Global emissions of fluorinated greenhouse gases 2005-2050 with abatement potentials and costs

Pallav Purohit¹ and Lena Höglund-Isaksson¹

¹International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

5 *Correspondence to*: Pallav Purohit (purohit@iiasa.ac.at)

Abstract. This study uses the GAINS model framework to estimate current and future emissions of fluorinated greenhouse gases (F-gases), their abatement potentials and costs for twenty source sectors and 162 countries/regions, which are aggregated to produce global estimates. Global F-gas (HFCs, PFCs and SF₆) emissions are estimated at 0.7 Pg CO₂eq in 2005 with an expected increase to 3.7 Pg CO₂eq in 2050 if application of control technology remains at the current level. There are extensive opportunities to reduce emissions using existing technology and alternative substances with low global warming potential. Estimates show that it would be technically feasible to reduce cumulative F-gas emissions from 81 to 11 PgCO₂eq between 2018 and 2050. A reduction in cumulative emissions to 23 Pg CO₂eq is estimated possible at a marginal abatement cost below 10 €t CO₂eq. We also find that future F-gas abatement is expected to become relatively more costly for developing than developed countries due to differences in the sector contribution to emissions and abatement potentials.

5 1 Introduction

Fluorinated greenhouse gases (F-gases) contribute approximately two percent of the global greenhouse gas emissions (IPCC, 2014). The rapidly increasing demand for refrigeration and cooling services, particularly in developing countries, threatens to increase F-gas emissions considerably over the next few decades. Many F-gases have very high global warming potentials (GWP) and therefore small atmospheric concentrations can have large effects on global temperatures. In this work, we identify and quantify all important sources of F-gas emissions at a global scale, the potential for reducing emissions, and the associated abatement costs. Using the framework of the Greenhouse gas and Air pollution Interactions and Synergies (GAINS) model (http://gains.iiasa.ac.at), we estimate in five-year intervals for 2005 to 2050 global emissions and abatement potentials of the F-gases (hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF₆)), which are addressed under the Kyoto Protocol (KP) (UNFCCC, 2014). To account for the full global warming effect of the combined use of HFCs and hydrochlorofluorocarbons (HCFCs) as coolants, and considering that they are close substitutes with equally strong GWPs, we keep track of and display baseline HCFC emissions in parallel to HFC emissions, even though HCFCs are not a target for future abatement efforts since they are addressed as ozone-depleting substances (ODS) that are subject to phase-out under the Montreal Protocol (MP) (UNEP, 2007). Twenty source sectors (14 for HFCs, 2 for PFCs and 4 for SF₆ emissions) are identified and emissions are estimated separately for 162 country/regions. For each F-gas source sector, we identify a set of abatement

options and estimate their reduction potentials and costs based on information from publicly available sources. We also point out major sources of uncertainty and highlight critical gaps in knowledge.

Our work adds to existing literature (Velders et al., 2009; Gschrey et al., 2011; Meinshausen et al., 2011; Montzka et al., 2011; USEPA, 2013; Velders et al., 2014; Ragnauth et al., 2015; Velders et al., 2015) an independently developed emission inventory with future projections and abatement potentials estimated at the technology level, thereby allowing for a high degree of resolution for the estimated emissions, abatement potentials and marginal abatement cost curves.

Our findings confirm previous findings (EDGAR, 2013; Gschrey et al., 2011; Velders et al., 2009) that in year 2005 emissions of HFCs, PFCs and SF₆ contributed about 0.7 Pg CO₂eq to global greenhouse gas emissions, while our baseline projection, reaching 3.7 Pg CO₂eq in 2050, is somewhat lower than the business-as-usual estimates of previous studies (Velders et al., 2015; Gschrey et al., 2011), as discussed further in Section 4.5.

Section 2 presents the methodology used to estimate emissions and abatement costs. Section 3 describes the development of emission scenarios. Section 4 presents results with comparisons to previous studies. Section 5 discusses different sources of uncertainty and Section 6 concludes the study. More details on HFCs, PFCs and SF₆ consumption, emission estimation, abatement potentials and costs are provided in Section S2 of the Supplement.

15 2 Methodology

2.1 F-gas emission estimation in GAINS

The estimation of current and future F-gas emissions and the potential for emission reductions and costs follow standard GAINS model methodology (Amann et al., 2011) with some modifications specific to F-gases. To account for the wide spread in global warming potentials for different F-gases, emission factors are converted to carbon dioxide (CO₂) equivalents by multiplying the technology-specific emission factor with the respective GWP's over 100 years (IPCC, 2007a). Starting from April 2015, Annex-I (industrialized) countries report all greenhouse gases to the United Nations Framework Convention on Climate Change (UNFCCC) (UNFCCC, 2015a) using GWPs from IPCC AR4 (IPCC, 2007b). As the official reporting to UNFCCC functions as basis for negotiations of future climate policy proposals, we apply IPCC/AR4 GWPs throughout this analysis, however, make comparisons to the use of IPCC/AR2 (IPCC, 1996) and IPCC/AR5 (IPCC, 2014) GWPs in the uncertainty analysis in Section 4. A complete list of GWPs for different substances recommended under the second, fourth and fifth IPCC ARs are presented in Table S2 of the Supplement.

For each pollutant (i.e., HFC, PFC, and SF₆), the GAINS model estimates current and future emissions based on activity data, uncontrolled emission factors, the removal efficiency of emission control measures and the extent to which such measures are applied, as follows:

$$30 \quad E_{i,p} = \sum_{k} \sum_{m} A_{i,k} e f_{i,k,m,p} GW P_{i,k,p} X_{i,k,m,p} \tag{1}$$

where i, k, m, p represent the country, activity type, abatement technology, and pollutant, respectively, $E_{i,p}$ indicates emissions of specific pollutant p (i.e., here HFC, PFC, and SF₆) in country i, $A_{i,k}$ is the activity level of type k in country i, ef_{i,k,m,p} is the emission factor of pollutant p for activity k in country i after application of control measure m, GWP_{i,k,p} is the global warming potential of pollutant p when applied in country i to sector k, and $X_{i,k,m,p}$ is the share of total activity of type k in country i to which control measure m for pollutant p is applied.

Structural differences in emission sources are reflected through country-specific activity levels. Major differences in the emission characteristics of specific sources are represented through source-specific emission factors, which account for the extent to which emission control measures are applied. The GAINS model estimates future emissions by varying activity levels along exogenous projections of the development of human activity drivers and by adjusting implementation rates of emission control measures (e.g., Höglund-Isaksson et al., 2012). In a further step, uncontrolled emission factors and removal efficiencies for given control measures are summarized in adjusted emission factors. This approach allows for the capture of critical differences across economic sectors and countries that might justify differentiated emission reduction strategies on the basis of cost-effectiveness.

2.2 Activity data

Activity data used to estimate HFC emissions in the years 2005 and 2010 is derived from HFC consumption reported by Annex-I countries to the UNFCCC (UNFCCC, 2012). For non-Annex-I countries (i.e., primarily developing countries), HCFC/HFC consumption data is extracted from available literature (MoEF, 2009; UNEP, 2011a; GIZ, 2014; UNDP, 2014ab). However, for some non-Annex-I countries very limited information is available on the HFC use, which prompts for the use of default assumptions adding to uncertainty in the estimates for these countries. For HFC use in refrigeration, air-conditioning, fire extinguishers, and ground-source heat pumps, HFC emissions are estimated separately for "banked" emissions, i.e., leakage from equipment in use, and for "scrapping" emissions, i.e., emissions released at the end-of-life of the equipment. This is also the format used by countries when reporting HFC emissions to the UNFCCC (2015a). As domestic refrigerators are hermetic there is no risk of leakage during use and therefore only "scrapping" emissions are accounted for. At the end-of-life, the scrapped equipment is assumed to be fully loaded with refrigerant which needs recovery, recycling or destruction. In addition, for each HFC emission source, the fraction of HCFC in the HFC/HCFC use is identified from reported baselines of parties to the MP and modelled in consistency with the phase-out schedule of HCFCs in the latest revision of the MP (UNEP, 2007) and including later baseline updates reported by the parties to the UNEP Ozone Secretariat and in the HCFC Phase-out Management Plans (HPMPs) (GEF 2009; MoEF, 2009; UNEP, 2011a; PU, 2012; UNDP, 2012; MoEF, 2013; Yong, 2013; GIZ, 2014; UNDP, 2014a-b; UNEP, 2014a-b). These sources provide information on how much HCFC can be used by a given country in a given year - and the rest of the baseline demand is assumed met through HFCs. Drivers for projections of HFC

 $^{^1}$ 1989 HCFC consumption + 2.8% of 1989 consumption for non-Article 5 countries Average of 2009 and 2010 for Article 5 countries

use differ by sector and are consistent with the macroeconomic and energy sector developments described by the Reference scenario of the IEA's Energy Technology Perspectives 2012 (IEA/OECD, 2012) for non-EU countries and with the Reference scenario of the PRIMES model (Capros et al., 2013) for EU countries. Depending on the sector, different drivers have been used to derive future HFC emissions. E.g., the use of HFC-134a in mobile air conditioners is driven by a projection of the vehicle numbers taken from the GAINS model and consistent with the future development in vehicle fuel use by IEA/OECD (2012) and Capros et al., (2013). Driver for HFCs used in commercial and industrial refrigeration is the projection of value added for commercial and industry sectors, respectively. A complete list of HFC drivers with references is presented in Table S5 of the Supplement. Figure 1 shows the future development in major drivers for F-gas emissions on a global scale between 2005 (=100) and 2050 as they follow from IEA/OECD (2012) and Capros et al. (2013).

To the extent information is available from public sources, country-specific data have been collected for the most important industry source sectors, i.e., the production of difluorochloromethane (HCFC-22), primary aluminium and magnesium. Activity data for 2005 and 2010 production of primary aluminium and magnesium are taken from the U.S. Geological Survey (USGS, 2013a-b), except for the EU countries for which the source is the PRIMES model (Capros et al., 2013), and for China and India for which primary aluminium production data is obtained from the GAINS Asia project (Amann et al., 2008; Purohit et al., 2010). Although HFC-23 is primarily generated as a by-product of HCFC-22 production for use as industry feedstock or emissive use (the later to be phased-out under the MP), it is also used directly in fire protection and integrated circuits or semiconductor industry. A small share of HFC-23 is also reported by parties to be used in commercial and industrial refrigeration sectors (UNFCCC, 2012). Production levels are reported for historical years (UNEP, 2014c) and with fractions of production for feedstock and emissive use, respectively, taken from IPCC/TEAP (2005). Projections of future production in these industries are assumed to follow growth in industry value added (IEA/OECD, 2012; Capros et al., 2013).

2.3 Emission factors

Sector-specific leakage rates are taken from various published sources (Harnisch and Schwarz, 2003; IPCC/TEAP, 2005; Tohka, 2005; Garg et al., 2006; Schwarz et al., 2011; UNFCCC, 2012; Höglund-Isaksson et al., 2012, 2013, 2016) and typically differ between industrialized (Annex-I) and developing (non-Annex-I) countries (Gschrey et al., 2011).

To convert emission factors to CO₂-equivalent terms, these have been multiplied with sector-specific GWPs. The GWPs of HFCs replacing ODSs ranges from 124 (HFC-152a) to 14,800 (HFC-23) (IPCC, 2007b) over 100 years and with different HFCs used to different extents in different sectors. To weigh the sector-specific GWPs by the shares of different types of HFCs commonly used in the respective sectors, we combine sector-level information provided by Gschrey et al. (2011) with country-specific information provided by Annex-I countries in the Common Reporting Format to the UNFCCC (UNFCCC, 2012). The sector-specific GWPs are presented in Table S2 of the Supplement.

