
1 
 

Seasonal Prediction of Winter Haze Days in the North-Central North 

China Plain 

Zhicong Yin 
1,2

, Huijun Wang 
1,2,3

 

1
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological 

Disaster, Nanjing University of Information Science & Technology, Nanjing, China 5 
2
Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 

3
Climate Change Research Center, Chinese Academy of Sciences, Beijing, China 

Correspondence to: Zhicong Yin (yinzhc@163.com) 

Abstract. Recently, the winter (December–February) haze pollution over the North-Central North China Plain (NCP) has 

become severe. By treating the year-to-year increment as the predictand, two new statistical schemes were established using 10 

the multiple linear regression (MLR) and the generalized additive model (GAM) approaches. By analyzing the associated 

increment of atmospheric circulation, seven leading predictors were selected to predict the upcoming winter haze days over 

the NCP (WHDNCP). After cross validation, the root mean square error and explained variance of the MLR (GAM) prediction 

model was 3.39 (3.38) and 53% (54%), respectively. For the final predicted WHDNCP, both of these models could capture the 

interannual and interdecadal trends and the extremums successfully. Independent prediction tests for 2014 and 2015 also 15 

confirmed the good predictive skill of the new schemes. The predicted bias of the MLR (GAM) prediction model in 2014 

and 2015 was 0.09 (−0.07) and −3.33 (−1.01), respectively. Compared to the MLR model, the GAM model had a higher 

predictive skill in reproducing the rapid and continuous increase of WHDNCP after 2010. 

1. Introduction 

In recent years, the North-Central North China Plain (NCP; 34–43
o
N, 114–120

o
E) has suffered from increasingly severe 20 

winter (December–February) haze pollution (Ding et al. 2014), particularly after persistent heavy fog and haze in January 

2013 (Zhang et al. 2014; Zhao et al. 2014). After 2000, the combined effects of a rapid increase in total energy consumption 

and the influence of climate change intensified the haze pollution in central North China (Wang et al. 2016). In conditions of 
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heavy and slowly varying pollutant emissions, the fine particles in the atmosphere reach their saturation levels easily, and the 

climate conditions become critical contributors of haze. Some new climatic findings have been helpful seasonal predictors of 25 

winter haze days over the NCP (WHDNCP). The East Asian winter monsoon (EAWM) has a significantly negative 

relationship with WHDNCP (Yin et al. 2015a; Yin et al. 2015b; Li et al. 2015). By weakening EAWM circulations, negative 

Sea Surface Temperature (SST) anomalies over the subtropical western Pacific (SWP) could significantly intensify WHDNCP 

(Yin et al. 2015c). Furthermore, the decline of preceding autumn (Sep–Nov) Arctic Sea Ice (ASI) has led to favorable 

environments for haze, with high static stability and greatly intensified haze pollution in eastern China (Wang et al. 2015). 30 

Although recent studies on the changes in WHDNCP and their associated mechanisms are new and still insufficient, they 

support the possibility of seasonal prediction.  

The climate variables in East Asia showed obvious characteristics of tropospheric biennial oscillation (TBO), based on 

which, a new interannual increment approach was applied for short-term climate prediction (Wang et al. 2000; Wang et al. 

2012). This new approach treated the year-to-year increment of a variable, i.e., the difference between the current and 35 

previous year (DY), as the predictand. Because the DY approach utilized the observed information from the previous year 

and the features of TBO, the interannual variation and interdecadal trend could be captured well. In addition, the signals (i.e., 

variance) of the predictors and predictand were both amplified (Huang et al. 2015) and, thus, of benefit to improve the 

prediction skill. If the predictive objects (Y), e.g., haze days, were cross-influenced by socio-economic factors and climatic 

conditions, the predictand could be represented by Y = YS + YC, where YS and YC are the slowly varying socio-economic 40 

and climatic components, respectively.  

DY = 𝑌𝑡 − 𝑌𝑡−1 = (𝑌𝑆𝑡 + 𝑌𝐶𝑡) − (𝑌𝑆𝑡−1 + 𝑌𝐶𝑡−1) = (𝑌𝑆𝑡 − 𝑌𝑆𝑡−1) + (𝑌𝐶𝑡 − 𝑌𝐶𝑡−1) 

where the subscripts t and t-1 indicate the current and previous years, respectively. 

