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Response to short comment by Dr. Andrew Sayer
We thank Dr. Sayer for his suggestions (in red).

However, | see they use the Dark Target AOD product at 470 nm, rather than 550 nm. 550 nm is the
main reference wavelength for this product, the one that has been validated, and the one which is
generallyrecommended tobe used (and is indeed used by most data users).

We agree with this comment. It was realized after the original submission of the manuscript that the
470 nm product wasselected unintentionally instead of the 550 nm product. Rather than withdraw the
manuscript or ask for a long extension to regenerate a decade of MATLAB *.mat files required as input
for our validation and mapping software, the Dark Target AOD at 470 nm was retained temporarily with
the full intention of redoing the map in Fig. 1, the validation results (Table 4), et cetera, at the next stage
in the review process.

We now write at p2L28:

Specifically, the Corrected_Optical_Depth_Land (550nm) and the Deep_Blue_Aerosol_Optical_Depth_550_Land
datasets were usedand confidence for both datasets was extracted fromthe Quality Assurance_Land dataset.

Similarly, the Deep Blue AOD quality flag isin Deep_Blue_Aerosol_Optical_Depth_550_ Land_QA_Flag,
but we also provide a data set which already has the quality flag mask applied
(Deep_Blue_Aerosol_Optical_Depth_550 Land_Best Estimate)sothe user does not have to do the
filtering themselves. It is not clear to me from the paper which SDS was used to QA-filter the Deep Blue
data but | am assuming it is the above. More information can be found in the MODIS aerosol file spec
document (http://modisatmos.gsfc.nasa.gov/_specs c6/MOD04_L2_CDL_2013 03_21.txt) or on our
website, http://deepblue.gsfc.nasa.gov. Could this be clarified?

We agree that the ACPD manuscript fails to name the SDS used to QA-filter the Deep Blue data.
‘Quality_Assurance_Land’ is the SDS used.

The change to the manuscript is contained in the sentence mentioned above at p2L28, in response to
the previous comment.

Also, which ATSR product is used? There are at least 3 being produced in Europe in the framework of the
ESA CCl project, and they all have different approaches and results (see Popp et al, Remote Sensing,
2016, doi:10.3390/rs8050421 for an overview). My inference is that this is the Swansea algorithm (Peter
North’s group) but | think this should be stated more clearly.

The selected ATSR product is stated clearly in the appendix of the existing manuscript (p13L17) and the
appendix is referenced at p2L26 in connection with the satellite data products. Information on the ATSR
product is in the following sentence of the appendix (p13L17)

AATSRand ATSR-2version 4.1 data are from Swansea University and can be obtained fromthe Aerosol CCl
website (http:/Mmww.esa-aerosol-cci.org/) following registration.

Perhaps the others could be added to the analysis as well, if this is not too much effort. Similar to Dark
Target vs. Deep Blue for MODIS, the various ATSR algorithms have different coverage.
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There are three different algorithms for both AATSR and ATSR-2, and at least two POLDER algorithms,
several MODIS products (Terra vs. Aqua, Deep Blue vs. Dark Target), plus MISR. That is eleven, and it is
not an exhaustive list of available products from these satellite-based sensors. The primary focus of this
paper is not on algorithms but on the different aerosol sensors. The Swansea University algorithm was
chosen since initially they had, by far, the longest AATSR data record available.

To make this decision clear, we now write at p3L9:

The focus in this paperis primarily on the different aerosol sensors, rather thanthe different retrieval algorithms
applied to the same satellite data (e.g. Poppet al., 2016), with the exception of the widely used Deep Blue and Dark
Target algorithms for MODIS.

For POLDER, the data product the authors have used reports AOD at 865 nm. Due to the wavelength
dependence of AOD, in most cases this means that the AOD will be much lower at 865 nm than 550 nm.
The smaller signal will probably cause problems for relationships constructed using this AOD, plus one
would not expect a close match between AOD at 550 nm (given by the other sensors) and 865 nm since
the spectral dependence of AOD is determined by the aerosol composition. | wonder if another POLDER
data product like GRASP (see e.g. http://www.grasp-open.com/products/) which does report AOD at
550 nm would be more useful here (and also allow for a more direct comparison between the various
data sets).

We have used the only POLDER AOD data product that wasavailable at CNES’s POLDER website. We did
not search the web or the literature for alternate POLDER products.

The different satellite AOD data sets are essentially not compared in a quantitative way. The
quantitative comparison is essentially against AERONET and thus the different wavelength (865 versus
550 nm) is not a major issue since AERONET measuresat 870 nm and many wavelengths in the visible.
The smaller aerosol signal at 865 nm does not cause problems for the linear regression relationship
constructed between POLDER and AERONET AODs. This is obvious from the high correlation coefficients
for POLDER in Tables 3-5. Also POLDER reports AOD at 865 nm, but uses measurementsat 670 nm in the
AOD retrieval.

| had also been under the impression that the particular POLDER AOD retrieval data set the authors are
using is intended to be only a fine-mode AOD retrieval, rather than a total-AOD retrieval, which further
complicates things. However, | may be mistaken about that as | have not used POLDER data myself for a
few years now.

Dr. Sayer makes an interesting point here. This is not a fine-mode AOD product; total AOD is retrieved
and reported. See:

http://www.icare.univ-lillel1.fr//projects data/parasol/docs/Parasol Level-2 format.pdf.

However, the use of polarized radiancesin the POLDER retrieval greatly reducesthe sensitivity of the
retrievalto coarse particles. Thus, it is possible that a coarse-mode aerosol plume could, to some extent,
mask the polarization signal from underlying fine-mode particlesif such an arrangement occurred.
Ultimately, the low sensitivity of POLDER to coarse-mode particles appears to be a minor issue at the
two AERONET sites (Fort McMurray and Fort McKay) given the lack of bias and the high degree of
correlation with AERONET AOD, in spite of the fact that coarse-mode dust is known to be significant
contributor in this region, particularly at Fort McKay (based on AATSR dust fraction, not shown).
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| note in the text that AERONET AOD was interpolated to the satellite wavelengths (which is the
standard practice), but Table 4’s caption says that AERONET data at 500 nm were used. | guess that this
is an errorin the caption, but can this be clarified?

Dr. Sayer is correct that this needs clarification, even though there is not an error. AERONET 500 nm
AQOD is used, however itis scaled to the satellite wavelengths.
In the caption, we now write:

The Cimel 500 nm AOD, scaled to the satellite AOD wavelength (see Sect. 2), is used for comparisonwith all
satellite sensors except POLDER/PARASOL, for which the Cimel 870 nm AOD is more appropriate (see Table 1).

In that case it might be better to allow the level 2 data to occupy multiple grid cells (corresponding to
the actualretrieval footprint) thanto snap them to the grid cell nearest to the pixel centre (which is
what | assume is being done here). If the retrieval pixels are larger than the grid size (which is the case
here) then it does not really make sense to assign a pixel to one grid cell, when it occupies multiple grid
cells.

The orientation of actual footprint would need to be known and, for POLDER, thisinformation is not
available for each observation: only the latitude and longitude at the center of the AOD superpixel is
provided. Ingeneral, we disagree that it does not make sense to assign a pixel to one grid cell. This is
referredto as spatial oversampling and can be very revealing about localized sources of aerosols.

As a general comment on this figure, | would recommend keeping the colour scales the same (and
ideally start at zero) to allow a direct comparison between the different data products. Right now it is
hard to compare them because the colour bars are different. | realise POLDER is the odd one out here
since itis at a longer wavelength, but the other data sets (at or near 550 nm) should be on a consistent
scale. I’d also suggest mentioning againin the caption that POLDER is at 865 nm, hence the lower AODs.

This recommendation initially seemed like a good one, but even the AOD differences between the
MODIS products using the respective confidence values suggested by Dr. Sayer near the Syncrude facility
are quite large, as shown in this Deep Blue climatological mean AOD map using confidence 2-3, but with
the AOD range of the colour bar extending to 0.26 to cover the maximum climatological AOD of Dark
Target (confidence=3).
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Including such a figure would severely compromise our primary goal for Fig. 1, which is to show

the spatial gradientsin AOD in this region. The colour scales have been changed to have a common
lower limit of 0.

We already mentioned in the caption that POLDER is at 865 nm: “(top left) POLDER 865 nm (1996-2013)".
Just as a point of information, the Deep Blue climatological AOD for confidence=3 has a hotspot near the
Suncrude facility with AOD of 0.12, yet we find that higher climatological maximum AODs occur (0.18)
when only confidences of 1-2 are retained, again with the hotspot being the Syncrude Mildred Lake
facility, as shown in the following maps to the left and right, respectively.



O Oo0ONNO UL WNE

NNNRRRRRRBPRRP R R
N R, OOOONOULLP,WNEO

VB

57.68

57.4

57.2

A125 12 115 A1 1105 125 112 -1115 111 1105

As another general comment on the above figure: we know there is seasonal variation

in AOD, as well as variationin things that affect sampling (e.g. cloud and snow cover). So presenting an
annual mean here conflates these issues together with the issue of retrieval uncertainty. My suggestion
would be to make separate maps for each season. They don’t all necessarily need to be included in the
paper if length is a concern. This way the seasonal aspect at least can be removed and it may bring the
different data sets into closer agreement (or it might not). The next stage would be to compare the
points only where they have common retrievals on the same days, but | suspect that due to thelarge
number of data sets there would probably be few mutual points. So, making seasonal means rather than
annual means is probably a good balance in termsof seeing how the datalook compared to each other.