Primary aluminium production, semiconductor manufacturing and flat panel display manufacturing are the largest known sources of tetrafluoromethane (CF_4) and hexafluoroethane (C_2F_6) emissions. PFCs are also relatively minor substitutes for ODSs. Over a 100-year period, CF_4 and C_2F_6 are, respectively, 7,390 and 12,200 times more effective than CO_2 at trapping

heat in the atmosphere (IPCC, 2007b). The International Aluminium Institute (IAI) observed a median emission factor for point feed prebake (PFPB) technology for eight Chinese smelters that is 2.6 times larger than the global PFPB technology average (IAI, 2009). Assuming the Chinese emissions factor is constant over time (Mühle et al., 2010), the revised PFC emissions factor for Chinese aluminium smelters of 0.7 tonne CO₂eq per tonne Al produced is used in this study, while the global PFPB technology average of 0.27 tonne CO₂eq per tonne Al produced is used for other countries/regions.

The GWP of SF₆ is 22,800, making it the most potent greenhouse gas evaluated by IPCC (IPCC, 2007b). It is used a) for insulation and current interruption in electric power transmission and distribution equipment, b) to protect molten magnesium from oxidation and potentially violent burning in the magnesium industry, c) to create circuitry patterns and to clean vapor deposition chambers during manufacture of semiconductors and flat panel displays, and d) for a variety of smaller uses, including uses as a tracer gas and as a filler for sound-insulated windows (USEPA, 2013). For the case of magnesium processing, SF₆ consumption factors of 1.65 kg SF₆ per tonne Mg is used for China (Fang et al., 2013) and a default value (1.0 kg SF₆ per tonne Mg) suggested by the IPCC (IPCC, 2006) is used for other regions.

2.4 Abatement costs

F-gas abatement costs per unit of activity in GAINS have been calculated as the sum of investment costs, non-energy operation and maintenance costs and energy-related costs (or savings). The unit cost of technology *m* in country/region *i* and year *t* is defined as:

$$C_{itm} = I_{im} \left[\frac{\left(1+r\right)^{T} \times r}{\left(1+r\right)^{T} - 1} \right] + M_{im} + \left(E_{im} \times p_{it}^{electr}\right)$$
(2)

where $I_{im} \left[\frac{(1+r)^T \times r}{(1+r)^T - 1} \right]$ represents the annualized investment cost for technology m in country i and with interest rate r

and technology lifetime of T years, M_{im} the non-energy related annual operation and maintenance cost for technology m, E_{im} the demand for electricity, and the electricity price in country i in year t.

The price of electricity is assumed linked to the gas price in the following way (Höglund-Isaksson et al., 2013):

$$p_{it}^{electr} = 3 + 2 p_{it}^{gas} \tag{3}$$

The expected trajectory of future gas prices through 2030 follows IEA/OECD (2012) for non-EU countries and Capros et al. (2013) for EU countries.

The marginal cost per unit of reduced emissions is defined for each technology available to a sector as the unit cost divided by the difference between the technology emission factor and the no control emission factor, such that:

$$MC_{itm}^{Tech} = \frac{C_{itm}}{ef_{it}^{No_control} - ef_{itm}} \tag{4}$$

where $ef_{it}^{No_control}$ is the no control emission factor and ef_{itm} is the emission factor after abatement control has been implemented.

We refer to this as the "technology marginal cost". Within a sector, the technologies available are first sorted by their respective technology marginal cost. The technology with the lowest technology marginal cost is ranked the first-best technology and assumed adopted to its full extent in a given sector. The second-best technology is the technology with the second lowest technology marginal cost and is assumed available for adoption provided it can achieve an emission factor that is lower than the first-best technology. The marginal cost of the second-best technology when implemented in the marginal cost curve is defined as:

$$MC_{it2} = \frac{C_{it2} - C_{it1}}{ef_{it1} - ef_{it2}}$$
 (5)

Hence, the marginal abatement cost curve displays the relationship between the cost of reducing one additional emission unit and the associated emission control potential.

Note that abatement costs are defined as the incremental cost of switching from the current technology to an enhanced technology in terms of greenhouse gas emissions. Many alternative technologies provide additional indirect emissions savings and monetary benefits through increased energy efficiency, as compared to traditional HFC technologies (Kauffeld, 2012; Zaelke and Borgford-Parnell, 2015; UNEP, 2016a). We have included monetary benefits accrued to increased energy efficiency. Some alternative substances are known to be flammable and/or toxic and may need special precaution in handling and training of staff. For such substances to be considered feasible, we limit our options to substances that are known to already have wide application in a given sector. Transaction costs, e.g., the one-time cost of training staff in the use of a different substances and introduction of new safety routines, are not considered in the abatement cost. E.g., switching from high-GWP HFCs to ammonia (NH₃) in industrial refrigeration will initially require special attention paid to the handling as NH₃ is toxic and has flammable properties (UNEP & SEPA, 2010 p.25). Another important consideration for NH₃ is its propensity for corrosion and its affinity for moisture (UNEP, 2015 p.46). On the other hand, NH₃ is, and has for decades been, widely used in industrial refrigeration, which proves that its toxicity and flammability is not an unsurmountable obstacle for adoption. Hence, the abatement cost for switching to NH₃ in industrial refrigeration is measured as the difference in costs between HFCs and NH₃ per cooling unit, where the latter is less expensive and also more energy efficient, thereby rendering a negative net cost for the option (see Table S6-S7 in the Supplement for more details on input parameters for costs).

2.4 Geographic coverage of F-gas in GAINS

15

20

Geographic coverage of F-gas emission estimates in the GAINS model is global, with the world divided into 162 regions.

Emissions, abatement potentials and costs are calculated for each region, however for display purposes these are aggregated into 14 world regions, as shown in Table S8 of the Supplement.

3 Development of F-gas emission scenarios

3.1 Baseline scenario

To estimate F-gas emissions in the baseline scenario, we take into account the effects on emissions from implementation of existing legislation to control F-gas emissions at the regional or national level as stated in publicly available information and summarized in Table 1. Further details on the intention, stringency and targets of the existing F-gas legislations are presented in Table S9 of the Supplement.

The first EU-wide F-gas Regulation (EC 842/2006) was implemented in 2006 to control the release of F-gases from stationary cooling and refrigeration equipment. The regulation also requires an increased use of alternative blowing agents for one-component foams, use of alternative propellants for aerosols, leakage control and end-of-life recollection and recycling of high- and mid- voltage switches, SF_6 replaced by SO_2 in magnesium production and casting, and a ban on the use of SF_6 in soundproof windows, sports equipment etc. The EU mobile (or motor vehicle) air conditioning (MAC) directive (2006/40/EC) bans the use of HFC-134a in mobile air conditioners from 2017. In 2014, a revised EU F-gas regulation (EC 517/2014) was adopted which places bans on the use of high-GWP HFCs in refrigeration, air-conditioning and a few other sectors starting from January 2015 and also containing a phasedown of HFC consumption from a base level. By 2030, the new regulation is expected to cut EU's F-gas emissions by two-thirds compared to the 2014 level (Capros et al., 2016). Following the requirements of the amendment (EC/29/2009) of the EU-ETS Directive, PFC emissions from primary aluminium industry are included in the EU-ETS emission cap. In addition to EU-wide F-gas legislation, there is comprehensive national legislation in place targeting F-gas emissions in Austria, Belgium, Denmark, Germany, Netherlands and Sweden. These regulations were typically put in place prior to the EU-wide legislation and are more stringent and address more specific sources than the EU-wide regulation.

Apart from the EU, also Japan, USA, Australia, Norway and Switzerland have implemented national regulations to limit the use of high-GWP HFCs. These are all non-Article 5 countries under the MP and have introduced HFCs several years ago as a mean to replace CFCs and HCFCs under the ODS phase out schedule. The approaches chosen comprise different regulatory measures including the use of market-based instruments such as taxes (Schwarz et al., 2011). In the United States, there are economic incentives in place to eliminate HFCs for use in mobile air-conditioners (USEPA, 2012) and recent regulations (USEPA, 2015) are expected to further limit the use of high-GWP HFCs. Similar new regulations are in place in Japan (METI, 2015). Switzerland banned HFCs in a series of air-conditioning and refrigeration applications from December 2013 (UNEP, 2014d). In Australia, as part of the clean energy future plan, synthetic greenhouse gas (SGG) refrigerants attract an "equivalent carbon price" based on their global warming potential (GWP) since the 1st July 2012 (AIRAH, 2012). Note that the phasedown of the global use of HFCs agreed in the Kigali Amendment to the Montreal Protocol during the 28th Meeting of the Parties in October 2016 (UNEP, 2016b), was not available at the submission date of this paper and has therefore not been considered in the baseline analysed here. Its implications for emissions and costs will be the focus of a separate analysis.

Due to the relatively high cost of HFO-1234yf compared to HFC-134a (Schwartz et al., 2011; Carvalho et al., 2014; USEPA, 2013; Purohit et al., 2016) and extensive import bans and restrictions on international trade with used cars (UNEP, 2011b; Macias et al., 2013), we consider it unlikely that new MAC technology will be taken up in the absence of directed regulations or spread globally through export of used cars from regions with regulations in place.

HFC-23 emissions from HCFC-22 production are assumed fully equipped with post-combustion technology in OECD countries. The USEPA (2006) and UNEP (2007) project until 2050 a shift of most HCFC-22 production from OECD countries to China and other developing countries. Note that this refers to the production of HCFC-22 for feedstock use in industry, which is not required to be phased-out under the MP. Several studies (e.g. Wara, 2007; Miller et al., 2010; Miller and Kuijpers, 2011; Montzka et al., 2010) discuss the impact of the Clean Development Mechanism (CDM)² projects on global HFC-23 emissions for this sector. HFC-23 emissions from HCFC-22 production are assumed controlled in most developing countries due to CDM, except China where 36 percent HCFC-22 production is controlled (Feng et al., 2012). According to the investment plan to support destruction of HFC-23 issued by the Chinese National Development and Reform Commission (NDRC) 2015, the Chinese government plans to introduce subsidies per tonne CO₂eq for implementation of new HFC-23 destruction devices for HCFC-22 production plants that are already in operation without support from CDM (NDRC, 2015; Schneider et al., 2015; Munnings et al., 2016). According to personal information from Zhai (2016), a current subsidy per tonne CO₂eq removed is ¥4, ¥3.5, ¥3, ¥2.5, ¥2, ¥1 in respective year 2014 to 2019. The subsidy will end in 2020. Therefore, the enterprises are already encouraged to report data about production and destruction amounts and new facility plans. Together with the other mentioned regulations, we consider the existence of this incentive scheme an indication that the Chinese government is interested in continued control of emissions from this source also after 2020 when the subsidy is phased-out. The Intended Nationally Determined Contributions (INDCs) submitted by China to the UNFCCC (UNFCCC, 2015b) in preparation of the Paris Agreement (UNFCCC, 2015c) also aims to phase-down use of HCFC-22 and to "achieve effective control" of HFC-23. Moreover, India announced during the 28th Meeting of the Open-Ended Working Group (OEWG 38) of the Parties to the Montreal Protocol that its chemical industry, with immediate effect, must collect and destroy emissions of HFC-23 (Mahapatra, 2016). Therefore, we assume in this analysis that the impact of CDM on emissions from HCFC-22 production in developing countries remains at the current level also in the future.

