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Abstract. The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE

campaign around Jülich, Germany are investigated with a multiresolution analysis based on the maximum overlap discrete

wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify

the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in

the power spectra of global transmittance under broken cloud conditions compared to clear, cirrus or overcast skies. The spatial5

autocorrelation function including its frequency-dependence is determined to quantify the degree of similarity of two time

series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid

decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min−1 and

points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to

estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into10

account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation

for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness: on the one hand, spatial

averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations

of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid-box

of 10×10 km2 and averaging periods of 1.5–3 h, the deviation of global transmittance between a point measurement and an15

area-averaged value depends on the prevailing sky conditions: 2.8% (clear), 1.8% (cirrus), 1.5% (overcast) and 4.2% (broken

clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14–

23 W m−2 (clear), 8–26 W m−2 (cirrus), 4–23 W m−2 (overcast), and 31–79 W m−2 (broken clouds) from domain averages

ranging from 1×1 km2 to 10×10 km2 in area.

1 Introduction20

The sun is the primary source of energy for the Earth’s climate system. Clouds strongly modulate the radiation budget through

reflection of solar radiation back to space, and by trapping terrestrial radiation within the atmosphere (Trenberth et al., 2009). A

better understanding of the small-scale variability in the radiation field at the surface resulting from clouds will have numerous

practical applications, ranging from climate related research focused on cloud radiative effects and cloud-aerosol interactions,
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to the representation of radiative transfer in numerical weather prediction (van den Hurk et al., 1997) and to solar energy

forecasting (Robles Gil, 2007). According to the latest Intergovernmental Panel on Climate Change report, the impact of

various cloud types on the net radiation budget is not fully understood to the extent that for some cloud types neither the

magnitude nor even the sign is known (Boucher et al., 2013).

This can be attributed to our currently still very limited understanding of cloud processes and the resulting cloud-radiation5

interactions, due to their complexity and the wide range of scales involved. Small-scale processes such as updraughts and

downdraughts, turbulent mixing, together with the availability and composition of cloud condensation nuclei and large-scale

dynamics influence the formation and life cycle of clouds, which subsequently determine their optical properties and thus their

interaction with radiation (e.g. Baker, 1997; Scheirer and Macke, 2003; Baker and Peter, 2008). In consequence, clouds induce

the largest amount of uncertainty in climate projections (Baker and Peter, 2008) and weather prediction (Stensrud, 2009).10

Satellite observations are one very important source of information for investigating clouds and their radiative effects.

Current operational retrievals of cloud properties from passive satellite sensors do however invoke the assumption of

plane-parallel, horizontally homogeneous clouds. While these retrievals have been extensively evaluated with ground-based

measurements over the past years (e.g. Roebeling et al., 2008; Madhavan et al, 2012; Stubenrauch et al., 2013; Norris and

Evan, 2015; Enriquez-Alonso et al., 2016), significant biases and uncertainties remain due to the limitations of this assumption15

(e.g. Horvath et al., 2014).

These complications can be mainly attributed to horizontal photon transport, radiative smoothing and sub-pixel

inhomogeneity (e.g. Cahalan et al., 1994; Barker and Li, 1997). To address these issues, Pincus et al. (1999) proposed a

parameterization to account for unresolved sub-grid scale variability, which does however depend on a priori information

about typical variability for different cloud types. They also identified an increase in optical thickness and a decrease in relative20

variability in the transition from cumuliform to stratiform clouds. Oreopoulos et al. (2000) studied power spectra obtained from

high-resolution Landsat observations, and identified different behavior for scales below 1 km and within the interval from 1

to 5 km as a consequence of both cloud morphology and 3D cloud radiative effects. Based on a large ensemble of 3D cloud

fields as input for 3D radiative transfer models, Schewski and Macke (2003) reported that spatially transmitted solar radiation

and domain average cloud properties are highly correlated. In related research, Venema et al. (2006) and Schmidt et al. (2007)25

showed that a stochastic cloud generator together with a 3D radiative transfer model can be used to link the statistical properties

of cloud observations to those of the resulting solar radiation field with satisfactory accuracy.

The attribution of deviations between ground-based observations, satellite observations and model results is also complicated

by the effects of spatial collocation and the limited representativeness of a point measurement for domain averages implicitly

assumed in any such comparisons (e.g. Deneke et al., 2009; Schutgens and Roebeling, 2009; Greuell and Roebeling, 2009).30

Large inconsistencies are expected to occur in particular for short time periods (< 1 h) and broken cloud fields, if point

measurements are compared to large satellite pixels or coarse-resolution model output (> 1 km).

Focusing on solar radiation, Núñez et al. (2005) concluded that for stratocumulus clouds, a high frequency of observations

is required to estimate the hourly-averaged global radiation from satellite with acceptable accuracy (∼ 5 % error for six scans

per hour). To estimate the representativeness of a point measurement for a larger domain, Long and Ackerman (1995) used35
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data from a network of pyranometers during the First ISCCP (International Satellite Cloud Climatology Project) Regional

Experiment (FIRE), and showed that a spatial separation between the measurement sites of up to 150 km can be allowed for

daily averages. This is, however, mainly attributable to the fact that correlation is dominated by the diurnal cycle of solar

radiation at the top-of-atmosphere. In another study, Barnett et al. (1998) found a characteristic timescale of 60 min for solar

radiation on cloudless days, and twice that long for cloudy days, after removal of the diurnal cycle component. They also5

conclude that to achieve a correlation of 0.9 between measurements at a point and averaged over a surrounding area on cloudy

days, the central site can be considered representative for a region with a radius of 30 km. Both Barnett et al. (1998) and Duchon

and O’Malley (1999) report that the representativeness of a point measurement for area averages depends on the considered

averaging time and the prevailing cloud type.

Comparing satellite-based solar radiation retrievals from the Advanced Very High Resolution Radiometer (AVHRR) to10

pyranometer observations, Deneke et al. (2005) report a large root mean square error (rmse) of 86 W m−2 for individual

station records even when averaging over 10× 10 satellite pixels and over 40 min. In contrast, a much better accuracy

(rmse ∼ 33 W m−2) is achieved if the average of 30 stations is considered. They interpret this finding as evidence that a

significant fraction of the rmse in the comparison results from the variability of the global radiation field due to the limited

representativeness of the pyranometer measurements for the satellite-retrieved values.15

Over the past decades, several ground-based surface radiation networks have been established (e.g. Barker et al., 1998;

Ohmura et al., 1998; Michalsky et al., 1999). However, a dense network of solar radiation measurements at the surface with

station distances smaller than a typical satellite pixel or model grid has to our knowledge not been realized before. Such a

network has been developed and operated during the High Definition Clouds and Precipitation for advancing Climate Prediction

(HD(CP)2) Observation Prototype Experiment (HOPE) conducted around Jülich, Germany (Madhavan et al., 2016). This20

unique data set can provide insights into the small-scale variability of global radiation due to various cloud types, and possibly

enable the development of parametrizations of the unresolved spatio-temporal variability in the radiation field. Using this data

set, Lohmann et al. (2016) explored the fluctuations of the clear-sky index (i.e., the ratio of instantaneous global radiation to

the radiation on the Earth with a cloud-free atmosphere) on clear, overcast and mixed sky conditions with a simple increment

statistics to study the smoothing effects of distributed photovoltaic power production.25

Spatial and temporal scaling properties of the time series of observed global radiation can be derived using a wavelet-

based multiresolution analysis. Wavelet-based estimators of variance, covariance and cross-correlation decompose their scale-

independent counterparts on a scale-by-scale basis. Multiple studies have adapted similar wavelet-based methods to explore a

wide range of subjects involving the atmospheric time series applications (Whitcher et al., 2000), solar radiation (Deneke et al.,

2009), fluctuation analysis of the power generated by photo-voltaic plants (Perpiñán et al., 2013), geophysical seismic signal30

analysis (Grosmann and Morlet, 1984), signal and image processing, and vegetation monitoring.