We tried plotting AODs for May through September for the MODIS and MISR products (Figures A-C
below). These are the months when all five aerosol products have high measurement frequency. But
again, Dr. Sayer’s purpose is evidently different thanours: we are not trying to bring the different data
sets into closer agreement; asstated up front (p4L33), we are mostly trying to see what eachis
capturing spatially over the long term, so annual means are preferable. Anyway, as shown in Figures A-C
below, limiting to these ‘warm season’” months does not bring the data sets into closer agreement.
Limiting to the warm season was mostly expected to benefit the MISR AOD map since MISR has an
unusual spatiotemporal sampling pattern, but as shown in Figure C, limiting to May-September does not
produce a more coherent AOD map. In the revised manuscript, all available months are retained for
Figure 1.
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Figure A: MODISDT 550 nm climatological AOD for Mayto September (confidence=3).
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Figure C: MISR 558 nm climatological AOD for Mayto September.

Figure 2: If| understand correctly, this is the mean of the MODIS Deep Blue and Dark Target QA values. |
understand the intent behind this figure (illustrate where the algorithms have confidence) but | think the
execution is problematic. By taking the mean of the QA flag, it is being treated asa quantitative variable.
However it is not — it is a categorical variable that is stored as an integer because it is easy to store
integersin the hdf files. QA=0 has a fundamentally different meaning (no retrieval) from the other
values, and the QA from 1 to 3 does not represent linear progression in terms of quantitative retrieval
quality or uncertainty. So, taking the meanvalue is a bit misleading since it is conflating lack of retrievals
(due to e.g. clouds) with other algorithm factors and giving a number as a mean for the grid cell which
doesn’t really relate to the underlying QA flags. For example if the mean QA calculated in thisway is 1, it
does not mean that the retrievals here have low confidence. It means either that the retrievals have low
confidence, or that there is some combination of high confidence retrievals and data gaps due to clouds,
etc.

This comment by Dr. Sayer is correct, and we were aware of all of these logical points. The main purpose
of both panels of Fig. 2 was to show that QA is tending very close to O (i.e. <0.45) at the two grid cells
near the Syncrude Mildred Lake facility, implying that the retrieval has no confidence (or provides a fill
value) more than 55% of the time.

So, | think this figure should be updated, and we might get some more insight into what is going on if the
metric here is calculated differently. In Deep Blue we recommend QA=2 and QA=3 can both be used for
quantitative analyses as they have similar error characteristics (Sayer et al., JGR 2013, doi:
10.1002/jgrd.50600) while for Dark Target land retrievals they recommend QA=3 only (e.g. Levy et al,
ACP 2010, doi:10.5194/acp-10-10399-2010). This is another example of the fact that QA flags
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have different specific meanings for different data products. What | would suggest is making maps
showing the fraction of overpasses where there is no retrieval (i.e. QA=0), the fraction where there is a
poor-QA retrieval (i.e. QA=1 for Deep Blue, QA=1 or 2 for Dark Target), andthe fraction where there is a
good-QA retrieval (i.e. QA=2 or 3 for Deep Blue, QA=3 for Dark Target).

This suggestion is accepted. A new six-panel Fig. 2 has been generated.

Some of the data holes in the MODIS Dark Target product will be from the fact that neither their land
nor ocean algorithms treat pixels which are identified as ‘coastal’ asvalid for AOD retrieval. (Note that
Deep Blue treatssuch pixels as land, but excludes pixels next to water frequently for other reasons.) This
limits coverage in many parts of Canada and elsewhere in the world, as pixels containing lake shores are
frequently identified as coastal. See Carroll et al. (IJDE, 2016, doi: 10.1080/17538947.2016.1232756).

This cause of data holes has been added to the list of causes. We now write at p5L16:

The number ofpixels used in the AODretrievalis reduced by the inland water mask (Carroll et al., 2016), ...

Figure 3: This shows that in areaswhere there are few AATSR retrievals, those retrievals that are
performed tend to have a higher sub-pixel cloud fraction. The implication is that sampling in this area is
influenced by cloud cover, whether real cloud or misidentified cloud (which is reasonable). However
what might make a better right panel would be the cloud fraction for ALL observations, not just for
those observations where an AOD retrievalis performed. This would look more directly at where the
AATSR algorithmthinks there is a cloud. Right now what the panel is showing is subtly different since
pixels which are cloudy above the threshold for retrieval (| am not sure if this is 100% cloudy or some
lower fraction) are exclude from the analysis.

Additional cloud tests (Bevan et al., 2012 and reference therein) were used for this AATSR aerosol
retrieval algorithmthat are not used in AATSR Instrument Processing Facility (IPF) v6.01 cloud product.
Thus, we feel it is more appropriate to look at the cloud fractions in the successful AOD retrievals. This
suggestion might have been worth pursuing if the spatial anti-correlation was not strong between cloud
fraction in successful AOD retrievals and AOD sample size, but that is not the case.

Table 1: Again, the MODIS standard AOD wavelengths for both Deep Blue and Dark Targetare 550 nm.
DeepBlue also provides 412,470, and 650 nm and Dark Target also provides 470 and 650 nm. Source
radiances are not all at 0.5 km pixel sizes, it depends on band, so it would be betterto say 0.25-1 km
here. Also, due to its scan design and wide swath with, MODISlevel 1 and level 2 pixel size and shape get
heavily distorted from nadir to scan edge (quoted values are all for nadir pixels), which is not

an issue for AATSR or MISR to the same degree due to their designs and narrower swaths. See e.g. Sayer
et al (AMT, 2015, doi:10.5194/amt-8-5277-2015) for more information.

In Table 1, regarding the spatial resolution of MODIS radiances, we now write: 0.25 x0.25to 1 x 1.
We have also changed one column heading to: “Spatial resolution of AOD superpixel at nadir”.

Table 4 and discussion: | would delete the analysis of linear least-squares regressions from the table and
discussion. AOD data violate most/all the assumptions required for this technique to be valid, and so the
results are misleading and fits/confidence envelopes are quantitatively incorrect. See e.g.
http://people.duke.edu/ rnau/testing.htm for more discussion. (I know it is a frequently-used technique
in our community, but it is fundamentally incorrect for this particular application.)
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Dr. Sayer’s most recent paper (Carroll et al., 2016) cites Levy et al. (2013) for AOD validation, and Dr.
Sayer is also a co-author in the latter work. This latter work includes linear least-squares regression of
MODISAOD and AERONET AOD (their Fig. 11), which is precisely what we have done. Itis clear that our
Table 4 adheres to the established convention in this field in terms of validation statistics. As an
alternative, we tested two non-parametric methods (Theil’s complete and incomplete methods) to
obtain the values in the first three columns of values in Table 4. None of the assumptions are violated
when using Theil’s incomplete method (1950). Also, application of Spearman’srank correlation is valid
for this application (see Table 4). As shown in the table below, the non-parametric methods yielded
slopes that were small (~0.6) and ordinary least-squares (‘OLS’) yielded a slope that was clearly of the
wrong sign due to one small cluster of outliers at high AOD. We tested a number of robust regression
methods comparedin Holland and Welsch (1977), which all use a weighted least-squares (WLS)
approach to reduce the sensitivity to anomalous data pairs (i.e. coincidences). Some of these robust
regression methods are expected to perform better than OLS on data with non-Gaussian distributions
(e.g. Andrews, 1974). The outliers affect whether the AERONET and satellite AOD data conform toa
normal distribution. The table below presents the slope and offset from various robust methods using
the POLDER/PARASOL and AERONET coincident data at Fort McMurray:

Method offset  slope
Andrews -0.017 0.787
bisquare -0.017 0.788
Cauchy -0.017 0.797
Fair -0.019 0.859
Huber -0.018 0.831
logistic -0.018 0.835
Talwar -0.017 0.787
Welsch -0.017 0.791
OoLS -0.030 1.10
Theil's “incomplete” -0.009 0.590
Theil's “complete” -0.010 0.620

Itis clearthat POLDER has a negative offset, but the magnitude of the offset falls into three groups: OLS,
robust WLS methods (first eight rows of table above) and robust non-parametric methods. Identical
groupings of regression methods are found upon examining the slope values. Furthermore, omitting the
small cluster of points with AERONET AOD>0.8, which were all measured on one day, namely 16 July
2012, the OLS slope becomes 0.7904 and offset is -0.014. This slope and offset are both very close to the
slope and offset values from the various WLS fits. In the revised manuscript, we select to weight the fit
residuals with Huber’s function, for the following reason given by Bergstrom and Edlund (2013):

“while it still is robust, it does not completely disregard highly deviating points”.

The table above shows that neither the offset nor the slope obtained with the Huber weightsare
outliers within the WLS group of robust regression methods. The tuning constant is assumed to be 1.345
following Holland and Welsch (1977).

At p3L29 of the revised manuscript, we now write:
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Since individual AERONET and satellite AODs are not normally distributed, we use linear least-squares weighted
by Huber’s function to determine the slope and offsetsincethis is a robust method thatdoes not completely
disregard highly deviating points (Bergstromand Edlund, 2014). The slope and offset values determined using
Huber’s weighting functionare encompassed by thevalues obtained with seven alternative weighting functions.
Similarly, due to the non-normaldistribution of the individual AOD data, Spearman’s rank correlation coefficient
(rs) is chosento study the site-specific AOD correlation based on individual AERONET -satellite coincidences.
References

Andrews, D. A., A robust method for multiple linear regression, Technometrics, 16(4), 523-531, 1974.

Bergstrom, P.,and Edlund, O.: Robustregistration of point sets using iteratively reweighted leastsquares, Comput.
Optim. Appl., 58, 543-561, 2014.
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Wetensch., 53, 386-392, 1950.

Response to comments by reviewer 1

We thank the reviewer for sharing their expertise and improving the manuscript.
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Major Comments:
As Andrew Sayer is an expert on aerosol retrievals from satellite -based remote sensing,
| strongly recommend the authors fully take his suggestions.

