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Abstract. In an attempt to improve the forecasting of atmospheric aerosols, the 8 

ensemble square root filter algorithm was extended to simultaneously optimize the 9 

chemical initial conditions and emission input. The forecast model, which was 10 

expanded by combining the Weather Research and Forecasting with Chemistry 11 

(WRF-Chem) model and a forecast model of emission scaling factors, generated both 12 

chemical concentration fields and emission scaling factors. The forecast model of 13 

emission scaling factors was developed by associating the time smoothing operator 14 

with WRF-Chem forecast chemical concentrations. Hourly surface fine particulate 15 

matter (PM2.5) observations were assimilated over China from 5 to 16 October 2014. 16 

A series of 48-h forecasts were then carried out with the optimized initial conditions 17 

and emissions on each day at 0000 UTC and a control experiment was performed 18 

without data assimilation. The results showed that the forecasts with the optimized 19 

initial conditions and emissions typically outperformed those from the control 20 

experiment. In the Yangtze River delta and the Pearl River delta regions, large 21 

reduction of the Root Mean Square Errors (RMSEs) was obtained for almost the 22 

entire 48-h forecast range attributed to assimilation. Especially, the relative reduction 23 
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in RMSE due to assimilation was about 40% at nighttime when WRF-Chem 24 

performed comparatively worse. In the Beijing–Tianjin–Hebei region, relatively 25 

smaller improvements were achieved in the first 24-h forecast. 26 

 27 

1. Introduction 28 

Aerosol prediction by regional air quality model in heavy polluted regions is 29 

challenging due to many factors. In addition to the deficiency of chemistries, the 30 

uncertainties of primary and precursor emissions and the initial conditions (ICs) also 31 

limit the forecast accuracy. Data assimilation (DA), which is used to improve the ICs 32 

of aerosols and to optimize data on aerosol emissions, has been shown to be one of 33 

the most effective ways to improve the forecasting of aerosol pollution. 34 

From the perspective of reducing the uncertainties in the ICs for aerosols, recent 35 

efforts have focused on assimilating aerosol observations using optimal interpolation 36 

(Collins et al., 2001; Yu et al., 2003; Adhikary et al., 2008; Tombette et al., 2009; Lee 37 

et al., 2013) or variational (Kahnert, 2008; Zhang et al., 2008; Benedetti et al., 2009; 38 

Pagowski et al., 2010; Liu et al., 2011; Schwartz et al., 2012; Li et al., 2013; Jiang et 39 

al., 2013; Saide et al., 2013) DA algorithms. Ensemble-based DA algorithms, such as 40 

the ensemble Kalman filter (EnKF) (Pagowski and Grell, 2012) and the hybrid 41 

variational-ensemble DA approach (Schwartz et al., 2014) have also been applied to 42 

aerosol predictions. All these studies have shown that DA is one of the most effective 43 

ways of improving aerosol forecasting through assimilating aerosol observations from 44 

multiple sources (e.g. ground-based observations and satellite measurements) to 45 

update the chemical ICs. 46 

Numerous studies have used DA approaches to estimate or improve source 47 

emissions. The EnKF is one of the most popular DA algorithms used to improve 48 

estimates of aerosols and gas-phase emissions, such as NOx, volatile organic 49 

compounds, and SO2 (van Loon et al., 2000; Heemink and Segers, 2002; Barbu et al., 50 

2009; Miyazaki et al., 2014). Variational DA algorithms have also been applied to 51 

constrain emissions of air pollution, such as black carbon, organic carbon, dust, NH3, 52 
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SOx and NOx (Hakami et al., 2005; Elbern et al., 2007; Henze et al., 2007, 2009; 53 

Yumimoto et al., 2007, 2008; Dubovik et al., 2008; Wang et al., 2012; Guerrette and 54 

Henze, 2015). These studies have indicated that DA can efficiently reduce the 55 

uncertainty in the emission inventories and lead to improvements in the forecasting of 56 

air quality (Mijling and van der A, 2012). 57 

The optimization of chemical ICs and pollution emissions can improve aerosol 58 

forecasts and therefore further improvements are likely to be achieved by 59 

simultaneously optimizing the chemical ICs and emissions. Tang et al. (2011) 60 

reported that the simultaneous adjustment of the ICs of O3, NOx and volatile organic 61 

compounds and the emissions of NOx and volatile organic compounds produced 62 

overall better performance in both the 1-h and 24-h ozone forecasts than the 63 

adjustment of pure ICs or emissions. Miyazaki et al. (2012) reported that the 64 

simultaneous adjustment of emissions and concentrations is a powerful approach to 65 

correcting the tropospheric ozone budget and profile analyses. 66 

We developed a system to adjust the chemical ICs and source emissions jointly 67 

within an EnKF system coupled to the Weather Research and Forecasting with 68 

Chemistry (WRF-Chem) model (Grell et al., 2005). We then applied this system to 69 

assimilate hourly surface PM2.5 measurements over China in early October 2014. 70 

The remainder of the paper is organized as follows. Section 2 describes this DA 71 

system in detail. Then the experimental designs are introduced in Section 3. Finally, 72 

the surface PM2.5 observations assimilation results are presented in section 4 before 73 

concluding in section 5. 74 

 75 

2. Methodology 76 

2.1 Ensemble square root filter 77 

The ensemble square root filter (EnSRF) algorithm was introduced by Whitaker and 78 