In our study, the statistical properties inferred from a multiresolution analysis (MRA) of the time series of global radiation

are subsequently used to quantify the representativeness of a point measurement for a surrounding domain considering

typical domain sizes and different sky conditions. Instead of directly considering the global radiation, its transmission by
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the atmosphere, denoted as global transmittance is considered in this paper, because the changes in incoming solar radiation

are removed at least to first order. The present study is focused at addressing the following research questions:

i. How do the power spectra of global transmittance differ for different sky conditions?

ii. How representative is the time series observed at one station for other near-by stations?

iii. How representative is the single station observation for domain averages considering different spatial and temporal5

averaging scales?

This paper is organized as follows: in Section 2, details of the observational data used in this study are presented. An

overview of our methods is given in Section 3, with more details on the theory given in the Appendix. Section 4 discusses the

results of the multiresolution analysis, the behavior of the power spectra, and the spatial correlation under different prevailing

sky conditions. These results are further used to investigate the spatial representativeness of a point measurement for spatial10

averages over typical domain sizes, and to quantify the expected deviations. Finally, summary and conclusions with an outlook

are presented in Section 5.

2 Data sets

As part of the HOPE campaign, a high density network of 99 autonomous pyranometer stations was operated across a

spatial domain covering 50.85–50.95◦ N and 6.36–6.50◦ E (∼ 10 × 12 km2 area) around Jülich, Germany from 2 April to15

24 July 2013. Each of these stations continuously recorded the global radiation (G in W m−2) using a silicon photodiode

pyranometer (Model: EKO ML-020VM) with 10 Hz resolution. A GPS (Global Positioning System) module embedded on

the data acquisition board of each station provides an accurate time reference. The global radiation measurements have been

averaged into 1 s time periods during the conversion of the ASCII log files into NetCDF data files following the Climate

and Forecast Metadata Conventions version 1.6 (Eaton et al., 2011). From these measurements we have derived the global20

transmittance (T ), which is calculated by normalizing the global radiation (G) under all sky conditions by the extraterrestrial

radiation at the top of atmosphere assuming a value of the solar constant of 1360.8 W m−2 from Kopp and Lean (2011) and

accounting for the cosine of the solar zenith angle and Sun-Earth distance. The solar zenith angle and the Sun-Earth distance

have been calculated following the guidelines of WMO (2008).

The limited spectral range (0.3–1.1µm) of silicon photodiodes is a well-known limitation of this type of pyranometer (King,25

1997; Madhavan et al., 2016). Changes in the spectral distribution of downward irradiance compared to the conditions during

calibration can lead to errors of up to 5%, particulary at higher solar zenith angles. While the derived global transmittance

is sensitive to aerosols and cloud optical thickness, information on cloud thermodynamics phase and cloud droplet effective

radius is beyond the spectral range of these silicon photodiode pyranometers. Detailed information about the pyranometer

network setup during the HOPE campaign, data processing, quality control and uncertainty assessment due to various potential30

sources of error are presented in Madhavan et al. (2016).
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The real-time sky conditions were assessed using hemispheric images from a Total Sky Imager (TSI) operated at the Research

Center Jülich (FZJ) during the HOPE campaign. Time-azimuth (t−azi) plots were generated from the TSI images. Every line

in these t− azi plots contains pixels from the azimuth angle range from 0◦ to 360◦, sampled at an elevation angle of 45◦.

These plots capture both spatial and temporal variability of clouds, and help to identify the dominating advection direction of

clouds, which shows up by sine like patterns (Löhnert et al., 2014). Since the ground-based observations have a field of view5

which does not exceed 50 km in radius (Henderson-Sellers et al., 1987), Meteosat SEVIRI (Spinning Enhanced Visible and

Infrared Imager) images based on the day natural RGB color composites (Lensky and Rosenfeld, 2008) were additionally used

for the physical interpretation and thermodynamic phase identification of the cloud types present over the observation domain.

The 0.6, 0.8 and 1.6 µm spectral channels where enhanced in resolution using the high frequency component of the broadband

HRV channel (0.4–1.1 µm)(Deneke et al., 2010). Based on the predominant sky conditions during the daylight period (6-18 h10

local time), we have classified selected days as clear, cirrus, overcast, or broken cloudy conditions (see Table 1).

3 Methods

3.1 Multiresolution analysis (MRA)

A multiresolution analysis (MRA) based on the maximum overlap discrete wavelet transform (MODWT) (Percival, 1995) and

the Haar wavelet (Haar, 1910) is applied to the time series of global flux transmittance measurements of the pyranometer15

network. The Haar wavelet filters correspond to rectangular scaling and wavelet functions, which act as low-pass and bandpass

filters respectively (see Figure 1). Maximum time localization is achieved through the minimal support of the filters. This

also minimizes the range of edge effects. The choice of a rectangular function as low-pass filter has also the advantage that it

corresponds to an arithmetic average for a specific period and is thus simpler to interpret than the weighted averages obtained

by other wavelets. The drawback of the rectangular function as a low-pass filter is its sub-optimal frequency separation, which20

could result in lower correlations found between time series than those obtained by Gaussian averaging. A summary of the

methodology is given here, while a more formal mathematical treatment with relevant references to the literature can be found

in the Appendix of Deneke et al. (2009).

In the MRA, the day is chosen as fundamental frequency f = 1day−1, and the frequency domain is partitioned into bands

delimited by the harmonics fJ given by fJ = 2J ·f . For obtaining this partitioning, the original data set has been resampled from25

86400 to 216 (= 65536) samples per day before subjecting it to the MRA. To avoid aliasing effects caused by the resampling

step, a 3 s running mean has been applied as low-pass filter prior to subsequent decimation of samples by a factor of 512
675 .

Only harmonics from J = 3 to J = 14 with corresponding averaging time periods of 3 h (= 213 samples) and 5.25 s (= 22

samples) are considered in the following analyses, to avoid the influence of changes in solar zenith angle below 75◦ and the

anti-aliasing filter above this frequency range, respectively. The running means of the original time series for the different30

harmonics J (corresponding to an averaging time period of 2−J × 86400 s) are referred to as smooths denoted by SJ . Further,

the differences between two subsequent smooths are called the details, DJ (= SJ+1−SJ ), and contain the variability (or

fluctuation behaviour) within a frequency band delimited by two harmonics. The averaging time periods and wavenumber
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ranges (km−1) corresponding to each wavelet detail DJ for J = 3 to J = 13 are given in Table 2. Transformation from time or

frequency domain to wavenumber space is accomplished using the frozen turbulence hypothesis (Cahalan and Snider, 1989).

It states that the variability in the surface radiation is mainly dominated by the advection of the spatial structures of the cloud

fields across the point of observation rather than local changes of the fields. Hence, the frquency domain (f ) is converted to

wavenumber scale k (= 2π/λ, where λ is the wavelength in m or km) by assuming a mean advection velocity v (= λf ).5

Figure 2 shows the results of the MRA applied to the global radiation (G) and to the global transmittance (T ) for

measurements from the pyranometer station located at FZJ (hereafter, referred as PYR76) on 25 April 2013 for scales J = 3 to

J = 12 (i.e., 3 h to 21 s). On this day, light fog prevailed in the morning with some cirrus clouds. Thereafter, broken cumulus

mediocris clouds were observed until late afternoon, followed by rapidly increasing low stratus clouds leading to an overcast

sky by evening. The left panel of Figure 2 contains ten smoothed versions (SJ , J ∈ [3,12]), the smooths of the original10

time series corresponding to averaging time scales from 3 h to 21 s. The right panels of Figure 2 show the corresponding

details (DJ ,J ∈ [3,11]). As the scale J decreases, the time series of transmittance details exhibit significant variability. Large

fluctuations are observed in details D3, D4, and D5, which can be related to variability in transmission resulting from longer-

term changes in dominant cloud structures and composition (S12 in Figure 2). Higher number details do not show this as they

examine local-scale variability in cloud features (D9 to D11). Note that the MRA results were limited to solar zenith angle15

below 75◦ to exclude edge effects. Based on Percival (1995), the maximum overlap discrete wavelet transform decomposes the

variance of a time series on a scale-by-scale basis and can be estimated from the variance (var) of the MODWT coefficients

as given below:

var(TJ) = var(SJ) +

J∑
j=1

var(Dj) (1)

This result can be generalized to the calculation of the correlation, where the wavelet coefficients of two time series can be20

used to provide an estimate of the correlation at a given scale (Whitcher et al., 2000).

