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Response to short comment by Dr. Andrew Sayer 1 

We thank Dr. Sayer for his suggestions (in red).   2 
  3 
However, I see they use the Dark Target AOD product at 470 nm, rather than 550 nm. 550 nm is the 4 
main reference wavelength for this product, the one that has been validated, and the one which is 5 
generally recommended to be used (and is indeed used by most data users).  6 
 7 
We agree with this comment. It was realized after the original submission of the manuscript that the 8 
470 nm product was selected unintentionally instead of the 550 nm product. Rather than withdraw the 9 
manuscript or ask for a long extension to regenerate a decade of MATLAB *.mat files required as input 10 
for our validation and mapping software, the Dark Target AOD at 470 nm was retained temporarily with 11 
the full intention of redoing the map in Fig. 1, the validation results (Table 4), et cetera, at the next stage 12 
in the review process.  13 
 14 
We now write at p2L28: 15 
 16 
Specifically, the Corrected_Optical_Depth_Land (550 nm) and the Deep_Blue_Aerosol_Optical_Depth_550_Land 17 
datasets were used and confidence for both datasets was extracted from the Quality_Assurance_Land dataset. 18 
 19 
Similarly, the Deep Blue AOD quality flag is in Deep_Blue_Aerosol_Optical_Depth_550_Land_QA_Flag, 20 
but we also provide a data set which already has the quality flag mask applied  21 
(Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate) so the user does not have to do the 22 
filtering themselves. It is not clear to me from the paper which SDS was used to QA-filter the Deep Blue 23 
data but I am assuming it is the above. More information can be found in the MODIS aerosol file spec 24 
document (http://modisatmos.gsfc.nasa.gov/_specs_c6/MOD04_L2_CDL_2013_03_21.txt) or on our 25 
website, http://deepblue.gsfc.nasa.gov. Could this be clarified? 26 
 27 
We agree that the ACPD manuscript fails to name the SDS used to QA-filter the Deep Blue data. 28 
‘Quality_Assurance_Land’ is the SDS used.  29 
 30 
The change to the manuscript is contained in the sentence mentioned above at p2L28, in response to 31 
the previous comment.       32 
 33 
Also, which ATSR product is used? There are at least 3 being produced in Europe in the framework of the 34 
ESA CCI project, and they all have different approaches and results (see Popp et al, Remote Sensing, 35 
2016, doi:10.3390/rs8050421 for an overview). My inference is that this is the Swansea algorithm (Peter 36 
North’s group) but I think this should be stated more clearly.  37 
 38 
The selected ATSR product is stated clearly in the appendix of the existing manuscript (p13L17) and the 39 
appendix is referenced at p2L26 in connection with the satellite data products. Information on the ATSR 40 
product is in the following sentence of the appendix (p13L17)    41 
 42 
AATSR and ATSR-2 version 4.1 data are from Swansea University and can be obtained from the Aerosol CCI 43 
website (http://www.esa-aerosol-cci.org/) following registration.   44 
 45 
Perhaps the others could be added to the analysis as well, if this is not too much effort. Similar to Dark 46 
Target vs. Deep Blue for MODIS, the various ATSR algorithms have different coverage.  47 
 48 
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There are three different algorithms for both AATSR and ATSR-2, and at least two POLDER algorithms, 1 
several MODIS products (Terra vs. Aqua, Deep Blue vs. Dark Target), plus MISR. That is eleven, and it is 2 
not an exhaustive list of available products from these satellite-based sensors. The primary focus of this 3 
paper is not on algorithms but on the different aerosol sensors. The Swansea University algorithm was 4 
chosen since initially they had, by far, the longest AATSR data record available.  5 
To make this decision clear, we now write at p3L9:  6 
 7 
The focus in this paper is primarily on the different aerosol sensors, rather than the different retrieval algorithms 8 

applied to the same satellite data (e.g. Popp et al., 2016), with the exception of the widely used Deep Blue and Dark 9 

Target algorithms for MODIS. 10 

For POLDER, the data product the authors have used reports AOD at 865 nm. Due to the wavelength 11 
dependence of AOD, in most cases this means that the AOD will be much lower at 865 nm than 550 nm. 12 
The smaller signal will probably cause problems for relationships constructed using this AOD, plus one 13 
would not expect a close match between AOD at 550 nm (given by the other sensors) and 865 nm since 14 
the spectral dependence of AOD is determined by the aerosol composition. I wonder if another POLDER 15 
data product like GRASP (see e.g. http://www.grasp-open.com/products/ ) which does report AOD at 16 
550 nm would be more useful here (and also allow for a more direct comparison between the various 17 
data sets). 18 
    19 
We have used the only POLDER AOD data product that was available at CNES’s POLDER website. We did 20 
not search the web or the literature for alternate POLDER products.  21 
 22 
The different satellite AOD data sets are essentially not compared in a quantitative way. The 23 
quantitative comparison is essentially against AERONET and thus the different wavelength (865 versus 24 
550 nm) is not a major issue since AERONET measures at 870 nm and many wavelengths in the visible. 25 
The smaller aerosol signal at 865 nm does not cause problems for the linear regression relationship 26 
constructed between POLDER and AERONET AODs. This is obvious from the high correlation coefficients 27 
for POLDER in Tables 3-5. Also POLDER reports AOD at 865 nm, but uses measurements at 670 nm in the 28 
AOD retrieval.    29 
 30 
I had also been under the impression that the particular POLDER AOD retrieval data set the authors are 31 
using is intended to be only a fine-mode AOD retrieval, rather than a total-AOD retrieval, which further 32 
complicates things. However, I may be mistaken about that as I have not used POLDER data myself for a 33 
few years now.  34 
 35 
Dr. Sayer makes an interesting point here. This is not a fine-mode AOD product; total AOD is retrieved 36 
and reported. See: 37 
 http://www.icare.univ-lille1.fr//projects_data/parasol/docs/Parasol_Level-2_format.pdf.  38 
However, the use of polarized radiances in the POLDER retrieval greatly reduces the sensitivity of the 39 
retrieval to coarse particles. Thus, it is possible that a coarse-mode aerosol plume could, to some extent, 40 
mask the polarization signal from underlying fine-mode particles if such an arrangement occurred. 41 
Ultimately, the low sensitivity of POLDER to coarse-mode particles appears to be a minor issue at the 42 
two AERONET sites (Fort McMurray and Fort McKay) given the lack of bias and the high degree of 43 
correlation with AERONET AOD, in spite of the fact that coarse-mode dust is known to be significant 44 
contributor in this region, particularly at Fort McKay (based on AATSR dust fraction, not shown).         45 
   46 

http://www.icare.univ-lille1.fr/projects_data/parasol/docs/Parasol_Level-2_format.pdf
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I note in the text that AERONET AOD was interpolated to the satellite wavelengths (which is the 1 
standard practice), but Table 4’s caption says that AERONET data at 500 nm were used. I guess that this 2 
is an error in the caption, but can this be clarified? 3 
 4 
Dr. Sayer is correct that this needs clarification, even though there is not an error. AERONET 500 nm 5 
AOD is used, however it is scaled to the satellite wavelengths.  6 
In the caption, we now write: 7 
 8 
The Cimel 500 nm AOD, scaled to the satellite AOD wavelength (see Sect. 2), is used for comparison with all 9 
satellite sensors except POLDER/PARASOL, for which the Cimel 870 nm AOD is more appropriate (see Table 1). 10 
 11 
In that case it might be better to allow the level 2 data to occupy multiple grid cells (corresponding to 12 
the actual retrieval footprint) than to snap them to the grid cell nearest to the pixel centre (which is 13 
what I assume is being done here). If the retrieval pixels are larger than the grid size (which is the case 14 
here) then it does not really make sense to assign a pixel to one grid cell, when it occupies multiple grid 15 
cells.   16 
 17 
The orientation of actual footprint would need to be known and, for POLDER,  this information is not 18 
available for each observation: only the latitude and longitude at the center of the AOD superpixel is 19 
provided. In general, we disagree that it does not make sense to assign a pixel to one grid cell. This is 20 
referred to as spatial oversampling and can be very revealing about localized sources of aerosols.  21 
 22 
As a general comment on this figure, I would recommend keeping the colour scales the same (and 23 
ideally start at zero) to allow a direct comparison between the different data products. Right now it is 24 
hard to compare them because the colour bars are different.  I realise POLDER is the odd one out here 25 
since it is at a longer wavelength, but the other data sets (at or near 550 nm) should be on a consistent 26 
scale. I’d also suggest mentioning again in the caption that POLDER is at 865 nm, hence the lower AODs.    27 
 28 
This recommendation initially seemed like a good one, but even the AOD differences between the 29 
MODIS products using the respective confidence values suggested by Dr. Sayer near the Syncrude facility 30 
are quite large, as shown in this Deep Blue climatological mean AOD map using confidence 2-3, but with 31 
the AOD range of the colour bar extending to 0.26 to cover the maximum climatological AOD of Dark 32 
Target (confidence=3).  33 
 34 



 