We agree with this major comment and have taken most of the Dr. Sayer’s suggestions.

Kahn et al., 2005 describes validation of a previous version of the algorithm and should
be replaced with Kahn et al., 2010. The title is “Multiangle Imaging SpectroRadiometer
global aerosol product assessmentby comparison with the Aerosol Robotic Network”.
Particle mixtures have changed, but many of the notes the authors have made about
MISR remain valid.

We have used the more recent reference suggested by the reviewer. We now write in Sect. 4:

The MISR low bias may be related to the need for darker spherical particles (Kahn et al., 2010) given that
forest fire smoke plays a significant role throughout western Canada in the warm season (O’Neill et al.,
2002). Spherical particles with lower single scattering albedo (SSA) may also be required to properly
represent local anthropogenic pollution (Kahn et al., 2010) in the AOSR.

Although the paper is focused on AOD trends from satellite-remote sensing, | would
recommend also including an analysis of the Fort McMurray AERONET site as well.

The AERONET data record is short (2005-2015) at Fort McMurray and includes a missing year (2006)
and three currently incomplete years (2005, 2007, and 2015). The record effectively spans 2008 to 2014,
which is too short for trend analysis, given the large interannual variability.

Page 8, Line 18-19: The higher SNR is probably irrelevant over land (especially bright
surfaces).

Most of the retrieved AODs used in the temporal correlation with the Fort McMurray AERONET site, at
least by MODIS, are over dark vegetation. However, SNR is valuable both for dark and bright scenes. To
first order, the bright surface does not affect the number of detected aerosol-scattered photons, it
essentially affects the number of photons reflected by the surface. So while a bright scene has less noisy
radiances, the fractional contribution by aerosol scattering decreases relative to a dark scene and greater
SNR is required to be able to detect a typical, small AOD (e.g. 0.1 at 550 nm) with comparable AOD
precision relative to a dark scene. In spite of this point, we agree that the SNR of all instruments is
probably sufficient and the higher SNR is likely irrelevant.

Thus, the relevant sentence in the manuscript becomes:

Strongershort-termcorrelation with AERONET AODs reflects the superior spatial resolution ofthe MODIS
radiances (Table 1).

PM2.5 Assessment:

| strongly recommend that the authors remove the AOD-to-PM2.5 aspect of this paper.
| don’t think it adds much to the paper, as the authors have in-situ PM2.5 data for

10 sites anyways, and the correlation between AERONET AOD and satellite remote
sensing retrieved AOD is much higher than the correlation between NAPS PM2.5 and
satellite remote sensing retrieved AOD.

12
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There are also a lot of caveats to converting between an integrated aerosol retrieval (AOD) and
a surface aerosol retrieval (PM2.5), many of which | don’t see discussed (please correctme if |
missed it). Here are some of them:

1. For instance, MISR is viewing this area of the planet at roughly 10:15 AM local time.

It is possible that the planetary boundary layer (PBL) is not always fully developed at this time,
which would mean that a comparison between MISR AOD and surface based

PM2.5 would not be possible.

2. Unmasked transported smoke that happens to be lofted above the PBL may not be seen by
NAPS.

3. Variation in the PBL height from day to day and season to season will cause discrepancies
between retrieved AOD and measured PM2.5 using a static ratio.

4. Large-scale differences in land-surface/water coverage may cause systematic discrepancies
in PBL height at individual stations.

Although the results of the AOD-to-PM2.5 analysis show a positive trend in PM2.5 from space, |
don’treally see howuseful this is, as the same thing can be shown fromthe 10 NAPS
instruments with a much higher degree of confidence. Additionally, while | may trust the day-to-
day changes in AOD retrieved from space, | would never put that kind of faith in converting AOD
to PM2.5 on a daily basis. | recognize that the authors did not do this and are basically only
using PM2.5 from AOD for yearly analysis, but some people may take this work and try to
expand it in ways that probably shouldn’t be done.

We agree with these comments. The AOD to PM, 5 aspect can be avoided with the approach used in the
revised manuscript. This involves correcting the POLDER/PARASOL and MODIS Deep Blue offsets
(determined from the AERONET validation at Fort McMurray) and then calculating relative trends for
AODs (from satellite) and for PM; 5 (NAPS).

This is now described at p4L12:

Fortemporaltrends, asimple linear regressionis performed on relative anomalies derived frombias-corrected
annualaverageand median AODs. The bias correction involves subtracting the AOD offset obtained through the
validation with coincident Fort McMurray AERONET data.

General Comments:

Is it possible that the drop in 550 nm AOD (Figure 5) and NAPS PM 2.5 during 2015 is related to
the fall in oil prices affecting activity in the region? If so, it may be worthwhile to note, as this
would likely continue to the present day.

Itis possible, but not likely, and this is too speculative in our opinion given that NAPS PM; s data is not

significantly different in 2013 and 2015 (see figure below illustrating oil prices over the past seven years).
(http://www.nasdag.com/markets/crude-oil.aspx?timeframe=7y).

13
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Figure 1: Figure 1 could be improved in a number of ways. In addition to what Andrew

Sayer suggested, | recommend putting the locations of your AERONET sites and NAPS stations
on the map (maybe as circles and stars). If you wanted to make the plots even more useful, you
could color the circles and stars using the same color scale for AERONET, and a different scale
for PM2.5.

The maps in Fig. 1 use all available satellite data, not just data that is coincident with PM, s or AERONET
observations. PM, s is measured at night and in winter, when these satellite instruments do not measure.
Similarly, the AERONET sites in the oil sands region measure all day, not just at the 1 or 2 local times
per day of the satellite instruments and we have found diurnal variations in AOD of 30% at Fort
McMurray based on AERONET data. Furthermore, AERONET has slightly more coverage during the
cold season. To avoid these biases, in Fig. 1, we plot only the average AOD from satellite-coincident
AERONET measurements. Both AERONET sunphotometers in the AOSR are collocated with NAPS
sensors, so we chose AERONET over NAPS for Fig. 1. There is also the problem of a possible trend. The
NAPS or AERONET data may cover a significantly shorter period (e.g. AERONET at Fort McKay
started in 2013 whereas the POLDER map includes data from 1996). We leave Fort McKay out since the
data record is too short for a reliable climatology of coincident AODs and has no temporal overlap with
most of the sensors.

Figure 5: The authors should include the Fort McMurray AERONET site on this plot as
well.

See response to earlier, related comment. No change is made to the manuscript.
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Response to reviewer 2
We begin by thanking the reviewer for their very helpful comments.

However, | am concerns that this manuscript is insufficient to be useful due to lack of substantial
materials and logical reasoning in current version.

We have added explanations to substantiate some of the results. For example, we now discuss a possible
cause for why MISR does not capture the hotspot in climatological AOD as well as the other instruments.
We have provided a reason why median AOD and PM, s mass densities are preferable for the spatial
correlation analysis in the revised manuscript (as opposed to mean values used in the original
manuscript). We feel the discrepancy in long-term trends between the satellite sensors is not strong, but
now suggest that the MODIS calibration degradation could account for the general negative trend in AOD
from this sensor. Further details are provided below on each issue. This is simply a summary of our
response.

First of all, | have read the comments from Andrew Sayer, who is an expert on aerosol
retrievals from satellite-based remote sensing, especially in MODIS AOD retrievals. His
comments are very useful to improve the understanding of the MODIS AOD retrievals
and improve current studies.

Dr. Sayer’s comments have helped to improve the revised manuscript. The reviewer can refer to our
response to Dr. Sayer’s comments to see the resulting changes to the manuscript.

My major concerns about this manuscript are the lack of in-depth analysis and lack the
necessary explanations. For example, the finding of the ability to capture spatial variability with
MISR is generally much worse than the other instruments over AOSR region is very interesting
and useful to knowthe limitation of MISR measurements, however the possible reasons for this
will be more important to see the spatial limitation of MISR.

The MISR spatial limitation, evident in Fig. 1, is probably due to its spatial sampling being tied to its
temporal sampling. We found locations within the AOSR where MISR was measuring almost exclusively
in October. Thus, the seasonal cycle in AOD is aliasing into the AOD spatial distribution.

The spatial correlation coefficient is based on 10 sites. Because of the small number of sites, the
correlation is quite sensitive to a bias in AOD or PM, 5 at any station. Wapasu has significantly higher
mean PM, s mass density for MISR coincidences than any other site (10.2 pg/m?* while the next highest
site average is 8.1 ng/m®). MISR overpasses of Wapasu span only two years (2014-2015) and these years
were affected by anomalously high forest fire activity in western Canada. The median reduces the
sensitivity to these outliers as compared to the mean. In the revised manuscript, Table 3 now contains the
correlation of the median of coincident PM, 5 and satellite AOD data. This table is inserted below. The
revised Table 3 shows the spatial correlation coefficient (R) of MISR AOD with PM, s is not much worse
than the spatial R of MODIS/Aqua DT and PM;s.
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AOD product R N
POLDER/PARASOL 865 nm 0.64 8
AATSR550 nm 0.73 9
MISR 558 nm 0.20 10
MODIS/Aqua DT 550 nm 0.23 10
MODIS/Aqua DB550 nm 0.57 10

At p3L34, we now modify the description of the spatial correlation analysis as follows:

In orderto assess the ability of the satellite data to capture the spatial variability in this region, the hourly in-situ
surface-level PM, s fromthe 10 NAPS (National Air Pollution Surveillance) stations (Table 2) are used. Demerjian
(2000) provided areview ofthe NAPS network, but since 2011, this network has undergone a gradual shift in the
continuous monitoring of PM, s mass density fromtapered element oscillating microbalances (TEOMSs) to the
SHARRP (Synchronized Hybrid Ambient Real-time Particulate) monitoring system. The latter is a hybrid system,
consisting ofa nephelometer anda beta attenuation monitor (Hsu et al., 2016). The spatial correlation between
median satellite AODs and NAPS PM, s mass densities is determined using coincident data.

