies to utilize the adalié observations G1, G2 and G3 are tested. The results $ladw t
assimilating G2 along with G3 observations achieve betisrdasts at G4 and G5 moments than assimilating only G3. It is
also found that including G1 in the assimilation does not enakich difference. Again, the assimilation of G3 alone tssul
in a closer match between model predictions and G3 obsengtbut the forecasts at later times are worse than if tHeear
observations are also assimilated.

Figure 5 shows the comparison between MODIS observatiod$i4EPLIT simulations using the estimated source terms
obtained by assimilating G1, G2 and G3 with both GDAS and ECMWeorological fields, listed as the last two cases in
Table 5. The simulated ash cloud corresponding to G1 arewarrthan the satellite observations and the mass loadingva
are underestimated. Crawford et al. (2016) found that dylt@l source terms performed better than the line soursssraed
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here. Waythomas et al. (2010) showed that the source areguitesbroad with a width about 75 km from 06Z to 10Z on
August 8, 2008. Inverse modeling with cylindrical sourcel ke investigated in the future. The HYSPLIT simulationgtw
both meteorological fields agree well with granules G2 anda@8 it is reflected by the high Rank vales (Table 5). This is
expected as the same observations were assimilated tm obéaash release rates. Against G4, the model results eatbieir
ash cloud locations and magnitudes very well for both cales case with GDAS inputs appears to have similar mass Igadin
values as the observations while ECMWF case has a narrowréidg the main ash cloud with higher values than the MODIS
observations. In addition, the ECMWF case shows two taildeanthe GDAS case has only one tail resembling the MODIS
observations. Both cases show tapering shapes of the thithwappear different from the satellite view. Against theef
observations of G5, HYSPLIT simulations start to deviatarfthe MODIS, as indicated by the lower Rank. Both GDAS and
ECMWEF simulations capture the ash cloud at the similar locetias observed by the satellite, but show smoother stasctur
It is speculated that meteorological fields with higher spaind temporal resolutions might be able to improve thecshd
predictions.

There were several lidar observations of the Kasatochi &midgorovided by CALIPSO satellite (Winker et al., 2010;
Kristiansen et al., 2010; Crawford et al., 2016). The HYSP&imulations shown in Figure 5 are also compared against the
532 nm backscatter vertical profiles along the three CALIRS&passes coincident with G1, G4, and G5. The comparisons
reveal that both GDAS and ECMWF simulations captured the raslncloud features at approximately the same location and
altitude.

5 Summary

An inverse system based on HYSPLIT has been developed te gwheffective volcanic ash release rates as a functiomef ti
and height by assimilating satellite mass loadings and ksii¢op heights. The Kasatochi eruption in 2008 was usechas a
example to test and evaluate the current top-down systembeth GDAS and ECMWF meteorological fields.

When quantifying the differences between the model preamhistand the satellite observations, the model counterparnts
be calculated differently using the 3-D model concentratiesults because the observed ash cloud bases are unknuea. T
options to construct the model mass loadings, integratoiganic ash concentrations from the surface up to the clopd t
height or just using one or three model layers, are testethferinverse system. It is found that the emission estimedeg
significantly with different options. However, all the pretions with the different estimated release rates shovenieskill
when evaluated against the unassimilated satellite oatens at later times. The option of integrating over threxleti layers
yields slightly better results than integrating from sggaip to the cloud top or using a single model layer.

The extra constraints of enforcing zero mass loading in #iefeee regions are tested with the inverse system. The Imode
predictions using the emission estimates generated withextra constraints are worse than those using the emissionates
generated by only assimilating the ash pixels. Additiomal-ash” constraints for the atmosphere columns above onbile
observed ash cloud top height are found to further detegdfe subsequent model predictions using the top-downsémnis

estimates.
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Figure 5. Volcanic ash mass loadings from MODIS (left) and HYSPLIT simulations WIilPAS (center) and ECMWEF (right). From top to
bottom following their observation time (see Table 1 for detail). “+” showsltiwation of Kasatochi volcano (52.1714, 175.5183W).
White areas indicate regions outside satellite granules for MODIS obsersattor HYSPLIT simulations, the white areas indicate zero
mass loadings in order to reveal the ash cloud boundaries. The aabaettes for the HYSPLIT simulations were obtained by assimilating
granules G1,G2,and G3. In the inverse modeling, only ash pixels vgexctand the model mass loadings are calculated by integrating over

three layers centered at the cloud top layer.
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Assimilating multiple granules at different times proveb®beneficial. As new observations become available, teetedf
one-day-old observations becomes marginal, but assinglatass loadings from the most recent and those at aboubd2-h
earlier yield better results than only assimilating the tmesent observations.

The spatial and temporal resolutions of the meteorolodiells may need improvement for future studies. The lines®ur
assumed here can be replaced by more realistic cylindrizatss in the future. A simple particle size distributiorthwiiour
different particle sizes is used at all release height ame.tWith MODIS effective radius available, a more realist@y to
represent the particle size distribution can be explored.
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Table 3. Evaluation statistics against G2, G3, G4, and G5 observations for caiediffierent ways to calculate model mass loadings.