Commonly, the difference in pollutant emissions between current and previous year was very small, resulting 

in (𝑌𝑆𝑡 − 𝑌𝑆𝑡−1) ≈ 0, so DY ≈ (𝑌𝐶𝑡 − 𝑌𝐶𝑡−1). To some extent, the WHDNCP DY reflected the fluctuations caused by 

climate change. After adding the predicted WHDNCP DY to the observed WHDNCP last year, the interdecadal and 45 

socio-economic components were contained in the final prediction. In prior studies, the DY approach has been used to 

explore the prediction of summer rainfall in China (Fan et al. 2008), heavy winter snow activity in Northeast China (Fan et al. 
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2013), summer Asian-Pacific Oscillation (Huang et al. 2014) and winter North Atlantic Oscillation (Tian et al. 2015). 

Furthermore, some variables cross-influenced by socio-economic and climatic factors were predicted successfully using the 

DY approach, e.g., rice production in Northeast China (Zhou et al. 2014) and the discoloration day for Cotinus coggygria 50 

leaves in Beijing (Yin et al. 2014). Considering the seriously negative impact of winter haze and the substantial need to 

predict WHDNCP, we made it the goal of this study to apply the DY approach to the seasonal prediction of WHDNCP. 

The data and methods employed are introduced in section 2. Section 3 describes the predictors and associated 

circulations. We apply the DY approach to build the prediction models for WHDNCP in section 4. In this section, the 

statistical models are built based on multiple linear regression (MLR) and generalized additive model (GAM). Then, 55 

cross-validation and independent tests are performed to assess the statistical schemes of WHDNCP prediction.  

2. Datasets and methods 

Monthly atmospheric data, such as geopotential height (Z) and surface temperature (TS), are derived from the National 

Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) global reanalysis dataset 

with a horizontal resolution of 2.5°×2.5° from 1979 to 2016 (Kalnay et al. 1996). The monthly mean Extended 60 

Reconstructed SST datasets with a horizontal resolution of 2
o
×2

o
 from 1979 to 2016 were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) (Smith et al. 2008). ASI extent was calculated from the ASI concentration 

data, downloaded from the Hadley Center with a horizontal resolution of 1
o
×1

o
 from 1979 to 2016 (Rayner et al. 2003). The 

monthly gridded soil moisture data from 1979 to 2016 were downloaded from NOAA’s Climate Prediction Center (CPC), 

with a horizontal resolution of 0.5
o
×0.5

o
 (Huug et al. 2003). The monthly Antarctic Oscillation (AAO) indices from 1979 to 65 

2016 were also obtained from the CPC (Mo et al. 2000).  

China ground observations from 39 NCP stations, collected by the National Meteorological Information Center of 

China 4 times per day from 1979 to 2016, were used to reconstruct the climatic WHD data (Yin et al. 2015c). Here, haze is 

defined as visibility less than a certain threshold and relative humidity less than 90%. After excluding other weather 

phenomena affecting visibility, a day with haze at any time is defined as a haze day. Site WHD data were converted into 70 
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grids after Cressman interpolation (Cressman, 1959), and then the WHDNCP was computed as the mean value of the gridded 

data.  

In this study, the statistical models were built based on MLR and GAM methods. The MLR approach, a model-driven 

method, is ultimately expressed as a linear combination of 𝐾 predictors (𝑥𝑖) that can generate the least error for prediction 

of �̂�  (Wilks 2011). With coefficients 𝛽𝑖, intercept 𝛽0 and residual ε, the MLR formula can be described as follows:  75 

�̂� = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝐾

𝑖=1

+  𝜀                     (1) 

The GAM approach is more advanced and was developed from MLR and the generalized linear model (GLM) (Hastie 

et al. 1990). This data-driven method is particularly effective at handling the complex non-linear and non-monotonous 

relationships between the predictand and the predictors, whose expressions are replaced by smooth functions (s). Similar to 

GLM, the dependent variable in GAM can have different probability distributions, such as Gaussian, Poisson, and Binomial, 

any of which can be transferred by the link function (g). The GAM can be written in the form:  80 

𝑔(�̂�) = 𝛽0 +∑𝛽𝑖𝑠(𝑥𝑖)

𝐾

𝑖=1

 +  𝜀                     (2) 

The normalized datasets from 1979 to 2013 were trained as the basic samples to fit the models, and those from 2014 to 

2015 were treated as test data for independent prediction. Thereafter, the root mean standard error (RMSE), mean absolute 

error (MAE) and explained variance (EV) were calculated for evaluation by simple fitting and leave-one-out cross 

validation.  