4 
 

 1 
 2 
Including such a figure would severely compromise our primary goal for Fig. 1, which is to show    3 
the spatial gradients in AOD in this region. The colour scales have been changed to have a common 4 
lower limit of 0.   5 
We already mentioned in the caption that POLDER is at 865 nm: “(top left) POLDER 865 nm (1996-2013)”.  6 
Just as a point of information, the Deep Blue climatological AOD for confidence=3 has a hotspot near the 7 
Suncrude facility with AOD of 0.12, yet we find that higher climatological maximum AODs occur (0.18) 8 
when only confidences of 1-2 are retained, again with the hotspot being the Syncrude Mildred Lake 9 
facility, as shown in the following maps to the left and right, respectively.     10 
 11 
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 1 
 2 
As another general comment on the above figure: we know there is seasonal variation 3 
in AOD, as well as variation in things that affect sampling (e.g. cloud and snow cover). So presenting an 4 
annual mean here conflates these issues together with the issue of retrieval uncertainty. My suggestion 5 
would be to make separate maps for each season. They don’t all necessarily need to be included in the 6 
paper if length is a concern. This way the seasonal aspect at least can be removed and it may bring the 7 
different data sets into closer agreement (or it might not). The next stage would be to compare the 8 
points only where they have common retrievals on the same days, but I suspect that due to the large 9 
number of data sets there would probably be few mutual points. So, making seasonal means rather than 10 
annual means is probably a good balance in terms of seeing how the data look compared to each other.   11 
 12 
We tried plotting AODs for May through September for the MODIS and MISR products (Figures A-C 13 
below). These are the months when all five aerosol products have high measurement frequency. But 14 
again, Dr. Sayer’s purpose is evidently different than ours: we are not trying to bring the different data 15 
sets into closer agreement; as stated up front (p4L33), we are mostly trying to see what each is 16 
capturing spatially over the long term, so annual means are preferable. Anyway, as shown in Figures A-C 17 
below, limiting to these ‘warm season’ months does not bring the data sets into closer agreement. 18 
Limiting to the warm season was mostly expected to benefit the MISR AOD map since MISR has an 19 
unusual spatiotemporal sampling pattern, but as shown in Figure C, limiting to May-September does not 20 
produce a more coherent AOD map. In the revised manuscript, all available months are retained for 21 
Figure 1.   22 
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  1 
 2 
Figure A: MODIS DT 550 nm climatological AOD for May to September (confidence=3).  3 
 4 
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 1 
Figure B: MODIS DB 550 nm climatological AOD for May to September for confidence≥2. 2 
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 1 
Figure C: MISR 558 nm climatological AOD for May to September.  2 
 3 
Figure 2: If I understand correctly, this is the mean of the MODIS Deep Blue and Dark Target QA values. I 4 
understand the intent behind this figure (illustrate where the algorithms have confidence) but I think the 5 
execution is problematic. By taking the mean of the QA flag, it is being treated as a quantitative variable. 6 
However it is not – it is a categorical variable that is stored as an integer because it is easy to store 7 
integers in the hdf files. QA=0 has a fundamentally different meaning (no retrieval) from the other 8 
values, and the QA from 1 to 3 does not represent linear progression in terms of quantitative retrieval 9 
quality or uncertainty. So, taking the mean value is a bit misleading since it is conflating lack of retrievals 10 
(due to e.g. clouds) with other algorithm factors and giving a number as a mean for the grid cell which 11 
doesn’t really relate to the underlying QA flags. For example if the mean QA calculated in this way is 1, it 12 
does not mean that the retrievals here have low confidence. It means either that the retrievals have low 13 
confidence, or that there is some combination of high confidence retrievals and data gaps due to clouds, 14 
etc.  15 
 16 
This comment by Dr. Sayer is correct, and we were aware of all of these logical points. The main purpose 17 
of both panels of Fig. 2 was to show that QA is tending very close to 0 (i.e. <0.45) at the two grid cells 18 
near the Syncrude Mildred Lake facility, implying that the retrieval has no confidence (or provides a fill 19 
value) more than 55% of the time.    20 
 21 
So, I think this figure should be updated, and we might get some more insight into what is going on if the 22 
metric here is calculated differently. In Deep Blue we recommend QA=2 and QA=3 can both be used for 23 
quantitative analyses as they have similar error characteristics (Sayer et al., JGR 2013, doi: 24 
10.1002/jgrd.50600) while for Dark Target land retrievals they recommend QA=3 only (e.g. Levy et al, 25 
ACP 2010, doi:10.5194/acp-10-10399-2010). This is another example of the fact that QA flags 26 
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have different specific meanings for different data products. What I would suggest is making maps 1 
showing the fraction of overpasses where there is no retrieval (i.e.  QA=0), the fraction where there is a 2 
poor-QA retrieval (i.e. QA=1 for Deep Blue, QA=1 or 2 for Dark Target), and the fraction where there is a 3 
good-QA retrieval (i.e. QA=2 or 3 for Deep Blue, QA=3 for Dark Target).  4 
 5 
This suggestion is accepted. A new six-panel Fig. 2 has been generated.  6 
 7 
Some of the data holes in the MODIS Dark Target product will be from the fact that neither their land 8 
nor ocean algorithms treat pixels which are identified as ‘coastal’ as valid for AOD retrieval. (Note that 9 
Deep Blue treats such pixels as land, but excludes pixels next to water frequently for other reasons. ) This 10 
limits coverage in many parts of Canada and elsewhere in the world, as pixels containing lake shores are 11 
frequently identified as coastal. See Carroll et al. (IJDE, 2016, doi: 10.1080/17538947.2016.1232756).     12 
 13 
This cause of data holes has been added to the list of causes. We now write at p5L16: 14 
 15 
The number of pixels used in the AOD retrieval is reduced by the inland water mask (Carroll et al., 2016), … 16 
 17 
Figure 3: This shows that in areas where there are few AATSR retrievals, those retrievals that are 18 
performed tend to have a higher sub-pixel cloud fraction. The implication is that sampling in this area is 19 
influenced by cloud cover, whether real cloud or misidentified cloud (which is reasonable). However 20 
what might make a better right panel would be the cloud fraction for ALL observations, not just for 21 
those observations where an AOD retrieval is performed. This would look more directly at where the 22 
AATSR algorithm thinks there is a cloud. Right now what the panel is showing is subtly different since 23 
pixels which are cloudy above the threshold for retrieval (I am not sure if this is 100% cloudy or some 24 
lower fraction) are exclude from the analysis. 25 
 26 
Additional cloud tests (Bevan et al., 2012 and reference therein) were used for this AATSR aerosol 27 
retrieval algorithm that are not used in AATSR Instrument Processing Facility (IPF) v6.01 cloud product. 28 
Thus, we feel it is more appropriate to look at the cloud fractions in the successful AOD retrievals. This 29 
suggestion might have been worth pursuing if the spatial anti-correlation was not strong between cloud 30 
fraction in successful AOD retrievals and AOD sample size, but that is not the case.  31 
 32 
Table 1: Again, the MODIS standard AOD wavelengths for both Deep Blue and Dark Target are 550 nm. 33 
Deep Blue also provides 412, 470, and 650 nm and Dark Target also provides 470 and 650 nm. Source 34 
radiances are not all at 0.5 km pixel sizes, it depends on band, so it would be better to say 0.25-1 km 35 
here. Also, due to its scan design and wide swath with, MODIS level 1 and level 2 pixel size and shape get 36 
heavily distorted from nadir to scan edge (quoted values are all for nadir pixels), which is not 37 
an issue for AATSR or MISR to the same degree due to their designs and narrower swaths. See e.g. Sayer 38 
et al (AMT, 2015, doi:10.5194/amt-8-5277-2015) for more information. 39 
 40 

In Table 1, regarding the spatial resolution of MODIS radiances, we now write: 0.25  0.25 to 1  1. 41 
We have also changed one column heading to: “Spatial resolution of AOD superpixel at nadir”. 42 

Table 4 and discussion: I would delete the analysis of linear least-squares regressions from the table and 43 
discussion. AOD data violate most/all the assumptions required for this technique to be valid, and so the 44 
results are misleading and fits/confidence envelopes are quantitatively incorrect. See e.g. 45 
http://people.duke.edu/_rnau/testing.htm for more discussion. (I know it is a frequently-used technique 46 
in our community, but it is fundamentally incorrect for this particular application.) 47 

http://people.duke.edu/_rnau/testing.htm
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 1 
Dr. Sayer’s most recent paper (Carroll et al., 2016) cites Levy et al. (2013) for AOD validation, and Dr. 2 
Sayer is also a co-author in the latter work. This latter work includes linear least-squares regression of 3 
MODIS AOD and AERONET AOD (their Fig. 11), which is precisely what we have done. It is clear that our 4 
Table 4 adheres to the established convention in this field in terms of validation statistics. As an 5 
alternative, we tested two non-parametric methods (Theil’s complete and incomplete methods) to 6 
obtain the values in the first three columns of values in Table 4. None of the assumptions are violated 7 
when using Theil’s incomplete method (1950). Also, application of Spearman’s rank correlation is valid 8 
for this application (see Table 4). As shown in the table below, the non-parametric methods yielded 9 
slopes that were small (~0.6) and ordinary least-squares (‘OLS’) yielded a slope that was clearly of the 10 
wrong sign due to one small cluster of outliers at high AOD. We tested a number of robust regression 11 
methods compared in Holland and Welsch (1977), which all use a weighted least-squares (WLS) 12 
approach to reduce the sensitivity to anomalous data pairs (i.e. coincidences). Some of these robust 13 
regression methods are expected to perform better than OLS on data with non-Gaussian distributions 14 
(e.g. Andrews, 1974). The outliers affect whether the AERONET and satellite AOD data conform to a 15 
normal distribution. The table below presents the slope and offset from various robust methods using 16 
the POLDER/PARASOL and AERONET coincident data at Fort McMurray:  17 
 18 

Method offset slope 

Andrews -0.017 0.787 

bisquare -0.017 0.788 

Cauchy -0.017 0.797 

Fair -0.019 0.859 

Huber -0.018 0.831 

logistic -0.018 0.835 

Talwar -0.017 0.787 

Welsch -0.017 0.791 

OLS -0.030 1.10 

Theil's “incomplete” -0.009 0.590 

Theil's “complete” -0.010 0.620 
 19 
It is clear that POLDER has a negative offset, but the magnitude of the offset falls into three groups: OLS, 20 
robust WLS methods (first eight rows of table above) and robust non-parametric methods. Identical 21 
groupings of regression methods are found upon examining the slope values. Furthermore, omitting the 22 
small cluster of points with AERONET AOD>0.8, which were all measured on one day, namely 16 July 23 
2012, the OLS slope becomes 0.7904 and offset is -0.014. This slope and offset are both very close to the 24 
slope and offset values from the various WLS fits. In the revised manuscript, we select to weight the fit 25 
residuals with Huber’s function, for the following reason given by Bergstrom and Edlund (2013):  26 
 27 
“while it still is robust, it does not completely disregard highly deviating points”.  28 
 29 
The table above shows that neither the offset nor the slope obtained with the Huber weights are 30 
outliers within the WLS group of robust regression methods. The tuning constant is assumed to be 1.345 31 
following Holland and Welsch (1977).   32 
At p3L29 of the revised manuscript, we now write:  33 
 34 
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Since individual AERONET and satellite AODs are not normally distributed, we use linear least-squares weighted 1 
by Huber’s function to determine the slope and offset since this is a robust method that does not completely 2 
disregard highly deviating points (Bergström and Edlund, 2014). The slope and offset values determined using 3 
Huber’s weighting function are encompassed by the values obtained with seven alternative weighting functions. 4 
Similarly, due to the non-normal distribution of the individual AOD data, Spearman’s rank correlation coefficient 5 
(rs) is chosen to study the site-specific AOD correlation based on individual AERONET-satellite coincidences.          6 
  7 
References 8 
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Response to comments by reviewer 1 29 