Hamill (2002) and its expansion to analyzing aerosol ICs was described by Schwartz 79 

et al. (2014). Following the notation of Ide et al. (1997), given an m-dimensional 80 

background model forecast vector 𝐱b, a p-dimensional observation vector 𝐲o and an 81 

operator 𝐇 that converts the model state to the observation states, we expressed the 82 
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variables as an ensemble mean (denoted by an over-bar) and a deviation from the 83 

mean (denoted by a prime). Thus, the ensemble mean �̅�a of the analyzed state 𝐱a 84 

and the deviations 𝐱′a from the ensemble mean are updated separately by 85 

�̅�a = �̅�b + 𝐊(𝐲o − 𝐇�̅�b), (1) 86 

𝐱′a = 𝐱′b + �̃�(𝐲′o − 𝐇𝐱′b), (2) 87 

where 𝐊 is the traditional Kalman gain matrix and �̃� is the gain used to update the 88 

deviations from the ensemble mean. These are given by 89 

𝐊 = 𝐏b𝐇T(𝐇𝐏b𝐇T + 𝐑)−1 (3) 90 

�̃� = 𝐏b𝐇T [(√𝐇𝐏b𝐇T + 𝐑)
−1

]
T

(√𝐇𝐏b𝐇T + 𝐑 + √𝐑)
−1

 

 = (𝟏 + √𝐑/(𝐇𝐏b𝐇T + 𝐑))
−1

𝐊, (4) 91 

where 𝐏b is the 𝑚 ∗ 𝑚-dimensional background error covariance matrix and 𝐑 is 92 

the 𝑝 ∗ 𝑝 -dimensional diagonal observation error covariance matrix. In real 93 

applications, 𝐏b𝐇T and 𝐇𝐏b𝐇T  can be approximated using the background 94 

ensemble; namely, 95 

𝐏b𝐇T =
1

𝑁−1
∑ 𝐱′b(𝐇𝐱′b

)𝑇𝑁
𝑖=1  (5) 96 

𝐇𝐏b𝐇T =
1

𝑁−1
∑ 𝐇𝐱′b(𝐇𝐱′b

)𝑇𝑁
𝑖=1 . (6) 97 

In equations (5) and (6), 𝑁 is the ensemble size. 98 

Note that for the joint analysis of ICs and emissions, the state vector 𝐱 is the 99 

joint vector of the mass concentration 𝐂 and the emission scaling factor 𝛌, i.e. 100 

𝐱 = [𝐂, 𝛌]T. After each ensemble analysis, the ensemble forecasts were performed 101 

with the corresponding models to advance 𝐂 and 𝛌 to the next analysis time. The 102 

forecast models are described in section 2.2. 103 

 104 

2.2 Forecast model 105 

A forecasting model, 𝐌, was developed to forecast the emission scaling factors and 106 

the aerosol control variables. This model combines the WRF-Chem model and the 107 

forecast model of emission scaling factors. 108 

 109 
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2.2.1 WRF-Chem model 110 

Version 3.6.1 of the WRF-Chem model (Grell et al., 2005) was used to forecast the 111 

aerosol and chemical species. WRF-Chem is an online model with the fully coupled 112 

chemical and meteorological components. 113 

Most of the WRF-Chem settings were the same as those reported in Liu et al. 114 

(2011): the Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol 115 

scheme coupled with the Regional Atmospheric Chemistry Mechanism for gaseous 116 

chemical mechanisms; the WRF single-moment five-class microphysics scheme; the 117 

Rapid Radiative Transfer Model longwave and Goddard shortwave radiation schemes; 118 

the Yonsei University (YSU) boundary layer scheme; the Noah land surface model; 119 

and the Grell-3D cumulus parameterization. 120 

With respect to the emissions, the hourly prior anthropogenic emissions were 121 

based on the monthly regional emission inventory in Asia (Zhang et al., 2009) for the 122 

year 2006 interpolated to the model grid (40.5 km) for the lowest eight vertical levels. 123 

In order to keep objective for the prior anthropogenic emissions, no time variation 124 

was added. Thus, the hourly prior anthropogenic emissions were constant. The 125 

biogenic (Guenther et al., 1995), dust (Ginoux et al., 2001), dimethylsulfide and sea 126 

salt emissions (Chin et al., 2000, 2002) were calculated online. 127 

 128 

2.2.2 Forecast model of scaling factors 129 

As no suitable dynamic model was available to forecast the emission scaling factors, a 130 

persistence forecasting operator served as the forecast model for the scaling factors, 131 

similar to the method used by Peng et al. (2015) for CO2 emission inversion. Figure 132 

1a shows the flowchart for the persistence forecasting operator 𝐌SF. 133 

If the ensemble members of the updated chemical fields 𝐂𝑖,𝑡−1
a  and the forecast 134 

emissions 𝐄𝑖,𝑡−2
f  in the previous assimilation cycle are known, then the chemical 135 

fields 𝐂𝑖,𝑡
f  at time 𝑡 can be generated via WRF-Chem (Figure 1b). The ensemble 136 

concentration ratios 𝛋𝑖,𝑡, (𝑖 = 1, … , 𝑁) were then calculated using 137 

𝛋𝑖,𝑡 = 𝐂𝑖,𝑡
f /𝐂𝑡

f̅̅ ̅, (𝑖 = 1, … , 𝑁) (7) 138 
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where 𝐂𝑡
f̅̅ ̅ =