3. The predictors and associated circulations 85 

To choose the DY predictors, the correlated DY atmospheric circulations were identified, as shown in Figure 1. The 

positive phase of the East Atlantic/West Russia (EA/WR; Barnston et al. 1987) and Pacific Japan (PJ; Nitta 1987) patterns 

and the negative phase of the Eurasia (EU; Wallace et al. 1981) pattern were obvious, and we took the anti-cyclone 

circulation over North China as an intermediary leading to a more stable atmosphere. The positive anomaly over the NCP 
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could confine the particles within a thinner boundary layer by suppressing vertical movement and induce an easterly to 90 

weaken the East Asia Jet Stream (EASJ), producing weaker cold air. Meanwhile, the water vapor transportation was also 

enhanced, creating favorable conditions for more WHDNCP than in the previous year.  

The pivotal local anti-cyclone over the NCP was the most important contributor; we therefore speculated that 

pre-autumn TS DY around the NCP should be effective to impact WHDNCP DY. There were significantly negative 

correlations between WHDNCP DY and pre-autumn TS DY from the Japan Sea to the Stanovoy Range (35–65
o
N, 130–140

o
E), 95 

the area mean of which was selected as predictor 𝑥1 (Figure 2). The correlation coefficient (CC) between WHDNCP DY and 

predictor 𝑥1 was −0.47, exceeding a 99% confidence level. The circulations associated with predictor 𝑥1 (×−1) presented 

obvious features of the negative EU and positive PJ patterns (Figure 3), similar to those shown in Figure 1.  

The pre-autumn SST anomalies of the Pacific could influence WHDNCP significantly via the air-sea interaction (Yin et al. 

2015c). Figure 4 shows the CC between WHDNCP DY and pre-autumn SST DY. The most significant CC was distributed 100 

around the Alaska Gulf (36–56
o
N, 130–170

o
W), and the area-averaged SST DY here was defined as predictor 𝑥2, whose CC 

with WHDNCP DY was 0.47, above the 99% confidence level. The positive SST DY around the Alaska Gulf closely 

correlated with the atmospheric teleconnection patterns, i.e., the positive phases of the EA/WR and PJ and the negative EU 

patterns intensified haze pollution over the NCP (Figure 5).  

Prior studies have documented that the triple SST pattern was a dominant mode of the northern Atlantic in autumn. 105 

When the pre-autumn SST anomalies were distributed in a ―+−+‖ pattern from south to north, the subsequent EAWM was 

stronger, and the surface temperature of North China was lower (Shi 2009). Similarly, the CC between WHDNCP DY and 

pre-autumn SST DY of the Atlantic was distributed in a ―−+−‖ pattern (Figure 6). The area-averaged SST DY of the northern 

center was defined as predictor 𝑥3, whose CC with WHDNCP DY was −0.50, passing the 99% confidence test. The most 

obvious DY atmospheric circulations related with predictor 𝑥3 (×−1) were the negative EU pattern, whose south center 110 

linked with a subtropical high (Figure 7). The continental high and marine low were both weaker, leading to weaker EAWM 

and weaker cold air. The pressure gradient over the east coast of China also resulted in a southerly anomaly, indicating 

smaller surface wind and more moisture and resulting in more WHDNCP.  

ASI decreased dramatically with significant variance and was a significant contributor influencing WHDNCP in eastern 
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China (Wang et al. 2015; Wang et al. 2016). The CC between pre-autumn ASI DY and WHDNCP DY was calculated (Figure 8) 115 

and was significantly positive around Beaufort Sea (73–78
o
N, 130–165

o
W). The area-averaged ASI extent DY of Beaufort 

Sea was selected as the fourth predictor (𝑥4), and its CC with WHDNCP DY was 0.37, above a 95% confidence level. A 

positive center was located over the Central Siberian and Mongolia Plateau, and negative centers were distributed zonally 

from southern China to the subtropical Pacific (Figure 9). Thus, the EAJS was weakened by the induced easterly.  