We thank the reviewer for sharing their expertise and improving the manuscript.  30 
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 1 
Major Comments: 2 
As Andrew Sayer is an expert on aerosol retrievals from satellite-based remote sensing, 3 
I strongly recommend the authors fully take his suggestions. 4 
 5 
We agree with this major comment and have taken most of the Dr. Sayer’s suggestions.  6 
 7 
Kahn et al., 2005 describes validation of a previous version of the algorithm and should  8 
be replaced with Kahn et al., 2010. The title is “Multiangle Imaging SpectroRadiometer 9 
global aerosol product assessment by comparison with the Aerosol Robotic Network”.  10 
Particle mixtures have changed, but many of the notes the authors have made about 11 
MISR remain valid. 12 
 13 
We have used the more recent reference suggested by the reviewer. We now write in Sect. 4:  14 
 15 
The MISR low bias may be related to the need for darker spherical particles (Kahn et al., 2010) given that 16 
forest fire smoke plays a significant role throughout western Canada in the warm season (O’Neill et al., 17 
2002). Spherical particles with lower single scattering albedo (SSA) may also be required to properly 18 
represent local anthropogenic pollution (Kahn et al., 2010) in the AOSR.   19 
 20 
Although the paper is focused on AOD trends from satellite-remote sensing, I would 21 
recommend also including an analysis of the Fort McMurray AERONET site as well.  22 
 23 
The AERONET data record is short (2005-2015) at Fort McMurray and includes a missing year (2006) 24 
and three currently incomplete years (2005, 2007, and 2015). The record effectively spans 2008 to 2014, 25 
which is too short for trend analysis, given the large interannual variability.    26 
 27 
Page 8, Line 18-19: The higher SNR is probably irrelevant over land (especially bright 28 
surfaces). 29 
 30 
Most of the retrieved AODs used in the temporal correlation with the Fort McMurray AERONET site, at 31 
least by MODIS, are over dark vegetation. However, SNR is valuable both for dark and bright scenes. To 32 
first order, the bright surface does not affect the number of detected aerosol-scattered photons, it 33 
essentially affects the number of photons reflected by the surface. So while a bright scene has less noisy 34 
radiances, the fractional contribution by aerosol scattering decreases relative to a dark scene and greater 35 
SNR is required to be able to detect a typical, small AOD (e.g. 0.1 at 550 nm) with comparable AOD 36 
precision relative to a dark scene. In spite of this point, we agree that the SNR of all instruments is 37 
probably sufficient and the higher SNR is likely irrelevant.  38 
Thus, the relevant sentence in the manuscript becomes:     39 
 40 
Stronger short-term correlation with AERONET AODs reflects the superior spatial resolution of the MODIS 41 
radiances (Table 1). 42 
 43 
PM2.5 Assessment: 44 
I strongly recommend that the authors remove the AOD-to-PM2.5 aspect of this paper. 45 
I don’t think it adds much to the paper, as the authors have in-situ PM2.5 data for 46 
10 sites anyways, and the correlation between AERONET AOD and satellite remote 47 
sensing retrieved AOD is much higher than the correlation between NAPS PM2.5 and  48 
satellite remote sensing retrieved AOD. 49 
 50 
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There are also a lot of caveats to converting between an integrated aerosol retrieval (AOD) and 1 
a surface aerosol retrieval (PM2.5), many of which I don’t see discussed (please correct me if I 2 
missed it). Here are some of them: 3 
1. For instance, MISR is viewing this area of the planet at roughly 10:15 AM local time. 4 
It is possible that the planetary boundary layer (PBL) is not always fully developed at  this time, 5 
which would mean that a comparison between MISR AOD and surface based 6 
PM2.5 would not be possible. 7 
2. Unmasked transported smoke that happens to be lofted above the PBL may not be seen by 8 
NAPS. 9 
3. Variation in the PBL height from day to day and season to season will cause discrepancies 10 
between retrieved AOD and measured PM2.5 using a static ratio. 11 
4. Large-scale differences in land-surface/water coverage may cause systematic discrepancies 12 
in PBL height at individual stations. 13 
Although the results of the AOD-to-PM2.5 analysis show a positive trend in PM2.5 from space, I 14 
don’t really see how useful this is, as the same thing can be shown from the 10  NAPS 15 
instruments with a much higher degree of confidence. Additionally, while I may trust the day-to-16 
day changes in AOD retrieved from space, I would never put that kind of faith in converting AOD 17 
to PM2.5 on a daily basis. I recognize that the authors did not do this and are basically only 18 
using PM2.5 from AOD for yearly analysis, but some people may take this work and try to 19 
expand it in ways that probably shouldn’t be done. 20 
 21 
We agree with these comments. The AOD to PM2.5 aspect can be avoided with the approach used in the 22 
revised manuscript. This involves correcting the POLDER/PARASOL and MODIS Deep Blue offsets 23 
(determined from the AERONET validation at Fort McMurray) and then calculating relative trends for 24 
AODs (from satellite) and for PM2.5 (NAPS).     25 
 26 
This is now described at p4L12:  27 
 28 
For temporal trends, a simple linear regression is performed on relative anomalies derived from bias-corrected 29 
annual average and median AODs. The bias correction involves subtracting the AOD offset obtained through the 30 
validation with coincident Fort McMurray AERONET data. 31 

 32 
General Comments: 33 
Is it possible that the drop in 550 nm AOD (Figure 5) and NAPS PM 2.5 during 2015 is  related to 34 
the fall in oil prices affecting activity in the region? If so, it may be worthwhile  to note, as this 35 
would likely continue to the present day. 36 
 37 
It is possible, but not likely, and this is too speculative in our opinion given that NAPS PM2.5 data is not 38 
significantly different in 2013 and 2015 (see figure below illustrating oil prices over the past seven years). 39 
(http://www.nasdaq.com/markets/crude-oil.aspx?timeframe=7y).  40 
 41 
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 1 
 2 
Figure 1: Figure 1 could be improved in a number of ways. In addition to what Andrew 3 
Sayer suggested, I recommend putting the locations of your AERONET sites and NAPS stations 4 
on the map (maybe as circles and stars). If you wanted to make the plots even more useful, you 5 
could color the circles and stars using the same color scale for  AERONET, and a different scale 6 
for PM2.5. 7 
 8 
The maps in Fig. 1 use all available satellite data, not just data that is coincident with PM2.5 or AERONET 9 
observations. PM2.5 is measured at night and in winter, when these satellite instruments do not measure. 10 
Similarly, the AERONET sites in the oil sands region measure all day, not just at the 1 or 2 local times 11 
per day of the satellite instruments and we have found diurnal variations in AOD of 30% at Fort 12 
McMurray based on AERONET data. Furthermore, AERONET has slightly more coverage during the 13 
cold season. To avoid these biases, in Fig. 1, we plot only the average AOD from satellite-coincident 14 
AERONET measurements. Both AERONET sunphotometers in the AOSR are collocated with NAPS 15 
sensors, so we chose AERONET over NAPS for Fig. 1. There is also the problem of a possible trend. The 16 
NAPS or AERONET data may cover a significantly shorter period (e.g. AERONET at Fort McKay 17 
started in 2013 whereas the POLDER map includes data from 1996). We leave Fort McKay out since the 18 
data record is too short for a reliable climatology of coincident AODs and has no temporal overlap with 19 
most of the sensors.  20 
 21 
Figure 5: The authors should include the Fort McMurray AERONET site on this plot as 22 
well. 23 

See response to earlier, related comment. No change is made to the manuscript. 24 

 25 
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Response to reviewer 2 1 
 2 
We begin by thanking the reviewer for their very helpful comments.  3 
 4 
However, I am concerns that this manuscript is insufficient to be useful due to lack of substantial 5 
materials and logical reasoning in current version. 6 
 7 
We have added explanations to substantiate some of the results. For example, we now discuss a possible 8 
cause for why MISR does not capture the hotspot in climatological AOD as well as the other instruments. 9 
We have provided a reason why median AOD and PM2.5

 mass densities are preferable for the spatial 10 
correlation analysis in the revised manuscript (as opposed to mean values used in the original 11 
manuscript). We feel the discrepancy in long-term trends between the satellite sensors is not strong, but 12 
now suggest that the MODIS calibration degradation could account for the general negative trend in AOD 13 
from this sensor. Further details are provided below on each issue. This is simply a summary of our 14 
response.       15 
 16 
First of all, I have read the comments from Andrew Sayer, who is an expert on aerosol 17 
retrievals from satellite-based remote sensing, especially in MODIS AOD retrievals. His 18 
comments are very useful to improve the understanding of the MODIS AOD retrievals 19 
and improve current studies. 20 
 21 
Dr. Sayer’s comments have helped to improve the revised manuscript. The reviewer can refer to our 22 
response to Dr. Sayer’s comments to see the resulting changes to the manuscript.  23 
 24 
My major concerns about this manuscript are the lack of in-depth analysis and lack the 25 
necessary explanations. For example, the finding of the ability to capture spatial variability  with 26 
MISR is generally much worse than the other instruments over AOSR region is very interesting 27 
and useful to know the limitation of MISR measurements, however  the possible reasons for this 28 
will be more important to see the spatial limitation of MISR. 29 
 30 
The MISR spatial limitation, evident in Fig. 1, is probably due to its spatial sampling being tied to its 31 
temporal sampling. We found locations within the AOSR where MISR was measuring almost exclusively 32 
in October. Thus, the seasonal cycle in AOD is aliasing into the AOD spatial distribution.  33 
The spatial correlation coefficient is based on 10 sites. Because of the small number of sites, the 34 
correlation is quite sensitive to a bias in AOD or PM2.5 at any station. Wapasu has significantly higher 35 
mean PM2.5 mass density for MISR coincidences than any other site (10.2 g/m3 while the next highest 36 
site average is 8.1 g/m3). MISR overpasses of Wapasu span only two years (2014-2015) and these years 37 
were affected by anomalously high forest fire activity in western Canada. The median reduces the 38 
sensitivity to these outliers as compared to the mean. In the revised manuscript, Table 3 now contains the 39 
correlation of the median of coincident PM2.5 and satellite AOD data. This table is inserted below. The 40 
revised Table 3 shows the spatial correlation coefficient (R) of MISR AOD with PM2.5 is not much worse 41 
than the spatial R of MODIS/Aqua DT and PM2.5. 42 
 43 
 44 
 45 
 46 
 47 
 48 
    49 
 50 
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AOD product  R N 