An effective graphical technique to the MRA is the horizon graph (Heer et al., 2009). As illustrative examples, the horizon

graphs of the global transmittance details for different scales (see Table 2) from PYR76 station is shown in Figure 3 for days

with different sky conditions: clear (4 May 2013), cirrus (16 July 2013), overcast (9 June 2013) and broken clouds (25 April

2013). Each row in the top panel of Figure 3 includes a different detail of the MRA, while the middle panel shows the original25

time series of global transmittance. In addition, the t− azi plots at 45◦ solar elevation angle are included as lower panels

to illustrate the sky conditions during each observation day. While the fluctuations in the transmittance at different lower

frequencies can be perceived from the contrasting color bands, significant variability can be observed in the situations with

broken clouds even at high frequencies corresponding to periods of 1 min or shorter.

3.2 Spatial representativeness of point measurements30

From the MRA, the wavelet power spectrum of transmittance can be calculated (Sec. 3.1), which describes the partitioning of

signal power into frequency ranges, and reflects the characteristics of the prevailing sky conditions. Additionally, the spatial

autocorrelation function describes the similarity of variations in the time series measured at two stations as a function of

6



their distance. By determining both the power spectrum and the frequency-dependent spatial autocorrelation function across

the observation domain under different sky conditions, the representativeness of a point measurement for an area-averaged

value can be quantified, including the expected deviation. Various statistical parameters, namely the variance, covariance and

explained variance linking the time series of a point measurement to that of an area-averaged value are derived in Appendix A.

In this study, we consider three typical spatial areas (A) of interest with 1×1 km2, 3.2×3.2 km2 and 10×10 km2. The expected5

deviation (δ) between a point measurement and an area-averaged value for a surrounding domain is calculated as:

δJ =

√√√√(1− γ2S,J) · var(SJ) +

J∑
j=1

(1− γ2D,j) ·αA,j · var(Dj), (2)

where the variance of the transmittance smooths (SJ ) and details (Dj) are obtained from the power spectrum of the point

measurement, and αA (from Eq. A11) is a linear reduction factor relating the variance of the point measurement (from Eq. A2)

to the variance of an area-averaged time series (from Eq. A8). The explained variance (i.e., γ2S,J and γ2D,J from Eq. A10)10

between the point and area-averaged values are obtained separately for transmittance smooths (SJ ) and details (DJ ) for

the different spatial and temporal scales. Then, the expected deviation δJ for each wavelet detail is calculated based on the

explained variance and summed to yield an estimate of the total variance, accounting for a reduced temporal variability of the

spatially-averaged transmittance by the reduction factor.

Further, the estimated representativeness error of the transmittance (δT ) time series can be converted into a deviation in15

global radiation (δG) by multiplication with a fixed value ofthe top-of-atmosphere solar irradiance, which avoids the known

influence of changes in solar zenith angle. A fixed value of 680.4 W m−2 is used here, which is half the solar constant and

is taken as an estimate of the daytime mean value during summer months for the considered region. This procedure can be

adopted to improve photovoltaic power forecasting models under different sky conditions, especially with broken clouds, which

require absolute values of radiation instead of transmittance.20

4 Results and Discussion

4.1 Power Spectra of Global Radiation

Wavelet-based spectral power density characterize the variability contained in specific frequency intervals for both stationary

and non-stationary processes. As the time series of global transmittance results from a non-stationary process (i.e. its statistical

properties are not time-invariant), the wavelet power spectrum is a suitable tool for the analysis of the variability contained25

within specific frequency intervals, and to study the effect of temporal and spatial averaging on the variability of the time series.

In Figure 4, the wavelet power spectrum of the global transmittance is shown together with the cumulative variance (or

standard deviation, from Eq. 1) for different sky conditions. The average power spectrum is obtained by averaging the power

spectra of all the pyranometer stations. The cumulative variance quantifies the fraction of variance resolved by an observation

which has been smoothed with a specific averaging period, and is determined using the spectral power density decomposition30

given in Eq. 1. It thus gives an indication for how much variability is lost if averaging is applied to the time series. As the

7



frequency increases, the variability in global transmittance decreases, irrespective of the prevailing sky conditions. However,

there are clear differences in the shapes of the power spectra for the different sky conditions. During situations with broken

clouds, the variability of transmittance is distinctly higher than for all other cases, irrespective of the considered frequency

interval. It is well-known that in the presence of broken clouds, multiple reflections and scattering events off the sides of clouds

and at the surface lead to significant horizontal photon transport and strong 3D radiative effects. For the associated types of5

low-level clouds, such as fair weather cumulus or towering cumulus, a high global transmittance can frequently be observed

at the surface exceeding that of a clear sky, which is usually referred to as ’enhancement effect’ (Schade et al., 2007). Similar

effects also occur when patches of cirrus or alto-cumulus clouds are present in the field of view, but do not obscure the sun.

Boers et al. (2000) also demonstrated that the global radiation is very sensitive to cloud inhomogeneities, in particular for

broken cloud fields due to contributions from the direct radiation. Overall, for broken cloud fields, strong spatial and temporal10

variations are present over a wide range of frequencies.

On days with cirrus clouds, the spectral power density is lower than for broken clouds and higher than for clear skies. Due

to the changes in solar elevation and thus airmass over the day, a pronounced diurnal cycle in global transmittance is observed

in clear sky situations, which introduces significant variance at longer time periods.

In the case of overcast sky, the variance of transmittance is found to be lowest at high frequencies (i.e., 10.5—5.25 s), with15

a steep increase up to a time period of 11.25–22.5 min. Thereafter, the variability is slightly higher and comparable to that

observed for cirrus cloud situations. Under a homogeneous overcast sky with optically thick clouds, the global radiation is

contained completely in the diffuse component, and the radiance at the cloud base observed from the ground will be relatively

uniform over time. However, under partly overcast skies, the global transmittance of clouds is also influenced by multiple

reflections of solar radiation between the surface and the cloud base, which causes an increased variance. Note that variations20

of the transmittance lower than the measurement uncertainty (± 0.0013) of our pyranometer stations are neglected here, which

is the case for higher frequencies corresponding to time periods below 42 s.

Considering the cumulative explained variance, it can be seen that for broken clouds, high-frequency variability contributes

most strongly to the total variance of the global transmittance (Fig. 4b). For other sky conditions (overcast, cirrus and clear),

only a small decrease in variability (∼ 10 W m−2) is observed, if the averaging period is increased from 1 min up to 3 h. In case25

of broken clouds, the corresponding decrease is about three times (∼ 34 W m−2) the value observed for other sky conditions.

Various studies have described the properties of stratocumulus/cumulus clouds using power spectra (or spectral density, E)

of cloud top height fluctuations, liquid water content (LWC), liquid water path (LWP ) or solar radiation transmission as

a function of the horizontal spectral scale (1/k) with a power-law relationship of the form (Boers et al., 1988; Cahalan and

Snider, 1989; Davis et al., 1999; Gerber et al., 2001):30

E(k)≈ k−β (3)

where k is the wavenumber and β is the power law exponent. The power spectrum of global transmittance details as a function

of horizontal scale (in m) is shown in Figure 5 (same as Figure 4a but with a change of x-axis). Here, we examine a least square

fit for single point measurements within the larger context of power spectrum in Eq. 3 for the scale covering 5 m to 10 km.
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The dashed lines correspond to least square fits for different scaling regimes under the prevailing sky conditions. For clear

and cirrus cloudy skies, the power law exponent is obtained as 0.61 and 0.55, respectively, for the horizontal scales covering

5 m to 10 km. This indicates that clear and cirrus cloudy skies resemble a flat and nearly wavenumber independent spectrum.