In non-Annex-I countries, China has developed HFC phase-down programs, including capacity-building, collection and reporting of HFC emissions data, mobilization of financial resources for further actions to phase-down HFCs, research, development and deployment of environmentally sound, effective and safe alternatives and technologies, and multilateral agreements to phase down HFCs (Fekete et al., 2015). Belize, Burkina Faso, Colombia, Egypt and Paraguay require import licenses for HFCs (Brack, 2015). It is however unclear if these have had a negative effect on the use of HFCs and we therefore

² The Clean Development Mechanism (CDM) is one of the Flexible Mechanisms defined in the Kyoto Protocol that allows emission-reduction projects in non-Annex-I (developing) countries to earn certified emission reduction (CER) credits, each equivalent to one tonne of CO₂. These CERs can be traded and sold, and used by Annex-I (industrialized) countries to a meet a part of their emission reduction targets under the Kyoto Protocol.

do not account for them in the baseline. Turkey is planning to strengthen legislation on ozone-depletion and fluorinated gases (UNEP, 2013) however, effects of planned policies are not included in the baseline. Paraguay and the Seychelles have implemented fiscal incentives including taxes and subsidies to encourage a switch from HFCs and HCFCs to alternative low GWP substitutes (Brack, 2015). These two countries are in GAINS modelled as part of larger regions (Other Latin America and Other Africa) and we are therefore not able to reflect the effect of these national legislations in the baseline.

The general trend in the aluminium industry is switching from existing Horizontal Stud Söderberg (HSS)/Vertical Stud Söderberg (VSS) or prebake technologies to PFPB technology. According to the 2013 Anode Effect Survey of the International Aluminium Institute (IAI, 2014), PFC emissions intensity (as CO₂eq per tonne of production) from the global aluminium industry has been reduced by more than 35 percent since 2006 and by almost 90 percent since 1990. With primary aluminium production having grown by over 150 percent over the same period, absolute emissions of PFCs from the industry have been reduced from approximately 100 Tg CO₂eq in 1990 to 32 Tg CO₂eq in 2013 (IAI, 2014). In EU-28, emissions from primary aluminium production are regulated under the EU-ETS system. As the marginal cost of a switch to PFPB technology falls below the expected ETS carbon price, the baseline assumption is that with the natural turn-over of capital, all EU member states will have phased-in PFPB technology by 2020 (Höglund-Isaksson et al., 2016). Primary aluminium production in China is estimated at 55 percent of the global production capacity of 58.3 Mt in 2015 (USGS, 2016) and with almost all production facilities employing PFPB technology (Hao et al., 2016). For other non-EU regions, current technology used in primary aluminium smelters is in the baseline assumed to remain until 2050.

10

15

25

There is a voluntary agreement in place among semiconductor producers worldwide to reduce PFC emissions to 10 percent below the 1995 level by 2010 (Huang, 2008). According to industry (WSC, 2016), over a 10-year period the semiconductor industry achieved a 32 percent reduction in PFC emissions, surpassing its voluntary commitment. Since 2010, the industry has set a new goal based on a normalized (i.e. relative to production levels) target instead of an absolute target and has established best practices for new manufacturing capacity that will continue to improve efficiency (WSC, 2016). Since PFC is only used by a few companies in a country (Tohka, 2005) and as the amount of PFC used allows for deriving the production volumes, data on PFC use is often confidential. Therefore GAINS uses PFC emissions reported to UNFCCC (2012) as activity data for this sector. Further information is provided in Section S2.2 of the Supplement.

Finally, the baseline assumes full implementation of the accelerated HCFC phase-out schedule agreed to by the MP Parties in September 2007 (UNEP, 2007). The HCFC phase-out in non-Article 5 (mainly developed) countries will have achieved a 90 percent reduction by 2015, but since climate co-benefits were not a condition or aspiration of the MP, transitions did not favor low-GWP alternatives, even where such had been developed and commercialized (EIA, 2012). Under the accelerated schedule, HCFC consumption in Article-5 (developing) countries will be frozen in 2013 at the average production levels of 2009 and 2010. More prominently, the Parties agreed to cut HCFC production and consumption in developing countries by 10 percent in 2015, 35 percent by 2020 and 67.5 percent by 2025, with the phase-out virtually completed in 2030. For each emission source, the fraction of HCFCs to HFCs in use is identified as per the latest information and modelled in GAINS following the accelerated phase-out schedule of HCFCs under the MP.

3.1 Maximum technically feasible reduction scenario

5

10

15

20

25

In the maximum technically feasible reduction (MFR) scenario, the abatement potential encompasses reductions in emissions through the application of technologies that are currently commercially available and already tested and implemented, at least to a limited extent. Table S6 of the Supplement presents abatement options for HFC emissions in GAINS and provide references to literature. HFC control options fall into four broad categories:

- a) Good practice: This encompasses a package of measures including improved components, leak prevention during use and refill, maintenance and end of life recovery and recollection of refrigerants. The removal efficiency is 20 to 50 percent for the emissions banked in refrigeration and air-conditioning equipment and 80 to 88 percent for the emissions from scrapped equipment (Tohka, 2005; Höglund-Isaksson et al., 2013, 2016).
- b) Switching to low-GWP HFCs: HFCs currently in use have relatively long atmospheric lifetimes—15 years on average—which makes GWPs relatively high, ranging from 1,430 to 14,800 times that of CO₂ over 100 years (IPCC, 2007b). Alternative HFCs offer shorter lifetimes and considerably lower GWPs, e.g., HFC-152a has a GWP of 124 and HFC-32 has a GWP of 675 (IPCC, 2007b). Moreover, use of HFC-32 in air-conditioning and heat pumps can improve energy efficiency by 5 to 10 percent depending on models (Daikin, 2016). For air-conditioning, removal efficiency when switching to HFC-32 is taken to be 68 percent for room air conditioners. Similarly, removal efficiency when switching to HFC-152a is taken to exceed 90 percent in foam, non-medical aerosol and other applications (see Table S6 of the Supplement for references).
 - c) Switching to new cooling agents: In recent years, alternative substances with very short lifetimes of less than a few months have been developed and marketed, e.g., HFO-1234ze with a GWP of 6 for use in aerosols and foam products and HFO-1234yf with a GWP of 4 for mobile air-conditioners. The removal efficiency of new cooling agents exceeds 99 percent for mobile air-conditioning and aerosol/foam sectors (see Table S6 of the Supplement for references).
 - d) Other non-HFC substances with low or zero GWPs: Commercial examples include hydrocarbons (e.g. R-290), NH₃, CO₂, dimethyl ether and a diversity of other substances used in foam products, refrigeration, air-conditioning and fire protection systems. Switching involves process modifications, e.g., changing the process type from ordinary to secondary loop systems (Halkos, 2010). Industrial ammonia systems are in general 15 percent more energy efficient than their HFC counterparts (Schwarz et al., 2011).

HFC-23 (GWP100 = 14,800) is an unwanted waste gas from the production of HCFC-22. HFC-23 can be abated through process optimization combined with thermal oxidation of the gas through incineration. The HFC-23/HCFC-22 ratio is typically in the range between 1.5 and 4 percent (Schneider, 2011), depending on how the process is operated and the degree of process optimization that has been performed (McCulloch and Lindley, 2007), but can technically be reduced below 1 percent (IPCC/TEAP, 2005). The removal efficiency of incineration of HFC-23 is taken to be virtually complete (99.99 percent) (World Bank, 2010).

In GAINS, four current production technologies for primary aluminium are considered: Side worked prebake (SWPB), Centre worked prebake (CWPB), Vertical stud Söderberg (VSS), and Point feeder prebake (PFPB). The identified PFC control options include retrofitting plants with existing technologies or converting the plants to PFPB technology. Inert anode technology for aluminium smelters with 100 percent removal efficiency is in GAINS assumed available as an abatement option from 2035 onwards (IEA/OECD, 2010). Table S7 of the Supplement lists the abatement measures for PFC emissions in the primary aluminium production and semiconductor manufacture sectors and provide references to literature. The removal efficiency of conversion of existing primary aluminium production technologies (VSS, SWPB and CWPB) to PFPB technology is more than 85 percent whereas retrofitting has a removal efficiency of about 26 percent (Harnisch et al., 1998; Harnisch and Hendriks, 2000).

The GAINS model considers three control options for reducing SF₆ emissions: a) good practice, which for high and midvoltage electrical switchgears (HMVES) includes leakage reduction and recycling of recollected SF₆ from end of life switchgears, b) use of SO₂ as an alternative to SF₆ in magnesium production and casting, and c) phase-out of SF₆ for several applications (i.e. soundproof windows). A list of SF₆ control options considered in GAINS is presented in Table S7 of the Supplement together with references to literature. The removal efficiency of good practices in HMVES is assumed 84 percent (Tohka, 2005), whereas use of SO₂ as an alternative to SF₆ in magnesium production and casting is taken to completely remove SF₆.

In the near-term, abatement opportunities within refrigeration and air-conditioning are partially restricted because many of the abatement options identified apply only to newly manufactured equipment and are thus limited by the turnover rate of the existing refrigeration and air-conditioning stock. Unless already regulated in the baseline and therefore already adopted to a large extent, the general assumption in the MFR scenario is that developed countries (i.e., non-Article 5 countries under the MP) can replace at least 75 percent of its use of HFCs in refrigeration and air-conditioning equipment by 2025 and 100 percent from 2030 onwards. For developing countries (i.e., Article 5 countries under the MP) the corresponding assumptions are 25 percent in 2020, 50 percent in 2025, 75 percent in 2030, and 100 percent from 2035 onwards. For the use of HFCs in aerosols, a general additional limit on applicability of alternative substances is set to 60 percent (UNFCCC, 2012), reflecting the difficulties with replacing HFC-134a and HFC-227ea in medical dose inhalers for all patient groups as no other compounds are proven to meet the stringent medical criteria required (IPCC/TEAP, 2005; USEPA, 2016).

3.1 Politically feasible reduction scenarios

The baseline and the MFR scenarios define the upper and lower technical boundaries for the estimated development in future F-gas emissions, with MFR defining the lowest technically feasible emission level achievable without regarding cost limitations due to financial constraints. Depending on the availability of funds and the relative importance given by policy-makers to the mitigation of climate change in comparison to other policy-relevant needs, the politically feasible emission scenario is defined by the lowest emission level attainable given a politically acceptable marginal abatement cost level. The latter is usually expressed in terms of a politically acceptable carbon price level. Within the technical boundaries defined by

the baseline and MFR scenarios, we therefore develop alternative scenarios defining the expected development in future F-gas emissions when the marginal abatement cost does not exceed zero, five, ten, 15, 20, 40, 60 ,80, 100 and 200 €t CO₂eq, respectively.

4 Results

4.1 Baseline F-gas emissions 2005 to 2050

Baseline F-gas emissions for the period 2005 to 2050 are presented in Figure 2. For historical years 2005 and 2010, the contribution from F-gas (HFCs, PFCs and SF₆) emissions to global warming are estimated at 0.7 and 0.89 Pg CO₂eq, respectively, and with an additional 0.28 and 0.26 Pg CO₂eq release of HCFCs in the respective years. In 2010, 34.6 percent of F-gas emissions are released as HFCs from stationary air conditioning and refrigeration, 13.6 percent as HFC-134a from mobile air conditioners, 18.6 percent as HFC-23 emissions from HCFC-22 production for emissive and feedstock use, 7.7 percent as HFCs from use in aerosols, foams, solvents, fire-extinguishers, ground-source heat pumps, 12.9 percent as SF₆ from high- and mid- voltage switches, magnesium production, soundproof windows and other minor sources, and 12.5 percent as PFCs from primary aluminium production and semiconductor industry.