1

𝑁
∑ 𝐂𝑖,𝑡

f𝑁
𝑖=1  is the ensemble mean of the forecast. 𝛋𝑖,𝑡  are random 139 

variables with a mean values of 1. 140 

The ensemble spreads of 𝛋𝑖,𝑡, (𝑖 = 1, … , 𝑁)  may be small and therefore 141 

covariance inflation was used to maintain them at a certain level: 142 

(𝛋𝑖,𝑡)inf = 𝛽(𝛋𝑖,𝑡 − 𝛋𝑡̅̅ ̅) +  𝛋𝑡̅̅ ̅, (𝑖 = 1, … , 𝑁) (8) 143 

𝛽 = 1.5 was chosen in this study. 𝛋𝑡̅̅ ̅ is the ensemble mean of 𝛋𝑖,𝑡, and is equal to 1. 144 

As the concentrations were closely related to the emissions and there was no suitable 145 

dynamic model available to forecast the emission scaling factors, the inflated 146 

concentration ratios (𝛋𝑖,𝑡)inf served as the prior emission scaling factors 𝛌𝑖,𝑡
p

: 147 

𝛌𝑖,𝑡
p

= (𝛋𝑖,𝑡)inf, (𝑖 = 1, … , 𝑁) (9) 148 

To incorporate the useful information from the previous times, the previous DA 149 

cycles’ analysis scaling factors, 𝛌𝑖,𝑡−𝑀+1
a , ⋯, 𝛌𝑖,𝑡−2

a , 𝛌𝑖,𝑡−1
a  and the prior scaling 150 

factor 𝛌𝑖,𝑡
p

 were used to estimate 𝛌𝑖,𝑡
f  by the time smooth operator; namely, 151 

𝛌𝑖,𝑡
f  =

1

𝑀
(∑ 𝛌𝑖,𝑗

a + 𝛌𝑖,𝑡
p𝑡−1

𝑗=𝑡−𝑀+1 ), ( 𝑖 = 1, … , 𝑁, 𝑗 = 𝑡 − 𝑀 + 1, … , 𝑡 − 1) (10) 152 

Here, 𝑀 is the time window of the smooth operator. In this study, a value of 𝑀 = 4 153 

(hours) was chosen. 154 

The ensemble members of the emissions were calculated according to 155 

𝐄𝑖,𝑡 = 𝛌𝑖,𝑡𝐄𝑡
p

, (𝑖 = 1, … , 𝑁), (11) 156 

where 𝐄𝑖,𝑡 is the 𝑖th ensemble member of the emissions for each grid at time 𝑡, 𝛌𝑖,𝑡 157 

represents the scaling factors and 𝐄𝑡
p

 is the prescribed emission, which can be 158 

obtained from the emission inventories. 159 

 160 

2.3 Data assimilation system 161 

2.3.1 State variables 162 

The EnSRF algorithm was expanded to optimize the emissions of WRF-Chem. 163 
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For the GOCART aerosol scheme, the aerosol species include unspecified P25 (P25), 164 

sulfate (S), hydrophobic and hydrophilic organic carbon (OC1 and OC2, respectively), 165 

hydrophobic and hydrophilic black carbon (BC1 and BC2, respectively), dust in five 166 

particle size bins (effective radii of 0.5, 1.4, 2.4, 4.5 and 8.0 μm; referred to as D1, 167 

D2, D3, D4 and D5, respectively) and sea salt in four particle size bins (effective 168 

radii of 0.3, 1.0, 3.25 and 7.5 μm for dry air; referred to as S1, S2, S3 and S4, 169 

respectively). The PM2.5 observation operator was the same as that described by 170 

Schwartz et al. (2012) and expressed as 171 

𝐲f = 𝛒d[𝐏𝟐𝟓 + 1.375𝐒 + 1.8(𝐎𝐂𝟏 + 𝐎𝐂𝟐) + 𝐁𝐂𝟏 + 𝐁𝐂𝟐 

+𝐃𝟏 + 0.286𝐃𝟐 + 𝐒𝟏 + 0.942𝐒𝟐], (12) 172 

where 𝛒d represents the dry air density, which is multiplied by the mixing ratios of 173 

aerosol species (in μg·kg
−1

) to convert the units to μg·m
−3

 for consistency with the 174 

observations. As reported by Schwartz et al. (2012), the state variables of the analysis 175 

of the ICs were the 15 WRF-Chem/GOCART aerosol variables. 176 

From the perspective of the optimization of emissions, atmospheric inorganic 177 

aerosols are not only from the primary emissions, but also secondary process-  178 

chemical and thermodynamic transformations from the gas-phase precursors. 179 

Therefore, not only the primary sources of PM2.5, but also the sources of the gas-phase 180 

precursors, need to be optimized. In this study, the sources of SO2, NOx and NH3 181 