In case of overcast sky, two distinct regimes with scaling exponents of 0.52 (1.5–10 km) and 1.68 (∼ 5/3; 50 m–1.5 km) are

observed. The occurrrence of a scale break suggests that different physical processes dominate in the two regimes. While the5

scaling regime above 1.5 km is much flatter, the lower scaling regime (< 1.5 km is indicative of the fluctuations in global

transmittance as a result of advection. For the cases with broken clouds, two distinctly linear regimes are identified separated

by a wavelength of 200 m. The first regime has a flat scaling exponent of 0.11 (0.2–10 km), where as the the smaller scaling

regime has an exponent of 1.1 (5–100 m), which indicates a linearly dependent stationary power spectrum. Davis et al. (1999)

also reported a "scale-break" at scales of 2–5 m in the spectral density of LWC indicating a transition of the scaling regime10

from β = 5
3 (5 m ≤ 1/k ≤ 2 km) to the one that showed larger variance than expected at smaller scales corresponding to β ≤ 1

(8-12 cm ≤ 1/k ≤ 2-5 m) for the stratocumulus/cumulus clouds. At smaller scales, entrainment of environmental air into the

clouds changes the cloud microphysics resulting in an enhancement of LWC variance. An overview of various scalar fields

with their associated scale regimes and spectral exponents obtained in different studies is given in Table 3.

In Figure 5, the wavelet variance for all cloud conditions is largest at long time periods implying that large-scale15

cloud structures with their associated global transmission are important at this scale. The size distribution of broken

cumulus/stratocumulus clouds has been studied by Núñez et al (2016); Koren et al. (2008); Cahalan and Snider (1989), which

describes the typical distributuon of cloud sizes in terms of their number density N (= A−C1 , where A is the cloud area and

C1 is an exponent determined by a least square fit). These studies also point to the importance of low wave numbers or large

cloud sizes in dominating the variance of the time series of liquid water and solar radiation transmission, with partly cloudy20

scence characterized by few large clouds and many smaller ones.

It should be noted that the global irradiance is a hemispherically integrated property and thus there cannot be an exact one-

to-one relation to the cloud variability or to (directional) radiance variability. However, the irradiance variability should show

a correlation to a smoothed cloud structure. Finding an appropriate smoothing kernel requires intensive investigations of the

interaction of clouds and radiation including 3D radiative effects, and is beyond the scope of this study.25

4.2 Spatial autocorrelation

An important aspect for assessing the density of a measurement network is the representativeness of observations at one

station for other close-by network stations as a function of their distance. To investigate this aspect for the network operated

during the HOPE campaign, the spatial autocorrelation ρ has been determined as a function of station distance for the wavelet

smooth S3 and the wavelet details D3 to D9 of global transmittance, and are shown in Fig. 6. In this plot, points represent the30

correlation coefficient obtained for the individual station pairs. Results are again shown separately for different sky conditions.

The autocorrelation is generally found to decrease as station distance and frequency increases, with significant differences

notable depending on sky conditions.

9



The behavior of the spatial autocorrelation (ρ) as a function of distance between stations (d in km) is shown as blue line in

Fig. 6, and has been modeled by an exponential decay function as given below:

ρ(d) = exp

[
−
(
d

a

)b ]
(4)

Here, a (in km) and b (dimensionless exponent) represent fit coefficients. If the station distance is negligible (d→ 0), then ρ→
1 (perfect correlation). Similarly, if the station distance is infinite (i.e., d→∞), then ρ→ 0 (no correlation). We have applied5

the Levenberg-Marquardt least-squares fitting technique to determine the fit coefficients. When the correlation drops below the

e-folding value (i.e., ρ≤ 1
e ), the associated distance between stations is defined as the decorrelation length. This occurs when

the fit coefficient a equals to the station distance d and thus a is referred as the decorrelation length. Figure 7 confirms our

expectation that the decorrelation length decreases for increasing frequencies, following an approximately linear trend with

slightly different slopes and offsets depending on sky conditions. The root mean square error (rmse), which measures the10

quality of fit has been found to decrease linearly with decreasing frequency.

An overview of various parameterizations used for modeling the behavior of the spatial autocorrelation function as a function

of station distance is presented in Table 4. Long and Ackerman (1995) used a linear model to parameterize the dependence

of correlation of the time series of global radiation measurements at different sites based on their distance of separation (.

100 km). Subsequently, the same linear function was used to fit the correlation of wavelet smooths corresponding to the15

transmittance (from Multi-Filter Rotating Shadowband Radiometer) and reflectance (from Meteosat SEVIRI pixels) as a

function of distance in the study by Deneke et al. (2009). They observed that the correlation falls off faster than linear at

small distances due to the exponent (c < 1). In a study on the correlation between the solar power generation of solar cell

inverters, it was shown that the correlation was dependent on the distance between the inverters, the wavelet time scales and

the amplitude of daily fluctuations (Perpiñán et al., 2013). They used an exponential decay model with some constraints on the20

fit coefficients. The spatial decorrelation of the time series of SEVIRI pixels for its solar and infrared channels was studied for

different cloud amounts as a function of distance (. 200 km) at different locations over Europe (Slobodda et al., 2015). In the

most recent study, Lohmann et al. (2016) used the Hoff and Perez (2012) model of spatial correlation using a range of cloud

speeds from 2 to 10 m s−1, and demonstrated that Hoff and Perez (2012) model is not able to capture the correlation structure

for mixed sky conditions.25

In our study, the spatial correlation of transmittance variations decays faster than linear at small distances as is indicated by

the exponent (b) of Eq. 4, and depends strongly on the type and/or amount of clouds. Small-scale cloud features significantly

decrease the correlation on days with broken clouds. The side reflections from clouds is strongly enhanced in broken cloud

conditions and could be important for lowering the correlation (Núñez et al, 2016). We point out a likely influence of the cloud

speed on the decorrelation length. Additionally, anisotropy in the decorrelation relative to the direction of cloud motion is30

expected, and might influence the observed relationship (Hinkelman, 2013). In the following parts of the paper, the empirically

fitted autocorrelation functions are used to represent the spatial variability at a given temporal frequency across the observation

domain.
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4.3 Spatial representativeness of a point measurement

The spatial representativeness of a point measurement at the center of a domain of interest depends on the size of the domain,

the temporal averaging applied, and the spatio-temporal variability present in the observations. Generally, higher variability

leads to a reduction of representativeness. Statistically optimum methods for spatial averaging have been developed to provide

spatial means including uncertainty estimates when using data from a number of stations (Kagan, 1979; Gandin, 1993),5

and allow us to provide an estimate of the representativeness error, defined here as deviation of point measurement from

spatial mean for a considered domain. These techniques have been previously applied to global surface air temperature and

precipitation measurements, and surface networks of soil moisture observations (Vinnikov et al., 1990, 1999). Similarly, the

observations from our high density pyranometer network can be used to evaluate or quantify the uncertainties due to small-scale

cloud inhomogeneity during validation studies. We assume that the global transmittance field within the observation domain10

is statistically homogeneous and isotropic. In this paper, we utilize the spatial auto-correlation functions determined in the

previous section to calculate the power spectral density of spatial averages, and the deviation of spatial averages from point

measurements.Thereby, we avoid averaging of multiple stations to obtain an approximation of a spatial average, but rely on

the assumption that the global transmittance field within the observation domain is statistically homogeneous and isotropic,

and that its auto-correlation function follows Eq. 4. A concise mathematical treatment for quantifying the effects of spatial and15

temporal averaging is given in Appendix A.