Baseline F-gas emissions are estimated to increase by a factor of five between 2005 and 2050, as shown in Figure 2. The growth is mainly driven by a six fold increase in demand for refrigeration and air conditioning services, which in turn is driven by an expected increase in per capita wealth in developing countries combined with the effect of replacing CFCs and HCFCs with HFCs in accordance with the revised MP. Under the MP, HCFCs in emissive use should be virtually phased out by 2030, but still allowing for refills of the existing stock until 2040. HFC-23 emissions from HCFC22 production for feedstock use in industry is expected to grow significantly in China following expected growth in industry value added.

Between 2005 and 2050, PFC emissions are expected to grow by 25 percent, which is a combination of expected growth in industry value added and emission contractions following expected switches from outdated HSS/VSS or prebake technologies to more efficient Point Fed Prebake (PFPB) technology in primary aluminium production. SF₆ emissions are expected to increase by almost 50 percent over the same period due to expected growth in emissions from high- and mid- voltage switches as electricity consumption increases and due to expected growth in magnesium production, which is dominated by China (USGS, 2013b) and without adoption of control expected in the baseline.

As shown in Figure 3, rapid growth in emissions is expected in Article 5 (developing) countries. With approximately seven-fold increases from 2010 to 2050, China is expected to contribute 39 percent of global F-gas emissions in 2050 followed by India (13 percent). For EU-28, F-gas emissions in 2050 will be lower than the 2005 level due to stringent F-gas controls whereas in USA and Canada emissions are expected to increase by a factor of two in the baseline scenario.

4.2 The future technical abatement potential

Figure 4 shows that there are extensive opportunities to reduce F-gas emissions through existing technologies or by replacement with low-GWP alternative substances. In the near-term, abatement opportunities within refrigeration and air-conditioning are limited by the turnover rate of the existing refrigeration and air-conditioning stock (see Section 3.2). The full technical abatement potential is therefore expected attainable from 2035 onwards and then estimated at 97 percent below baseline emissions, which reflects the deep cuts in emissions found technically feasible across all source sectors as shown in Figure 4.

4.3 The cost of future technical abatement potentials

10

Figure 5 shows the estimated marginal abatement cost curves for global F-gas emissions in 2020, 2030, 2040 and 2050 for moving between the baseline and the MFR emission scenarios. The mitigation potential is extended over time primarily due to the expected increase in baseline emissions and to a lesser extent by short-run technical limitations to fully phase-in the available abatement options. Net savings on abatement costs are primarily expected from replacement of the use of HFCs with NH₃ in industrial refrigeration, switching from high to low HFCs (e.g., HFC-125a) in foam blowing, switching from the use of HFCs to hydrocarbons (e.g., propane or butane) in residential air-conditioning, and switching from HFCs to CO₂-based systems in transport refrigeration. The lower part of Figure 6 shows that global annual cost-savings from these options are estimated at over 15 billion Euro in 2050. The upper part of Figure 6 shows the estimated total annual cost of implementing costly F-gas abatement options below a marginal cost of 200 €t CO₂eq (which corresponds to 98 percent of the MFR abatement potential). The highest cost is attributed to the replacement of HFC-134a in cars with HFO-1234yf. The annual cost of implementing this option globally is estimated at almost 35 billion Euro in 2050. Replacing the HFC-134a use in other types of vehicles is estimated to add 8 billion Euro annually in 2050. The total annual cost of implementing all other costly options are estimated at 14 billion Euro in 2050. Hence, global implementation of all options in 2050 (thereby achieving 98 percent of MFR), is estimated at a net annual cost of 41 billion Euro, whereof costly options make up 57 billion and cost-saving options 16 billion Euro per year.

Figure 7 shows the estimated development in future F-gas emissions in the baseline and MFR scenarios at different carbon price levels (i.e. maximum marginal abatement cost levels). According to these estimates, a moderate carbon price level of 10 €t CO₂eq would provide enough incentives to achieve significant emission reductions of 80 percent below baseline in 2035. However, without allowing for a further increase in the carbon price in the long run, a continued increase in demand for F-gas services is expected to result in a 36 percent increase in global F-gas emissions between 2035 and 2050.

4.4 Cumulative F-gas emissions and costs 2018 to 2050

To display the effect on emissions from different climate policy ambition levels, we sum up the expected cumulative emissions released over the period 2018 to 2050 for alternative carbon price levels. By setting a positive carbon price, all abatement

options that come at a marginal abatement cost lower than the carbon price can be expected to be implemented as they will render a saving to the user compared with paying the carbon price. We measure the cumulative emissions starting from year 2018 as this is considered the earliest year from which new climate policy can realistically be in place. Figure 8 shows the estimated cumulative emissions 2018 to 2050 at different carbon price levels and for Article 5 (developing) countries and non-Article 5 (developed) countries separately. As shown, in the baseline Article 5 countries can be expected to release 62 Pg CO₂eq of F-gases, while the expected contribution from non-Article 5 countries is 19 Pg CO₂eq over the entire period. With climate policies implemented globally and corresponding in stringency to a carbon price of 10 €t CO₂eq, the cumulative release over the entire period is estimated at 17 Pg CO₂eq from Article 5 countries and 6 Pg CO₂eq from non-Article 5 countries. Globally, this means a reduction in cumulative F-gas emissions from 81 to 23 Pg CO₂eq over the period 2018 to 2050, i.e., a reduction in global cumulative emissions by 72 percent.

Figure 9 shows the estimated total cost of achieving the respective cumulative emission reductions shown in Figure 8. Non-Article 5 (i.e., primarily developed) countries have considerable opportunities to reduce emissions through options that render cost-savings. These include a switch from current use of HFCs to less expensive alternative low-GWP substances in industrial refrigeration, foam blowing, residential air-conditioning and refrigerated transport, and relatively limited release of F-gases from mobile air conditioning and industrial processes. The cumulative net cost of abatement over the period 2018 to 2050 therefore only turns positive at a carbon price exceeding 100 €t CO₂eq. For developing countries, with relatively limited contribution of emissions from industrial refrigeration and relatively large emissions from industrial processes and mobile air conditioning, the net cumulative abatement cost is higher and turns positive already at a carbon price of 40 €t CO₂eq.

4.5 Comparison to other studies

15

Figure 10 shows a comparison between our baseline estimate of global F-gas emissions 2005 to 2050 and business-as-usual scenarios of other studies. Our findings confirm previous findings (EDGAR, 2013; Gschrey et al., 2011; Meinshausen et al., 2011; Velders et al., 2009, 2014, 2015) that in year 2005 emissions of HFCs, PFCs and SF₆ contributed about 0.7 Pg CO₂eq to global greenhouse gas emissions. IPCC/TEAP (2005) projected F-gas emissions at a sectoral level until 2015. The projections are based on sectoral data on banked and emitted emissions in 2005 as well as projections by SROC (IPCC/TEAP, 2005) and updated projections of HFC banks and emissions for the period 2005 to 2020 by TEAP (UNEP, 2009). The

projection to 2015 is very close to the baseline emissions estimated in GAINS.

Our baseline projection, reaching 3.7 Pg CO₂eq in 2050, is somewhat lower than the business-as-usual estimates of 4 to 5.4 Pg CO₂eq in 2050 by Velders et al. (2015) and Gschrey et al. (2011), and significantly higher than in the Representative Concentration Pathways (RCPs) scenarios (IIASA, 2009). The reason for the difference in projected emissions can be sought in the use of different drivers. Just like this study uses sector-specific drivers (e.g., growth in commercial or industry value added), Gschrey et al. (2011) apply sector-specific assumptions to drive future trends in emissions. However, where we use regions-specific drivers based on macroeconomic scenarios by IEA-ETP (2012) and Capros et al. (2013), Gschrey et al. (2011) make fixed assumptions for developed and developing countries, respectively, for short and long-term emission growth rates

at the sectoral level. Velders et al., (2015) use GDP and population growth rates from the IPCC SSP scenarios (O'Neill et al., 2012; IIASA, 2012) as drivers for F-gas emissions. Just like Velders et al. (2015), we take account of the effects of the most recently implemented F-gas regulations, e.g., the 2014 revision of the EU F-gas regulation, and therefore differences in the level of regulation should not contribute to differences in future emissions. Our baseline, as well as the most recent business-as-usual scenario from Velders et al. (2015), project higher global F-gas emissions in 2050 than any of the different IPCC Representative Concentration Pathways (RCP) scenarios (IIASA, 2009; Moss et al., 2010). In comparison to our baseline emissions in 2050, the RCP scenarios are between 59 to 88 percent lower. The higher projections of the more recent studies, including this one, can be explained by a strong increase in the use of F-gases with high GWPs in recent years, which are reflected in the sector-specific GWPs derived from the shares of commonly used HFCs reported by Annex-I countries to the UNFCCC (2015a). Another reason may be differences in the sector-specific GWPs used.

USEPA (2013) provides global projections of F-gases at regional and sectoral level until 2030. Their estimate for historical years is close to GAINS, but display a stronger increase in emissions between 2020 and 2030. In 2030, USEPA project global F-gas emissions at 2.6 Pg CO₂eq, which is 28 percent higher than the GAINS estimate for the same year. Apart for RCP scenarios and USEPA (2013) that provide data in five-year intervals until 2050 and 2030, respectively, the other referenced studies provide only one point in 2020 and one in 2050 without describing the pathway between these two points.

Just like Fisher et al. (2007), we find that there are significant opportunities to reduce F-gas emissions through adoption of existing alternative substances and technology.

5 Uncertainty analysis

10

15

20

It is important to acknowledge that there are several potential sources for uncertainty in the estimated emissions, abatement potentials and associated costs. This section focuses on uncertainty in the chosen methodology and information input used in the derivation of emission factors and costs. It does not address uncertainty in the projections of activity drivers as these have been taken from external sources (IEA/OECD, 2012; Capros et al., 2013). Uncertainty ranges presented in Table S10 are derived from default ranges suggested in the IPCC guidelines for National Greenhouse Gas Inventories (IPCC, 2006) and other published literature (IPCC, 2000; USEPA, 2004; UNFCCC, 2012; IPCC/TEAP, 2005; Tohka, 2005; Garg et al., 2006; Gschrey et al., 2011; Schwartz et al., 2011; McCulloch and Lindley, 2007; Koronaki et al., 2012). As mentioned in the previous section, HFCs are in the baseline expected to contribute to nearly 90 percent of global F-gas emissions in 2050. Figure 11 presents ranges of uncertainty for major HFC sectors contributing 84 percent of global HFC emissions in 2050. Other HFC sectors (i. e. fire extinguishers, foam, solvents etc.) are not incorporated due to lack of relevant data. Moreover, we do not attempt to sum sectoral uncertainty ranges at the global scale, as it is difficult to estimate relative uncertainty between sectors. Based on this data, global baseline emission estimates are most affected by uncertainty in estimates in stationary air conditioning followed by commercial refrigeration and mobile air conditioning. To reduce uncertainty in emission estimates, it would be of particular interest to obtain measurement data on sectoral emission rates of refrigerants in various world regions to complement currently

available information from Europe and North America (Schwarz and Harnisch, 2003; Schwarz, 2005; MPCA, 2012; UNFCCC, 2012). Equally important would be to improve access to measurement data which can verify reported figures, e.g. HFC-23 emissions in HCFC-22 production for major HCFC-22 producing countries.