POLDER/PARASOL 865 nm  0.64 8 

AATSR 550 nm 0.73 9 

MISR 558 nm 0.20 10 

MODIS/Aqua DT 550 nm  0.23 10 

MODIS/Aqua DB 550 nm 0.57 10 

 1 
At p3L34, we now modify the description of the spatial correlation analysis as follows: 2 
 3 
In order to assess the ability of the satellite data to capture the spatial variability in this region, the hourly in-situ 4 
surface-level PM2.5 from the 10 NAPS (National Air Pollution Surveillance) stations (Table 2) are used. Demerjian 5 
(2000) provided a review of the NAPS network, but since 2011, this network has undergone a gradual shift in the 6 
continuous monitoring of PM2.5 mass density from tapered element oscillating microbalances (TEOMs) to the 7 
SHARP (Synchronized Hybrid Ambient Real-time Particulate) monitoring system. The latter is a hybrid system, 8 
consisting of a nephelometer and a beta attenuation monitor (Hsu et al., 2016). The spatial correlation between 9 
median satellite AODs and NAPS PM2.5 mass densities is determined using coincident data.   10 
   11 
 At p5L4, we now update the text with the following:  12 
 13 
The AOD hotspot in the AOSR seen by POLDER is less obvious with MISR (Fig. 1). This is consistent with the 14 
relatively poorer ability of MISR to capture spatial variability based on spatial correlations of median AOD and 15 
PM2.5 mass density over the ~10 available sites (Table 3). While the spatial correlation analysis relies on temporally 16 
coincident data, the less obvious AOD hotspot for MISR in Fig. 1 is also partly due to the spatio temporal sampling 17 
by this instrument. Some locations are only sampled during a short period of the year, and thus the seasonal cycle of 18 
AOD is aliased into the MISR spatial distribution. 19 
 20 
In section 3.1, the authors have indicated that all of the satellite  retrievals can capture the inter-21 
annual variability of the annual mean AOD observed by AERONET, but the trends estimated 22 
based on the each satellite retrievals showed lots of differences, some of positive and some of 23 
negative. Thus, what are the main reasons to explain this discrepancy? 24 
 25 
We agree that there is a discrepancy between the trends estimated by the different satellite AOD products, 26 
but it is not strong. The satellite data records all span approximately one decade. A period of a decade is 27 
rather short for determining a trend, considering the natural interannual variability in AOD and possible 28 
instrumental drifts (e.g. Levy et al., 2015). Focussing on the Muskeg River mining region where there 29 
appears to be a significant positive AOD trend according to MODIS/Aqua DB and POLDER/PARASOL, 30 
the linear trend is not different from zero for both AATSR and MISR (p6L28-29). Also, MODIS/Aqua 31 
DT has a slightly negative trend, but it is also not different from a null trend, so given that none of AOD 32 
products show a strong decreasing trend in this Muskeg River mining region, there is no strong 33 
discrepancy in the AOD trends. The insignificant negative AOD trend for MODIS/Aqua DT remains now 34 
that we have switched to 550 nm. 35 
 36 
We now add at p8L1:  37 
 38 
The calibration of the MODIS reflective solar bands is achieved by calibration with the solar diffuser. Some 39 
negative drift in AOD (Levy et al., 2015) is expected for MODIS Aqua similar to its Terra counterpart (see Sect. 2) 40 
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as the designs of the solar diffuser and its stability monitor are nearly identical in the two MODIS sensors (Wu et al., 1 
2013). 2 
 3 
The authors reported a major issue of satellite AOD retrievals over this region, which is the lack 4 
of successful retrieval samples, especially of the MODIS retrievals which has low confidence. It 5 
is good information. However, the reasons for the large part of retrievals has low confidence are 6 
not well explained.  7 
 8 
The reasons for the low confidence of MODIS AODs were explained in the ACPD version of the 9 
manuscript (p5L24-26 for Deep Blue and p5L12-19 for Dark Target). An additional reason for MODIS 10 
Dark Target has been added to the revised manuscript: coastal areas (see comment by Dr. Sayer and 11 
response).   12 
 13 
Furthermore, the comparison of coincident AODs observed by satellite-based and AERONET 14 
shows large bias (more than 20%) between them, but necessary explanations are not provided.  15 
 16 
MISR is the only satellite-based aerosol sensors with a consistent bias of >20% in this region. 17 
Explanations were included in the ACPD version (p9L5-11), although one literature reference has been 18 
updated in these sentences.       19 
 20 
I found that the correlation between monthly mean of the satellite retrieved AOD and  21 
AERONET AOD are analyzed, but I’d suggest to use the individual samples from 22 
AERONET to evaluate the satellite AOD retrievals and discuss the bias of each satellite  23 
product. 24 
 25 
This is already done in Table 4. The second to fourth columns in Table 4, namely ‘rs’, ‘slope’, and 26 
‘offset’, are all based on individual coincidences. Although it can be inferred from the ACPD version of 27 
the manuscript that the quantities in these columns are based on a regression using individual 28 
coincidences (e.g. p1L12 and p9L3-4), we will be more explicit in Sect. 2. At p3L30, we now write  29 
 30 
“Since individual AERONET and satellite AODs are not normally distributed, we use linear least-squares weighted 31 

by Huber’s function to determine the slope and offset since this is a robust method that does not completely 32 

disregard highly deviating points (Bergström and Edlund, 2014). (…) Similarly, due the non-normal distribution of 33 

the individual AOD data, Spearman’s rank correlation coefficient (rs) is chosen to study the site-specific AOD 34 

correlation based on individual AERONET-satellite coincidences.”  35 

 36 
In the conclusion (p8L17), we now repeat that correlation was determined using individual AERONET 37 
observations:  38 
 39 
“However, the MODIS dark target product is the best at capturing temporal variability  in terms of the correlation 40 
with individual AERONET AODs at Fort McMurray…”    41 
 42 
It is not clear to describe how to derive the PM2.5 mass density from satellite AODs. I noticed 43 
that the constant ratio of PM2.5 to AOD is used to convert the AOD trends from satellite 44 
instruments to PM2.5 trends. However, this is not accurate. The relationship  between surface 45 
PM2.5 and AOD is not always linear. It is affected by multiple factors, such as the relative 46 
humidity since the AOD can be enhanced by aerosol swelling effects but the PM2.5 does not. 47 
Meanwhile, the correlation between AOD and surface level PM2.5 significantly depends on the 48 
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aerosol vertical distribution and aerosol particle size distribution. Thus, the uncertainties in those 1 
analysis and the influences on the results should be discussed. 2 
 3 
The existing manuscript was not clear about the timescale when the word “constant” was used. What was 4 
meant is that the PM2.5/AOD ratio is assumed to be constant from year to year (based on annually 5 
averaged ratios). This ratio can even change from year to year if there were an increasing trend in surface-6 
level aerosol emissions. In the revised manuscript, we have devised a better way to compare trends:   7 
the POLDER/PARASOL and MODIS Deep Blue AOD offsets, determined from the AERONET 8 
validation at Fort McMurray, are corrected and then relative trends are used for PM2.5 and satellite AOD. 9 
Thus, the PM2.5/AOD ratio is not used in the revised manuscript. The Fort McMurray AERONET site is 10 
used for bias correction since it has temporal overlap with both sensors and has a longer record than the 11 
Fort McKay site. There is qualitative agreement on the magnitude of the offset at both sites for MODIS 12 
DB. 13 
 14 
This is now described at p4L12:  15 
 16 
For temporal trends, a simple linear regression is performed on relative anomalies derived from bias-corrected 17 
annual average and median AODs. The bias correction involves subtracting the AOD offset obtained through the 18 
validation with coincident Fort McMurray AERONET data. 19 
          20 
P6, Line 28: Is this trend statistical significant? 21 

Yes, the MODIS/Aqua DB and POLDER/PARASOL trends are both statistically significant. We will add 22 
“statistically” to the sentence as follows: 23 

In fact, two satellite data products, namely POLDER/PARASOL and MODIS/Aqua DB, exhibit a statistically 24 
significant positive trend in this mining area. 25 

   26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 



 

19 
 

Assessment of the aerosol optical depths measured by satellite-1 

based passive remote sensors in the Alberta oil sands region 2 

Christopher E. Sioris
1
, Chris A. McLinden

1
, Mark W. Shephard

1
, Vitali E. Fioletov

1
, and Ihab 3 

Abboud
1
  4 

[1] {Environment and Climate Change Canada (ECCC), Toronto, ON, Canada} 5 

Correspondence to: Christopher E. Sioris (christopher.sioris@canada.ca) 6 

Abstract. Several satellite aerosol optical depth (AOD) products are assessed in terms of their data quality in the 7 

Alberta oil sands region. The instruments consist of MODIS (Moderate resolution Imaging Spectroradiometer), 8 

POLDER (Polarization and Directionality of Earth Reflectances), MISR (Multi-angle Imaging SpectroRadiometer), 9 

and AATSR (Advanced Along-Track Scanning Radiometer). The AOD data products are examined in terms of 10 

multiplicative and additive biases determined using local AERONET (AEROCAN) stations. Correlation with 11 

ground-based data is used to assess whether the satellite-based AODs capture day-to-day, month-to-month, and 12 

spatial variability. The ability of the satellite AOD products to capture interannual variability is assessed at Albian 13 

Mine and Shell Muskeg River, two neighbouring sites in the northern mining region where a statistically significant 14 

positive trend (2002-2015) in PM2.5 mass density exists. An increasing trend of similar amplitude (~5%/year) is 15 

observed in this northern mining region using some of the satellite AOD products.      16 

1 Introduction 17 

Fine-mode aerosols can be harmful to the respiratory system in large doses and are thus a critically important 18 

constituent with regard to air quality. For this reason, particulate matter with median aerodynamic diameter less than 19 

2.5 m (PM2.5) is one of the atmospheric observables used to calculate the Air Quality Health Index (AQHI) in 20 

Canada (Stieb et al., 2008). Similar indices are used in other countries (Kelly et al., 2012). Tropospheric aerosols are 21 

also a major source of uncertainty in estimating the radiative forcing of climate (Myhre et al., 2013). Many satellite-22 

based instruments can provide information about atmospheric aerosols in the form of aerosol optical depth (AOD), a 23 

measure of the vertically integrated extinction of the solar beam by aerosols.  Measurements of AOD tend to be 24 

proportional to particulate matter mass density measured at the surface when the boundary layer aerosol 25 

concentrations are elevated (e.g. Tian and Chen, 2010).  26 

The Alberta oil sands region (AOSR) has been under rapid industrial development during the past decade (Foote, 27 

2012). Satellite measurements already indicate a significant increasing trend in nitrogen dioxide between 2005 and 28 

2014 (McLinden et al., 2012; McLinden et al., 2016). Additionally, the AOSR is being deforested as part of 29 

expanding surface mining operations. This inevitably increases levels of dust, which partly arises from 30 
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transportation by trucks. Dust is one of many aerosol types of relevance in the AOSR. Other main aerosol types 1 

include organic aerosols, both natural and anthropogenic (Liggio et al., 2016), as well as ammonium sulfate.           2 

Passive remote sensing of aerosol over land is challenging because, for a cloud-free scene, most of the nadir 3 

radiance is coming from direct reflection off the surface at visible wavelengths, not from aerosol scattering. This is 4 

particularly true for the AOSR, which consists of an irregularly-shaped industrial area to the south comprised of 5 

non-vegetated (cleared) mining locations and a second area to the north where mostly surface mining is occurring, 6 

as both areas have high surface albedo in the visible. Within the AOSR, the land type changes on spatial scales 7 

smaller than the typical 10 × 10 km AOD footprint of a satellite-based instrument. Considering the area surrounding 8 

the AOSR, specifically the rectangular area between 55.0 and 58.5°N and 114.0 to 108.5°W, the land is covered by 9 

evergreen needleleaf forest (70%) and some deciduous broadleaf forest (23%), which is typical of the boreal forest 10 

in the northern portions of the Alberta and Saskatchewan. 11 

2 Method 12 

In order to study the spatiotemporal distribution of AOD in the AOSR, data from several satellite-based instruments 13 

are used. Satellite-based aerosol sensors are chosen based on a number of factors. One of the goals of the study is to 14 

examine long-term AOD trends, so preference is given to instruments with longer data records. Instruments that 15 

view a scene with multiple viewing angles were selected as the multi-angle capability is useful for disentangling the 16 

contributions to the scene reflectance by the surface and by the overlying aerosols  (e.g. Bevan et al., 2012). Such 17 

instruments include Multi-angle Imaging SpectroRadiometer (MISR) (Diner et al., 1989), the Polarization and 18 