In Fig. 8, the power spectra of area-averaged transmittances for different domain sizes are compared to those of a point

measurement. They generally follow a similar trend compared to the point measurement irrespective of sky conditions, but show

a stronger decrease of variability with increasing frequency and area, which illustrates that spatial averaging acts as lowpass

filter. At lower frequencies corresponding to time periods of 1.5–3 h, only minor differences in variability are notable for time20

series for spatially extended domains and point observations, at least for the range of domain sizes considered here. However,

at higher frequencies, the variability of the spatially-averaged global transmittance is significantly reduced compared to that

of the point observation, irrespective of the prevailing sky condition. Again, the variance of spatially-averaged transmittance

is observed to be higher under broken clouds at all frequencies and spatial resolutions, compared to that for clear, cirrus and

overcast conditions.25

At 10×10 km2 and for variations corresponding to time periods of 1.5–3 h, the spatially-averaged variance is lower by 10%

(clear), 16% (cirrus), 18% (overcast) and 38% (broken clouds) than the variability observed by a single station. Even for a

domain size of 1×1 km2, the spatially-averaged variance is 2–4% lower than the variability obtained by a point measurement

for the considered sky conditions.

The level of similarity between two time series is often expressed by metrics such as the explained variance or the root30

mean square error, and suitable averaging time scales are often determined by studying the sensitivity of these metrics to the

choice of averaging scale. The explained variance (γ2D), given by the square of the cross-correlation between the time series

at a single station and its area-averaged counterpart is used here and shown in Fig. 9 for different sky conditions, including

its dependence on the temporal scales of averaging for the three domain sizes. The explained variance is thus used here as a
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measure to quantify the synchronicity of variations, while the power spectrum quantifies their mean amplitude. An exponential

decay of the explained variance is observed as the temporal frequency increases for all spatial domain sizes. As expected, the

deviation between a single station and an area average becomes larger at higher frequencies and for larger spatial areas. In

consequence, the variations observed at a single station should no longer be used to predict the variations of the area-averaged

transmittance at higher frequencies and for larger domains. Further, the explained variance between the wavelet smooth S35

(3 h) of the point measurement and the area-averaged values of global transmittance is insensitive to the domain sizes. The

decorrelation times for which the point and area-averaged variations become essentially uncorrelated is defined here by the

e-folding value of e−1 (= 0.368) for the correlation, and are listed in table 5 for the different sky conditions. The e-folding

time of 6 min indicates that variations with frequencies higher than 1/6 min−1 are more or less uncorrelated between the point

measurement and a spatial area of 1×1 km2. It should also be noted that the spatial average has a significantly lower power10

spectral density at these frequencies. We thus think these variations are thus associated with small-scale fluctuations in clear

sky turbidity only evident in the point measurements, possibly induced by small scale structure in water vapor and/or aerosols.

However, we cannot rule out that such variability corresponds to undetected small clouds or even measurement artefacts such

as shading of the instruments by birds.

Finally, the deviation between point observations and spatial averages is determined for different domain sizes and temporal15

averaging periods, combining the two effects discussed before. The magnitude of the expected deviation as a function of

domain size and temporal averaging period is shown in Fig. 10 for different sky conditions. It is generally observed that the

representativeness error increases with the size of the spatial domain, and decreases for longer averaging periods. Also, the

error converges against a limit value at high frequencies, indicating that the contribution of high-frequency variability beyond

the frequency range considered here only causes a negligible further increase of the representativeness error.20

Table 6 provides a quantitative estimate of the deviations of both global transmittance and corresponding global radiation

for 3 different domain sizes, 3 averaging periods, and for different sky conditions. As the averaging frequency interval and

domain size increases, the deviation between point measurement and corresponding area averages increases, irrespective of

the prevailing sky condition. As expected, the range of deviations for both long (3 h, S3) and short (5.25 s, including D13)

averaging periods is largest for broken clouds.25

On clear days, the representativenss error of a point measurement for an area-averaged mean value increases only slightly as

the averaging period decreases, and ranges from 2.1 % to 3.3 %. The difference between the maximum and minimum deviations

resulting from the choice of averaging period is found to be around 0.6 % (∼ 4 W m−2) regardless of spatial domain.

The range of deviations of a point observation under cirrus clouds is found to be around 1.6 % (∼ 11 W m−2 for a 1×1 km2)

domain, and 2 % (∼ 14 W m−2 for both 3.2×3.2 km2 and 10×10 km2) domains, and for 3h temporal averaging. A strongly30

increasing linear trend of the deviations is found from a reduction of averaging period, indicating that small-scale changes

of cirrus cloud properties resulting from microphysical, dynamical and radiative processes can be removed effectively by

sufficiently long temporal averaging. Dobbie and Jonas (2001) investigated the structure and lifetime of cirrus clouds using

model simulations, and conclude that radiation together with latent heating leads to much more dynamic and inhomogeneous

clouds.35
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During overcast skies, the representativeness error again increases substantially with increasing domain size, doubling

and tripling its magnitude when going from 1×1 km2 to domain sizes of 3.2×3.2 km2 and 10×10 km2 for short averaging

periods. While the small deviations for a 1×1 km2 domain below 1 % indicate that the hemispheric nature of a pyranometer

measurement is able to resolve variability at the kilometer scale well, large-scale variations in cloud optical properties lead to

deviations up to 3.3 % in transmittance or 22.6 W m−2 for a 10×10 km2 domain.5

As expected, the magnitude of deviations in global transmittance and corresponding radiation due to the limited

representativeness of a point observation is found to be distinctly higher for all considered domain sizes and frequency

intervals under broken cloudy situations. It varies from 4.5–11.5 % (∼ 31.1–78.3 W m−2) over spatial areas ranging from 1×1

to 10×10 km2. Again, deviations decrease strongly with increasing averaging period by more than 50 % for 3 h averaging. An

interesting observation is that the representativeness error at different spatial resolutions seems to converge for 1 h or longer10

averaging periods. Hinkelman et al. (2007) reported that cumulus cloud inhomogeneity gave rise to an instantaneous error in

global radiation of up to 40 W m−2 or even higher at different solar zenith angles. This well-known “broken-cloud effect” arises

from variability in the direct and diffuse radiation (based on solar position), and can lead to an enhancement of global radiation

above clear-sky conditions. As a result, large inconsistencies can occur for collocated satellite and surface measurements

during broken cloudy conditions. Similarly, Barker and Li (1997) reported signficant deviations from 1D radiative transfer15

due to horizontal photon transport if the horizontal dimensions of a considered atmospheric column are decreased. Horvath

and Davies (2004) provided further evidence for the relevance of 3D radiative effects through the observed anisotropy in

the reflected solar radiation, which increasingly deviates from 1D radiative transfer if the spatial resolution of the satellite is

increased. Zinner and Mayer (2006) reported that at 1 km scale, the errors associated with horizontal photon transfer and the

plane parallel approximation cancel at least to some degree for stratiform boundary layer clouds.20

Based on our findings for different sky conditions, the comparison of time series corresponding to spatial averages of

global radiation on the one hand, and point measurements on the other hand, can result in large deviations due to the limited

representativeness of the point measurement. Similar effects are expected occur for other observables such as liquid water path.

To address this issue of representativeness, we recommend here to apply a low-pass filter which removes variability at higher

frequencies without significant correlation. Even for lower frequencies, a low-pass filter should be applied to adjust the power25

spectrum of a point time series towards that of the spatially averaged time series, at least if the reduction factor of the amplitude

of variations shown in Fig. 4 can be estimated. Nevertheless, significant deviations cannot always be avoided, but should be

quantified, for example using the methodology introduced in this paper.

4.4 Power Spectra of Direct and Diffuse Irradiance

Variability in global radiation results from the combined variability of the direct and diffuse radiation components. During the30

HOPE Melpitz campaign (May - July 2015) (Macke et al., 2016), two EKO ML-020VM pyranometers were operated in close

proximity, using a sun tracker and shading to obtain the diffuse radiation from one of the instruments, and to study this aspect

in more details.
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Power spectra of the global, direct and diffuse transmittance are shown in Fig. 11, and allow an assessment of the individual

contributions. It is evident from the plots that the spectra for the direct and global components are very similar for all sky

conditions. The spectral power density resulting from variations of the diffuse transmittance is lower, and only contains

significant variations at low frequencies, again a conclusion valid for all sky conditions. Please note that the large variability in

direct horizontal transmittance also in overcast conditions is due to our classification. In particular, even on the days classified5

as overcast, some periods with significant direct irradiance due to cloud gaps were observed and evidently dominate the power

spectrum of the global transmittance.