At p5L4, we now update the text with the following:

The AOD hotspot in the AOSR seen by POLDER is less obvious with MISR (Fig. 1). This is consistent with the
relatively poorer ability of MISRto capture spatial variability based on spatial correlations of median AOD and
PM, s mass density overthe~10available sites (Table 3). While the spatial correlation analysis relies on temporally
coincidentdata, the less obvious AOD hotspotfor MISRin Fig. 1 is also partly due to the spatio temporal sampling
by this instrument. Some locations are only sampled during a shortperiod of theyear, andthus the seasonal cycle of
AOD s aliased into the MISR spatial distribution.

In section 3.1, the authors have indicated that all of the satellite retrievals can capture the inter-
annual variability of the annual mean AOD observed by AERONET, but the trends estimated
based on the each satellite retrievals showed lots of differences, some of positive and some of
negative. Thus, what are the main reasons to explain this discrepancy?

We agree that there is a discrepancy between the trends estimated by the different satellite AOD products,
but it is not strong. The satellite data records all span approximately one decade. A period of a decade is
rather short for determining a trend, considering the natural interannual variability in AOD and possible
instrumental drifts (e.g. Levy et al., 2015). Focussing on the Muskeg River mining region where there
appears to be a significant positive AOD trend according to MODIS/Aqua DB and POLDER/PARASOL,
the linear trend is not different from zero for both AATSR and MISR (p6L28-29). Also, MODIS/Aqua
DT has aslightly negative trend, but it is also not different from a null trend, so given that none of AOD
products show a strong decreasing trend in this Muskeg River mining region, there is no strong
discrepancy in the AOD trends. The insignificant negative AOD trend for MODIS/Aqua DT remains now
that we have switched to 550 nm.

We now add at p8L1:

The calibration ofthe MODIS reflective solar bands is achieved by calibration with thesolar diffuser. Some
negativedriftin AOD (Levy et al., 2015) is expected for MODIS Aqua similar to its Terra counterpart (see Sect. 2)
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as the designs of thesolar diffuserand its stability monitor are nearly identical in the two MODIS sensors (Wu et al,,
2013).

The authors reported a major issue of satellite AOD retrievals over this region, which is the lack
of successful retrieval samples, especially of the MODIS retrievals which has low confidence. It

is good information. However, the reasons for the large part of retrievals has low confidence are
not well explained.

The reasons for the low confidence of MODIS AODs were explained in the ACPD version of the
manuscript (p5L24-26 for Deep Blue and p5L12-19 for Dark Target). An additional reason for MODIS
Dark Target has been added to the revised manuscript: coastal areas (see comment by Dr. Sayer and
response).

Furthermore, the comparison of coincident AODs observed by satellite-based and AERONET
shows large bias (more than 20%) between them, but necessary explanations are not provided.

MISR is the only satellite-based aerosol sensors with a consistent bias of >20% in this region.
Explanations were included in the ACPD version (p9L5-11), although one literature reference has been
updated in these sentences.

| found that the correlation between monthly mean of the satellite retrieved AOD and
AERONET AOD are analyzed, but I'd suggest to use the individual samples from
AERONET to evaluate the satellite AOD retrievals and discuss the bias of each satellite
product.

This is already done in Table 4. The second to fourth columns in Table 4, namely ‘rs’, ‘slope’, and
‘offset’, are all based on individual coincidences. Although it can be inferred from the ACPD version of
the manuscript that the quantities in these columns are based on a regression using individual
coincidences (e.g. p1L12 and p9L3-4), we will be more explicit in Sect. 2. At p3L30, we now write

“Since individual AERONET and satellite AODs are notnormally distributed, we use linear least-squares weighted
by Huber’s function to determine the slope and offsetsincethis is a robust method thatdoes not completely
disregard highly deviating points (Bergstromand Edlund, 2014). (...) Similarly, due the non-normaldistribution of
the individual AOD data, Spearman’s rank correlation coefficient (rs) is chosen to study thesite-specific AOD
correlation based onindividual AERONET -satellite coincidences.”

In the conclusion (p8L17), we now repeat that correlation was determined using individual AERONET
observations:

“However, the MODIS dark target product is the best at capturing temporal variability in terms of the correlation
with individual AERONET AODs at Fort McMurray...”

It is not clear to describe howto derive the PM2.5 mass density from satellite AODs. | noticed
that the constant ratio of PM2.5 to AOD is used to convert the AOD trends from satellite
instruments to PM2.5 trends. However, this is not accurate. The relationship between surface
PM2.5 and AOD is not always linear. It is affected by multiple factors, such as the relative
humidity since the AOD can be enhanced by aerosol swelling e ffects but the PM2.5 does not.
Meanwhile, the correlation between AOD and surface level PM2.5 significantly depends on the
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aerosol vertical distribution and aerosol particle size distribution. Thus, the uncertainties in those
analysis and the influences on the results should be discussed.

The existing manuscript was not clear about the timescale when the word “constant” was used. What was
meant is that the PM, s/AOD ratio is assumed to be constant from year to year (based on annually
averaged ratios). This ratio can even change from year to year if there were an increasing trend in surface-
level aerosol emissions. In the revised manuscript, we have devised a better way to compare trends:

the POLDER/PARASOL and MODIS Deep Blue AOD offsets, determined from the AERONET
validation at Fort McMurray, are corrected and then relative trends are used for PM, 5 and satellite AOD.
Thus, the PM, s/AOD ratio is not used in the revised manuscript. The Fort McMurray AERONET site is
used for bias correction since it has temporal overlap with both sensors and has a longer record than the
Fort McKay site. There is qualitative agreement on the magnitude of the offset at both sites for MODIS
DB.

This is now described at p4L12:

Fortemporaltrends, asimple linear regressionis performed on relative anomalies derived frombias-corrected
annualaverageand median AODs. The bias correction involves subtracting the AOD offset obtained through the
validation with coincident Fort McMurray AERONET data.

P6, Line 28: Is this trend statistical significant?

Yes, the MODIS/Aqua DB and POLDER/PARASOL trends are both statistically significant. We will add
“statistically” to the sentence as follows:

In fact, two satellite dataproducts, namely POLDER/PARASOL and MODIS/Aqua DB, exhibit a statistically
significant positive trend in this mining area.
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Assessment of the aerosol optical depths measured by satellite-

based passive remote sensors in the Alberta oil sands region
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Abboud*

[1] {Environment and Climate Change Canada (ECCC), Toronto, ON, Canada}

Correspondence to: Christopher E. Sioris (christopher.sioris@canada.ca)

Abstract. Several satellite aerosol optical depth (AOD) products are assessed in terms of their data quality in the
Alberta oil sands region. The instruments consist of MODIS (Moderate resolution Imaging Spectroradiometer),
POLDER (Polarization and Directionality of Earth Reflectances), MISR (Multi-angle Imaging SpectroRadiometer),
and AATSR (Advanced Along-Track Scanning Radiometer). The AOD data products are examined in terms of
multiplicative and additive biases determined using local AERONET (AEROCAN) stations. Correlation with
ground-based data is used to assess whether the satellite-based AODs capture day-to-day, month-to-month, and
spatial variability. The ability ofthe satellite AOD products to capture interannual variability is assessed at Albian
Mine and Shell Muskeg River, two neighbouring sites in the northern mining regionwhere a statistically significant
positive trend (2002-2015) in PM, s mass density exists. An increasingtrend of similar amplitude (~5%/vear) is
observedin this northern mining regionusing some of the satellite AOD products.

1 Introduction

Fine-mode aerosols can be harmful to the respiratory systemin large doses and are thus a critically important
constituent with regardto air quality. For this reason, particulate matter with median aerodynamic diameter less than
2.5 um (PM,5) is one ofthe atmospheric observables usedto calculate the Air Quality Health Index (AQHI) in
Canada (Stieb et al., 2008). Similar indices are used in other countries (Kelly et al., 2012). Tropospheric aerosols are
also amajor source of uncertainty in estimating theradiative forcing of climate (Myhre et al., 2013). Many satellite-
based instruments can provide information about atmospheric aerosols in the formofaerosol optical depth (AOD), a
measure of the vertically integrated extinction ofthe solar beamby aerosols. Measurements of AODtendto be
proportional to particulate matter mass density measuredat the surface whentheboundary layer aerosol
concentrations are elevated (e.g. Tian and Chen, 2010).

The Alberta oil sands region (AOSR) has been under rapid industrial developmentduring the past decade (Foote,
2012). Satellite measurements already indicate a significantincreasing trend in nitrogen dioxide between 2005and
2014 (McLinden etal., 2012; McLinden etal., 2016). Additionally,the AOSRis being deforested as part of
expanding surface mining operations. This inevitably increases levels of dust, which partly arises from
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transportation by trucks. Dust is oneof many aerosol types of relevance in the AOSR. Other main aerosol types

include organic aerosols, both naturaland anthropogenic (Liggio et al., 2016), as well as ammonium sulfate.