Also note that GWP values are being continually revised to reflect current understanding of the warming potentials of CO₂ relative other greenhouse gases. Figure 12 presents the impact on global F-gas emissions when using different GWPs taken from the second, fourth and fifth assessment reports of IPCC (see: Table S2). In 2050, global F-gas emissions in the baseline are estimated at 3.2 Pg CO₂eq using GWPs from the Revised 1996 IPCC guidelines (IPCC, 1997), whereas the most recent GWPs stated with climate-carbon effects (IPCC, 2014) indicate 18 percent higher emissions in 2050 when converted to CO₂eq units.

10 Uncertainty in estimates is also affected by the quickly evolving development of alternative refrigerants and technologies in these sectors, with efficiencies in emission removal increasing and costs decreasing as research and market shares expand (USEPA, 2013). Thus, the use of current costs and removal efficiencies of existing control options is likely to render conservative estimates about the future abatement potentials and costs.

Uncertainty about the opportunities to exploit economies of scale when implementing different systems in different sectors adds to uncertainty in unit costs. E.g., recovery from large equipment is more cost-effective than for small equipment, as the amount of refrigerant recoverable is greater and the relative amount of technician time needed to perform the recovery is smaller. Other sources of uncertainty affecting costs include uncertainty in estimates of the amount of refrigerant recoverable from equipment at service and disposal as it will differ by the type of equipment. Similarly, because leak repair can be performed on many different equipment types and can involve many different activities/tools, it is difficult to determine an average cost of such repairs or the average emission reduction associated with them. This analysis, relies on broad assumptions about costs available in published literature (Tohka, 2005; Schwarz et al., 2011; Höglund-Isaksson et al., 2013; USEPA, 2013) and is not able to reflect specific local conditions affecting costs and removal efficiencies of different technologies.

6 Conclusions

15

Many flourinated gases (F-gases) are potent greenhouse gases that contribute to global warming if released to the atmosphere.

This analysis identifies and quantifies major global sources of F-gas emissions as well as technical opportunities and costs for abatement. It also pinpoints important sources of uncertainty in emission estimations, which could serve to improve future estimates. Results from the GAINS model suggest that in a baseline scenario that only takes into account effects on emissions from already adopted legislation and voluntary agreements, global emissions of F-gases are expected to grow by a factor of five between 2005 and 2050 (from 0.7 Pg CO₂eq. in 2005 to 3.7 Pg CO₂eq. in 2050). In particular, a sharp increase in emissions from air-conditioning and refrigeration in developing countries contributes to increased emissions. We find that existing abatement technologies could reduce emissions by up to 97 percent below annual baseline emissions in the long run. Due to

inertia in the replacement of current technology in the short run, it is considered technically feasible to reduce cumulative F-gas emissions over the entire period 2018 to 2050 by 86 percent.

Abatement costs are found relatively low and at a carbon price of 10 €t CO₂eq incentives to adopt F-gas abatement are expected strong enough to remove 72 percent of cumulative baseline F-gas emissions over the period 2018 to 2050. We find that future F-gas abatement is expected to be relatively more costly for developing than for developed countries due to differences in the sector distribution of emissions. Hence, a fair and cost-effective distribution of the burden to control future global F-gases across all sectors and regions, calls for a policy mechanism that can redistribute costs from developed to developing countries.

References

15

- 10 AIRAH: The HFC Refrigerant Levy The Clean Energy Future Plan and HFCs. Australian Institute of Refrigeration, Air Conditioning and Heating (AIRAH), Melbourne, 2012.
 - Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F. and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software 26 (12), 1489–1501, doi:10.1016/j.envsoft.2011.07.012, 2011.
 - Amann, M., Kejun, J., Jiming, H., Wang, S., Wei, W., Jia, X., Chuying, Z., Bertok, I., Borken, J., Cofala, J., Heyes, C., Hoglund, L., Klimont, Z., Purohit, P., Rafaj, P., Schöpp, W., Toth, G., Wagner, F. and Winiwarter, W.: GAINS Asia: Scenarios for cost-effective control of air pollution and greenhouse gases in China. International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2008.
- Brack, D.: National Legislation on Hydrofluorocarbons. Institute for Governance & Sustainable Development (IGSD), Washington, D.C. Final draft, 11th September 2015. URL: http://igsd.org/documents/NationalLegislationonHydrofluorocarbons_9.11.15.pdf
 - Capros, P., de Vita, A., Tasios, N., Papadopoulos, D., Siskos, P., Apostolaki, E., Zampara, M., Paroussos, L., Fragiadakis, K., Kouvaritakis, N., Hoglund-Isaksson, L., Winiwarter, W., Purohit, P., Bottcher, H., Frank, S., Havlík, P., Gusti, M. and Witzke, H.P.: EU Energy, Transport and GHG emissions trends to 2050 Reference Scenario 2013. European Commission-Directorate-General for Energy, Directorate-General for Climate Action, and Directorate-General for Mobility and Transport, Publications Office of the European Union, Luxembourg, 2013.
- Capros, P., de Vita, A., Tasios, N., Siskos, P., Kannavou, M., Petropoulos, A., Evangelopoulou, S., Zampara, M.,
 Papadopoulos, D., Nakos, Ch., Paroussos, L., Fragiadakis, K., Tsani, S., Karkatsoulis, P., Fragkos, P., Kouvaritakis, N.,
 Höglund Isaksson, L., Winiwarter, W., Purohit, P., Gomez Sanabria, A., Frank, S., Forsell, N., Gusti, M., Havlik, P.,
 Obersteiner, M., Witzke, H.P. and Kesting, M.: EU Reference Scenario 2016: Energy, transport and GHG emissions trends

- to 2050. European Commission-Directorate-General for Energy, Directorate-General for Climate Action, and Directorate-General for Mobility and Transport, Publications Office of the European Union, Luxembourg, 2016.
- Carvalho, S., S. O. Andersen, D. Brack, N. J. Sherman, N.J.: Alternatives to High-GWP Hydrofluorocarbons. Working paper, Institute for Governance and Sustainable Development (IGSD), Washington, D.C., 2014 URL http://www.igsd.org/documents/HFCSharpeningReport.pdf

20

- Daikin: HFC-32 Next generation refrigerant that helps reduce global warming. Daikin Europe N.V., Brussels, URL www.daikin.eu/binaries/WS_Daikin_Factsheet_ver2.1_tcm507-401295.pdf accessed on 8th August 2016.
- EDGAR: Emission Database for Global Atmospheric Research (EDGAR), 4.2 FT2010, European Commission, Joint Research Centre (JRC) and Netherlands Environmental Assessment Agency (PBL), 2010. URL: http://edgar.jrc.ec.europa.eu
- 10 EIA: The Montreal protocol in 2012 Ending the reign of fluorocarbons, answering the call on climate. Environmental Investigation Agency (EIA), Washington, DC, 2012.
 - Fang, X., Hu, X., Janssens-Maenhout, G., Wu, J., Han, J., Su, S., Zhang, J., Hu, J.: Sulfur hexafluoride (SF₆) emission estimates for China: an inventory for 1990-2010 and a projection to 2020. Environ Sci Technol., 47 (8), 3848-55, doi: 10.1021/es304348x, 2013.
- 15 Fekete, H., Roelfsema, M., Höhne, N., den Elzen, M., Forsell, N., Becerra, S.: The impact of good practice policies on regional and global greenhouse gas emissions. New Climate Institute, PBL Netherlands Environmental Assessment Agency and International Institute for Applied Systems Analysis, Cologne, Germany, 2015. URL: https://newclimateinstitute.files.wordpress.com/2015/07/task2c_goodpracticeanalysis_july_2015.pdf
 - Feng, J., Yan, H., Zhang, B. and Zhang, J.: Prediction of HFC-23 Emission and Analysis of CDM Project Impact in China (in Chinese). Acta Scientiarum Naturalium Universitatis Pekinensis, 48(2), 310-316, 2012.
 - Fisher, B.S., Nakicenovic, N., Alfsen, K., Corfee Morlot, J., de la Chesnaye, F., Ch. Hourcade, J., Jiang, K., Kainuma, M., La Rovere, E.L., Matysek, A., Rana, A., Riahi, K., Richels, R., Rose, S., van Vuuren, D. and Warren, R.: Issues related to mitigation in the long term context, in: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter-Governmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2007.
 - Garg, A., Shukla, P.R., Kapshe, M.: The sectoral trends of multigas emissions inventory of India. Atmospheric Environment, 40 (24), 4608-4620, doi:10.1016/j.atmosenv.2006.03.045, 2006.
 - GEF: GEF Impact Evaluation of the Phase-Out of Ozone-Depleting Substances in Countries with Economies in Transition, Vol 2: Country Reports. Global Environmental Facility (GEF), Washington, D.C., 2009.
- 30 GIZ: Consumption and Emission Inventory of Fluorinated Greenhouse Gases (CFC, HCFC and HFC) in Mexico. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Bonn, 2014.
 - Gschrey, B., Schwarz, W., Elsner, C., and Engelhardt, R.: High increase of global F-gas emissions until 2050. Greenhouse Gas Measurement and Management 1 (2), 85–92, doi: 10.1080/20430779.2011.579352, 2011.

- Halkos, G.: Construction of abatement cost curves: The case of F-gases. Department of Economics, University of Thessaly, Greece, 2010.
- Hao, H., Geng, Y. and Hang, W.: GHG emissions from primary aluminum production in China: Regional disparity and policy implications. Applied Energy, 166: 264-272, doi:10.1016/j.apenergy.2015.05.056, 2016.
- 5 Harnisch, J. and Hendriks, C.: Economic Evaluation of Emission Reductions of HFCs, PFCs and SF6 in Europe. Ecofys, Utrecht, 2000.
 - Harnisch, J. and Schwarz, W.: Costs and the impact on emissions of potential regulatory framework for reducing emissions of hydrofluorocarbons, perfluorocarbons and sulphur hexafluoride. Ecofys and Öko-Recherche, Utrecht, 2003.
 - Harnisch, J.I., Wing, S., Jacoby, H.D. and Prinn, R.G.: Primary Aluminum Production: Climate Policy, Emissions and Costs. MIT-Joint Program on the Science and Policy of Global Change Report Series, Report No. 44 (Revised Version), 1998.

- Höglund Isaksson, L., Winiwarter, W., Purohit, P. and Gomez-Sanabria, A.: Non-CO₂ greenhouse gas emissions in the EU-28 from 2005 to 2050: GAINS model methodology. International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2016.
- Höglund-Isaksson, L., Winiwarter, W. and Purohit, P.: Non-CO₂ greenhouse gas emissions, mitigation potentials and costs in the EU-28 from 2005 to 2050: GAINS model methodology. International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2013.
 - Höglund-Isaksson, L., Winiwarter, W., Purohit, P., Rafaj, P., Schöpp, W. and Klimont, Z.: EU low carbon roadmap 2050: Potentials and costs for mitigation of non-CO₂ greenhouse gas emissions. Energy Strategy Reviews 1, 97–108, doi:10.1016/j.esr.2012.05.004, 2012.
- 20 Huang, F.: The semiconductor industry contribution to saving energy and protecting the global environment. The Green IT International Symposium, Tokyo, 2008.
 - IAI: Results of the 2013 Anode Effect Survey: Report on the Aluminium Industry's Global Perfluorocarbon Gases Emissions Reduction Programme. International Aluminium Institute (IAI), London, 2014.
- IAI: The International Aluminium Institute Report on the Aluminium Industry's Global Perfluorocarbon Gas Emissions
 Reduction Programme Results of the 2008 Anode Effect Survey. International Aluminium Institute (IAI), London, 2009.
 IEA/OECD: Energy Technology Perspective (ETP) 2010. International Energy Agency, Paris, 2010.
 - IEA/OECD: Energy Technology Perspectives (ETP) 2012. International Energy Agency (IEA), Paris, 2012.
 - IIASA: RCP Database (Representative Concentration Pathways) Version 2.0. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, 2009. URL https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=about.
- 30 IIASA: SSP Database (Shared Socioeconomic Pathways) Version 1.0. International Institute for Applied System Analysis (IIASA), Laxenburg, Austria 2012. URL: https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about
 - IPCC/SRES: Special Report on Emission Scenarios (SRES) A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK and New York, USA, 2000.