This behavior highlights that the strong influence of the direct radiation on the power spectra of global radiation. A plausible

explanation is the hemispherical field of view of the diffuse radiation observations, which is less sensitive to small-scale

variations in cloud properties than the direct beam of sunlight. Boers et al. (2000) also demonstrated that the global radiation10

is very sensitive to cloud inhomogeneities, in particular for broken cloud fields due to contributions from the direct radiation.

A more thorough investigation of the differences of the power spectra of the direct, diffuse and global radiation components is

planned for the future.

5 Summary and Conclusions

A unique dataset of global radiation observations has been collected using a dense network of pyranometer stations (Madhavan15

et al., 2016) during the HOPE Jülich campaign (Macke et al., 2016), and is analyzed in this paper to characterize the small-

scale spatio-temporal variability of the global radiation field. The individual time series have been subjected to a multiresolution

analysis based on the Haar wavelet following the methodology of (Deneke et al., 2009). Characteristic properties have been

identified from this analysis for clear sky, cirrus, overcast and broken cloud conditions. Power spectra for the individual time

series and the spatial autocorrelation function are presented. A method has been introduced to assess the representativeness of20

the time series of a point measurement compared to results for a larger area centered around the measurement location. This

method allows to determine the optimal accuracy that can be achieved for the validation of satellite products for a given pixel

footprint, or the evaluation of an atmospheric model with a given grid-cell resolution. The present study is representative for

mid-latitude summer conditions and the results may not be applicable to other regions such as the tropics characterized by local

convection, large cumulonimbus clouds and weaker regional winds.25

The most significant findings of this study are summarized as follows:

i. The power spectra of global transmittance exhibit unique characteristics for different prevailing sky conditions associated

with the dominant cloud type. For days with broken clouds, the variability of global transmittance is significantly and

distinctly higher for all considered frequencies than for other situations, and contains remarkable contributions (1% ∼
7 Wm−2) even at high frequencies below 1 min−1. This finding is noteworthy as a recommendation for the operation30

of BSRN network stations, which only require to store 1 min averages (McArthur, 2005), thereby missing significant

amounts of variability.
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ii. The spatial autocorrelation between stations decreases strongly with increasing frequency. Variations at different points

separated by more than 1 km are completely uncorrelated for higher frequencies above 1/3 min−1. The decorrelation

lengths decrease linearly with increasing frequency (on a log-log scale) and a distinct dependence on cloud and sky

conditions was not observed (see Fig. 7).

iii. While the time series of spatially averaged irradiance fields generally resemble the behavior of a point measurement,5

its power spectrum is strongly attenuated (96-98% for 10×10 km2, 80-90% for 3.2×3.2 km2, 55-80% for 1×1 km2)

at higher frequencies (∼ 1 min−1) and for larger domains. Variations between the spatial average and the point

measurement are not correlated at high frequencies. As a consequence, only a small fraction of the high-frequency

variability observed in a point measurement can be found in area-averaged (e.g., satellite, model, reanalysis) data.

iv. As a consequence of the previous conclusions, point measurements can deviate strongly from the spatial mean of a10

surrounding domain. This effect can reach as much as 80 W m−2 for a grid-box of 10×10 km2 corresponding to an

averaging time period of 5.25–10.5 s (D13) during broken cloud conditions. For a comparison of time series of a point

measurement with that of a spatially averaged value, the power spectrum of the point measurement should be adjusted

to match that of the spatial average to ensure best correspondence. A low-pass filter should be applied to remove high

frequencies for which the correlation drops below a certain threshold.To determine this threshold, the autocorrelation15

function has to be known, which however depends on the prevailing sky condition.

The methods presented in this paper allow for an explicit treatment of the effects of temporal and spatial averaging on the

spatio-temporal variability of global radiation, and can easily be adapted to other geophysical fields. We have applied this

methodology to estimate the inherent uncertainty arising from a comparison of two time series with fundamentally different

spatial and temporal averaging scales, as is commonly done in radiation closure studies, the evaluation of atmospheric models20

or satellite products with point measurements. The findings contribute towards a better understanding of the uncertainties in

such comparisons.

In future work, we plan to apply these findings towards an assessment of the level of accuracy of satellite-based estimates of

shortwave irradiance from Meteosat SEVIRI with ground-based measurements (e.g. Deneke et al., 2008; Greuell et al., 2013),

to separate retrieval uncertainties from the inherent uncertainty arising from the limited representativeness of one dataset for25

the other. Based on the results presented here, it is important to explicitly take into account the sky condition including their

occurrence frequencies in the validation, as the representativeness error is situation-dependent and will therefore influence

the validation statistics. A classification of sky conditions based on the observed power spectrum seems promising given the

distinct features described above. However, the dependence of power spectra on cloud cover and solar elevation warrants

further investigation. Finally, the pyranometer network observations include temperature measurements, allowing to study the30

correlation of variability in irradiance and temperature.

Due to the spatially distributed nature of the pyranometer network, the present work can also be extended to estimate

Lagrangian instead of the Eulerian decorrelation scales, by considering the maxima in the time-lagged cross-correlation of

transmittance time series observed at different sites. This time shift can be converted into an estimate of wind speed and
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direction, and will allow a separation of changes in radiation resulting from advective changes in clouds, which depend on the

wind flow, and from temporal changes in cloud properties, which are independent of current wind speed and direction. Such

an analysis will also enable a comparison of spatial and temporal decorrelation scales obtained from geostationary satellite

observations (Bley et al., 2016).

Finally, this work can serve as reference for evaluating the representation of clouds including their radiative effects and5

spatial variability in high-resolution atmospheric models (Heinze et al., 2016), and thereby can contribute towards improved

climate predictions. The spatial and temporal scaling properties of atmospheric transmittance are closely linked to those of

the cloud fields. Significant deviations of modeled and observed values can thus be attributed to deficiencies in the simulation

of clouds and their interaction with solar radiation (e.g. Harshvardhan et al., 1989; Pincus et al., 2008). Towards this goal, it

is also important to clarify to what extent 3D radiative effects contribute to such deviations. A radiation closure study using10

reconstructed 3D cloud distributions based on observations (see (e.g. Fielding et al., 2013)) as input to a radiative transfer code

(e.g. Macke et al., 1999; Barlakas et al., 2016) could be an essential step towards this, and is planned for the future.

Appendix A: Spatial representativeness of a point time series

Let Ψ(x, t) represent the time series of a point measurement at point x in the observation domain of interest. The following

statistical parameters are defined for this time series:15

(i) The mean of the time series at x is given by:

Ψ(x, t) = E
[
Ψ(x, t)

]
(A1)

(ii) The variance of the time series at x is given by:

var(Ψ(x, t)) = E
[(

Ψ(x, t)−Ψ(x, t)
)2]

(A2)

(iii) The covariance of any two time series at xi and xj is given by:20

cov(Ψ(xi, t),Ψ(xj , t)) = E
[(

Ψ(xi, t)−Ψ(xi, t)
)
·
(
Ψ(xj , t)−Ψ(xj , t)

)]
(A3)

(iv) The autocorrelation ρ between any two time series at xi and xj is given by:

ρ(Ψ(xi, t),Ψ(xj , t)) =
cov(Ψ(xi, t),Ψ(xj , t))√
var(Ψ(xi, t) · var(Ψ(xj , t) (A4)

We now assume that the measurement field within the observation domain is statistically homogeneous (i.e., invariant

under translation due to the shift in the origin of the coordinate system) and isotropic (i.e., invariant under rotations and25

reflections of the coordinate system). Consequently, the following properties hold:

(a) Homogeneity:
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Ψ(x, t) = Ψ for all x and t, and

var(Ψ(x, t)) = C (i.e., with C constant for all x and t.