Passive remotesensing of aerosol over land is challenging because, fora cloud-free scene, most of the nadir
radiance is coming fromdirect reflection off the surface at visible wavelengths, notfromaerosol scattering. This is
particularly true forthe AOSR, which consists of an irregularly-shaped industrial area to the south comprised of
non-vegetated (cleared) mining locations anda second area to the north where mostly surface mining is occurring,
as both areas have high surface albedo in the visible. Within the AOSR, the land type changes on spatial scales
smaller than the typical 10 x 10 km AOD footprint of a satellite-based instrument. Considering the area surrounding
the AOSR, specifically the rectangular area between 55.0and 58.5°N and 114.0 to 108.5°W, the land is covered by
evergreen needleleaf forest (70%) and some deciduous broadleaf forest (23%), which is typical of the boreal forest
in the northern portions ofthe Albertaand Saskatchewan.

2  Method

In orderto study thespatiotemporal distribution of AOD in the AOSR, data fromseveral satellite-based instruments
are used. Satellite-based aerosol sensors are chosen based on a number of factors. One ofthe goals of the study is to
examine long-termAOD trends, so preference is givento instruments with longer data records. Instruments that
viewa scene with multiple viewing angles were selected as the multi-angle capability is useful for disentangling the
contributions to thescenereflectance by thesurfaceand by the overlying aerosols (e.g. Bevanetal., 2012). Such
instruments include Multi-angle Imaging SpectroRadiometer (MISR) (Diner et al., 1989), the Polarization and
Directionality of Earth Reflectances (POLDER) series (Deschamps et al, 1994) including POLDER/PARASOL
(Polarization & Anisotropy of Reflectance for Atmospheric Sciences coupled with Observations froma Lidar), and
the Along-Track Scanning Radiometer (ATSR) series (see Table 1 for the spatial resolution, temporal coverageand
wavelength at which AOD is reported for each of the satellites). In addition, MODIS (Moderate resolution Imaging
Spectroradiometer) is chosen partly because it has a long wavelength channel (2.1 um) that allows the surface
reflectance to be accurately determined over vegetation without contamination fromfine-mode aerosols (e.g.
particles with radiiof<0.2 um) by virtue ofthe correlationbetweenvisible and 2.1 um surface reflectance for
vegetation (e.g. Kaufman et al., 2002; Li etal., 2005). MODIS/Aquacollection 6 data are used (see Appendixfor
providersand version numbers of other satellite data products). For MODIS, there are two AQOD retrieval algorithns
yielding the Dark Target (DT) (Levy et al., 2013) and the Deep Blue (DB) (Hsu et al., 2013) products. Specifically,
the Corrected_Optical_Depth_Land (470550 nm) and the Deep_Blue_Aerosol_Optical _Depth 550 Land datasets

were used and confidence for both datasets was extracted fromthe Quality Assurance Land dataset. The Dark

Target algorithmexploits the factthat, for dark surfaces, aerosols tend to brightenthescene. Forhighly reflective
surfacessuchas snow in the visible spectral region, AOD cannot be retrieved using eitherthe DT or DB approach.
The MODIS Aqua DT productis also processed at 3km spatial resolutionin addition to the standard 10 km
resolutionavailable for both MODIS products (Levy et al., 2013). Each MODIS AOD measurementis assigneda
confidence value. Confidence valuesofland 0 indicate marginaland no confidence, respectively, while values of 2
and 3 representgood and ideal confidence (Levy etal., 2013). For MODIS/Aqua collection 6, data with
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confidence>1 are retained for validation. Thetheoretical basis ofthe MISR aerosol retrieval algorithmis given by
Diner et al. (2008). The aerosolretrieval for AATSRis described by Bevanetal. (2012) and references therein.
Deuzé etal. (2001) detailthe approach usedto retrieveaerosol information fromPOLDER observations over land.

MODIS Terra is not consideredsinceit is highly similar to MODIS Aqua but, for collection 6, the formeris less
reliable fortrend studies in spite of improvements relativeto collection 5 (Levy et al., 2015). The MODIS-based
Multiangle Implementation of Atmospheric Correction (MAIAC) (Lyapustinet al., 2011) product is notcurrently
available in the AOSR (van Donkelaar et al., 2016). VIIRS (Visible Infrared Imaging Radiometer Suite) (Hillger et
al., 2013) is not considered in this study because of its shorter data record relativeto the MODIS sensors. Active
remote sensing instruments are notconsidered because of the long revisit time and poor spatial coverage ofthe

relatively small AOSR. The focus in this paper is primarily on the different aerosol sensors, rather than the different

retrieval algorithms applied to the same satellite data(e.q. Poppet al., 2016), with the exception ofthe wide ly used
Deep Blue and Dark Target algorithms for MODIS.

Forvalidation of satellite-based AOD data, AERONET (Holben et al., 1998) is the ideal choice sincethe same
quantity is measured by this ground-based network of direct-sun multiband photometers and the ~3 minute typical
sampling interval generally ensures a good temporal coincidence during clear sky conditions. Quality-controlled
AERONET data (Level 2, version 2) are used (http://aeronet.gsfc.nasa.gov). CIMELCimel (French manufacturer)
CE318 sensors used by AERONET measure at several wavelength, some of them (e.g. 500 and 870 nm) are close to
the wavelengths at which theselected satellite instruments report AOD (e.g. 470, ~550, and 865 nm). There are two
AERONET sites in the oil sands region: Fort McMurray (56.752°N, 111.476°W) and Fort McKay (57.184°N,
111.64°W). Measurements at Fort McMurray started in 2005. The Fort McKay site has only beenin operationsince
August2013meaning that there is no temporal overlap with Advanced ATSR (AATSR) and only seven
coincidences with POLDER/PARASOL usingcoincidencecriteria of +12 minutes and 10 km. The spatial
coincidence criterion corresponds to the smallest AOD footprints of the selected datasets (Table 1). A larger spatial
coincidence criterionis not considered since, as shown below, strong spatial gradients in AOD exist in this aerosol
source region. Furthermore, as mentioned in Sect. 1, the surface typealso changes on such spatial scales. The
temporal coincidencecriterion was setto limit the number of independent AERONET measurements used in the
statistical analysis. There can be multiple AERONET observations that are temporally coincident with a satellite
observationand there canbe up to four spatial coincidentsatellite AODs during a satellite overpass ofan
AERONET site. All of these coincidences are treated as independentdatapoints in the validationand correlation
analyses. In orderto properly validate satellite AOD bias, AERONET 500 nm AOD:s are interpolated to thesatellite
AOD wavelengths (see Table 1) using the coincident AERONET Angstrémexponentderived from440 and 675 nm
measurements, exceptfor POLDER/PARASOL, for which no scaling ofthe AERONET AOD was applied.

Since individual AERONET and satellite AODs are not normally distributed, we use linear least-squares weighted

by Huber’s function to determine the slope and offsetsincethis is a robust regression method that does not

completely disregard highly deviating points (Bergstromand Edlund, 2014). The slope and offset values determined

using Huber’s weighting function are encompassed by the values obtained with seven alternative weighting
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functions. Similarly, due the non-normaldistribution ofthe individual AOD data, Spearman’s rank correlation
coefficient (r;) is chosen tostudy the site-specific AOD correlation based on individual AERONET -satellite

coincidences.

The ability of each satellite-based sensorto capture the AOD seasonality in snow-free months is determined at Fort
McMurray using thePearson’s correlation of monthly averaged AODs (using all overlapping years) with
AERONET. A minimum of 20 coincident data points per calendar month mustbe available for thatmonthto be
included in the correlation.

In orderto assess the ability of the satellite data to capture the spatial variability in this region, spatialcorrelationis.
determined-forthehourly in-situsurface-level PM, s fromthe 10 NAPS (National Air Pollution Surveillance) stations

(Table 2) and-satellite AODs averaged-overallcoincidenceswithin theirtemporaloverlap period - NAPS station

continuously monitorare used. Demerjian (2000) provided a review of the NAPS network, but since 2011, this
network has undergone a gradual shift in the continuous monitoring of PM, s mass density usingfromtapered

element oscillating microbalances (TEOMs)-The NARS networkis reviewed by Demeriian(2000) although

recently therehasheenagradualshiftintechnologysince 2011) to athe SHARP (Synchronized Hybrid Ambient

Real-time Particulate) monitoring system-which. The latter is a hybrid system, consisting ofa nephelometeranda

beta attenuation monitor (Hsu etal., 2016)._The spatial correlation between median satellite AODs and NAPS PM, 5
mass densities is determined using coincidentdata. The use of medians rather than means reduces the sensitivity to

outliers fromforest fires. The same 10km spatial coincidence criterion is used but temporal coincidence limit is

extended to +1 hourto match thetemporal resolution of the selected NAPS datasets.

Similar to the spatialand seasonal variability, the ability of the satellite instruments to capture interannual variability
can be assessed by correlating yearly satellite-based AODs averaged over all coincidences with NAPS PM, 5
measurements over theoverlap period. 20 coincidences in a calendar year are required for the yearto be includedin
the correlation calculation. As an example, for MISR, 14 sufficiently sampled years (2002-2015) are used in the
correlation with NAPS data at Millenniummine.