- IPCC/TEAP: IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. Intergovernmental Panel on Climate Change (IPCC) and Technology and Economic Assessment Panel (TEAP), Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2005. URL: http://www.ipcc.ch/pdf/special-reports/sroc/sroc_full.pdf
- 5 IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. National Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies, Hayama, Japan, 2006.
 - IPCC: Climate Change 1995: The Science of Climate Change. Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK.1996.
- IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2007a.
 - IPCC: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2007b.
- 15 IPCC: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK and New York, USA, 2014.
 - Kauffeld, M.: Availability of low GWP alternatives to HFCs Feasibility of an early phase-out of HFCs by 2020. Environmental Investigation Agency (EIA), Washington D.C., May 2012. URL: http://www.eia-international.org/wp-content/uploads/EIA_FGas_Report_0412_FINAL_MEDRES_v3.pdf

- Koronaki, I.P., Cowan, D., Maidment, G., Beerman, K., Schreurs, M., Kaar, K., Chaer, I., Gontarz, G., Christodoulaki, R.I. and Cazauran, X.: Refrigerant emissions and leakage prevention across Europe Results from the Real Skills Europe project. Energy, 45 (1), 71-80, doi:10.1016/j.energy.2012.05.040, 2012.
- Macias, J., Aguilar, A., Schmid, G., Francke, E.: Policy Handbook for the Regulation of Imported Second-Hand Vehicles.,

 Global Fuel Economy Initiative (GFEI), Mexico, June 2013 URL:

 https://www.globalfueleconomy.org/media/45362/wp7_regulation_for_2nd-hand_vehicles-lr.pdf
 - Mahapatra, A.: India acts on HFC-23 super pollutant as Montreal Protocol negotiations enter critical phase. 13th October 2016.

 URL: http://www.businesswire.com/news/home/20161013006357/en/India-Acts-HFC-23-Super-Pollutant-Montreal-Protocol
- 30 McCulloch, A. and Lindley, A.A.: Global emissions of HFC-23 estimated to year 2015. Atmospheric Environment 41 (7), 1560 1566, doi:10.1016/j.atmosenv.2006.02.021, 2007.
 - Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J.-F., Matsumoto, K., Montzka, S., Raper, S., Riahi, K., Thomson, A., Velders, G. J. M., and van Vu-uren, D.P.: The RCP Greenhouse Gas Concentrations and their Extensions from 1765 to 2300, Climatic Change, 109, 213–241, doi:10.1007/s10584-011-0156-z, 2011.

- METI: Act on the Rational Use and Proper Management of Fluorocarbons (Act no. 64 of 2001). Ministry of Economy, Trade and Industry (METI), Tokyo, 2015. URL: http://conf.montreal-protocol.org/meeting/workshops/hfc_management/presentations/StatementsbyHeadsofDelegations/4-MasafumiOhki session 4.ppt
- 5 Miller, B. R. and Kuijpers, L. J. M.: Projecting future HFC-23 emissions, Atmos. Chem. Phys., 11, 13259-13267, doi:10.5194/acp-11-13259-2011, 2011.
 - Miller, B. R., Rigby, M., Kuijpers, L. J. M., Krummel, P. B., Steele, L. P., Leist, M., Fraser, P. J., McCulloch, A., Harth, C., Salameh, P., Mühle, J., Weiss, R. F., Prinn, R. G., Wang, R. H. J., O'Doherty, S., Greally, B. R., and Simmonds, P. G.: HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures, Atmos. Chem. Phys., 10, 7875-7890, doi:10.5194/acp-10-7875-2010, 2010.
 - MoEF: HCFC Phase-out Management Plan (HPMP) Stage I. Ozone Cell, Ministry of Environment and Forest (MoEF), Government of India, New Delhi, 2013.

- MoEF: Roadmap for Phase-out of HCFCs in India. Ozone cell, Ministry of Environment & Forests (MoEF), Government of India, New Delhi, 2009.
- 15 Montzka, S.A., Dlugokencky, E.J. and Butler, J.H.: Non-CO2 greenhouse gases and climate change. Nature, 476, 43–50, doi:10.1038/nature10322, 2011.
 - Montzka, S.A., Kuijpers, L., Battle, M.O., Aydin, M., Verhulst, K.R., Saltzman, E.S. and Fahey, D.W.: Recent increases in global HFC-23 emissions. Geophysical Research Letters 37, L02808, 10.1029/2009GL041195, 2010.
- Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S.,
 Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson,
 A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment,
 Nature, 463, 747–756, doi:10.1038/nature08823, 2010.
 - MPCA: Mobile Air Conditioner Leakage Rates Model Year 2012. Minnesota Pollution Control Agency (MPCA), Minnesota, 2012. URL: http://www.pca.state.mn.us/index.php/view-document.html?gid=14910
- Mühle, J., Ganesan, A. L., Miller, B. R., Salameh, P. K., Harth, C. M., Greally, B. R., Rigby, M., Porter, L. W., Steele, L. P., Trudinger, C. M., Krummel, P. B., O'Doherty, S., Fraser, P. J., Simmonds, P. G., Prinn, R. G., and Weiss, R. F.: Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane, Atmos. Chem. Phys., 10, 5145-5164, doi:10.5194/acp-10-5145-2010, 2010.
- Munnings, C., Leard, B., Bento, A.: The Net Emissions Impact of HFC-23 Offset Projects from the Clean Development

 Mechanism. Discussion Paper Number RFF DP 16-01, January 2016 URL: http://www.rff.org/files/document/file/RFFDP-16-01.pdf
 - NDRC. 2015. China's Policies and Actions on Climate Change 2015. The National Development and Reform Commission (NDRC) of the People's Republic of China, November 2015 URL: http://en.ccchina.gov.cn/archiver/ccchinaen/UpFile/Files/Default/20151120095849657206.pdf

- O'Neill, B.C., Carter, T.R., Ebi, K.L., Edmonds, J., Hallegatte, S., Kemp-Benedict, E., Kriegler, E., Mearns, L., Moss, R., Riahi, K., van Ruijven, B. and van Vuuren, D. Meeting Report of the Workshop on the Nature and Use of New Socioeconomic Pathways for Climate Change Research, National Center for Atmospheric Research (NCAR), Boulder, CO, November 2-4, 2011, Final Version, March 12, 2012. URL: http://www.isp.ucar.edu/socio-economic-Pathways
- 5 PU: HCFCs phasing-out management plan for China. College of Environmental Sciences, Peking University (PU), Beijing, 2012.
 - Purohit, P. Höglund-Isaksson, L., Bertok, I., Chaturvedi, V. and Sharma, M.: Scenario analysis for HFC emissions in India: Mitigation potential and costs. CEEW-IIASA Report, September 2016. URL http://pure.iiasa.ac.at/13861/
 - Purohit, P., Amann, M., Mathur, R., Bhandari, P., Bertok, I., Borken, J., Cofala, J., Heyes, C., Klimont, Z., Rafaj, P., Schöpp, W., Wagner, F. and Winiwarter, W.: GAINS-Asia. Scenarios for cost-effective control of air pollution and greenhouse gases in India. International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2010.

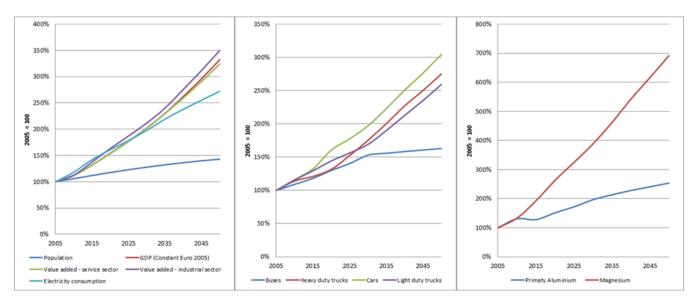
25

- Ragnauth, S.A., Creason, J., Alsalam, J., Ohrel, S., Petrusa, J.E. and Beach, R.H.: Global mitigation of non-CO₂ greenhouse gases: marginal abatement costs curves and abatement potential through 2030, Journal of Integrative Environmental Sciences, 12 (1), 155-168, doi: 10.1080/1943815X.2015.1110182, 2015.
- 15 Schneider, L., Spalding-Fecher, R., Cames, M.: Delivering Results-Based Funding Through Crediting Mechanisms: Assessment of Key Design Options. Öko-Institut e.V., November 2015 URL: https://www.oeko.de/oekodoc/2443/2015-600-en.pdf
 - Schneider, L.R.: Perverse incentives under the CDM: an evaluation of HFC-23 destruction projects. Climate Policy, 11 (2), 851-864, doi: 10.3763/cpol.2010.0096, 2011.
- Schwarz, W. and Harnisch, J.: Final Report on Establishing the Leakage Rates of Mobile Air Conditioners. Prepared for the European Commission (DG Environment), Öko-Recherche GmbH, Germany, 2003. URL: http://ec.europa.eu/clima/policies/eccp/docs/leakage_rates_final_report_en.pdf
 - Schwarz, W., Gschrey, B., Leisewitz, A., Herold, A., Gores, S., Papst, I., Usinger, J., Oppelt, D., Croiset, I., Pedersen, H., Colbourne, D., Kauffeld, M., Kaar, K. and Lindborg, A.: Preparatory study for a review of Regulation (EC) No 842/2006 on certain fluorinated greenhouse gases. Final Report Prepared for the European Commission in the context of Service Contract No 070307/2009/548866/SER/C4, European Commission, Brussels, 2011.
 - Schwarz, W.: Emissions and Emission Projections of HFC, PFC and SF₆ in Germany Present State and Development of a Monitoring System Emissions 1990, 1999-2003, and Emission Forecasts for 2010 and 2020. Prepared for Nature Conservation and Nuclear Safety, Environmental Research of the Federal Ministry of the Environment, Germany, 2005. URL: http://www.oekorecherche.de/sites/default/files/publikationen/e-projections-2010-2020.pdf
 - Tohka, A.: The GAINS Model for Greenhouse Gases Version 1.0: HFC, PFC and SF6. International Institute for Applied Systems Analysis (IIASA), Laxenburg, 2005.
 - UNDP: Malaysia HCFC Phase-Out Management Plan (HPMP Stage-1) for Compliance with the 2013 AND 2015 Control Targets for Annex-C, Group-I Substances. Prepared jointly by: Malaysia Department of Environment (DOE) and United

- Nations Development Programme (UNDP), April 2012. URL: https://www.doe.gov.my/portalv1/wp-content/uploads/2014/01/Malaysia-HPMP-Book-Final-R4-1-Part1.pdf
- UNDP: Study of the hydrofluorocarbons (HFCs) market in Colombia. Final report, National Ozone Unit of Colombia, Ministry of Environment and Sustainable Development and United Nations Development Programme (UNDP), Bogotá, 2014a.
- 5 UNDP: Survey of the hydrofluorocarbon (HFC) market in Chile. Final Report, Ministry of Environment and United Nations Development Programme (UNDP), Santiago, 2014b.
 - UNEP & SEPA: Alternatives to HCFCs in the Refrigeration and Air conditioning Sector: Practical Guidelines and Case Studies for Equipment Retrofit and Replacement. Ozone Action Programme, Division of Technology, Industry & Economics, United Nations Environment Programme (UNEP) and Swedish Environmental Protection Agency (SEPA), Paris, 2010. URL: Available at: http://www.unep.org/pdf/hcfc-alternatives .pdf.
 - UNEP: Additional Information to Alternatives on ODSs. Decision XXV/5, Task Force Report, Technology and Economic Assessment Panel, United Nations Environment Programme, Nairobi, 2014a.