(𝐄SO2, 𝐄NO and 𝐄NH3), which have a large impact on the distribution of PM2.5, were 182 

also optimized in addition to the primary sources of PM2.5. Therefore, the four species 183 

of emission scaling factors (𝛌PM2.5, 𝛌SO2, 𝛌NO and 𝛌NH3) were considered as the 184 

state variables of the DA system in addition to the mass concentration of 15 aerosol 185 

variables. 186 

The direct sources of PM2.5 include the unspeciated primary sources of PM2.5 187 

𝐄PM2.5 , sulfate 𝐄SO4 , nitrate 𝐄NO3 , organic compounds Eorg and elemental 188 

compounds EBC; all of them are given in two modes (the nuclei and accumulation 189 

modes, represented as i and j in the subscripts respectively) The ratios between the 190 

nuclei and accumulation modes were the same as in the suggested emission process 191 

for National Emission Inventory in WRF-Chem (Freitas et al., 2011). The formula of 192 
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sulfate and nitrate emissions in the model are as below: 193 

𝐄PM2.5i: 𝐄PM2.5j = 1: 4, (13) 194 

𝐄SO4i: 𝐄SO4j = 1: 4, (14) 195 

𝐄NO3i: 𝐄NO3j = 1: 4, (15) 196 

𝐄SO4i + 𝐄SO4j = 𝑎 ∗ (𝐄PM2.5i + 𝐄PM2.5j − 𝐄EC − 𝐄ORG), (16) 197 

𝐄NO3i + 𝐄NO3j = 𝑏 ∗ (𝐄PM2.5i + 𝐄PM2.5j − 𝐄EC − 𝐄ORG), (17) 198 

where 𝐄EC  represents elemental carbon and 𝐄ORG  organic compounds, and 199 

𝑎 = 0.074 and 𝑏 = 0.038 were chosen based on the internal emissions and 200 

observational data. In the DA process, the first 6 species of direct sources of 201 

emissions (𝐄PM2.5i , 𝐄PM2.5j , 𝐄SO4i , 𝐄SO4j , 𝐄NO3i , and 𝐄NO3j ), which may have 202 

larger uncertainties in heavy polluted events, were updated according to the variation 203 

of 𝛌PM2.5. 𝐄PM2.5i and 𝐄PM2.5j were directly updated according to the variation in 204 

𝛌PM2.5. The emissions (𝐄SO4i, 𝐄SO4j, 𝐄NO3i and 𝐄NO3j) were also updated according 205 

to the variations in 𝐄PM2.5i and 𝐄PM2.5j. 206 

 207 

2.3.2 Procedure for the DA system 208 

Figure 1 (b) shows the workflow of the DA system. The steps in this workflow are as 209 

follows. 210 

(1) The persistence forecasting operator 𝐌SF  is applied to forecast the 211 

background fields of the emission scaling factors 𝛌PM2.5
f , 𝛌SO2

f , 𝛌NO
f  and 𝛌NH3

f . The 212 

forecast chemical fields of P25, SO2, NO and NH3 of the previous assimilation cycle 213 

are used to create the prior emission scaling factors 𝛌PM2.5
p

, 𝛌SO2
p

, 𝛌NO
p

 and 𝛌NH3
p

. 214 

The background scaling factors are then generated using equation (10). 215 

(2) The ensemble members of the emissions, 𝐄PM2.5i
f , 𝐄PM2.5j

f , 𝐄SO2
f , 𝐄NO

f  and 216 

𝐄NH3
f , are prepared according to equation (11). The corresponding emissions of 𝐄SO4i

f , 217 

𝐄SO4j
f , 𝐄NO3i

f  and 𝐄NO3j
f  are obtained based on equations (14–17). 218 

(3) Forced by the changed emissions (𝐄PM2.5i , 𝐄PM2.5j , 𝐄SO2 , 𝐄NO , 𝐄NH3 , 219 
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𝐄SO4i, 𝐄SO4j, 𝐄NO3i and 𝐄NO3j were substituted by 𝐄PM2.5i
f , 𝐄PM2.5j

f , 𝐄SO2
f , 𝐄NO

f , 220 

𝐄NH3
f , 𝐄SO4i

f , 𝐄SO4j
f , 𝐄NO3i

f  and 𝐄NO3j
f ; the other emissions such as 𝐄EC and 𝐄ORG 221 

remained unchanged), WRF-Chem is run again to forecast the chemical fields 𝛒f 222 

with the updated chemical fields of the previous assimilation cycle as the ICs. The 223 

state variables, i.e., 15 aerosol species and four scaling factors, are then prepared. 224 

(4) The model-simulated PM2.5 concentration at the observation space is then 225 

calculated via equation (12). 226 

(5) In the assimilation step, the state variables, the concentrations of 14 defined 227 

aerosol species and a 15th unspeciated aerosol, and the four species of emission 228 

scaling factors 𝛌PM2.5
f , 𝛌SO2

f , 𝛌NO
f  and 𝛌NH3

f , were optimized through EnSRF. 229 

(6) After the assimilation step, the optimized emissions (𝐄PM2.5i
a , 𝐄PM2.5j

a , 𝐄SO2
a , 230 

𝐄NO
a , 𝐄NH3

a , 𝐄SO4i
a , 𝐄SO4j

a , 𝐄NO3i
a  and 𝐄NO3j

a ) were calculated according to equations 231 

(11, 14–17) using the optimized scaling factors (𝛌PM2.5
a , 𝛌SO2

a , 𝛌NO
a  and 𝛌NH3

a ). 232 

 233 

3. PM2.5 observation data and errors 234 

Hourly averaged surface PM2.5 observations from the Ministry of Environmental 235 