Directionality of Earth Reflectances (POLDER) series (Deschamps et al, 1994) including POLDER/PARASOL 19 

(Polarization & Anisotropy of Reflectance for Atmospheric Sciences coupled with Observations from a Lidar), and 20 

the Along-Track Scanning Radiometer (ATSR) series (see Table 1 for the spatial resolution, temporal coverage and 21 

wavelength at which AOD is reported for each of the satellites). In addition, MODIS (Moderate resolution Imaging 22 

Spectroradiometer) is chosen partly because it has a long wavelength channel (2.1 µm) that allows the surface 23 

reflectance to be accurately determined over vegetation without contamination from fine-mode aerosols (e.g. 24 

particles with radii of <0.2 µm) by virtue of the correlation between visible and 2.1 µm surface reflectance for 25 

vegetation (e.g. Kaufman et al., 2002; Li et al., 2005). MODIS/Aqua collection 6 data are used (see Appendix for 26 

providers and version numbers of other satellite data products). For MODIS, there are two AOD retrieval algorithms 27 

yielding the Dark Target (DT) (Levy et al., 2013) and the Deep Blue (DB) (Hsu et al., 2013) products. Specifically, 28 

the Corrected_Optical_Depth_Land (470550 nm) and the Deep_Blue_Aerosol_Optical_Depth_550_Land datasets 29 

were used and confidence for both datasets was extracted from the Quality_Assurance_Land dataset. The Dark 30 

Target algorithm exploits the fact that, for dark surfaces, aerosols tend to brighten the scene. For highly reflective 31 

surfaces such as snow in the visible spectral region, AOD cannot be retrieved using either the DT or DB approach.  32 

The MODIS Aqua DT product is also processed at 3 km spatial resolution in addition to the standard 10 km 33 

resolution available for both MODIS products (Levy et al., 2013). Each MODIS AOD measurement is assigned a 34 

confidence value.  Confidence values of 1 and 0 indicate marginal and no confidence, respectively, while values of 2 35 

and 3 represent good and ideal confidence (Levy et al., 2013). For MODIS/Aqua collection 6, data with 36 
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confidence≥1 are retained for validation. The theoretical basis of the MISR aerosol retrieval algorithm is given by 1 

Diner et al. (2008). The aerosol retrieval for AATSR is described by Bevan et al. (2012) and references therein. 2 

Deuzé et al. (2001) detail the approach used to retrieve aerosol information from POLDER observations over land.      3 

MODIS Terra is not considered since it is highly similar to MODIS Aqua but, for collection 6, the former is less 4 

reliable for trend studies in spite of improvements relative to collection 5 (Levy et al., 2015). The MODIS-based 5 

Multiangle Implementation of Atmospheric Correction (MAIAC) (Lyapustin et al., 2011) product is not currently 6 

available in the AOSR (van Donkelaar et al., 2016). VIIRS (Visible Infrared Imaging Radiometer Suite) (Hillger et 7 

al., 2013) is not considered in this study because of its shorter data record relative to the MODIS sensors. Active 8 

remote sensing instruments are not considered because of the long revisit time and poor spatial coverage of the 9 

relatively small AOSR. The focus in this paper is primarily on the different aerosol sensors, rather than the different 10 

retrieval algorithms applied to the same satellite data (e.g. Popp et al., 2016), with the exception of the widely used 11 

Deep Blue and Dark Target algorithms for MODIS. 12 

For validation of satellite-based AOD data, AERONET (Holben et al., 1998) is the ideal choice since the same 13 

quantity is measured by this ground-based network of direct-sun multiband photometers and the ~3 minute typical 14 

sampling interval generally ensures a good temporal coincidence during clear sky conditions. Quality-controlled 15 

AERONET data (Level 2, version 2) are used (http://aeronet.gsfc.nasa.gov). CIMELCimel (French manufacturer) 16 

CE318 sensors used by AERONET measure at several wavelength, some of them (e.g. 500 and 870 nm) are close to 17 

the wavelengths at which the selected satellite instruments report AOD (e.g. 470, ~550, and 865 nm). There are two 18 

AERONET sites in the oil sands region: Fort McMurray (56.752°N, 111.476°W) and Fort McKay (57.184°N, 19 

111.64°W). Measurements at Fort McMurray started in 2005. The Fort McKay site has only been in operation since 20 

August 2013 meaning that there is no temporal overlap with Advanced ATSR (AATSR) and only seven 21 

coincidences with POLDER/PARASOL using coincidence criteria of ±12 minutes and 10 km. The spatial 22 

coincidence criterion corresponds to the smallest AOD footprints of the selected data sets (Table 1). A larger spatial 23 

coincidence criterion is not considered since, as shown below, strong spatial gradients in AOD exist in this aerosol 24 

source region. Furthermore, as mentioned in Sect. 1, the surface type also changes on such spatial scales. The 25 

temporal coincidence criterion was set to limit the number of independent AERONET measurements used in the 26 

statistical analysis. There can be multiple AERONET observations that are temporally coincident with a satellite 27 

observation and there can be up to four spatial coincident satellite AODs during a satellite overpass of an 28 

AERONET site. All of these coincidences are treated as independent data points in the validation and correlation 29 

analyses. In order to properly validate satellite AOD bias, AERONET 500 nm AODs are interpolated to the satellite 30 

AOD wavelengths (see Table 1) using the coincident AERONET Ångström exponent derived from 440 and 675 nm 31 

measurements, except for POLDER/PARASOL, for which no scaling of the AERONET AOD was applied.  32 

Since individual AERONET and satellite AODs are not normally distributed, we use linear least-squares weighted 33 

by Huber’s function to determine the slope and offset since this is a robust regression method that does not 34 

completely disregard highly deviating points (Bergström and Edlund, 2014). The slope and offset values determined 35 

using Huber’s weighting function are encompassed by the values obtained with seven alternative weighting 36 
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functions. Similarly, due the non-normal distribution of the individual AOD data, Spearman’s rank correlation 1 

coefficient (rs) is chosen to study the site-specific AOD correlation based on individual AERONET-satellite 2 

coincidences.   3 

The ability of each satellite-based sensor to capture the AOD seasonality in snow-free months is determined at Fort 4 

McMurray using thePearson’s correlation of monthly averaged AODs (using all overlapping years) with 5 

AERONET. A minimum of 20 coincident data points per calendar month must be available for that month to be 6 

included in the correlation.  7 

In order to assess the ability of the satellite data to capture the spatial variability in this region, spatial correlation is 8 

determined forthe hourly in-situ surface-level PM2.5 from the 10 NAPS (National Air Pollution Surveillance) stations 9 

(Table 2) and satellite AODs averaged over all coincidences within their temporal overlap period. NAPS stations 10 

continuously monitorare used. Demerjian (2000) provided a review of the NAPS network, but since 2011, this 11 

network has undergone a gradual shift in the continuous monitoring of PM2.5 mass density usingfrom tapered 12 

element oscillating microbalances (TEOMs). The NAPS network is reviewed by Demerjian (2000), although 13 

recently there has been a gradual shift in technology since 2011) to athe SHARP (Synchronized Hybrid Ambient 14 

Real-time Particulate) monitoring system, which. The latter is a hybrid system, consisting of a nephelometer and a 15 

beta attenuation monitor (Hsu et al., 2016). The spatial correlation between median satellite AODs and NAPS PM2.5 16 

mass densities is determined using coincident data. The use of medians rather than means reduces the sensitivity to 17 

outliers from forest fires. The same 10 km spatial coincidence criterion is used but temporal coincidence limit is 18 

extended to ±1 hour to match the temporal resolution of the selected NAPS datasets.  19 

Similar to the spatial and seasonal variability, the ability of the satellite instruments to capture interannual variability 20 

can be assessed by correlating yearly satellite-based AODs averaged over all coincidences with NAPS PM2.5 21 

measurements over the overlap period. 20 coincidences in a calendar year are required for the year to be included in 22 

the correlation calculation. As an example, for MISR, 14 sufficiently sampled years (2002-2015) are used in the 23 

correlation with NAPS data at Millennium mine.  24 

For temporal trends in AOD, a, an ordinary least-squares simple linear regression is performed on relative anomalies 25 

derived from bias-corrected annual average and median AODs. The bias correction involves subtracting the AOD 26 

offset obtained through the validation with coincident Fort McMurray AERONET data. The mean of the yearly 27 

averages andor medians is used to compute the relative anomalies. Similarly, for PM2.5, the annual average of daily 28 

average values are used since the PM2.5 auto-correlation timescale is on the order of 6.5 hours, based on analysis of 29 

Albian mine PM2.5 data from 2002. The extra step of daily averaging prior to annual averaging yields more 30 

conservative annual standard error (s. e.) estimates. Partial years at the start and the end of a data record are 31 

removed. Trend periods are given below for each sensor. The area over which the satellite-based AOD trend maps 32 

are calculated is 0.1°×0.1° by default. This default setting is  used to determine the AOD trend for both 33 

MODIS/Aqua 10 km products (2003-2015). The trend domain considered in this work spans from 56-58°N and 111-34 

112°W. For sensors with poorer spatial coverage (MISR, AATSR, POLDER/PARASOL), the spatial binning is 35 

expanded in latitudinal and longitudinal increments of 0.1° until there are ≥20 observations in each calendar year 36 
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within at least one grid cell in the domain. The trend maps are ultimately generated at 0.3°×0.3° for AATSR (2003-1 

2011) and MISR (2000-2015) whereas a 0.4°×0.4° area is required for POLDER/PARASOL (2005-2013). Outlying 2 

individual data points (>4 standard deviations above the climatological average in the domain) are recursively 3 

filtered mainly to reduce the influence of forest fires on trends. The same filtering is applied to the PM2.5 datasets. 4 

Interannual consistency in the month-to-month sampling is checked for any location with a positive satellite AOD 5 

trend significant at the 95% confidence interval by calculating the average day-of-the-year for each calendar year. 6 