(b) Isotropy:

cov(Ψ(xi, t),Ψ(xj , t)) = f(d(xi,xj)), where d is the distance between the stations, and f is a positive function

defined for d > 0.5

By adopting the above assumptions in Eq. A4, the autocorrelation ρ becomes:

ρ(Ψ(xi, t),Ψ(xj , t)) =
E
[(

Ψ(xi, t)−Ψ
)
·
(
Ψ(xj , t)−Ψ

)]
E
[(

Ψ−Ψ
)2]

=
cov(Ψ(xi, t),Ψ(xj , t))

var(Ψ)

= ρ(d(xi,xj)) (A5)

Therefore, the autocorrelation ρ is a function of the distance d between xi and xj .

For a spatial area A, the area-averaged time series is obtained as:

ΨA(t) =
1

A

∫∫
A

Ψ(x, t)dx (A6)10

The following statistical parameters are found for the area-averaged time series:

(i) The mean of the area-averaged time series is given by:

ΨA(t) = E
[
ΨA(t)

]
= Ψ (A7)

(ii) The variance of the area-averaged time series is given by:

var(ΨA) = E
[
(ΨA−Ψ)2

]
= E

[
1

A

(∫∫
A

(
Ψ(xi, t)−Ψ

)
dxi

)
· 1

A

(∫∫
A

(
Ψ(xj , t)−Ψ

)
dxj

)]

=
1

A2
·
∫∫
A

∫∫
A

E
[(

Ψ(xi, t)−Ψ
)
·
(
Ψ(xj , t)−Ψ

)]
dxidxj

=
1

A2
·
∫∫
A

∫∫
A

cov(Ψ(xi, t),Ψ(xj , t))dxidxj

= var(Ψ) ·
[

1

A2
·
∫∫
A

∫∫
A

ρ(d(xi,xj))dxidxj

]
(A8)15

So, the variance of area-averaged time series is directly proportional to the variance of the time series centered in the

observation domain and the domain weighted autocorrelation function ρ.
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Now, the statistical parameters between the time series centered in the domain and the area-averaged time series for the

domain area A are given below:

(i) The covariance of the time series Ψ and the area-averaged value ΨA is given by:

cov(Ψ,ΨA) = E
[
(Ψ−Ψ) · (ΨA−Ψ)

]
= E

[
(Ψ(x, t)−Ψ) · 1

A

(∫∫
A

(
Ψ(xi, t)−Ψ

)
dxi

)]

=
1

A
·
∫∫
A

E
[
(Ψ(x, t)−Ψ) · (Ψ(xi, t)−Ψ)

]
dxi

=
1

A
·
∫∫
A

cov(Ψ(x, t),Ψ(xi, t)dxi

= var(Ψ) ·
[

1

A
·
∫∫
A

ρ(d(x,xi))dxi

]
(A9)

(ii) The square of the cross-correlation γA (or explained variance) of the time series centered in the observation domain Ψ5

and the area-averaged value ΨA is obtained as the ratio of the square of the corresponding covariance to the product of

their individual variances (using Eqs. A8 and A9).

γ2A =

[
cov(Ψ,ΨA)

]2
var(Ψ) · var(ΨA)

=

[∫∫
A
ρ(d(x,xi))dxi

]2[∫∫
A

∫∫
A
ρ(d(xi,xj))dxidxj

] (A10)

In order to quantify the variance of the difference between the time series Ψ and the area-averaged value ΨA, we assume that

the variance of the area-averaged time series is linearly related to the variance of the point time series with an optimal filter,10

αA (see Eq. A8) defined as below:

var(ΨA) = αA · var(Ψ) (A11)

Now, the variance of the difference between the point time series Psi and the area-averaged time series ΨA (i.e., the

unexplained variance) is given by:

var(Ψ−ΨA) = var(ΨA) + var(Ψ)− 2 · cov(ΨA,Ψ)

= var(ΨA) + var(Ψ)− 2 · γA ·
√
var(ΨA) · var(Ψ)

= (αA + 1) · var(Ψ)− 2 · γA ·
√
αA · var(Ψ)

=
[
αA + 1− 2 · γA ·

√
αA
]
· var(Ψ) (A12)15

Expressing Eq. A12 in terms of the standard deviation, the area-averaging error δ between the point time series Ψ and area-

averaged time series ΨA can be obtained as below:

δ(Ψ−ΨA) =
√

(αA + 1− 2 · γA ·
√
αA) · δ(Ψ) (A13)
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Alternately, we define a damped time series Ψ′ as the representative variability at a single station and as given below:

Ψ′ =
√
αA · (Ψ−Ψ) + Ψ (A14)

The above Eq. A14 implies that:

var(Ψ′) = αA · var(Ψ) (A15)

The variance of the difference between the point time series Ψ′ and the area-averaged time series ΨA is then given by:5

var(Ψ′−ΨA) = var(ΨA) + var(Ψ′)− 2 · cov(ΨA,Ψ
′)

= αA · var(Ψ) +αA · var(Ψ)− 2 · γA
√
var(ΨA) · var(Ψ′)

= 2 ·αA · var(Ψ)− 2 · γA
√
αA · var(Ψ) · var(Ψ′)

= 2 ·αA · (1− γA) · var(Ψ) (A16)

Expressing the Eq. A16 in terms of the standard deviation, the area-averaging error δ between the point time series Ψ and

area-averaged time series ΨA can be obtained as below:

δ(Ψ′−ΨA) =
√

2 ·αA− 2 ·αA · γA · δ(Ψ) (A17)

Comparing Eqs. A13 and A17, we find δ(Ψ′−ΨA)< δ(Ψ−ΨA) as γA ≤ 110
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Table 1. Classification of days into clear, cirrus, overcast, and broken cloudy sky condition during the HOPE Jülich campaign.

Sky condition Observation days (day/month)

Clear 04/05, 08/06, 09/07, 21/07

Cirrus 22/04, 24/04, 16/07

Overcast 09/06, 28/06

Broken clouds 13/04, 25/04, 01/05, 02/05,

24/05, 04/06, 19/07

Table 2. Averaging time periods and wavenumber range corresponding to each wavelet detail (DJ ).

Wavelet D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

detail

Time 1.5 – 45 – 22.5 – 11.25 – 5.6 – 2.8 – 1.4 – 42 – 21 – 10.5 – 5.25 –

periods 3.0 h 90 min 45 min 22.5 min 11.25 min 5.6 min 2.8 min 84 s 42 s 21 s 10.5 s

Wavenumber 0.12 – 0.23 – 0.47 – 0.93 – 1.86 – 3.72 – 7.45 – 14.9 – 29.8 – 59.6 – 119.2 –

range (km−1) 0.23 0.47 0.93 1.86 3.72 7.45 14.9 29.8 59.6 119.2 238.3
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Table 3. Summary of the spectral power density of scalar variables with observed scale regimes and spectral exponents (β) as obtained by

using Eq 3 in different studies.

Literature reference Scalar variable Spectral Scale regime (1/k) Remarks

exponent (β)

King (1981) LWC 1.8 2–40 m Cumulus

Boers et al. (1988) Cloud top height 1 > 900 m

5/3 < 900 m

Cahalan and Snider (1989) LWP 5/3 0.6–432 km

Landsat Band 2 3 < 0.5 km Cumulus

reflectivity 0.6 0.5–10 km Cumulus

3.6 100–200 m Stratocumulus

5/3 > 200 m Stratocumulus

Davis et al. (1999) LWC 0.9 ± 0.1 8–12 cm ≤ 1/k ≤ 2–5 m Stratocumulus

1.6 ± 0.1 5 m ≤ 1/k ≤ 2 km

Gerber et al. (2001) LWC 5/3 > 5 m Stratocumulus

5/3 > 2 m Cumulus

Present study Global transmittance 1.68
(
≈ 5

3

)
50 m – 1.5 km Overcast

(No cloud typing) 0.52 1.5–10 km Overcast

1.1 5–100 m Broken clouds

0.11 0.2–10 km Broken clouds
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Table 4. Summary of various parameterizations used for modeling the behavior of spatial autocorrelation ρ as a function of the station

distance d.