Protection of China were assimilated. Figure 2 shows the locations of 77 236 

measurement sites used for the PM2.5 assimilation experiment and forecast 237 

verification. The observation sites spanned most of central and eastern China and 238 

were primarily located in urban and suburban areas. 239 

The observation error covariance matrix 𝐑  in equation (3) includes 240 

contributions from measurement and representation errors. Similar to the work of 241 

Schwartz et al. (2012), who followed Elbern et al. (2007) and Pagowski et al. (2010), 242 

the measurement error 𝜀0 is defined as 𝜀0 = 1.5 + 0.0075 ∗ Π0, where Π0 denotes 243 

the observational values for PM2.5 (μg·m
−3

). Thus, higher PM2.5 values were 244 

associated with larger measurement errors. The representativeness error 𝜀𝑟 depends 245 

on the resolution of the model and the characteristics of the observation locations and 246 

is calculated as 𝜀𝑟 = 𝑟𝜀0√Δ𝑥 L⁄ , where 𝑟 is an adjustable parameter (here, 𝑟 = 0.5), 247 
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Δ𝑥 is the grid spacing (here, 40.5 km), and L is the radius of influence of an 248 

observation (here, L was set to 3 km). The total PM2.5 error (𝜀t) is defined as 249 

𝜀t = √𝜀0
2 + 𝜀𝑟

2. The observation errors are assumed to be uncorrelated so that 𝐑 is 250 

a diagonal matrix. 251 

The PM2.5 observations were subject to quality control to ensure data reliability 252 

before DA. PM2.5 values larger than 800 μg·m
−3

 are classified as unrealistic and were 253 

not assimilated; observations with a first guess departure exceeding 100 μg·m
−3

 are 254 

also omitted. 255 

 256 

4. Experimental design 257 

Two parallel experiments were performed to evaluate the impact of PM2.5 DA on the 258 

analyses and forecasts of aerosols over China: an assimilation experiment and a 259 

control experiment. Both experiments used identical WRF-Chem settings and 260 

physical parameterizations. The horizontal grid spacing was 40.5 km and there were 261 

57 vertical levels with the model top at 10 hPa. 262 

 263 

4.1 Spin-up ensemble forecast with perturbed Initial and boundary conditions 264 

The initialization and spin-up procedures were identical to those reported by 265 

Schwartz et al. (2014). The ICs and lateral boundary conditions (LBCs) for the 266 

meteorological fields were provided by the National Centers for Environmental 267 

Prediction Global Forecast System (GFS). 268 

The initial meteorological fields were created at 0000 UTC 1 October 2014 by 269 

interpolating the GFS analyses onto the model domain. The 50 ensemble members 270 

were then generated by adding Gaussian random noise with a zero mean and static 271 

background error covariances (Torn et al., 2006) to the temperature, water vapor, 272 

velocity, geopotential height and dry surface pressure fields. The ICs of each member 273 

were zero in the initial aerosol fields, representing clean conditions as described by 274 

Liu et al. (2011). 275 

The LBCs for the meteorological fields were then interpolated from the GFS 276 
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analyses from 0000 UTC 1 October 2014 to 0000 UTC 16 October 2014 and 277 

perturbed similarly to the initial fields at 0000 UTC 1 October 2014. The aerosol 278 

LBCs of each member for all experiments represented clean oceanic conditions. 279 

Fifty-member emissions were created by adding standard Gaussian random noise 280 

to the anthropogenic emissions, as reported by Schwartz et al. (2014). A 50-member 281 

ensemble of four-day WRF-Chem forecasts was then produced using the perturbed 282 

ICs at 0000 UTC 1 October 2014, the corresponding perturbed LBCs and the 283 

emissions. 284 

 285 

4.2 Assimilation experiment 286 

The assimilation experiment was conducted from 0000 UTC 5 October 2014 to 0000 287 

UTC 16 October 2014. The assimilation cycle interval was 1 h. The first initial 288 

chemical fields were drawn from the WRF-Chem ensemble forecasts valid at 0000 289 

UTC 5 October 2014, as described in section 4.1. In the subsequent assimilation 290 

cycles, the ICs for the chemical variables of each member were drawn from the 291 

updated chemical fields of the previous cycle. The aerosol LBCs of each member 292 

represented clean oceanic conditions. As for the meteorological ensemble fields, the 293 

LBCs were prepared in advance as depicted in section 4.1; the ICs of each member of 294 

the meteorological fields were drawn from the forecast meteorological fields of the 295 

previous cycle before re-centering with the GFS analysis because we do not do 296 

meteorological analysis: 297 

𝛑𝑖new
= 𝛑𝑖 + (𝛑GFS − �̅�), (18) 298 

where 𝛑𝑖 is the ith member of the forecast meteorological fields of the previous 299 

cycle, �̅� is the ensemble mean of the forecast meteorological fields of the previous 300 

cycle, 𝛑GFS is the meteorological field interpolated from the GFS analyses and 301 

𝛑𝑖new
 is the new meteorological field used as the IC in WRF-Chem in the next cycle. 302 

 303 

4.3 Control experiment 304 

The control experiment was conducted for the same period as the assimilation 305 
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experiment and the simulation cycle period was 1 h, as in the assimilation experiment. 306 

The first initial chemical fields were extracted from the ensemble mean valid at 0000 307 