Such temporal sampling anomalies occur for MISR AOD data at some locations if a 0.1°×0.1° grid were used, for 7 

example. The Albian mine (2001-2008) and Shell Muskeg River (2009-2015) forest-fire-filtered PM2.5 datasets were 8 

merged for trend analysis since the sensor was relocated from the former to the latter site in January 2009 and these 9 

sites are separated by <5 km.        10 

 11 

3 Results 12 

First, the general spatial distribution of AOD is illustrated for some of the aforementioned data sets. In Fig. 1, the 13 

climatological average POLDER AOD on a 0.1° × 0.1° grid is shown. This is the default grid used for 14 

climatological maps of all satellite AOD datasets. The POLDER sample size per grid cell is 90 to 170 in the AOSR 15 

over the discontinuous period from 1996 to 2013 (see Table 1). There is a clear hotspot in 865 nm AOD in the 16 

AOSR region, roughly double the surrounding background values. Note that for POLDER and MISR, there are 17 

expected voids in their spatial coverage (Fig. 1) due to the spatial sampling of these instruments, whereas MODIS 18 

and AATSR footprints can be centered on any geolocation within the AOSR.     19 

The AOD hotspot in the AOSR seen by POLDER is less obvious with MISR (Fig. 1). TheThis is consistent with the 20 

relatively poorer ability of MISR to capture spatial variability with MISR is generally much worse than the other 21 

instruments based on spatial correlations of average satellite-basedmedian AOD versus average NAPSand PM2.5 22 

mass density over the ~10 available sites (Table 3). While the spatial correlation analysis relies on temporally 23 

coincident data, the less obvious AOD hotspot for MISR in Fig. 1 is also partly due to the spatiotemporal sampling 24 

by this instrument. Some locations are only sampled during a short period of the year, and thus the seasonal cycle of 25 

AOD is aliased into the MISR spatial distribution. Table 4 provides the number of coincidences for each satellite 26 

with the both Fort McMurray and Fort McKay AERONET observations to provide a relative sense of how the 27 

coincident sample sizes vary as a function of the satellite AOD data product.         28 

The climatological AOD maps for the MODIS/Aqua collection 6 DT and DB products (2002-2014) are also shown 29 

in Fig. 1 however there is a major issue with the confidence as shown in Fig. 2. Near the Syncrude facility at 30 

Mildred Lake (57.05°N, 111.6°W), the confidence approaches 0 in both MODIS products in the two adjacent 31 

0.1°×0.1° cells (Fig. 2). In the western cell, the inadequate confidence in MODIS Aqua collection 6 DT data is due 32 

to failure of the AOD retrieval algorithm due to the 2.1 m reflectance exceeding the allowed upper limit of 0.35.  33 

This is a fundamental weaknesslimitation of the Dark Target retrieval strategy (see sect. 2). In the adjacent eastern 34 

cell, the low confidence stems from the low number of 0.50.5 km
2
 pixels (see Table 1) used in the AOD retrieval. 35 

The number of pixels used in the AOD retrieval is reduced by the inland water mask (Carroll et al., 2016), the high 36 
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2.1 m reflectance (>0.35), but also by cloud masking and an independent test for optically thicker cirrus, diagnosed 1 

using the 1.38 µm channel (Levy et al., 2013; Hubanks, 2015). The high reflectance in the near-infrared affecting 2 

the western cell and possibly the eastern cell is typical of desert or sandy loam. The higher spatial resolution of the 3 

MODIS-Aqua 3 km DT data clarifies the importance of this issue: key areas in the AOSR are simply not monitored 4 

with confidence by the current MODIS/Aqua DT product. For example, there are 0.01° × 0.01° areas with no AOD 5 

measurements of the highest confidence in 12 years, whereas surrounding, equal areas have tens of observations. 6 

The lack of confidence is not unique to the AOSR. Low confidence is also observed in urban areas within the 7 

province (e.g. Calgary, not shown). The low confidence in the MODIS DB product is due to the spatial 8 

heterogeneity of the surface between vegetated and non-vegetated area, which leads to pixels falsely identified as 9 

cloudy (N. Christina Hsu, NASA, priv. communication). Li et al. (2009) identified the need for improved AOD 10 

measurements using the DB algorithm over transitional land covers.  11 

A similar issue exists for AATSR (Fig. 3) and ATSR-2 (not shown), which both have an exceedingly small number 12 

of successful retrievals in a 0.1° × 0.1° area containing the Mildred Lake Syncrude facility (e.g. N<10) during their 13 

respective missions (Table 1). Similarly to MODIS, this is probably caused by falsely identifying bright patches in 14 

otherwise vegetated scenes as clouds (P. North, Swansea University, priv. communication). Cloud fraction for 15 

successful AOD retrievals tends to be as high as 0.18 within the oil sands region, including the northern mining 16 

region, yet drops to 0.02 in the surrounding region (Fig. 3). Note that cloudy 1  1 km
2
 pixels are not used during the 17 

AATSR AOD retrieval.  The spatial correlation coefficient between sample size and cloud fraction as illustrated in 18 

Fig. 3 is -0.73, indicating that the spatial variation in AATSR sample size is mostly related to cloud flagging. 19 

Neither POLDER nor MISR show a sampling void in the AOSR. Table 1 shows that these two sensor types have 20 

coarser AOD spatial resolution by a factor of 3-4 than MODIS, ATSR-2, and AATSR. Note that some of the PM2.5 21 

sites are located in the periphery of the industrial and mining areas and thus spatial coincidences exist for MODIS 22 

and AATSR in spite of the aforementioned issues, given the 10 km coincidence criterion. 23 

In terms of the validation using AERONET data (Table 4), MISR has a large multiplicative bias (i.e. small slope 24 

significantly less than unity), which is consistent betweensimilar at both sites in the AOSR. Excluding Fort 25 

McMurray coincidences for which the AERONET AODs interpolated to 558 nm are >0.4, theThe slope improves to 26 

0.74 and is of a similar value to the slope found in previous studies for inland (Liu et al., 2004), dusty (Kahn et al., 27 

2005), and urban environments (Jiang et al., 2007). MODIS DB tends to yield more data than the DT product, but 28 

the correlation is lower with AERONET on individual coincidences and in terms of the seasonal variation. At 29 

boththe Fort McMurray AERONET sites, the MODIS products behave oppositely in terms of multiplicative and 30 

additive biases (discussed in Sect. 4). AATSR and POLDER/PARASOL show no major deficiencies, with the latter 31 

exhibiting the closest slope value to unity of all of the satellite sensors at Fort McMurray.have no major validation 32 

shortcomings.             33 

3.1 Trends   34 
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Before considering trends in the AOSR, it is useful to look at whether the different satellite data products capture the 1 

AOD interannual variability at Fort McMurray, where a sufficiently long record (2005-2015) of 500 nm AOD 2 

exists. All of the products capture the interannual variability of the annual mean AOD observed by AERONET at 3 

Fort McMurray (Table 5). Correlation coefficients for forest-fire-filtered annual means  tend to be only slightly 4 

lower.   5 

In general, very few of the 200 grid cells in the trend domain (56-58°N, 111-112°W) indicate a statistically 6 

significant (2 s. e.) positive trend that is consistent from one satellite to the next. In fact, there are no points in the 7 

domain for which MODIS/Aqua DT (2003-2013), AATSR, or ATSR-2 (1996-2002, 0.3°×0.3°) show a significant 8 

positive trend in AOD. Similarly, POLDER/PARASOL only shows a significant positive trend in three adjacent grid 9 

points at 57.3°N between 111.3 and 111.5°W (see Fig. 4) and MISR also finds a significant positive trend at only 10 

two locations in the domain. Finally, MODIS/Aqua DB has two points with the largest and most significant positive 11 

AOD trend in the region of the Muskeg River mine at 57.25°N, 111.25°W (Fig. 4). In fact, two satellite data 12 

products, namely POLDER/PARASOL and MODIS/Aqua DB, exhibit a statistically significant positive trend in 13 

this mining area. Although not statistically different from zero, the AOD trend in both AATSR and MISR data is 14 

positive in the area of the positive POLDER/PARASOL trend (Fig. 4), whereas MODIS DT tends to show an 15 

insignificant negative trend.  16 

Changes to the surface may be at the root of the increasing AOD trend in this area, either since clearing of 17 

vegetation could lead to higher concentrations of dust, or by biasing the AOD retrieval. Trends in surface albedo 18 

were determined from the combined MODIS Terra/Aqua MCD43C3 albedo data product at four wavelengths 19 

relevant to the MODIS or POLDER AOD retrievals: 470, 645, 860, and 2130 nm (see Appendix A). For all four 20 

wavelengths, neither the largest nor the most significant trends in surface reflectivity occur at 57.25°N, 111.25°W 21 

(not shown), where the largest and most significant MODIS DB AOD trend occurs and also within the larger area of 22 

the spatially coherent POLDER/PARASOL AOD trend.  23 

In order to quantitatively compare trends in AOD and PM2.5, the ratio of the average AOD to average PM2.5 mass 24 

density over all coincidences between each satellite instrument and a given NAPS site is used to convert the AOD 25 

trends from the satellite instruments to PM2.5 trends. This implicitly assumes that the ratio of PM2.5 to AOD is 26 

constant over time. This ratio is determined for the merged Albian mine / Shell Muskeg River dataset. Since aerosol 27 

optical depth histograms indicate a skewed distribution, it is also useful to verify trends using annual medians. For 28 

that purpose, the ratio of median AOD to median PM2.5 is used instead. This approach is particularly important for 29 

POLDER/PARASOL because of the very low 865 nm AODs (Fig. 1) and the negative offset (Table 4) that do not 30 

allow a relative trend to be meaningful. 31 

A significant positive trend of 0.24±0.06(4.1±1.1)%/year (±1 standard error) (Figs. 5-6) and 0.24±0.07 32 

µg/m
3
/(5.7±1.6)%/year is detected in the Albian mine/ Shell Muskeg River merged annual average and median 33 

PM2.5 mass densities (2002-2015), respectively. Limiting the merged PM2.5 dataset to the warm season (April-34 

October) to mimic the temporal coverage of the satellite data (Table 4), the trend (0.25±0.07 µg/m
3
/relative trend 35 
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using annual averages is (4.6±1.2)%/year) does, which is not change significantly from the trend using year-round 1 

data (Fig. 6). A consistent trend of 0.21±0.09 µg/m
3
/(4.8±2.1)%/year is found in annually-averaged PM2.5 at Albian 2 

mine (2002-2008) alone, and the trend there during the warm season is (4.3±1.1)%/year, also statistically significant 3 

and not different (0.24±0.06 µg/m
3
/from the year).-round trend. Furthermore, there is no indication of a 4 

discontinuity between 2008 and 2009 when the monitoring site was relocated. The relative trend in PM2.5 at the 5 

surface is in quantitative agreement with the PM2.5relative trends derived from MODIS/Aqua Deep Blue and 6 

POLDER/PARASOL annually averaged AOD data over similar, yet shorter periods. For both MODIS/Aqua Deep 7 