Soil moisture is an important factor for seasonal prediction, but only after SST (Guo et al. 2007). The questions with 120 

respect to soil moisture were whether pre-summer or autumn soil moisture would be effective for seasonal prediction of 

WHDNCP DY. The area-averaged pre-autumn soil moisture DY of the Bohai rim (35–42
o
N, 117–127

o
E), defined as predictor 

𝑥5, showed a significantly negative correlation with WHDNCP DY, i.e., the CC was −0.59, exceeding a 99% confidence test 

(Figure 10). The CC between predictor 𝑥5 and Z500 (Z at 500 hPa) was distributed in a similar way as in Figure 1. The 

positive EA/WR and PJ phases and the negative EU phase was obvious and led to more WHDNCP than in the previous year 125 

(Figure 11). As shown in Figure 12, the pre-summer soil moisture DY in the east of Mongolia (48–52
o
N, 115–125

o
E) also 

had a close relationship with WHDNCP and with WHDNCP DY. The area-averaged soil moisture DY in the east of Mongolia 

was defined as predictor 𝑥6, whose CC with WHDNCP DY was 0.41, above a 95% confidence level. The negative EU pattern 

could be recognized from the associated atmospheric circulation with predictor 𝑥6 (Figure 13), which intensified the haze 

pollution over the NCP.  130 

Recently, some studies documented that Antarctic Oscillation (AAO) could affect the East Asian climate through 

cross-equatorial flow, e.g., the Somali jet (Fan et al. 2004; Fan et al. 2006; Fan et al. 2007a; Fan et al. 2007b). After the 

late-1990s, global sea level pressure and Z300 in boreal January were characterized by the concurrence of the Aleutian low 

and the negative phase of the AAO (Li et al. 2014). We investigated the relationship between WHDNCP DY and Z850 in the 

Southern Hemisphere and found that the distribution was remarkably similar to that of the negative phase of AAO (Figure 135 

14). Furthermore, the CC between the Sep–Oct AAO DY and WHDNCP DY was −0.54, exceeding a 99% confidence test. As 

shown in Figure 15, the positive phases of the EA/WR and PJ patterns were closely correlated with the negative phase of 

Sep–Oct AAO and were responsible for more WHDNCP than in the previous year. Hence, the Sep–Oct mean AAO index was 

selected as the last predictor (𝑥7) to forecast the interannual increment of WHDNCP. 
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4. The prediction models and validations 140 

In total, seven DY predictors (𝑥1 𝑥2      𝑥7) were chosen to build the seasonal prediction model (SPM) for WHDNCP 

DY (Table 2). Among the predictors were 21 types of pair combinations, of which only 5 presented significant linear 

correlation (Figure 16). The multicollinearity would not be a problem when modeling with the MLR approach. Although the 

linear correlation between the predictand and each predictor was significant, the non-linear interaction would also affect the 

WHDNCP and should be taken into account. In this section, seasonal prediction models were established using MLR 145 

(SPMMLR) and GAM (SPMGAM) and validated in detail.  

The WHDNCP DY showed obvious features of biennial oscillation (Figure 17), illustrating the DY approach was suitable 

for its prediction. The SPMMLR of WHDNCP DY was as follows:DY/10 = −2.774𝑥1 + 2.582𝑥2 − 1.631𝑥3 + 2.528𝑥4 −

2.229𝑥5 + 2.555𝑥6 − 1.812𝑥7. After cross validation, the RMSECV of SPMMLR was 3.39 days, and the CC between fitted 

and observed WHDNCP DY was 0.73, accounting for 53% of the total variance (Table 2). The percentage of same sign (PSS; 150 

same sign means the mathematical sign of the fitted and observed WHDNCP DY was the same) was 79.4%. The SPMMLR 

showed good ability to predict the negative and least WHDNCP DY but did not adequately capture the continuous positive 

value after 2011 (Figure 17a). The fitted WHDNCP DY from 2011 to 2013 varied similarly to that before 2010 and did not 

reflect the rising trend after 2010. As an independent prediction test, the predicted bias in 2014 was 0.09, illustrating good 

performance, but the bias in 2015 was larger, i.e., −3.33. 155 

We also applied the GAM approach to build a prediction model that would contain the non-linear relationship with 

smooth functions. The SPMGAM of WHDNCP DY was as follows:DY/10 = −2.164s(𝑥1) + 2.036s(𝑥2) − 1.721𝑥3 +