Literature reference Averaging periods Parameterization Remarks

Long and Ackerman (1995) 1, 15, 30, 60 min, and daily ρ= a− b · dc a, b and c are fit coefficients

Deneke et al. (2009) 10, 20, 40 and 80 min

Hoff and Perez (2012) 1, 2, 3 and 4 h ρ=

(
1 +

d

∆t ·∆v

)−1

∆t is the time interval, and

Lohmann et al. (2016) 15 min ∆v is the relative cloud speed

Perpiñán et al. (2013) 10 × 2J s, J ∈
[
0,9

]
ρ= a+ b · exp

(
− d

c

)
a, b and c are fit coefficients

Slobodda et al. (2015) 15 min ρ= 1− db

a
a and b are fit coefficients

Present study 2−J × 86400s, J ∈ [3,14] ρ= exp

[
−
(
d

a

)b ]
a and b are fit coefficients

Table 5. E-folding times (min) for the explained variance between the point measurement and area-averaged values under different sky

conditions.

Sky condition A=1×1 km2 A=3.2×3.2 km2 A=10×10 km2

Clear 6 min 21 min 49 min

Cirrus 2 min 7 min 28 min

Overcast 1 min 4 min 26 min

Broken clouds 4 min 15 min 70 min
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Table 6. Mean deviation between point measurement and spatial averages of global transmittance (δT ) and corresponding global radiation

(δG, in W m−2) for different averaging time periods and domain sizes.

Averaging time periods

Sky Domain S3 (3.0 h) D6 (11.25–22.5 min) D13 (5.25–10.5 s)

condition size (km2) δT δG (W m−2) δT δG (W m−2) δT δG (W m−2)

Clear 1×1 0.0019 1.3 0.0213 15.0 0.0265 18.0

3.2×3.2 0.0024 1.6 0.0252 17.0 0.0300 20.0

10×10 0.0027 1.8 0.0284 19.0 0.0328 22.0

Cirrus 1×1 0.0046 3.0 0.0171 12.0 0.0287 20.0

3.2×3.2 0.0082 6.0 0.0204 14.0 0.0335 23.0

10×10 0.0101 7.0 0.0262 18.0 0.0375 26.0

Overcast 1×1 0.0015 1.0 0.0068 5.0 0.0092 6.0

3.2×3.2 0.0033 2.0 0.0132 9.0 0.0184 13.0

10×10 0.0074 5.0 0.0247 17.0 0.0333 23.0

Broken 1×1 0.0076 5.0 0.0468 32.0 0.0842 57.0

clouds 3.2×3.2 0.0148 10.0 0.0525 36.0 0.1024 70.0

10×10 0.0178 12.0 0.0695 47.0 0.1151 79.0
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Figure 1. Time representation of the Haar (a) scaling and (b) wavelet function, and the frequency response of the associate (c) lowpass and

(d) bandpass filters. Adopted from Deneke et al. (2009).

30



Figure 2. Multiresolution analysis of global radiation (red) and corresponding transmittance (blue) showing smooths (left panel) and details

(right panel) as a function of local time (in h) for a pyranometer station at FZJ on 25 April 2013. Shaded gray region on both panels

correspond to the region with solar zenith angle > 75◦. The smoothing time is given in the left panels, while the correlation of the details in

global radiation and transmittance is listed in the right panels.
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Figure 3. Horizon graphs for MRA of global transmittance from a pyranometer station at FZJ during the HOPE campaign represented as a

function of local time (in h) for different sky conditions: (a) clear - 4 May 2013, (b) cirrus - 16 July 2013, (c) overcast - 9 June 2013, and

(d) broken clouds - 25 April 2013. The top panels represent the horizon plots of transmittance details. Middle panels represent the original

time series of transmittance. The t−azi plots of the sky imager at 45◦ elevation angle are shown in the bottom panels. Shaded gray color in

the top and middle panels of (a) and (d) correspond to the region with solar zenith angles > 75◦. A horizon graph is constructed by dividing

a normal line plot into bands defined by uniform value ranges. The bands are then layered to reduce the chart height. Negative values (red

bands) can be mirrored or offset onto the same space as positive values (blue bands) such that the colors are differentiated. These layered

bands are nested together. Such a visualization allows us to identify extraordinary behaviors or predominant patterns, view changes, interpret

each of the time series independently from the others and perform comparisons between the different temporal periods (Few, 2008).
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Figure 4. (a) Wavelet variance, and the (b) cumulative variance (from Eq. 1) of global transmittance from all the pyranometer stations in

the observation domain as a function of considered frequency/averging period for cases during the HOPE campaign. As the time period is

inversely proportional to the frequency, the time periods (on x-axis) are represented in ascending order of frequency scales. The vertical

bars around the mean value represent the observed minimum and maximum variances. The dashed horizontal line in (a) correspond to the

measurement uncertainty of our pyranometer. The dashed horizontal lines in (b) denote the total variance of the original time series averaged

across all stations within the observation domain.
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Figure 5. Wavelet variance of global transmittance (as shown in figure 4a) represented as a function of horizontal scales denoted by 1/k (in

m) for different sky conditions during the HOPE campaign. Dashed lines represent the least square fits at different scale regimes using Eq. 3.

The gray color horizontal line correspond to the measurement uncertainty of our pyranometer.
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Figure 6. Spatial autocorrelation ρ as a function of station distance d for days with different sky conditions: (a) clear - 4 May 2013 (top

row), (b) cirrus - 16 July 2013 (second row), (c) overcast - 9 June 2013 (third row), and (d) broken clouds - 25 April 2013 (last row). Here,

S3 corresponds to the wavelet smooth of global transmittance at 3 h averaging time scale, while D3 to D9 represent the wavelet details of

global transmittance.
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Figure 7. Decorrelation lengths a (in km), determined as e-folding time of the spatial correlation function, and its dependence on the time

period of variations.
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Figure 8. Power spectrum of spatially averaged transmittance as a function of frequency under different sky conditions: (a) clear, (b) cirrus,

(c) overcast, and (d) broken clouds. var(TD) denotes the power spectrum of a point measurement of global transmittance as shown in

figure 4a).
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Figure 9. Explained variance (γ2
D , the square of the cross-correlation) between the wavelet details of the point measurement and the area-

averaged values of global transmittance as a function of their time period and for different domain sizes and sky conditions: (a) clear, (b)

cirrus, (c) overcast, and (d) broken clouds. The black symbols respectively denote the explained variance (γ2
S3

) of wavelet smooths S3 (3h)

corresponding to the domain size. The black dashed horizontal line in each of the sub-figures represent the e-folding time of e−1 = 0.368

and the dashed vertical lines corresponds to the decorrelation period for the selected domain sizes.
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Figure 10. Area averaging error in the global transmittance (δT ) and corresponding global radiation (δG, in W m−2) with different sky

conditions: (a) clear, (b) cirrus, (c) overcast, and (d) broken clouds for different domain sizes represented as a function of averaging time

periods. The dashed horizontal lines correspond to the maximum deviation observed for the different domain sizes. Dashed vertical lines

represent the minimum averaging time above which the area averaging errors are less sensitive at different spatial resolutions.

38



105 104 103 102 101 100
10−10

10−8

10−6

10−4

10−2

100

105 104 103 102 101 100
10−10

10−8

10−6

10−4

10−2

100

W
av

el
et

 v
ar

ia
nc

e

(a) Direct horizontal

Clear

Overcast

Broken clouds

105 104 103 102 101 100

Time periods [s]

(b) Diffuse horizontal

Clear

Overcast

Broken clouds

105 104 103 102 101 100

(c) Global horizontal

Clear

Overcast

Broken clouds

Figure 11. Power spectrum of the (a) direct, (b) diffuse, and (c) global transmittance as a function of temporal frequency for a clear (4 July

2015), overcast (21 June 2015), and a broken cloudy (17 June 2015) sky conditions observed during the HOPE Melpitz experiment. The

black dashed horizontal line in (c) represents the combined measurement uncertainty of the pyranometer system.
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