Blue and POLDER/PARASOL, trends using annual medians agree with trends determined using annual averages 8 

within their respective standard errors (1 s. e.). The low bias of POLDER/PARASOL AOD near these two Shell 9 

mines is expected from the validation with AERONET at Fort McMurray (Table 4) and previous work on larger 10 

spatial scales (Deuzé et al., 2001).  11 

Contrary to the localized, significant AOD trend in satellite data records in the eastern portion of the Muskeg River 12 

region, a statistically significant trend is found at two other ground-based stations within the AOSR for the period 13 

2002-2014, namely Syncrude UE1 and Millennium mine (Fig. 6). The largest trend occurs at Millennium mine, the 14 

closest NAPS station to the southeast of the Shell Muskeg River region (see Table 2 and Fig. 4 for location). The 15 

trend is insignificant using either annual means or median PM2.5 data at CNRL Horizon and Anzac where data 16 

records are shorter, while the trend at Wapasu (2013-2015) was not evaluated. The PM2.5 trends at the remaining 17 

sites in the AOSR, namely two sites at Fort McMurray and one at Fort McKay are discussed below. Note that 18 

POLDER/PARASOL does not measure at Syncrude UE1 (see Table 3) and there is insufficient sampling at 19 

Millennium Mine over an area of 0.4°×0.4° in each of the years (2005-2013) for trend analysis. For 20 

POLDER/PARASOL, the trend, while mostly insignificant in the AOSR, is always positive. For AATSR, the AOSR 21 

has regions of statistically insignificant negative and positive trends. For MISR, the trend is positive in 56% of the 22 

trend domain and even more so (83%) in the northern half of the domain (57-58°N). For MODIS DB and DT, some 23 

of the AOSR is not sufficiently sampled with high confidence (see Sect. 2), but where confidence is ≥1, the trend 24 

tends to be negative in 69% and 77% of this area, respectively. The calibration of the MODIS reflective solar bands 25 

is achieved by calibration with the solar diffuser. Some negative drift in AOD (Levy et al., 2015) is expected for 26 

MODIS Aqua similar to its Terra counterpart (see Sect. 2) as the designs of the solar diffuser and its stability 27 

monitor are nearly identical in the two MODIS sensors (Wu et al., 2013). Li et al. (2016) find a small positive trend 28 

in AOD over Athabasca (56-58°N, 110-113°W) using MODIS/Aqua DB data (2004-2015), insignificant at the 2 s.e. 29 

level. Bari and Kindzierski (2016) found no indications of a positive trend in PM2.5 at Fort McKay and the Fort 30 

McMurray Athabasca Valley site, using a longer period (1998-2014), although, as shown in Fig. 2 of Bari and 31 

Kindzierski (2016) for Fort McKay, there is an abrupt decrease in PM2.5 mass densities that occurs between 2001 32 

and 2002 that has a profound effect on the trend and its uncertainty. This discontinuity is observed at all sites in the 33 

AOSR that extend back to 2001. An earlier study by the same authors (2015) also indicated no trend between 1998-34 

2012 at the same sites and at the Fort McMurray Patricia MacInnes site as well. Li et al. (2016) find a small positive 35 

trend in AOD over Athabasca (56-58°N, 110-113°W) using MODIS/Aqua DB data (2004-2015), insignificant at the 36 

2 s. e. level.           37 
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4 Discussion and conclusions 1 

In this section, the advantages and limitations of the various data products are summarized. As shown in Table 4, all 2 

of the satellite sensors capture the temporal variability in AOD over Fort McMurray, based on correlations with 3 

AERONET, in spite of the low AODs there (e.g. Fig. 1). This temporal variability is largely driven by day-to-day 4 

variability as forest fires lead to episodes with large AODs (>3) in summer months that strongly influence the 5 

calculated correlation.   6 

The two MODIS AOD data products (Deep Blue and Dark Target) have low confidence in the AOSR partly due to 7 

issues relating to elevated surface reflectivity in the vicinity of the Mildred Lake Syncrude facility. However, the 8 

MODIS dark target product is the best at capturing temporal variability in terms of the correlationscorrelation with 9 

individual AERONET AODAODs at Fort McMurray and in terms of capturing the month-to-month variability. This 10 

is likely due to MODIS’s combination of Stronger short-term correlation with AERONET AODs reflects  the 11 

superior spatial resolution of the MODIS radiances (Table 1)), which is useful for resolving and higher signal-to-12 

noise ratio (SNR): its radiances have SNR > 1000 (Xiong et al., 2003) whereas the other instruments have 13 

SNRfiltering small clouds and localized areas of 1000 or less (Deschamps et al., 1994; European Space Agency, 14 

2007; Diner et al., 1989). MODIS DT clearly has a slope slightly greater than unity over the AOSR, in contrast to 15 

MODIS DB (Table 4). high surface reflectively. Focussing on Fort McMurray, where there is a longer AERONET 16 

data record than at Fort McKay, the MODIS DT has a slope changes insignificantly when coincident AERONET 17 

AOD is limitedgreater than unity, in contrast to <0.7.MODIS DB (Table 4). The same pattern of consistently high 18 

and low slope values for the MODIS Aqua DT and DB (collection 6) products, respectively, was found over two 19 

sites in Pakistan, namely Lahore and Karachi, by Bilal et al. (2016) and during non-fire summertime periods over 20 

semi-arid Nevada and California as shown in Table 4 of the work of Loría-Salazar et al. (2016). A high slope may 21 

be related to the use of the 2.1 µm channel to determine the reflectivity in the visible over non-vegetated surfaces as 22 

suggested by Bilal et al. (2016). High-biased AODs result because the surface reflectance in the visible assumed by 23 

the retrieval algorithm is less than the actual value as the relationship between the visible and 2.1 µm was developed 24 

for vegetated land for which a stronger spectral variation exists  than for barren land. Li et al. (2005) have shown that 25 

the spectral reflectance relationship is much different even for dry vegetation than green vegetation. Note that high 26 

day-to-day variability can be captured in spite of biases in assumed surface reflectance since the latter changes 27 

slowly with time over the warm season, when successful measurements occur more frequently. A MODIS algorithm 28 

designed to function over inhomogeneous surfaces such as the AOSR region, and which would also likely be 29 

applicable to urban areas, is being investigated to exploit the many benefits of MODIS radiance data. One such 30 

benefit is the twice-daily revisit over the AOSR that the current multi-angle sensors, namely MISR and SLSTR (Sea 31 

and Land Surface Temperature Radiometer) (Coppo et al., 2010), cannot offer. SLSTR, onboard the recently 32 

launched Sentinel-3a satellite, is the next generation in the ATSR series.  33 

MISR clearly captures the short-term and month-to-month AOD variability at Fort McMurray based on correlations 34 

at the individual coincidence level and the monthly time scale (Table 4), but struggles to capture the local spatial 35 

variability including the AOD hotspot in the AOSR as discussed in Sect. 3. The MISR low bias may be related to the 36 
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need for darker spherical particles (Kahn et al., 20052010) given that forest fire smoke plays a significant role 1 

throughout the western Canada in the warm season (O’Neill et al., 2002). Spherical particles with lower single 2 

scattering albedo (SSA) may also be required to properly represent local anthropogenic pollution (Kahn et al., 3 

20052010) in the AOSR. The 3×3 superpixel averaging that is used when the MISR retrieval fails for the central 4 

superpixel could also contribute to a low bias  (Jiang et al., 2007), particularly at Fort McKay as background AODs 5 

to the west could be lowering the average.       6 

AATSR has a major spatial sampling issue in the heart of the AOSR, but also captures month-to-month variability 7 

from late spring to early autumn (Table 4) as well as short-term (Table 4) and spatial variability (Table 3). Based on 8 

a previous analysis (Che et al., 2016), the AATSR AOD underestimation of the Swansea University product (also 9 

used here) is larger over barren surfaces or sparse vegetation. Such land cover types are present in the AOSR. The 10 

slight bias (Table 4) is not strongly AOD-dependent as removing coincidences with AERONET 500 nm AOD of 11 

>0.35 does not significantly change the slope of the regression equation (Table 4).    12 

POLDER has a known negative offset in AOD (Deuzé et al., 2001), confirmed using coincident Fort McMurray 13 

AERONET AOD data. However, POLDER/PARASOL isFor the temporal trend calculation, the approach of using 14 

relative anomalies based on bias-corrected AODs is particularly important for POLDER/PARASOL because the 15 

very low 865 nm AODs (Fig. 1) and the negative offset (Table 4) do not allow a relative trend to be meaningful 16 

without bias correction. Nevertheless, POLDER/PARASOL is the among the most accurate satellite-based aerosol 17 

sensor at Fort McMurray during periods of the higher AODs (e.g. ≥0.314, Table 4), when its negative offset 18 

becomes rather trivial. Overall, the POLDER AOD product is without a major weakness relative to the other 19 

instruments, although it is provided at a relatively coarse spatial resolution (Table 1) and the fixed spatial sampling 20 

pattern of this sensor inhibits the application of spatial oversampling techniques. The use of polarized radiances 21 

reduces the sensitivity of the retrieved AOD to surface reflectance (e.g. Deuzé et al., 2001). The trend in 22 

POLDER/PARASOL AOD at the Shell mines (Albian and Shell Muskeg River) is probably not driven by a trend in 23 

surface reflectance since agreement with AERONET tends to be independent of surface type (e.g. Chen et al., 2015). 24 

A future sensor of POLDER heritage, namely the Multi-viewing, Multi-channel, Multi-polarisation Imager (3MI), 25 

offers higher spatial resolution, the availability of longer wavelength channels, and the potential for accurate 26 

monitoring of the local aerosol loading in the decade to come.         27 

While AODs in the AOSR are relatively small according to POLDER/PARASOL (Fig. 1), the significantly positive 28 

trend in AOD from this satellite sensor and the similar trend in observed surface-level PM2.5 in the region of the 29 

Muskeg River mine points to the need to continue monitoring of this region with a combination of surface and 30 

satellite-based aerosol observations.     31 
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Appendix A: Data product notes 33 
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MODIS data is obtained from ftp://ladsweb.nascom.nasa.gov/allData/. AATSR and ATSR-2 version 4.1 data are 1 

from Swansea University and can be obtained from the Aerosol CCI website (http://www.esa-aerosol-cci.org/) 2 

following registration. The current file version (F12) is used for MISR 3 

(ftp://l5eil01.larc.nasa.gov/MISR/MIL2ASAE.002). The selected MISR AOD product is named the “regional best 4 

estimate of spectral optical depth”. POLDER data was obtained from CNES (http://polder.cnes.fr), but data can 5 

currently be obtained from http://www.icare.univ-lille1.fr/ following registration. A POLDER AOD datum is 6 

filtered if any of the following statements are true (see F.-M. Bréon,  (2011):)): 7 