UTC 5 October 2014. In the subsequent simulation process, the ICs for the chemical 308 

fields were from the previous cycle’s 1-h forecast. The LBCs and ICs for the 309 

meteorological fields were updated by interpolating the GFS analyses. The emissions 310 

were the prescribed emissions 𝐄𝑡
p
 without any perturbation. 311 

 312 

5. Results 313 

As the measurement coverage is an important factor that may determine the 314 

performance in DA, we primarily focused our attention on the results from three 315 

sub-regions with comparatively dense observational coverage (Figure 2): the Beijing–316 

Tianjin–Hebei region (JJJ, 12 stations); the Yangtze River delta (YRD, 24 stations); 317 

and the Pearl River delta (PRD, 9 stations). 318 

 319 

5.1 Ensemble performance 320 

It is important to assess the ensemble performance for an ensemble-based DA system. 321 

In a well-calibrated system, a comparison of the prior ensemble mean 322 

root-mean-square error (RMSE) with respect to the observations should equal the 323 

prior “total spread” (square root of the sum of ensemble variance and observation 324 

error variance) (Houtekamer et al., 2005). Figure 3 shows the time series for the prior 325 

ensemble mean RMSE and the total spread for PM2.5 aggregated over all observations 326 

in the three sub-regions. It indicates that the magnitudes of both the total spread and 327 

the RMSE were influenced by the diurnal cycle and heavy air pollution. Almost all 328 

the total spreads were smaller than the RMSE, showing an insufficient spread of 329 

PM2.5 ensemble forecasts, which is especially evident for heavy polluted period with 330 

much larger RMSEs. 331 

 332 

5.2 Impact on aerosol ICs 333 

To evaluate quantitatively the impact of the ensemble assimilation system on the ICs, 334 
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the mean errors (bias), RMSEs and correlation coefficient (CORR) of the assimilation 335 

experiment and the control run were first analyzed. These statistics were calculated 336 

against observations over all the analyses from 6 to 16 October 2014. Table 1 shows 337 

that the bias magnitudes of the control run were 19.1 and 23.5 μg·m
−3

 for the YRD 338 

and the PRD, respectively, suggesting a significant overestimation of the WRF-Chem 339 

aerosol mass in these two sub-regions. However, a significant underestimation of the 340 

aerosol mass occurred in the JJJ region, where the model bias was −16.6 μg·m
−3

. The 341 

RMSEs of the control run were 76.8, 32.2 and 34.5 μg·m
−3

 for the JJJ, YRD and PRD 342 

regions, respectively. After assimilation, the statistics showed an apparent 343 

improvement and the magnitude of the bias and the RMSE decreased. Both the 344 

maximum bias and the RMSE were obtained in the JJJ region, and were -5.2 and 41.6 345 

μg·m
-3

, respectively. The CORR increased from 0.79, 0.60, and 0.62 to 0.93, 0.93, 346 

and 0.87 for the JJJ, YRD and PRD, respectively. These results indicate that the initial 347 

PM2.5 fields can be adjusted efficiently by the EnSRF. 348 

The spatial distribution of the time-averaged differences in PM2.5 (assimilation 349 

minus control) illustrated the impact on the aerosol ICs. Figure 4 shows that the 350 

average difference in PM2.5 at the lowest model level was negative in the YRD, the 351 

PRD and in central China, indicating the reduction of the overestimation of the 352 

WRF-Chem simulation over these regions with data assimilation. The smallest value 353 

of −40 μg·m
−3

 was seen around Guangzhou. Conversely, positive differences were 354 

seen in the JJJ region and in northeast China. The largest value (>40 μg·m
−3

) was seen 355 

in South Hebei Province. These results indicate that DA greatly improved the ICs. 356 

 357 

5.3 Impact on emissions 358 

To determine the impact of assimilating PM2.5 observations on the chemical emissions, 359 

we analyzed the area-averaged time series extracted from the optimized emission 360 

scaling factors and the optimized emissions. Figure 5 shows that although the prior 361 

emissions had no diurnal variation when the experiments were designed, the 362 

optimized PM2.5 scaling factor, 𝛌PM2.5
a , showed an obvious variation with time, as did 363 

the optimized unspeciated primary sources of PM2.5, 𝐄PM2.5
a . Moreover, the values of 364 
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𝛌PM2.5
a  were <1 at almost all times in the YRD and PRD, which resulted that the 365 

analyzed emission 𝐄PM2.5
a  were lower than the prior PM2.5 emissions 𝐄PM2.5

p
. In the 366 

YRD, the prior 𝐄PM2.5
p

 was about 0.127 μg·m
−2

 s
−1

 over all hours. After assimilation, 367 

the time-averaged optimized 𝐄PM2.5
a  decreased to 0.107 μg·m

−2 
s

−1
, about 15.6% 368 

lower than the prior value. In the PRD, the prior 𝐄PM2.5
p

 was about 0.10 μg m
−2

 s
−1

. 369 

The time-averaged optimized 𝐄PM2.5
a  decreased to 0.066 μg·m

−2
 s

−1
, leading to a 370 

decrease of 35.0%. However, larger values for the optimized 𝐄PM2.5
a  were obtained in 371 

the JJJ region in three periods, from 1600 UTC 6 October to 0000 UTC 8 October, 372 

from 1600 UTC 9 October to 0000 UTC 10 October, and from 1600 UTC 13 October 373 

to 0000 UTC 15 October as a result of the increased optimized scaling factor 𝛌PM2.5
a . 374 