- UNEP: Desk Study on the Evaluation of HCFC Phase-Out Projects in the Foam Sector. Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol, Seventy-third Meeting, Paris, 9-13 November 2014b.
- 15 UNEP: Ozone Secretariat Data Access Centre. United Nations Environment Programme (UNEP), Nairobi, 2014c. URL: http://ozone.unep.org/en/data-reporting/data-centre
 - UNEP: Open-ended Working Group of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (UNEP/OzL.Pro.WG.1/34/INF/4/Add.1). United Nations Environment Programme (UNEP, 34th meeting, Paris, 14–18 July 2014d.
- 20 UNEP: Executive committee of the multilateral fund for the implementation of the Montreal protocol. United Nations Environment Programme (UNEP), Sixty-fourth Meeting Montreal, 25-29 July 2011a.
 - UNEP: Latin America and the Caribbean –Passenger vehicle standards and fleets. United Nations Environment Programme (UNEP), August 2011b. URL: http://www.unep.org/transport/pcfv/PDF
 /Maps Matrices/LAC/matrix/LAC vehiclestandardsmatrix august2011.pdf
- UNEP: Lower-GWP Alternatives in Commercial and Transport Refrigeration: An expanded compilation of propane, CO₂, ammonia and HFO case studies. United Nations Environment Programme (UNEP), Nairobi, 2016a. URL: http://www.unep.org/ozonaction/Portals/105/Publications/CCAC case studies 2016 final.pdf
 - UNEP: Decision XXVIII/Further Amendment of the Montreal Protocol, Twenty-Eighth Meeting of the Parties to the Montreal Protocol om Substances that Deplete the Ozone Layer. UNEP/OzL.Pro.28/CRP/11, 14 October 2016, United Nations Environment Programme (UNEP), Nairobi, 2016b.
 - UNEP: Report of the task force on HCFC issues and emissions reduction benefits arising from earlier HCFC phase-out and other practical measures. United Nations Environment Programme (UNEP), Nairobi, 2007.

- UNEP: Report of the Technology and Economic Assessment Panel (TEAP) Task Force Decision XX/8 Report: Assessment of Alternatives to HCFCs and HFCs and Update of the TEAP 2005 Supplement Report Data, United Nations Environment Programme (UNEP), Nairobi, 2009.
- UNEP: Safe use of HCFC alternatives in refrigeration and air-conditioning: An overview for developing countries, Ozon


 Action Programme, Division of Technology, Industry & Economics, United Nations Environment Programme (UNEP),

 Paris, 2015. URL: http://www.unep.org/ozonaction/Portals/105/documents/7740-e-SafeUseofHCFCAlternativesinRefrigerationandAir-conditioning.pdf
 - UNEP: Turkey to strengthen legislation on ozone-depletion and fluorinated gases. United Nations Environment Programme (UNEP), Nairobi, 2013.
- 10 UNFCCC: Common Reporting Format (CRF) Tables and National Inventory Reports (NIRs). United Nations Framework Convention on Climate Change (UNFCCC), Bonn, 2015a.
 - UNFCCC: INDCs as communicated by Parties. United Nations Framework Convention on Climate Change (UNFCCC), Bonn, 2015b. URL: http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx.
 - UNFCCC: Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1, United Nations Framework Convention on Climate Change (UNFCCC), Bonn, 2015c. URL: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.

25

- UNFCCC: Common Reporting Format (CRF) Tables and National Inventory Reports (NIRs). United Nations Framework Convention on Climate Change (UNFCCC), Bonn, 2012.
- UNFCCC: National Inventory Submissions 2014 to the United Nations Framework Convention of Climate Change (UNFCCC), Climate Change Secretariat, Bonn, 2014. URL: http://unfccc.int
- USEPA: EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017–2025 Cars and Light Trucks. United States Environmental Protection Agency (USEPA), Office of Transportation and Air Quality, EPA-420-F-12-051, Washington, D.C., 2012. URL: https://www3.epa.gov/otaq/climate/documents/420f12051.pdf
 - USEPA: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 2020. Office of Atmospheric Programs Climate Change Division, U.S. Environmental Protection Agency (EPA), Washington D.C., 2006.
 - USEPA: Global Emissions Report for Non-CO₂ Gases Preliminary Report. United States Environmental Protection Agency (USEPA), June 2004.
 - USEPA: Global Mitigation of Non-CO2 Greenhouse Gases: 2010-2030 (No. EPA-430-R-13-011). United States Environmental Protection Agency (USEPA), Office of Atmospheric Programs (6207J), Washington, D.C., September 2013.
 - USEPA: Protection of Stratospheric Ozone: Change of Listing Status for Certain Substitutes under the Significant New Alternatives Policy Program. EPA-HQ-OAR-2014-0198, United States Environmental Protection Agency (USEPA), Washington, D.C., 2015.

- USEPA: Substitutes in Aerosol Propellants. Significant New Alternatives Policy Program, United States Environmental Protection Agency (USEPA), Washington, D.C., 2016. URL: https://www.epa.gov/snap/substitutes-aerosol-propellants.
- USGS: Aluminum Statistics and Information. Mineral Resources Program, United States Geological Survey (USGS), Virginia, 2013a. URL: http://minerals.usgs.gov/minerals/pubs/commodity/aluminum/
- 5 USGS: Magnesium Statistics and Information. Mineral Resources Program, United States Geological Survey (USGS), Virginia, 2013b. URL: http://minerals.usgs.gov/minerals/pubs/commodity/magnesium/
 - USGS: World Smelter Production and Capacity. Mineral Resources Program, United States Geological Survey (USGS), Virginia, 2016. URL: http://minerals.usgs.gov/minerals/pubs/commodity/aluminum/mcs-2016-alumi.pdf
- Velders, G.J.M., Fahey, D.W., Daniel, J.S., Andersen, S.O., and McFarland, M.: Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions. Atmospheric Environment, 123, 200-209, doi:10.1016/j.atmosenv.2015.10.071, 2015.
 - Velders, G.J.M., Fahey, D.W., Daniel, J.S., McFarland, M., and Andersen, S.O.: The large contribution of projected HFC emissions to future climate forcing. Proceedings of the National Academy of Sciences 106 (27), 10949–10954, doi: 10.1073/pnas.0902817106, 2009.
- Velders, G.J.M., Solomon, S., and Daniel, J.S.: Growth of climate change commitments from HFC banks and emissions, Atmos. Chem. Phys., 14, 4563-4572, doi:10.5194/acp-14-4563-2014, 2014.
 - Wara, M.: Is the global carbon market working? Nature, 445, 595-596, doi:10.1038/445595a, 2007.
 - World Bank: Study on financing the destruction of unwanted ozone-depleting substances through the voluntary carbon market. Montreal Protocol Unit, Washington D.C., February 2010.
- 20 WSC: Joint Statement of the 20th Meeting of World Semiconductor Council (WSC), Seoul, May 26, 2016. URL: http://www.semiconductorcouncil.org/wp-content/uploads/2016/04/2016-WSC-Joint-Statement-with-Annexes.pdf
 - Yong, W.: Introduction of China HCFCs Phase-out Management Plan. ATMOsphere Technology Summit, Vienna, 3-4 June 2013. URL: www.atmo.org/presentations/files/213 2 FECO Yong.pdf
- Zaelke, D., Borgford-Parnell, N.: The importance of phasing down hydrofluorocarbons and other short-lived climate pollutants. Journal of Environmental Studies and Sciences, 5 (2), 169–175, doi: 10.1007/s13412-014-0215-7, 2015.
 - Zhai, Z. 2016. College of Environmental Sciences and Engineering, Peking University, Beijing (personal communication on 19th October 2016).

 $Figure \ 1: Global \ development \ 2005-2050 \ in \ major \ drivers \ for \ F-gas \ emissions \ entering \ model \ estimations \ from \ external \ sources$

Source: (IEA/OECD, 2012; Capros et al. 2013; USGS, 2013a-c)

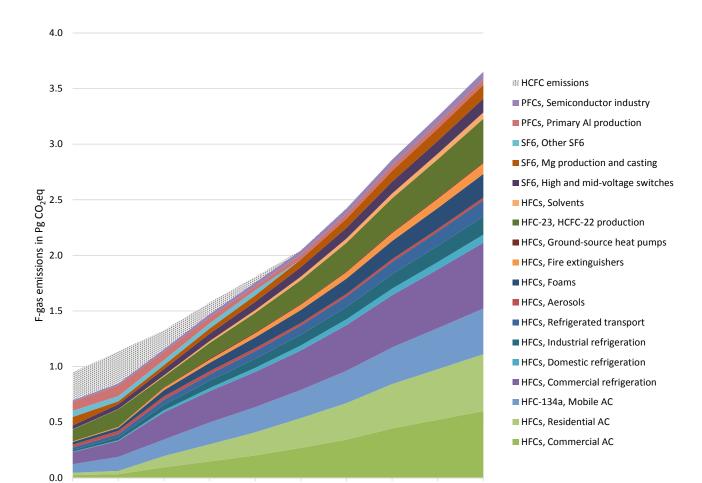


Figure 2: Baseline emissions of F-gases (HFCs, PFCs and SF_6) 2005 to 2050 by source sector. To facilitate comparison to other studies only reporting HFCs, PFCs and SF_6 , the HCFC emissions are summed up at top of the graph.

Figure 3: Baseline F-gas (HFCs, PFCs and SF₆) emissions by major World regions.

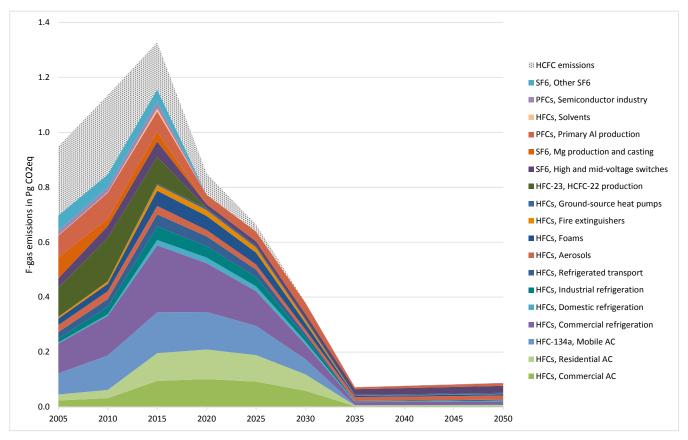


Figure 4: F-gas emissions in MFR scenario, i.e., after maximum technically feasible reduction 2020 to 2050.