Fortemporal trends-in-A0D 2, an ordinary least-squares simple linear regressionis performed on relative anomalies

derived frombias-corrected annual average and median AODs. The bias correction involves subtracting the AOD

offset obtained through the validation with coincident Fort McMurray AERONET data. The mean ofthe yearly

averages andor medians is used to compute the relative anomalies. Similarly, for PM, s, the annual average of daily

average values are used sincethe PM, s auto-correlation timescale is on the order of 6.5 hours, based on analysis of
Albian mine PM, 5 data from2002. The extra step of daily averaging priorto annual averagingyields more
conservativeannual standarderror (s. e.) estimates. Partial years at thestart andthe end of a data record are
removed. Trend periods are givenbelow foreach sensor. The area over which the satellite-based AOD trend maps
are calculated is 0.1°x0.1° by default. This default setting is used to determine the AOD trend for both
MODIS/Aqua 10 km products (2003-2015). The trend domain considered in this work spans from56-58°N and 111-
112°W. Forsensors with poorer spatial coverage (MISR, AATSR, POLDER/PARASOL), the spatial binning is
expanded in latitudinal and longitudinal increments of 0.1° until there are >20 observations in each calendar year
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within at least one grid cell in the domain. The trend maps are ultimately generated at 0.3°x0.3° for AATSR (2003-
2011) and MISR (2000-2015) whereas a 0.4°x0.4° area is required for POLDER/PARASOL (2005-2013). Outlying
individual data points (>4 standard deviations above the climatological average in the domain) are recursively
filtered mainly to reduce the influence of forestfires on trends. The same filtering is applied to the PM, s datasets.
Interannual consistency in the month-to-month sampling is checked for any location with a positive satellite AOD
trend significant at the 95% confidence interval by calculating the average day-of-the-year for each calendar year.
Such temporal sampling anomalies occur for MISR AOD data at some locations ifa0.1°x0.1° grid were used, for
example. The Albian mine (2001-2008) and Shell Muskeg River (2009-2015) forest-fire-filtered PM, 5 datasets were
merged fortrend analysis sincethe sensor was relocated fromthe formerto the latter site in January 2009 and these

sites are separated by <5 km.

3 Results

First, the general spatial distribution of AOD is illustrated for some of the aforementioned data sets. In Fig. 1, the
climatologicalaverage POLDER AOD ona0.1° x 0.1° grid is shown. This is the default grid used for
climatological maps of all satellite AOD datasets. The POLDER sample size pergrid cell is 90 to 170 in the AOSR
overthe discontinuous period from1996 to 2013 (see Table 1). There is a clear hotspotin 865 nm AOD in the
AOSRregion, roughly double thesurrounding background values. Notethatfor POLDER and MISR, there are
expected voids in their spatial coverage (Fig. 1) due to the spatial sampling of these instruments, whereas MODIS
and AATSRfootprints canbe centered onany geolocation within the AOSR.

The AOD hotspot in the AOSR seen by POLDER is less obvious with MISR (Fig. 1). FheThis is consistentwith the
relatively poorer ability of MISR to capture spatial variability with- MISRis-generallymuchworsethanthe other
instrumentsbased on spatial correlations of average satellite-basedmedian AOD versus-average NARSand PM, 5

mass density overthe ~10available sites (Table 3). While the spatial correlation analysis relies on temporally

coincidentdata, the less obvious AOD hotspotfor MISRin Fig. 1 is also partly due to thespatiotemporal sampling

by this instrument. Some locations are only sampled during ashortperiod of theyear, and thus the seasonal cycle of

AODs aliased into the MISR spatial distribution. Table 4 provides thenumber of coincidences for each satellite
with the both Fort McMurray and Fort McKay AERONET observations to provide a relativesenseof how the
coincidentsample sizes varyas a function of the satellite AOD data product.

The climatological AOD maps forthe MODIS/Aqua collection6 DT and DB products (2002-2014) are also shown
in Fig. 1 howeverthereis amajor issue with the confidence as shownin Fig. 2. Near the Syncrude facility at
Mildred Lake (57.05°N, 111.6°W), the confidence approaches 0 in both MODIS products in the two adjacent
0.1°x0.1° cells (Fig. 2). In the westerncell, the inadequate confidence in MODIS Aquacollection6 DT datais due
to failure ofthe AOD retrieval algorithmdue to the 2.1 um reflectance exceeding the allowed upper limit of 0.35.
This is a fundamental weaknesslimitation ofthe Dark Target retrieval strategy (seesect. 2). In the adjacenteastern
cell, the low confidence stems fromthe low number 0f0.5x0.5 km’ pixels (see Table 1) used in the AOD retrieval.

The number of pixels used in the AOD retrievalis reduced by the inland water mask (Carrollet al., 2016), the high
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2.1 um reflectance (>0.35), but also by cloud masking and an independent test for optically thicker cirrus, diagnosed
using the 1.38 um channel (Levy et al., 2013; Hubanks, 2015). The high reflectance in the near-infrared affecting
the westerncelland possibly the easterncell is typical of desert or sandy loam. The higher spatial resolutionofthe
MODIS-Aqua3km DT data clarifies the importance ofthis issue: key areas in the AOSR are simply not monitored
with confidenceby thecurrent MODIS/Aqua DT product. Forexample, there are 0.01° x 0.01° areas with no AOD
measurements ofthe highest confidence in 12 years, whereas surrounding, equal areas havetens of observations.
The lack of confidence is not unique to the AOSR. Low confidence is also observedin urban areas within the
province (e.g. Calgary, notshown). The low confidence in the MODIS DB product is due tothe spatial
heterogeneity of the surface between vegetated and non-vegetated area, which leads to pixels falsely identified as
cloudy (N. Christina Hsu, NASA, priv. communication). Li et al. (2009) identified the need forimproved AOD
measurements using the DB algorithmover transitional land covers.

A similar issue exists for AATSR (Fig. 3) and ATSR-2 (not shown), which both have an exceedingly small number
of successful retrievals ina 0.1° x 0.1° area containing the Mildred Lake Syncrude facility (e.g. N<10) during their
respective missions (Table 1). Similarly to MODIS, this is probably caused by falsely identifying brightpatches in
otherwise vegetated scenesas clouds (P. North, SwanseaUniversity, priv. communication). Cloud fraction for
successful AOD retrievals tends to be as highas 0.18 within the oil sands region, including the northernmining
region, yet drops to 0.02in the surrounding region (Fig. 3). Note that cloudy 1 x 1 km’ pixels are not used during the
AATSRAODretrieval. The spatial correlation coefficientbetweensample size and cloud fraction as illustratedin
Fig. 3is -0.73, indicating that thespatial variation in AATSR sample size is mostly related to cloud flagging.
Neither POLDER nor MISR showa sampling void in the AOSR. Table 1shows thatthese two sensor types have
coarser AOD spatial resolution by a factor of 3-4than MODIS, ATSR-2,and AATSR. Note that some of the PM, 5
sites are located in the periphery of the industrialand mining areas and thus spatial coincidences exist for MODIS

and AATSRin spite of the aforementioned issues, giventhe 10 km coincidencecriterion.

In terms ofthe validation using AERONET data (Table 4), MISR has a large-multiplicative bias (i.e. small-slope
significantly less than unity), which is consistentbetweensimilar at both sites in the AOSR. BExcluding-Fort
G A . 3 2 A-theThe slopeimprovesto
074-and is ofa similar value to the slope found in previous studies for inland (Liu et al., 2004), dusty (Kahnetal.,
2005), and urban environments (Jiang et al., 2007). MODIS DB tends to yield more data than the DT product, but
the correlation is lower with AERONET on individual coincidences and in terms of the seasonal variation. At
boththe Fort McMurray AERONET sites, the MODIS products behave oppositely in terms of multiplicative and
additive biases (discussed in Sect. 4). AATSRand POLDER/PARASOLsh@wnomapM@fme;m&sqm&h%h&laﬁer

whave nomajor validation

shortcomings.

3.1 Trends
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Before considering trends in the AOSR, it is usefulto look at whether thedifferent satellite data products capture the
AOD interannual variability at Fort McMurray, where a sufficiently long record (2005-2015) of 500 nm AOD
exists. All of the products capture the interannual variability of the annual mean AOD observed by AERONET at
Fort McMurray (Table 5). Correlation coefficients for forest-fire-filtered annual means tendto be only slightly
lower.

In general, very few ofthe 200 grid cells in the trend domain (56-58°N, 111-112°W) indicate a statistically
significant (2s.e.) positivetrendthat is consistentfromone satellite to the next. In fact, there are no pointsin the
domain forwhich MODIS/Aqua DT (2003-2013), AATSR, or ATSR-2 (1996-2002, 0.3°x0.3°) showa significant
positive trend in AOD. Similarly, POLDER/PARASOL only shows a significant positive trendin three adjacentgrid
points at 57.3°N between 111.3and 111.5°W (see Fig. 4) and MISRalso finds a significant positivetrend at only
two locations in the domain. Finally, MODIS/Aqua DB has two points with the largest and mostsignificant positive
AODtrend inthe region of the Muskeg River mine at 57.25°N, 111.25°W (Fig. 4). In fact, two satellite data
products, namely POLDER/PARASOL and MODIS/Aqua DB, exhibit a statistically significant positivetrendin
this mining area. Although notstatistically differentfromzero, the AOD trend in both AATSRand MISR data is
positive in the area of the positive POLDER/PARASOL trend (Fig. 4), whereas MODIS DT tends to showan
insignificant negative trend.

Changesto thesurface may be at the root of the increasing AOD trend in this area, either since clearing of
vegetationcould lead to higher concentrations of dust, or by biasingthe AOD retrieval. Trends in surfacealbedo
were determined fromthe combined MODIS Terra/Aqua MCD43C3albedo dataproduct at four wavelengths
relevant to the MODIS or POLDER AOD retrievals: 470, 645, 860, and 2130 nm (see AppendixA). For all four
wavelengths, neither the largestnor the most significant trends in surface reflectivity occurat 57.25°N, 111.25°W
(not shown), where the largest and mostsignificant MODIS DB AOD trend occurs and alsowithin the larger area of
the spatially coherent POLDER/PARASOL AOD trend.