This may have been caused by the burning of crop residues during harvesting in this 375 

region (Li et al., 2016), which was not taken into account in the prior emissions. 376 

Although the system is able to detect the emission changes caused by burning events, 377 

the time that the system started to show increased scaling factors might be not 378 

accurate enough (may shift a few hours later); as the system is optimized based on 379 

ambient concentrations in which the transport and transformation processes are not 380 

directly taken into account. 381 

The NO, SO2 and NH3 emissions were all adjusted to some extent by our DA 382 

approach. The NO emissions increased by 41.3, 43.7 and 20.3% in the JJJ, YRD and 383 

PRD regions, respectively. The SO2 emissions increased by 16.3, 10.0 and 18.3% and 384 

the NH3 emissions increased by 16.7, 7.8 and 7.5% in the JJJ, YRD and PRD regions, 385 

respectively. 386 

Figure 6 shows the spatial distribution of the time-averaged scaling factors 387 

𝛌PM2.5
a  at the lowest model level over all hours from 6 to 16 October 2014. Figure 7 388 

shows the distribution of 𝐄PM2.5
p

 and the time-averaged differences between the 389 

ensemble mean of the assimilation and the prior values. These patterns are consistent 390 

with those in Figure 5. Negative differences were obtained in most areas of the YRD 391 

and PRD, indicating that the PM2.5 DA primarily decreased the PM2.5 emissions. 392 
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Conversely, positive differences were obtained in South Hebei, North Henan and 393 

Southeast Shanxi provinces, indicating that DA increased the PM2.5 emissions. 394 

As the economy in China has developed, the spatiotemporal distribution of 395 

emissions has changed as a result of changes in energy consumption, the structure of 396 

the energy market and advances in technology. Therefore although this inventory of 397 

emissions may have correctly described anthropogenic emissions in 2006 when it was 398 

constructed, it is not representative of the anthropogenic emissions in 2014. 399 

Theoretically, the assimilated emissions should reduce the uncertainty in the prior 400 

emissions as a result of the application of observations. The diurnal variation in the 401 

assimilated emissions verified this statement to some extent. In addition, Liu et al. 402 

(2015) reported that PM2.5 and SO2 emissions in China decreased from 2006 to 2010, 403 

whereas NOx emissions increased over the same time. Besides, Xia et al. (2016) also 404 

reported that NOx emissions increased from 2000 to 2011 then decreased slowly from 405 

2012 to 2014. Our assimilated PM2.5 and NOx emissions were in good agreement with 406 

this trend, but not the SO2 emissions. One possible reason for this may be that only 407 

surface PM2.5 observations were applied in this work, which may have less constraint 408 

on the sources of the secondary aerosol precursors, such as SO2 emissions. 409 

Nevertheless, although we had no direct emission observations to use as a reference, 410 

we concluded that the assimilated PM2.5 emissions were a better reflection of the 411 

distribution of the spatiotemporal variations in the real discharge than the emissions 412 

inventory. More observations are needed to obtain reliable emissions for the sources 413 

of the gas-phase precursors. 414 

 415 

5.4 Verification of aerosol forecasting 416 

For the assimilation experiment, 48-h forecasts were performed at each 0000 417 

UTC from 6 to 16 October 2014 with the hourly forecast output. The ensemble mean 418 

of the analyzed ICs and emissions was used in this longer-range model forecast. 419 

Time series of the hourly PM2.5 extracted from the analysis (AN), the control run 420 

(CT) and the hourly output of 48-h forecast (fc24 for the first day forecast and fc48 421 

for the second day forecast) were compared with the observations (OBS) for three 422 
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megacities Beijing, Shanghai and Guangzhou, respectively (Figure 8). As expected, 423 

the time series of the analysis were consistent with the observations. The control run 424 

showed large deviations from the observations, especially in Shanghai and 425 

Guangzhou. Benefit from DA on both the first day and the second day forecasts can 426 

be clearly seen. 427 

The RMSE of the surface PM2.5 forecasts as a function of forecast range was 428 

then calculated against the observations for the three sub-regions (Figure 9). The 429 

RMSEs of the control run were characterized by the diurnal cycle in the YRD and 430 

PRD. The largest errors were seen at 2100 UTC in the YRD (about 43 μg·m
−3

) and at 431 

2200 UTC in the PRD (about 46 μg·m
−3

), likely indicating significant systematic 432 

forecast errors at these times. From 0300 to 0900 UTC, the RMSE values (about 15 433 

μg·m
−3

) were much smaller than at other times in both the YRD and PRD, showing 434 

that WRF-Chem performed well during this period. However, in the JJJ region, the 435 

RMSEs (about 50 μg·m
−3

) were always large as a result of a heavy pollution event. 436 

After assimilation, the RMSEs decreased sharply. They remained at about 10 μg·m
−3

 437 

for all three sub-regions during the whole experimental period, further indicating that 438 

DA greatly affected the ICs. 439 

The improvements in the surface PM2.5 forecasts by the joint adjustment of the 440 

ICs and emissions were dramatic in the YRD and PRD. Large reduction of the 441 

RMSEs due to assimilation can be seen for almost the entire 48-h forecast range. 442 