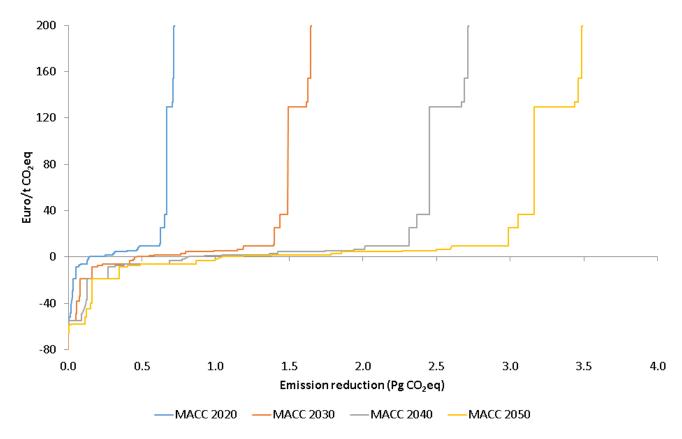


Figure 5: Marginal abatement cost curves in 2020, 2030, 2040 and 2050 for reducing global emissions of F-gases.

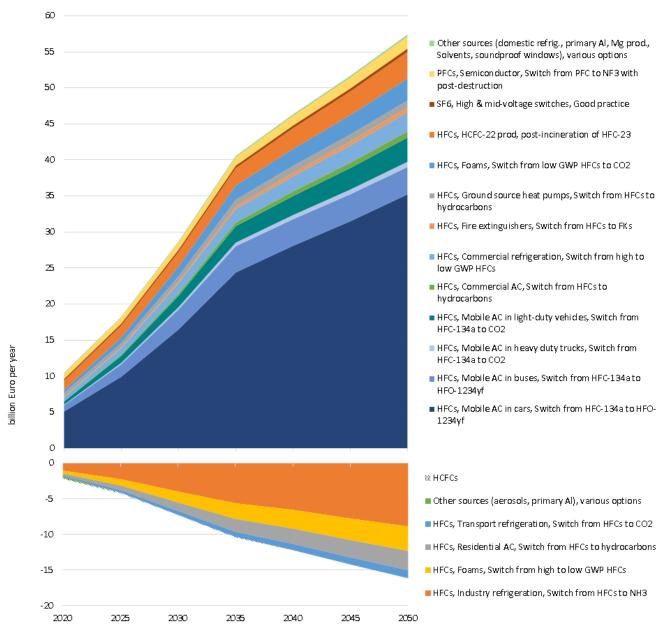


Figure 6: Total annual costs by control option for implementation of abatement options found available at a marginal cost below 200€tCO₂eq (corresponding to 98 percent of MFR abatement potential).

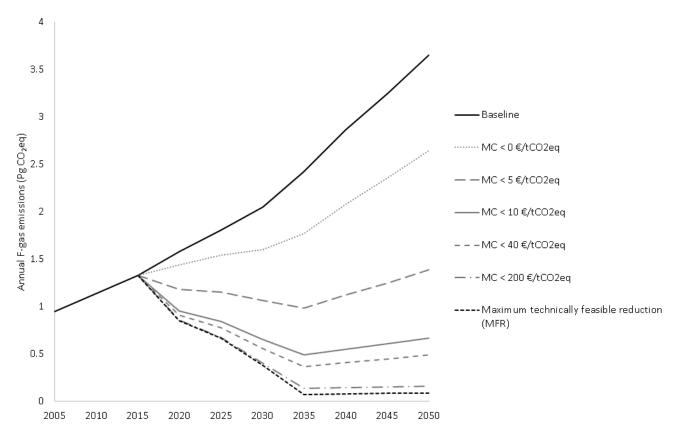


Figure 7: Estimated emission pathways for F-gas emissions at different carbon price levels.

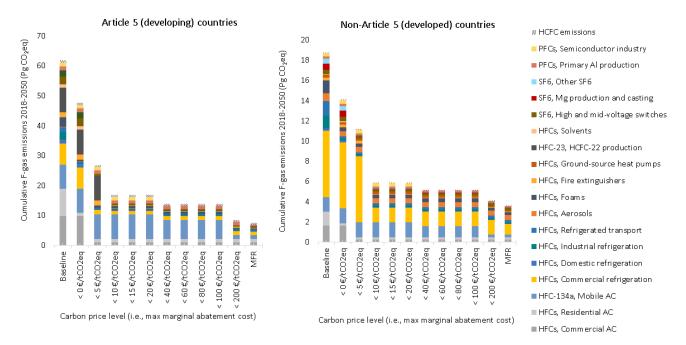


Figure 8: Estimated cumulative F-gas emissions released over the period 2018-2050 at different carbon price levels in Article 5 (developing) countries and non-Article 5 (developed) countries.

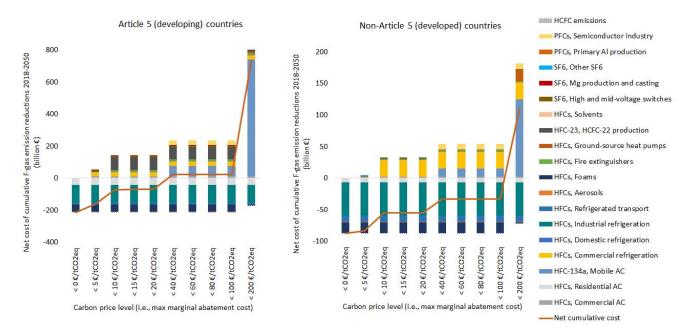


Figure 9: Net costs of cumulative reductions in F-gas emissions over the period 2018-2050 at different carbon price levels in Article 5 (developing) countries and Non-Article 5 (developed) countries.

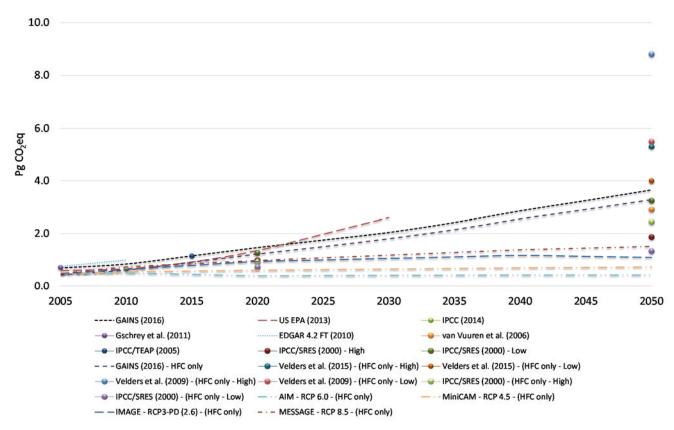


Figure 10: Comparison of GAINS baseline scenario with other F-gas business-as-usual scenarios

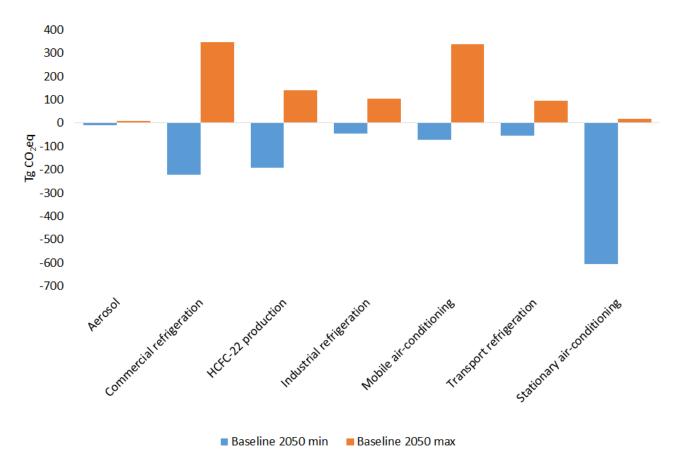


Figure 11: Uncertainty ranges by sector for global F-gas emission estimates.

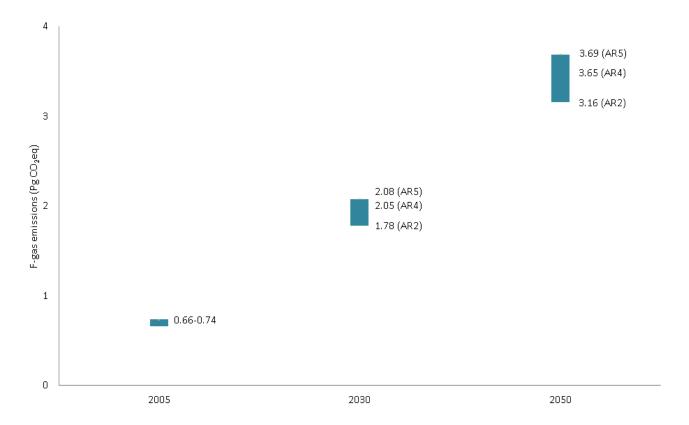


Figure 12: Global F-gas emissions using different GWPs.

Table 1: Currently implemented F-gas regulations with effects accounted for in the baseline scenario.

Region scope	Regulation/ agreement	Year entering into force	Targeted emission source(s)
European Union wide	EU F-gas directive (EC 842/2006)	2007	HFCs in commercial and residential air conditioning, commercial and industrial refrigeration, domestic hermetic refrigerators, refrigerated transport, aerosols, one-component foams. SF ₆ in Mg casting, soundproof windows, other SF ₆ sources, e.g., tyres, sport equipment etc.
	EU MAC Directive (EC 40/2006)	2011	HFC-134a in mobile air conditioners
	EU Directive on end-of-life vehicles (EC 53/2000)	2000	HFC-134a in scrapped mobile air conditioners
	EU ETS Directive (EC/29/2009)	2012	PFCs in primary aluminium production
	EU Effort Sharing Decision (EC/406/2009)	2013	All GHG source sectors not covered under the EU Emission Trading System (ETS), which includes all F-gas sources except primary Al production
	F-gas regulation (Regulation 517/2014)	2015	All HFCs, PFCs and SF ₆ sources
National F-gas	Austria	2002	All HFCs, PFCs and SF ₆ sources
regulations within the EU	Belgium	2005	HFCs in commercial and industrial refrigeration
	Denmark	1992	All HFCs, PFCs and SF ₆ sources
	Germany	2008	All HFCs, PFCs and SF ₆ sources
	Netherlands	1997	HFCs in air conditioners and refrigeration
	Sweden	1998	All HFCs, PFCs and SF ₆ sources
Worldwide	Voluntary agreement of	2001	PFCs in semiconductor industry
United States	Semiconductor industry Voluntary Aluminum Industrial Partnership (VAIP)	1995	PFCs in primary aluminum production
	Significant New Alternatives Policy (SNAP)	1990	All HFCs, PFCs and SF ₆ sources
	EPA's Air Conditioning Improvement Credits	2015	HFCs in mobile air-conditioning
	Protection of Stratospheric Ozone: Change of Listing Status for Certain Substitutes under the Significant New Alternatives Policy Program	2015	All HFCs, PFCs and SF ₆ sources
Japan	Act on the Rational Use and Proper Management of Fluorocarbons (Act no. 64 of 2001)	2015	All HFCs, PFCs and SF ₆ sources
Switzerland	Swiss F-gas regulations	2013	All HFCs, PFCs and SF ₆ sources
Developing countries	Clean Development Mechanism (CDM) under the Kyoto protocol	1997	All HFCs, PFCs and SF ₆ sources
Article 5* and Non-article 5** countries	Montreal Protocol: accelerated phase-out of HCFCs	2007	

^{*}preferably developing countries; **preferably developed countries