A significant positive trend of 0.2420.06(4.1+1.1)%/year (£1 standard error) (Figs. 5-6) and 0-24+0.07
pglm’l(5.7+1.6)%/year is detected in the Albian mine/ Shell Muskeg River merged annual averageand median
PM, s mass densities (2002-2015), respectively. Limiting the merged PM,, s dataset to the warmseason (April-
October) to mimic the temporal coverage of the satellite data (Table 4), the trend(0.25:0.07 pg/a/relative trend
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using annual averages is (4.6+1.2)%/year}does, which is notchange significantly fromthe trend using year-round
data (Fig. 6). A consistent trend of 0.21::0.09 ug/m*/(4.8+2.1)%/year is found in annually-averaged PM, s at Albian
mine (2002-2008) alone, and the trendthere duringthe warmseason is (4.3+1.1)%/year, also statistically significant
and not different{0.2420.06 pg/m*/from the year).-round trend. Furthermore, thereis no indication ofa
discontinuity between 2008 and 2009 when the monitoring sitewas relocated. The relative trendin PM, s at the

surface is in quantitative agreement with the PM., crelative trends derived fromMODIS/Aqua Deep Blue and
POLDER/PARASOL annually averaged AOD data over similar, yet shorter periods. For both MODIS/Aqua Deep
Blue and POLDER/PARASOL, trends usingannual medians agree with trends determined usingannual averages
within theirrespective standarderrors (1s.e.). The low bias of POLDER/PARASOL AOD near thesetwo Shell
mines is expected fromthe validation with AERONET at Fort McMurray (Table 4) and previous work on larger

spatialscales (Deuzé et al., 2001).

Contrary to the localized, significant AOD trend in satellite data records in the eastern portion of the Muskeg River
region, a statistically significant trend is found at two other ground-based stations within the AOSR for the period
2002-2014, namely Syncrude UELand Millenniummine (Fig. 6). The largest trend occurs at Millenniummine, the
closestNAPS station to the southeast ofthe Shell Muskeg Riverregion (see Table 2and Fig. 4 for location). The
trend is insignificant using either annual means or median PM, s data at CNRL Horizon and Anzac wheredata
records are shorter, while the trend at Wapasu (2013-2015) was not evaluated. The PM, s trends at the remaining
sites in the AOSR, namely two sites at Fort McMurray and one at Fort McKay are discussed below. Notethat
POLDER/PARASOL does notmeasure at Syncrude UEL (see Table 3) and there is insufficient sampling at
MillenniumMine overan area 0f0.4°x0.4° in each ofthe years (2005-2013) fortrend analysis. For
POLDER/PARASOL, the trend, while mostly insignificantin the AOSR, is always positive. For AATSR, the AOSR
has regions of statistically insignificant negativeand positivetrends. For MISR, the trend is positive in 56% ofthe
trend domain and evenmore so (83%) in the northern half of the domain (57-58°N). For MODIS DB and DT, some
of the AOSRis not sufficiently sampled with high confidence (see Sect. 2), but where confidence is >1, the trend
tends tobe negative in 69% and 77% of this area, respectively. The calibration of the MODIS reflective solar bands

is achieved by calibration with the solar diffuser. Some negative drift in AOD (Levy et al., 2015) is expected for

MODIS Aqua similarto its Terra counterpart (see Sect. 2) as the designs of the solar diffuser and its stability

monitorare nearly identical in the two MODIS sensors (Wuetal., 2013). Li etal. (2016) find asmall positivetrend
. . A L

level. Bari and Kindzierski (2016) found no indications ofa positive trend in PM, s at Fort McKay andthe Fort
McMurray Athabasca Valley site, using a longer period (1998-2014), although, as shown in Fig. 2 of Bari and
Kindzierski (2016) for Fort McKay, thereis an abrupt decrease in PM, s mass densities that occurs between 2001

and 2002 that has a profound effecton the trendandits uncertainty. This discontinuity is observed at all sites in the
AOSRthat extend backto 2001. An earlier study by thesame authors (2015) also indicated notrend between 1998-
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4 Discussionand conclusions

In this section, the advantages and limitations of the various data products are summarized. As shown in Table 4, all
of the satellite sensors capture the temporal variability in AOD over Fort McMurray, based on correlations with
AERONET, in spite ofthe low AODs there (e.g. Fig. 1). This temporal variability is largely driven by day-to-day
variability as forest fires lead to episodes with large AODs (>3) in summer months thatstrongly influence the
calculated correlation.

The two MODIS AOD data products (Deep Blue and Dark Target) have low confidencein the AOSR partly dueto
issuesrelating to elevated surface reflectivity in the vicinity of the Mildred Lake Syncrude facility. However, the
MODIS dark target product is the best at capturing temporal variability in terms of the correlationscorrelation with
individual AERONET AODAQODs at Fort McMurray and in terms of capturing the month-to-month variability . This

islikely dueto MODIS s combinationofStronger short-termcorrelation with AERONET AQODs reflects the

datarecord than at Fort McKay, the-MODIS DT has a slope changes-insignificant o
AOD s-limitedgreater than unity, in contrast to <6~MODIS DB (Table 4). The same pattern of-censistently high

and lowslope values forthe MODIS AquaDT and DB (collection 6) products, respectively, was found over two
sites in Pakistan, namely Lahore and Karachi, by Bilal et al. (2016) and during non-fire summertime periods over
semi-arid Nevada and California as shownin Table 4 of the work of Loria-Salazar et al. (2016). A high slope may
be related to the use ofthe 2.1 um channelto determine the reflectivity in the visible over non-vegetated surfaces as
suggested by Bilal et al. (2016). High-biased AODs result becausethe surface reflectance in the visible assumed by
the retrieval algorithmis less than theactual valueas therelationship betweenthe visible and 2.1 um was developed
for vegetated land for which a stronger spectral variation exists than for barren land. Liet al. (2005) have shownthat
the spectral reflectancerelationship is much different even for dry vegetationthan green vegetation. Note that high
day-to-day variability canbe captured in spite of biases in assumed surface reflectancesince the latter changes
slowly with time over the warmseason, whensuccessful measurements occur more frequently. A MODIS algorithm
designed to function over inhomogeneous surfaces suchas the AOSRregion, and whichwould also likely be
applicable to urbanareas, is being investigated to exploit the many benefits of MODIS radiance data. One such
benefitis the twice-daily revisit overthe AOSRthatthe currentmulti-angle sensors, namely MISRand SLSTR (Sea
and Land Surface Temperature Radiometer) (Coppoetal., 2010), cannot offer. SLSTR, onboardthe recently
launched Sentinel-3a satellite, is the next generation in the ATSR series.

MISR clearly captures the short-termand month-to-month AOD variability at Fort McMurray based on correlations
atthe individual coincidence level and the monthly time scale (Table 4), but struggles to capture the local spatial
variability including the AOD hotspotin the AOSR as discussed in Sect. 3. The MISR low bias may be related to the
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need for darker spherical particles (Kahn et al., 20052010) given that forest fire smoke plays a significant role
throughout the western Canada in the warmseason (O’Neill et al., 2002). Spherical particles with lowersingle
scattering albedo (SSA) may also be requiredto properly represent local anthropogenic pollution (Kahnetal.,
20052010) in the AOSR. The 3x3 superpixelaveragingthat is used when the MISR retrieval fails for the central
superpixel could also contribute to a lowbias (Jiang et al., 2007), particularly at Fort McKay as background AODs
to the west could be lowering the average.

AATSRhas amajorspatial sampling issue in the heart of the AOSR, but also captures month-to-month variability
from late spring to early autumn (Table 4) as well as short-term(Table 4) and spatial variability (Table 3). Based on
a previousanalysis (Che et al., 2016), the AATSR AOD underestimation of the Swansea University product (also

POLDER has a known negative offsetin AOD (Deuzé et al., 2001), confirmed usingcoincident Fort McMurray
AERONET AOD data. However POLDER/PARASOLisForthe temporal trend calculation, the approach of using

relative anomalies based on bias-corrected AODs is particularly important for POLDER/PARASOL because the

very low 865 nm AODs (Fig. 1) and the negative offset(Table 4) do not allow a relative trend to be meaningful

without bias correction. Nevertheless, POLDER/PARASOL is the among the mostaccurate satellite-based aerosol

sensor at Fort McMurray during periods of the higher AODs (e.g.>0.314, Table 4), when its negative offset
becomes rathertrivial. Overall, the POLDER AOD product is withouta major weakness relative to the other
instruments, althoughit is provided at a relatively coarse spatial resolution (Table 1) and the fixed spatial sampling
pattern of this sensor inhibits the application of spatial oversampling techniques. The use of polarized radiances
reduces the sensitivity of the retrieved AOD to surface reflectance (e.g. Deuzé et al., 2001). The trend in
POLDER/PARASOL AOD at the Shellmines (Albian and Shell Muskeg River) is probably not driven byatrend in
surface reflectance since agreementwith AERONET tendsto be independentof surface type (e.g. Chen et al., 2015).
A future sensor of POLDER heritage, namely the Multi-viewing, Multi-channel, Multi-polarisation Imager (3M1),
offers higher spatial resolution, the availability of longer wavelength channels, and the potential foraccurate

monitoring ofthe localaerosol loading in the decade to come.

While AODs in the AOSRare relatively smallaccording to POLDER/PARASOL (Fig. 1), the significantly positive
trend in AOD from this satellite sensor and the similartrend in observed surface-level PM, 5 in the region of the
Muskeg River mine points to theneedto continue monitoring of this region with a combination of surface and
satellite-based aerosol observations.
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MODIS data is obtained fromftp://ladsweb.nascom.nasa.gov/allData/. AATSRand ATSR-2version4.1 dataare
from Swansea University and can be obtained fromthe Aerosol CCl website (http://www.esa-aerosol-cci.org/)

following registration. Thecurrent file version (F12) is used for MISR
(ftp://15eil0l.larc.nasa.gov/MISR/MIL2ASAE.002). The selected MISR AOD product is named the “regional best
estimate of spectral optical depth”. POLDER data was obtained fromCNES (http://polder.cnes.fr), but data can

currently be obtained fromhttp://www.icare.univ-lille1.fr/ following registration. A POLDER AOD datumis
filtered if any ofthe following statements are true (see =-M-Bréon-(2011):)):

1)
2)
3)
4)

5)
6)

7)

8)

9

The central pixel is snow-covered.