1) The central pixel is snow-covered. 8 

2) One of the cloud tests is not applied. 9 

3) None of the 9 radiance pixels which form the AOD superpixel has clear sky. 10 

4) Sufficient data couples do not exist. The couples are: 11 

a) 865 nm & 910 nm,  12 

b) Q443 & U443,  13 

c) Q670 & U670,  14 

d) Q865 & U865,  15 

where Q and U are the derived Stokes elements and the number is the wavelength (in nm) of the 16 

channel. 17 

5) Ozone absorption is not corrected (using TOMS or ECMWF). 18 

6) Stratospheric aerosol correction is uncertain or imprecise (i.e. stratospheric AOD larger than a certain 19 

threshold).  20 

7) Minimum scattering angle is larger than a threshold or maximum scattering angle is smaller than a 21 

threshold. 22 

8) Aerosol optical thickness is larger than a threshold such that surface reflectance cannot be estimated 23 

adequately. 24 

9) A large difference between measured and modeled reflectance exists for 443 nm. 25 

10) Differences are too large between measured and modeled reflectance (risk of glitter). 26 

11) Meteorological data indicate the presence of snow at ground level. 27 

12) The quality index is  0.00 for viewing geometry conditions 28 

13) The quality index is  0.00 for polarized reflectance fit.  29 
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 4 

 5 

Satellite Time period Wavelength 

(nm)  

Spatial resolution  of AOD 

superpixel at nadir 

(km
2
) 

Spatial resolution of 

radiances (km
2
) 

MISR 2000-2015 558 17.6  17.6  1.1  1.1  

MODIS: Terra 

               Aqua 

2000-2015 

2002-2015 

470, 550, 660 10  10 (also 3  3) 0.25  0.25 to 1  1   

POLDER:     1 

                      2 

(PARASOL) 3 

1996-1997 

2003 

2005-2013 

865 18  21 6  7  

ATSR: ATSR-2 

            AATSR  

1995-2003 

2002-2012 

550 10  10 1  1   

 6 

Table 1. Spatial resolution of AOD data products from selected satellite instruments. The third column contains the 7 

wavelength at which aerosol optical depth is reported in each satellite data product. MISR and both MODIS 8 

instruments are currently operating.   9 

 10 
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 1 

 2 

 3 

 4 

 5 

Station name lat(°N)  lon(°W) Time span 

Anzac 56.4493 -111.0372 2006-2015 

Fort McMurray Athabasca Valley 56.7328 -111.39 1997-2015 

Fort McMurray Patricia McInnes 56.7522 -111.476 1999-2015 

Millennium mine 56.97 -111.4 2001-2015 

Syncrude Upgrader Expansion 1 57.1492 -111.642 2002-2015 

Fort McKay 57.1894 -111.641 1997-2015 

Wapasu 57.2383 -110.9028 2013-2015 

Shell Muskeg River 57.2491 -111.508567 2009-2015 

Albian mine 57.2808 -111.526 2001-2009 

Canadian Natural Resources Ltd. Horizon 57.3037 -111.739617 2008-2015 

 6 

Table 2. Selected NAPS PM2.5 sites and time span of available data (inclusive) 7 

 8 
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 2 

 3 

 4 

 5 

AOD product  R N 

POLDER/PARASOL 865 nm  0.8364 8 

AATSR 550 nm 0.7773 9 

MISR 558 nm -0.4120 10 

MODIS/Aqua DT 470550 nm  0.4923 10 

MODIS/Aqua DB 550 nm 0.8157 10 

 6 

Table 3. Spatial correlation between PM2.5 mass density and AOD using meansmedians of coincident data over the 7 

entire overlapping period at 10 sites in the AOSR. Wapasu has insufficient or no temporal overlap with 8 

POLDER/PARASOL and AATSR. Syncrude UE1 is not spatially coincident with any of the POLDER locations 9 

given the 10 km criterion (see Sect. 2).            10 

 11 
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 22 
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 2 

 3 

 4 

 5 

sensor rrs slope  offset seasonal r month range N 

Aqua DB v6 
0.81793 
0.94686 

0.89867 
1.00013 

0.03040233 
0.01710036 

0.84 
0.84 

4-10 
4-10 

5508 
626 

Aqua DT v6 
0.956875 
0.972806 

1.11210 
1.08088 

-0.00130117 
-0.01770223 

0.99 
0.95995 

4-10 
5-9 

4748 

4084197 
431 

PARASOL 

0.92867 

- 

1.09 
0.831 

- 

-0.03018 

- 

0.89 

- 

5-10 

- 

414 

- 

AATSR 

0.91888 

- 

0.88862 

- 

0.02650253 

- 

0.96 

- 

5-10 

- 

560 

- 

MISR 

0.89862 

0.93668 

0.63731 

0.64652 

0.02930219 

0.0364032 

0.88 

- 

3-9 

- 

337 

87 

 6 

Table 4. Statistical comparison of coincident AODs observed by satellite-based sensors and AERONET 7 

CIMELCimel sun photometerphotometers. For each satellite AOD product, the upper row is for Fort McMurray and 8 

the lower row is for Fort McKay. The CIMELCimel 500 nm AOD, scaled to the satellite AOD wavelength (see 9 

Sect. 2), is used for comparison with all satellite sensors except POLDER/PARASOL, for which the CIMELCimel 10 

870 nm AOD is more appropriate (see Table 1). The simple linear regression equation used to obtain the slope and 11 

offset assumes AERONET AOD and satellite-based AOD are the independent and dependent variables, 12 

respectively. The number of MISR-Fort McKay coincidences is insufficient to assess the month-to-month 13 

variability.     14 

 15 

 16 

 17 

 18 

 19 

 20 



 

38 
 

 1 

 2 
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 4 

 5 

 6 

 Including +4 

outliers  

Excluding +4 

outliers  

POLDER/PARASOL 0.995 0.81 

MISR 0.91 0.94 

AATSR 0.98 0.92 

MODIS DT 0.9798 0.9594 

MODIS DB 0.91 0.86 

 7 

Table 5. Correlation of annual mean AODs with Fort McMurray AERONET AODs during the respective overlap 8 

periods of the various satellite AOD products. In the rightmost column, the contribution of large forest fires has been 9 

removed from AERONET data and satellite datasets using +4 standard deviations () as a cutoff.    10 

 11 
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 1 

Figure 1. Climatological average AOD maps on a 0.1° x 0.1° latitude-longitude grid. (top left) POLDER 865 nm 2 

(1996-2013). Note the gaps in time between the different members of the POLDER series in Table 1. (top right) 3 

MISR 558 nm (2000-2015). (bottom left) MODIS/Aqua DT using only confidence of 3 (2002-2015). (bottom 4 

centre) MODIS/Aqua DB using only confidenceconfidences of 2-3 (2002-2015).) following Sayer et al., 2013. 5 

(bottom right) AATSR 550 nm (2002-2012). Typical N is ~65 for AATSR (see below) and white areas indicate 6 

N<20. Black lines trace out the three surface mining areas in this and subsequent figures.     Average coincident 7 

AERONET AOD at Fort McMurray is superimposed as a diamond with a black outline. In each panel, the AOD 8 

ranges from 0 to the greater of the maximum climatological mean satellite AOD or the Fort McMurray AERONET 9 

mean AOD, except for MISR, for which the AOD range is capped at 0.14 to not emphasize the anomalously high 10 

AOD at Moose Lake (57.6°N, 112.5°W).   11 
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  1 

  2 

Figure 2. MapMaps of climatological averagefraction of pixels with a specific confidence (2002-2014) for 3 

MODIS/Aqua DT (lefttop) and DB (rightbottom) AODs. Lower confidence is expected over Moose Lake (57.6°N, 4 



 

43 
 

112.5°W) and the Richardson sand dunes (58.0°N, 111.0°W). MODIS DB only reports a fill value when confidence 1 

is 0 in contrast to MODIS DT, thus the bottom right plot accounts for fill values, whereas the top right plot (for 2 

MODIS DT) does not.          3 

 4 

 5 

 6 

 7 

 8 

 9 

Figure 3. Map of sample size (left) and average cloud fraction within AOD superpixels when the AOD retrieval is 10 

successful (right), compiled from the entire AATSR data record. Smaller sample sizes are expected over Moose 11 

Lake and Gordon Lake (56.5°N, 110.5°W).  12 
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 2 
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 5 

 6 

 7 

Figure 4. Areas with a significant positive trend in AOD in the POLDER/PARASOL, and MODIS/Aqua DB data 8 

records. The area over which the AOD time series is determined for MODIS/Aqua DB (0.1×0.1°), and 9 

POLDER/PARASOL (0.4×0.4°) is outlined in pink and blue, respectively. Locations of 10 NAPS PM2.5 monitoring 10 

sites are also shown as small green squares. The central one of 3 adjacent (overlapping) grid cells at constant latitude 11 

is plotted for POLDER/PARASOL (see Sect. 3 for details). The grid cell with the largest trend in the domain is 12 

plotted for MODIS/Aqua DB (see Sect. 3 for details). Note that the Albian mine site (57.2808°N, 111.526°W) was 13 

replaced by the nearby Shell Muskeg River site (57.2491°N, 111.509°W) in 2009 (both station symbols are filled in 14 

red). The two AERONET instruments are co-located with NAPS monitors and those sites are filled in blue.    15 
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 1 

Figure 5. Annual averageRelative anomalies of annual mean PM2.5 mass density for the merged Albian mine and 2 

Shell Muskeg River dataset, along with PM2.5 annual averages derived from satellite AOD data recordsrelative 3 

anomalies of bias-corrected annual mean AODs for POLDER/PARASOL and MODIS/Aqua DB (see Sect. 3 for 4 

details and Fig. 4 for satellite trend areas). Each satellite time series is plotted at the average decimal time for each 5 

calendar year. Trend lines are fitted to each time series using a matching colour. Vertical error bars indicate ±1 6 

relative standard error of the annual mean. There are, on average, 33 and 50 observations per year for 7 

POLDER/PARASOL and MODIS/Aqua DB, respectively. The secondary ordinate applies to the MODIS DB 8 

observations, but not POLDER/PARASOL (for which the 865 nm AODs are in the 0.01 to 0.03 range).         9 
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 1 

Figure 6. TrendRelative trend in annually averaged PM2.5 mass density calculated using NAPS PM2.5 data for three 2 

locations, namely the merged Albian mine and Shell Muskeg River dataset (2002-2015), Millennium mine (2002-3 

2014) and Syncrude UE1 (2003-2014), or derived fromin satellite AODs in the vicinity of Shell’s Albian and 4 

Muskeg River mines (see Fig. 4 and Sect. 3). The trend is also determined for the NAPS PM2.5 merged Albian Mine 5 

– Shell Muskeg River (AM-SMR) dataset limiting to the warm season (April to October). Trend uncertainty is 6 

indicated with a vertical bar (±1 s. e.).       7 
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