2.588s(𝑥4) − 2.157s(𝑥5) + 2.187𝑥6 − 2.506𝑥7. During the simple fitting, the SPMGAM performed very well. The RMSE 

was 1.56 days, and the CC between the fitted and observed WHDNCP DY was 0.95. The SPMGAM could fit the minimum (in 

2003) and maximum (in 2013), and show the trend well, indicating an advantage to processing the non-linear relationship. 160 

After cross validation, the performance of SPMGAM decreased dramatically, meaning that its stability was worse than that of 

SPMMLR. The RMSECV of SPMGAM was 3.38 days and the CC between fitted and observed WHDNCP DY was 0.74, 

accounting for 54% of the total variance (Table 2). The PSS of SPMGAM results was 73.5%, which is close to the result from 
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SPMMLR. The SPMGAM also showed good ability to predict the negative and minimum WHDNCP DY and better performance 

to fit the maximum in 2013 (Figure 17b). The predicted bias in 2014 and 2015 was −0.07 and −1.01, results that are better 165 

than those from SPMMLR. The CC between the bias of SPMMLR and SPMGAM from 1980 to 2013 was 0.83, above a 99.99% 

confidence level. If the SPMMLR performed well in some years, the SPMGAM also showed good ability in these years, and 

vice versa. We speculated that the reason was that some useful factors were not diagnosed and included here. 

After adding the predicted WHDNCP DY to the observed information in the previous year, the predicted WHDNCP in the 

current year was obtained. For example, the predicted WHDNCP DY in 2012 was added to the measured WHDNCP in 2011, 170 

and the result was the final predicted WHDNCP in 2012. In Figure 18, the simulative WHDNCP anomaly was fitted by 

cross-validation from 1980 to 2013 and predicted in 2014 and 2015. For SPMMLR and SPMGAM, the CC between the original 

(detrended) observed and simulative WHDNCP was 0.89 (0.87) and 0.90 (0.88), respectively. Both of these prediction models 

could capture the interannual and interdecadal trend and the extremums. The PSS of the anomalies from the two models was 

100%, meaning these two models could predict the sign of WHDNCP anomaly successfully. The SPMGAM could simulate the 175 

abrupt rising trend in 2010 better than SPMMLR, which was important for the prediction of recent years. 

5. Conclusions and Discussions 

In this paper, we treated the WHDNCP DY as the predictand and built two prediction models using the MLR and GAM 

approach. In the DY atmospheric circulation, the positive phases of the EA/WR and PJ patterns and the negative phase of the 

EU pattern intensified the haze pollution by inducing positive anomalies over the NCP. Finally, seven leading predictors 180 

were selected and are listed in Table 2. 

After cross validation, the RMSECV and explained variance of SPMMLR (SPMGAM) was 3.39 (3.38) and 53% (54%). The 

PSS of these two prediction models was also similar, i.e., more than 73%. The WHDNCP DY increased rapidly and 

persistently after 2010, and the SPMGAM could capture this trend better. For the final predicted WHDNCP, both of these 

prediction models could capture the interannual and interdecadal trends and the extremums. The PSS of the anomalies from 185 

two models was 100%, and the SPMGAM simulated the abrupt increase in 2010 better than SPMMLR. The predicted bias of 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-691, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 16 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



9 
 

SPMMLR (SPMGAM) in 2014 and 2015 was 0.09 (−0.07) and −3.33 (−1.01), respectively. Both of these models performed 

well in independent tests, but the biases of SPMGAM were smaller.  

Although these two statistical models performed well during most of the past 3 decades and could predict the WHDNCP 

in 2014 and 2015 with small biases, they showed disadvantages when simulating the rapid rising trend after 2010. If the 190 

SPMMLR performed well in some years, the SPMGAM also showed good ability in these years, and vice versa. One possible 

reason could be that some useful factors were not diagnosed and included here. In this paper, we assumed that the difference 

in pollutant emissions between current and previous years was very small and that the socio-economic component of 

WHDNCP varied slowly. Another possible reason might be that in certain years, this pollutant emission proportion varied 

rapidly.  195 
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Table and Figure Captions: 

Table 1. The RMSE, MAE, CC and EV of MLR and GAM models, and predicted bias for 2014 and 2015. The subscripts ―S‖ 

and ―CV‖ indicated simple and cross-validation fitting.  