One ofthe cloud tests is not applied.

None ofthe 9 radiance pixels which formthe AOD superpixel has clear sky.

Sufficient data couplesdonotexist. The couplesare:

a) 865 nmé& 910 nm,

b) Q443 & U443,

c) Q670 & U670,

d) Q865 & U865,
where Q and U are the derived Stokes elements and the number is the wavelength (in nm) of the
channel.

Ozone absorption is notcorrected (using TOMS or ECMWF).

Stratospheric aerosol correction is uncertain or imprecise (i.e. stratospheric AOD larger thana certain

threshold).

Minimum scattering angle is larger thana threshold or maximum scattering angle is smallerthan a

threshold.

Acerosol optical thickness is larger than a threshold such that surface reflectance cannot be estimated

adequately.

A large difference between measured and modeled reflectance exists for443nm.

10) Differences are too large between measured and modeled reflectance (risk of glitter).

11) Meteorological dataindicate the presence of snowat ground level.

12) The quality indexis 0.00 forviewing geometry conditions

13) The quality indexis 0.00 for polarized reflectance fit.
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Satellite Time period  Wavelength Spatial resolution of AOD Spatial resolution of
(nm) superpixel at nadir radiances (km?)
(ki)
MISR 2000-2015 558 176 x 17.6 11x11
MODIS: Terra 2000-2015 470, 550, 660 10 x 10 (also 3 x 3) 0.25x025t01xx1
Aqua 2002-2015
POLDER: 1 1996-1997 865 18 x 21 6x7
2 2003

(PARASOL)3 2005-2013
ATSR: ATSR-2 1995-2003 550 10 x 10 1x1

AATSR 2002-2012

Table 1. Spatial resolutionof AOD data products fromselected satellite instruments. The third column contains the

wavelength at which aerosol optical depth is reported in each satellite data product. MISRand both MODIS

instruments are currently operating.
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Station name lat(°N) lon(°W) Time span
Anzac 56.4493 -111.0372 2006-2015
Fort McMurray Athabasca Valley 56.7328 -111.39 1997-2015
Fort McMurray Patricia MclInnes 56.7522 -111.476 1999-2015
Millenniummine 56.97 -111.4 2001-2015
Syncrude Upgrader Expansion 1 57.1492 -111.642 2002-2015
Fort McKay 57.1894 -111.641 1997-2015
Wapasu 57.2383 -110.9028 2013-2015
Shell Muskeg River 57.2491 -111.508567 2009-2015
Albian mine 57.2808 -111.526 2001-2009
Canadian Natural Resources Ltd. Horizon 57.3037 -111.739617 2008-2015

Table 2. Selected NAPSPM, 5 sitesand time span ofavailable data (inclusive)
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AOD product R N
POLDER/PARASOL 865 nm 0.8364 8
AATSR550 nm 07273 9
MISR 558 nm -0.4120 10
MODIS/Aqua DT 470550 nm 0.4923 10
MODIS/Aqgua DB550 nm 0.8157 10

Table 3. Spatial correlation between PM, s mass density and AOD using meansmedians of coincident data-cverthe

entireoverlappingperiodat 10sites in the AOSR. Wapasu has insufficient or no temporal overlap with
POLDER/PARASOL and AATSR. Syncrude UEL is not spatially coincidentwith any ofthe POLDER locations

given the 10 km criterion (see Sect. 2).
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sensor s slope offset seasonalr  month range N
0.81793 0.89867  0.03040233 0.84 4-10 5508
AquaDBv6 0.94686 1.00013  0.01710036 0.84 4-10 626
4748
0.956875 111210 -0.00130117 0.99 4-10 4084197
AquaDTv6 0.972806 1.08088 -0.01770223 0.95995 5-9 431
1.09
0.92867 0.831 -0.03018 0.89 5-10 414
PARASOL - - - - - -
0.91888 0.88862  0.02650253 0.96 5-10 560
AATSR - - - - - -
0.89862 0.63731  0.02930219 0.88 39 337
MISR 0.93668 0.64652  0.0364032 - - 87

Table 4. Statistical comparison of coincident AODs observed by satellite-based sensorsand AERONET

CIMELCimel sun photometerphotometers. Foreach satellite AOD product, the upper row is for Fort McMurray and
the lowerrow is for Fort McKay. The CIMELCimel 500 nm AOD, scaled to thesatellite AOD wavelength (see
Sect. 2), is used for comparisonwith all satellite sensors except POLDER/PARASOL, for which the CIMELCimel
870 nm AOD is more appropriate (see Table 1). Fhesi i i i i

offseta umes-AERON

respectively The number of MISR-Fort McKay coincidences is insufficient to assess the month-to-month
variability.
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Including +4c Excluding +4c
outliers outliers
POLDER/PARASOL 0.995 0.81
MISR 0.91 0.94
AATSR 0.98 0.92
MODISDT 0.9798 0.9594
MODIS DB 0.91 0.86

Table 5. Correlation ofannual mean AODs with Fort McMurray AERONET AODs duringthe respective overlap

periods ofthe various satellite AOD products. In the rightmost column, the contribution of large forest fires has been

removed from AERONET data and satellite datasets using +4 standard deviations () as a cutoff.
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Figure 1. Climatologicalaverage AOD maps on a 0.1° x 0.1° latitude-longitude grid. (top left) POLDER 865 hm
(1996-2013). Note the gaps in time between the differentmembers ofthe POLDER series in Table 1. (top right)
MISR 558 nm (2000-2015). (bottomleft) MODIS/Aqua DT usingonly confidence of 3(2002-2015). (bottom
centre) MODIS/Aqua DB using only cenfidenceconfidences of 2-3 (2002-2015).) following Sayeretal., 2013.
(bottomright) AATSR 550 nm (2002-2012). Typical N is ~65 for AATSR (see below) and white areas indicate
N<20. Black lines trace out the three surface mining areas in this and subsequent figures. —Average coincident
AERONET AOD at Fort McMurray is superimposed as a diamondwith a black outline. In each panel, the AOD

ranges fromO to the greater of the maximum climatological mean satellite AOD orthe Fort McMurray AERONET

mean AOD, except for MISR, for which the AOD range is capped at 0.14 to not emphasize the anomalously high

AOD at Moose Lake (57.6°N, 112.5°W).
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Figure 2. MapMaps of climatologicalaveragefraction of pixels with a specific confidence (2002-2014) for
MODIS/Aqua DT (lefttop) and DB (dightbottom) AODs. Lower confidence is expected over Moose Lake {(57.6°N;
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112.5°\Wh-and the Richardson sand dunes (58.0°N, 111.0°W)._MODIS DB only reportsa fill value when confidence

is 0 in contrastto MODIS DT, thus the bottomright plot accounts for fill values, whereas the top right plot (for
MODIS DT) does not.
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Figure 3. Map of sample size (left) and average cloud fraction within AOD superpixels when the AOD retrieval is
successful (right), compiled fromthe entire AATSR data record. Smaller sample sizes are expected over Moose
Lake and Gordon Lake (56.5°N, 110.5°W).
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Figure 4. Areas with asignificantpositive trend in AOD in the POLDER/PARASOL, and MODIS/AquaDB data
records. The area over which the AOD time series is determined for MODIS/Aqua DB (0.1x0.1°), and
POLDER/PARASOL (0.4x0.4°) is outlined in pink and blue, respectively. Locations of 10 NAPS PM, s monitoring
sites are also shown as small green squares. The central one of 3adjacent (overlapping) grid cells at constant latitude
is plotted for POLDER/PARASOL (see Sect. 3 for details). The grid cellwith the largesttrendin the domain is
plotted for MODIS/Aqua DB (see Sect. 3for details). Note thatthe Albian mine site (57.2808°N, 111.526°W) was
replaced by thenearby Shell Muskeg River site (57.2491°N, 111.509°W) in 2009 (both stationsymbols are filled in
red). The two AERONET instruments are co-located with NAPS monitors andthose sites are filled in blue.
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Figure 5. AnnualaverageRelative anomalies of annual mean PM, s mass density for the merged Albianmine and
Shell Muskeg River dataset, along with PM., cannualaveragesderived fromsatelli atarecordsrelative
anomalies of bias-corrected annual mean AODs for POLDER/PARASOL and MODIS/Aqua DB (see Sect. 3 for

details and Fig. 4 for satellite trend areas). Each satellite time series is plotted at the average decimal time foreach

calendaryear. Trend lines are fitted to each time series using a matching colour. Vertical error bars indicate £1
relative standarderror ofthe annual mean. There are, on average, 33and 50 observations per year for

POLDER/PARASOL and MODIS/AquaDB, respectively. The secondanyordinate-appliestothe MODIS DB
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Figure 6. FrendRelative trend in annually averaged PM, s mass density calculated using NAPS PM, ;s data for three

locations, namely the merged Albian mine and Shell Muskeg River dataset (2002-2015), Millennium mine (2002-
2014) and Syncrude UE1 (2003-2014), orderived-fromin satellite AODs in the vicinity of Shell’s Albian and

Muskeg River mines (see Fig. 4 and Sect. 3). The trend is also determined for the NAPS PM, s merged Albian Mine

— Shell Muskeg River (AM-SMR) dataset limiting to the warm season (April to October). Trend uncertainty is

indicated with a vertical bar (+1s.e.).
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