G1 and G2 are assimilated for all cases listed here. MET: meteorologmakinOBS: satellite observations used for evaluation. ML(Mass
loading): MA, integrating from surface to cloud top; MO, calculated foirgke layer where the cloud top height resides; M1, integrating
over three layers centered at the cloud top layer. MB: mean bias; &&idnal bias; RMSE: root mean square error; NRMSE: normalized
RMSE; R: Pearson correlation coefficient; CSl: critical success iri8®: Kolmogorov-Smirnov parameter. Rank is defined in Equation 3.

MET | OBS | ML | MB(g/m?®) | FB | RMSE (g/m®) | NRMSE| R | CSI | KSP | Rank

MA | 000 |-0.45 0.63 298 | 0.60| 052 0.05| 2.61
| | 62 |mo| 010 |-045| 068 | 325 |054] 054|004/ 258 |
| | | m1| 010 |-047| 063 | 303 |060| 058|004 266 |
| | | mMA | 004 |-038| 028 | 307 |o064|055] 005|272
| 6 | 63 |mo| 003 |-028 033 | 340 |060|059|004] 277
| o | | m1| 008 |-032| 030 | 313 |o061|o061]005| 277
A mMAa | 001 |-010| 018 | 240 |072|062] 012 2.96 |
| s | ea|mo| o001 |o01| 025 | 302 |065]064|007| 29 |
| | m1| o000 |oo04| 019 | 239 |072|062]010] 302
| | | mMA | 001 |-009| 021 | 321 |043|043]023| 234
| | 65 | Mo | 001 |o019| 025 | 333 |041]045]022] 231
| | M1 | o001 |o12| 022 | 312 |043|045|025| 232 |
| | | mMAa | 006 |-026| 061 | 267 |066|053]003] 281
| | 62 [ mo| 004 |-016] 072 | 300 |o065|058]005]| 287
| | | m1| 007 |-032| 060 | 269 |069]063] 004 290
| E | mMa | 001 |-013] 034 | 325 |062|052]004] 280 |
| ¢ | e |m| o001 [o005s| 045 | 401 |060| 056|004/ 285 |
oM | m1| 002 |-01s| 035 | 340 |o061| 055|004 280 |
| w mMA | 001 |o16| 028 | 321 |068|055]013| 280 |
| F | ca|mo| 007 |-032] o060 | 260 |069]063|004] 290
| | m1| o002 |o18| 034 | 387 |063|056| 008|278
| | mMAa | o001 |o018| 026 | 355 |042]|045|021| 233
| | 65 | Mo | 005 |os1| 037 | 417 |043] 044|020 217 |
| | M| o002 |o28| 020 | 376 |042]|045]020] 228 |
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Table 4. Ranks of the inverse tests with various extra constraints evaluated aG&in6t3, G4, and G5 observations (OBS). Mass loading
(ML): MA, integrating from surface to cloud top; MO, calculated for a $algyer where the cloud top height resides; M1, integrating over
three layers centered at the cloud top layer. Extra zero observatistramns: H, with clear pixels; T, with clear column above ash cloud; B,
with clear column below ash cloud. Ash cells are assimilated in all invergsc8atellite data at both G1 and G2 are used for all cases listed

here.
] OBS\ ML \ GDAS ECMWF
=l H et Heme | - | B | HeT | HeTHB
MA | 261] 226 200 - 281] 250 220 -

G2 | MO | 258 | 2.03 | 1.65 1.17 2871 246 | 1.82 1.22
M1 | 2.66 | 2.27 | 2.17 181 290 | 2.63 | 254 2.00
MA | 2.72 | 2.38 | 2.04 - 280 | 253 | 2.17 -

G3 | MO | 277|221 | 1.74 1.37 285| 261 | 1.83 1.33
M1 | 277 | 236 | 2.25 1.88 280 | 2.61| 2.56 2.06
MA | 296 | 2.64 | 2.23 - 280 250 | 2.37 -

G4 | MO | 296 | 245 | 1.83 1.40 290 281 | 2.03 1.38
M1 | 3.02 | 2.62 | 251 2.05 278 | 274 | 2.72 2.17
MA | 234 | 205 1.73 - 233|228 2.01 -

G5 | MO | 231 2.08| 1.52 1.05 217 | 232 | 1.77 1.05
M1 | 232 | 2.04 | 1.96 1.70 2.28 | 2.38 | 2.39 1.81

Table 5. Ranks against G2—-G5 for HYSPLIT simulations after assimilating variooshinations of observation inputs. Model counterparts
of the satellite mass loadings are calculated using “M1” option, i.e. integratiagthree layers centered at the cloud top layer. Only ash
cells are assimilated for all the inverse cases listed here. "()" indicateththabservations have been assimilated.

Inputs GDAS ECMWF

G2 G3 G4 | G5 G2 G3 G4 | G5
G2 | (2.70) | 2.69 | 2.86 | 2.27 | (2.90) | 2.76 | 2.76 | 2.29
G1,G2| (2.66) | 2.77 | 3.02| 232 | (2.90) | 2.80 | 2.78 | 2.28

G3 | 259 | (3.16) | 2.89 | 2.20 | 2.43 | (3.07) | 2.78 | 2.10
G2,G3| (2.69) | (2.94) | 2.94 | 2.26 | (2.76) | (2.91) | 2.81 | 2.23
G1,G2,G3| (2.61) | (2.93) | 2.96 | 2.28 | (2.77) | (2.98) | 2.86 | 2.20
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