Table 2. The predictors and their meaning. ―CC‖ indicated the correlation coefficient between predictor and WHDNCP DY 275 

from 1980 to 2013. 

Figure 1. The correlation coefficient (CC) between WHDNCP DY and Z500 DY in winter from 1980 to 2013. The white 

curves indicate that the CC exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively.  

Figure 2. The CC between WHDNCP DY and TS DY in autumn from 1980 to 2013. The shades indicate that the CC 

exceeded the 95% confidence level, and the rectangle represents the selected region (35–65
o
N，130–140

o
E) of predictor 𝑥1. 280 

Figure 3. The CC between predictor 𝑥1 (×−1) and Z500 DY in winter from 1980 to 2013. The white curves indicate that the 

CC exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 

Figure 4. The CC between WHDNCP DY and Pacific SST DY in autumn from 1980 to 2013. The shades indicate that the CC 

exceeded the 95% confidence level, and the rectangle represents the selected region (36–56
o
N，130–170

o
W) of predictor 𝑥 . 
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Figure 5. The CC between predictor 𝑥  and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 285 

exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 

Figure 6. The CC between WHDNCP DY and Atlantic SST DY in autumn from 1980 to 2013. The shades indicate that the 

CC exceeded the 95% confidence level, and the rectangle represents the selected region (50–70
o
N，30–65

o
W) of predictor 

𝑥 . 

Figure 7. The CC between predictor 𝑥  (×−1) and Z500 DY in winter from 1980 to 2013. The white curves indicate that 290 

the CC exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 

Figure 8. The CC between WHDNCP DY and ASI DY in autumn from 1980 to 2013. The shades indicate that the CC 

exceeded the 95% confidence level, and the rectangle represents the selected region (73–78
o
N，130–165

o
W) of predictor 𝑥 . 

Figure 9. The CC between predictor 𝑥  and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. 295 

Figure 10. The CC between WHDNCP DY and SoilM DY in autumn from 1980 to 2013. The shades indicate that the CC 

exceeded the 95% confidence level, and the rectangle represents the selected region (35–42
o
N，117–127

o
E) of predictor 𝑥 . 

Figure 11. The CC between predictor 𝑥  (×−1) and Z500 DY in winter from 1980 to 2013. The white curves indicate that 

the CC exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 

Figure 12. The CC between WHDNCP DY and SoilM DY in summer from 1980 to 2013. The shades indicate that the CC 300 

exceeded the 95% confidence level, and the rectangle represents the selected region (48–52
o
N，115–125

o
E) of predictor 𝑥 . 

Figure 13. The CC between predictor 𝑥  and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 

Figure 14. The CC between WHDNCP DY and Sep–Oct Z850 DY from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. 305 

Figure 15. The CC between predictor 𝑥  (×−1) and Z500 DY in winter from 1980 to 2013. The white curves indicate that 

the CC exceeded the 95% confidence level. 
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Figure 16. Correlogram of the dependent (Y) and independent (𝑥            ) variables, whose names were written on 

the diagonal. The lower panel shows the pie charts of correlation coefficients, representing the values by area and saturation, 

and showing positive/negative sign by blue/red, respectively. The upper panel shows the scatter plots.  310 

Figure 17. The temporal variation of measured (black) WHDNCP DY, MLR (red, a) and GAM (red, b) cross-validation fitted 

WHDNCP DY from 1980 to 2013. The results for 2014 and 2015 represent the measured (black square) and predicted (red 

hollow circle) WHDNCP DY. 

Figure 18. The temporal variation of measured (black) WHDNCP anomaly from 1980 to 2015, MLR (blue) and GAM (red) 

simulative WHDNCP anomaly, which was composed of cross fitted series from 1980 to 2013 and predicted values in 2014 315 

and 2015.  