From 10- to 23-h and from 34- to 47-h, in particular, the relative reduction in RMSE 443 

was about 40%. However, the DA impact was much smaller for 3- to 9-h forecast 444 

ranges, which are at daytime of the first day forecast. This may be because 445 

WRF-Chem performed sufficiently well during this period and therefore the further 446 

improvement was more difficult. From the perspective of the DA impact, the 447 

differences between the optimized PM2.5 emissions and the prior emissions from 0000 448 

to 0700 UTC each day were always smaller than those for other periods. In addition, 449 

the improvements were nearly negligible from 27- to 33-h, the daytime of the second 450 

day forecast, suggesting that the benefit gained from adjusting the ICs decreased 451 

progressively and eventually disappeared with model integration. Nevertheless，452 
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attributed greatly to the large adjustment of chemical emissions, substantial 453 

improvements were still achieved from 34- to 47- h. These results revealed that joint 454 

adjustment of the ICs and emissions can improve surface PM2.5 forecasts up to 48 h in 455 

the YRD and PRD. 456 

The DA system did not perform as well in the JJJ region as in the YRD and RRD 457 

and relatively smaller improvements were achieved in the first 24-h forecast. One 458 

possible reason for this result may be systematic errors due to chemistry mechanism 459 

in WRF-Chem. The sources of the aerosols are so complex that our knowledge of 460 

their formation mechanisms is far from clear and large uncertainties still exist in the 461 

model simulations. Chemical transport models have a tendency to underestimate PM 462 

concentrations, especially during episodes of heavy pollution (Denby et al., 2007) due 463 

to some missing reactions (Wang et al., 2014; Zhang et al., 2015, Zheng et al., 2015; 464 

Chen et al., 2016). As a result, a large bias may be obtained in forecasts of heavy 465 

pollution given the ICs and emission inventories achieved from the joint assimilation. 466 

Another reason may be the sparse coverage of measurements. There were only 12 467 

sites in the JJJ region (Figure 2) and the measurement coverage was much sparser 468 

than in the YRD or PRD. However, these results are still better than those obtained 469 

with the pure adjustment of ICs that lead to improvements in the first 12-h forecasts 470 

(Jiang et al., 2013; Schwartz et al., 2014). 471 

 472 

6. Summary 473 

The EnSRF algorithm was extended to adjust the chemical ICs and the primary 474 

and precursor emissions to improve forecasts for surface PM2.5. This system was 475 

applied to assimilate hourly surface PM2.5 measurements from 5 to 16 October 2014 476 

over China. To evaluate the effectiveness of DA, 48-h forecasts were performed using 477 

the optimized ICs and emissions, together with a control experiment without DA. The 478 

results indicated that the forecasts with the optimized ICs and emissions performed 479 

much better than the control simulations. Large improvements were achieved for 480 

almost all the 48-h forecasts, particularly in the YRD and PRD. However, relatively 481 

smaller improvements were achieved in the first 24-h forecast in the JJJ region, which 482 
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may be attributed to the sparse measurement coverage and the deficiencies in the 483 

model system for forecasting heavy pollution. 484 

This study represents the first step in the simultaneous optimization of chemical 485 

ICs and emissions and only surface PM2.5 measurements were assimilated. In future 486 

work, gas-phase observations of SO2, NO2 and CO will be used to further improve the 487 

performance of this DA system. 488 

  489 
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Table 1. Comparison of the surface PM2.5 mass concentrations from the control and 732 

assimilation experiments to observations over all analysis times from 6 to 16 October 733 

2014. 734 
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observed 

value 
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simulated 

value 

BIAS RMSE CORR 

Beijing–

Tianjin–

Hebei 

Control 

117.7 

101.1 −16.6 76.8 0.785 

Assimilation 112.5 −5.2 41.6 0.932 

Yangtze 

River 

delta 

Control 

47.9 

67.0 19.1 32.2 0.603 

Assimilation 49.0 1.1 10.5 0.928 

Pearl 

River 

delta 

Control 

63.7 

87.2 23.5 34.5 0.618 

Assimilation 66.1 2.4 12.9 0.866 
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Figure 4. PM2.5 mass differences (assimilation minus control, μg·m
−3
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model level averaged over all hours from 6 to 16 October 2014. 740 
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Figure 5. Hourly area-averaged time series of emission scaling factors (black) 745 

extracted from the ensemble mean of the analyzed 𝛌PM2.5
a  and the corresponding 746 

analyzed unspeciated primary PM2.5 emissions 𝐄PM2.5
a  (blue) over the three 747 

sub-regions: (a) Beijing–Tianjin–Hebei region; (b) Yangtze River delta; and (c) Pearl 748 
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Figure 6. Spatial distribution of 𝛌PM2.5 at the lowest model level averaged over all 753 

hours from 6 to 16 October 2014. 754 
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) and (b) the time-averaged differences between the ensemble mean 759 
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) at the lowest model level averaged over all 760 

hours from 6 to 16 October 2014. 761 
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Figure 8. Time series of the hourly PM2.5 obtained from observations (circle), analysis 766 

(blue line), control run (black line) and hourly output of 48-h forecast in three 767 

megacities: (a) Beijing; (b) Shanghai; and (c) Guangzhou. See text in section 5.4. 768 
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Figure 9. RMSE of surface PM2.5 as a function of forecast range calculated against 772 

observations over the three sub-regions: (a) Beijing–Tianjin–Hebei region; (b) 773 

Yangtze River delta; and (c) Pearl River delta. (d) Normalized RMSE (assimilation 774 

divided by control). 775 
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