 

 

Table 1: The RMSE, MAE, CC and EV of MLR and GAM models, and predicted bias for 2014 and 2015. The subscripts “S” and 

“CV” indicated simple and cross-validation fitting.  320 

 

 MLRs MLRCV GAMs GAMCV 

RMSE 2.39 3.39 1.56 3.38 

MAE 1.75 2.37 1.10 2.58 

CC 0.87 0.72 0.95 0.74 

EV 76% 53% 90% 54% 

Bias14 0.09 −0.07 

Bias15 −3.33 −1.01 

 

 

 

 325 
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Table 2. The predictors and their meaning. “CC” indicated the correlation coefficient between predictor and WHDNCP DY from 

1980 to 2013. 

Predictors Meaning CC 

   pre-autumn TS DY from Japan Sea to Stanovoy Range −0.47 

   pre-autumn SST DY around Alaska Gulf 0.47 

   pre-autumn SST DY to the south of Greenland −0.50 

   pre-autumn ASI extent DY of Beaufort Sea 0.37 

   pre-autumn soil moisture DY of the Bohai rim −0.59 

   pre-summer soil moisture DY in the east of Mongolia 0.41 

   Sep–Oct AAO index DY −0.54 

 

 

 335 

 

 

 

 

Figure 1. The correlation coefficient (CC) between WHDNCP DY and Z500 DY in winter from 1980 to 2013. The white curves 340 

indicate that the CC exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively.  

 

 

 

 345 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-691, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 16 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



16 
 

 

Figure 2. The CC between WHDNCP DY and TS DY in autumn from 1980 to 2013. The shades indicate that the CC exceeded the 95% 

confidence level, and the rectangle represents the selected region (35–65oN，130–140oE) of predictor   . 

 

Figure 3. The CC between predictor    (×−1) and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 350 

exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 
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Figure 4. The CC between WHDNCP DY and Pacific SST DY in autumn from 1980 to 2013. The 

shades indicate that the CC exceeded the 95% confidence level, and the rectangle represents the 

selected region (36–56
o
N，130–170

o
W) of predictor   . 355 

 

 

Figure 5. The CC between predictor    and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 
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 360 

Figure 6. The CC between WHDNCP DY and Atlantic SST DY in autumn from 1980 to 2013. The shades indicate that the CC 

exceeded the 95% confidence level, and the rectangle represents the selected region (50–70oN，30–65oW) of predictor   . 

 

Figure 7. The CC between predictor    (×−1) and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 365 
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Figure 8. The CC between WHDNCP DY and ASI DY in autumn from 1980 to 2013. The shades indicate that the CC exceeded the 370 

95% confidence level, and the rectangle represents the selected region (73–78oN，130–165oW) of predictor   . 

 

 

Figure 9. The CC between predictor    and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. 375 
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Figure 10. The CC between WHDNCP DY and SoilM DY in autumn from 1980 to 2013. The shades indicate that the CC exceeded 

the 95% confidence level, and the rectangle represents the selected region (35–42oN，117–127oE) of predictor   . 

 

Figure 11. The CC between predictor    (×−1) and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 380 

exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 
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Figure 12. The CC between WHDNCP DY and SoilM DY in summer from 1980 to 2013. The shades indicate that the CC exceeded 

the 95% confidence level, and the rectangle represents the selected region (48–52oN，115–125oE) of predictor   . 

 385 

Figure 13. The CC between predictor    and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. A and C represent anti-cyclone and cyclone, respectively. 
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Figure 14. The CC between WHDNCP DY and Sep–Oct Z850 DY from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. 390 

 

Figure 15. The CC between predictor    (×−1) and Z500 DY in winter from 1980 to 2013. The white curves indicate that the CC 

exceeded the 95% confidence level. 
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Figure 16. Correlogram of the dependent (Y) and independent (             ) variables, whose names were written on the 395 

diagonal. The lower panel shows the pie charts of correlation coefficients, representing the values by area and saturation, and 

showing positive/negative sign by blue/red, respectively. The upper panel shows the scatter plots.  
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Figure 17. The temporal variation of measured (black) WHDNCP DY, MLR (red, a) and GAM (red, b) cross-validation fitted 400 

WHDNCP DY from 1980 to 2013. The results for 2014 and 2015 represent the measured (black square) and predicted (red hollow 

circle) WHDNCP DY. 
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Figure 18. The temporal variation of measured (black) WHDNCP anomaly from 1980 to 2015, MLR (blue) and GAM (red) 405 

simulative WHDNCP anomaly, which was composed of cross fitted series from 1980 to 2013 and predicted values in 2014 and 2015.  
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