
Reply to comments on “The Challenge to NOX Emission Control for Heavy-duty 

Diesel Vehicles in China” by S. Zhang et al 

 

“Black” means the comments from reviewer and “Blue” text are our responses. 

 

We are deeply grateful to the referees of this paper for the very helpful comments. 

These comments are fully understood by the authors and individually responded to. 

Our responses to the comments are listed below. 

 

Reply to comments from Anonymous Referee #1:  

Overall Comments: My overall comments are favorable. I thought the paper 

presented interesting results of the use of a vehicle emission model to infer the 

dominant sources of vehicle pollution in Macao, as well as the potential use of traffic 

information linked to an emission model and air dispersion model to inform 

environmental and transportation policy. My major comment on the content of the 

paper, is that the authors need to provide more information into how the emissions 

and air quality concentrations were estimated are estimated. For example, the paper is 

unclear on how the vehicle split by link is estimated, how the speeds are estimated 

and applied in the vehicle emission model, and how the ‘fleet average’ emission rates 

in Table 4 are estimated. Also the comment Printer-friendly version Discussion paper 

discussion on the air dispersion modeling is very limited. 

We appreciate the referee’s favorable comments. According to specific comment on 

the method and data details, we try out best to inform the readers of the estimation of 

fleet split and speed profiles (e.g., Equations 3, 5 and 6, see Page 7), the development 

of local emission factors (e.g., Page 9 to Page 10). In the revised manuscript, we use 

the gasoline LDPVs as example to illustrate how to develop the localized emission 

factors based on measurement data. In the Table 4, we also note the emission 

measurement data sources for each fleet.  

Furthermore, according to the second referee’s comment. We acknowledge the 

limitation of NO2 concentration simulation by using the AERMOD model (e.g., lack 

of adequate high resolution O3 concentration profiles, simplified chemical reaction 

mechanism) (see Page 12, Lines 1 to 11). Therefore, we add a discussion to note the 

research requirement for high-resolution air quality modeling with detailed model 

configurations of the CMAQ system (see the Supplementary Information, and Page 

18 Line 29 to Page 19 Line 12).  

 

I would also strongly recommend the authors change the wording on page 2 (line 25) 

and page 17 (line 6) from ‘irreplaceable’ tool, to ‘can be to a valuable tool’. I do not 

think the paper showed that the high-resolution traffic tool is an irreplaceable 

assessment tool. The paper did show that the results from the tool, appear to compare 



reasonably well with at least one air quality monitor, and it discusses ways, in which it 

could be used to inform air quality and policy decisions in the future.  

Page 4. Line 4, huge a large transportation demand. 

We revise these wordings according to these two comments.   

 

Page 6. Line 21. What is the MC fraction on the Macao Peninsula? 

The average observed MC fraction is approximately 45% compared with the 35% for 

LDPVs, as we note in the revised manuscript (see Page 6, Lines 6 to7). 

 

Page 7, Line 24. You should mention the variability in the speed trends across 

roadway links which could be due to the limited data based on chase-car study. 

Figure 3 appears to have significant variability from hour to hour, that I would think 

would be smoother if it had a larger sample size across more sample days, more links, 

and more vehicles. This should at least be discussed, especially if confidence intervals 

of the mean speed are not presented (which I think would show that many of the 

hourly mean speeds are not significantly different than one another). 

We thank the referee for this kind suggestion. In the revised manuscript, we first in 

detail illustrate the equation to map the speeds (see Equation 3 in Page 7, and 

Equation 6 in Page 8), and then note the uncertainty from the area-aggregated data at 

the hourly and link level. For example, we now report the coefficients of variation for 

hourly speeds of arterial roads in the MP during three different hours (e.g., 

approximately 40% to 50%) (see Page 8, Lines 23 to 29), and estimated the effect on 

CO2 emission factors for gasoline LDPVs as a case (see Page 17, Lines 13 to 18). We 

also recommend the useful application of ITS approach to capture the real-world 

variability of traffic dynamics.  

 

Page 11. How do you obtain estimates of vehicle classifications by link? This is not 

clear to me from reading the first paragraph on page 11. 

In the method section, we add the Equation 5 in Page 7 to clarify the issue. 

 

Page 14. Line 8-9. I think you mean higher emission rates, for lower level of service? 

Page 14. Line 17. ‘broad’ instead of ‘board’ Page 14.  

Page 14. Line 25-26. Rephrase this sentence. ‘poor representativeness. . ..’  

Revisions are done according to the referee’s comment. 

 

Page 15. Line 1-3. How does the daily variations in speeds, results in the variation in 

CO2 emission factors? Is that from analysis done from the Beijing study? Or is that 

variation in link speeds applied to your emission model for Macao? Please be clear. 



First, we clarify that the variation in CO2 emissions is estimated for Beijing in the 

revised manuscript.  

Second, for the referee’s information, we applied PEMS testing profiles of 41 

gasoline cars (16 in Macao, 11 in Beijing and 14 in Guangzhou) to establish the 

“real-world” speed correction function for CO2 emission factors (similar works also 

done for other vehicle groups and pollutant species) (Zhang et al., 2014). It is noted 

that we improve the extraction of speed effects by constructing the baseline emission 

factor using the operating mode method (i.e., speed and VSP binning). Thus, we gain 

the speed correction function with regression correlation coefficient (R2) higher than 

0.9, and the uncertainty range of -20%/+13 at a 95 confidence level (average speed 

lower than 60 km h-1). In addition, we have not observed significant difference 

between the speed effects among various cities. The speed correction can be well 

applied from link level to trip/road network level with relative bias of -13%/+11%.    

 

Zhang, S., Wu, Y., Liu, H., Huang, R., Un, P., Zhou, Y., Fu, L., Hao, J.: Real-world 

fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for 

light-duty passenger vehicles in China. Energy, 69, 247-257, 2014. 

 

Page 16. Line 5-9. Rewrite sentence, and improve grammar 

Page 16. Line 29. Start new paragraph.  

Page 17. Line 6. Suggest ‘can be a valuable assessment tool’ (not ‘ irreplaceable’)  

Page 17. Line 17. Replace ‘significantly less traffic’ with ‘smaller’ Page 17. Line 30.  

Revisions are done for the comments above. 

 

The Taxis are diesel powered? This should be clarified in the main text, as well as in 

Table 4. RE: Table 4. I am surprised that the diesel Taxis’ have lower NOx g/km, than 

the MDPV gasoline vehicles? Are these emission rates based on PEMS data or 

emission standards? If some of these emission rates are based on certification vehicle 

standards, than the paper should mention the uncertainty of using vehicle emission 

standards (particularly EURO diesel standards) to represent real-world emission rates. 

Also, similarly, why is the MDPV diesel in the same range as the MDPV gasoline 

vehicles? In general, more information is needed on the derivation of the fleet-average 

emission factors in Table 4. 

First, all the taxis in Macao are powered by diesel. The gaseous emission rates for 

diesel taxis are developed largely based on local PEMS data (Hu et al., 2012). 

Second, we don’t have dynamometer or PEMS testing data for MDPV-gasoline 

vehicles. High MDPV-gasoline emission factors are because we applied the emission 

parameters in our previous EMBEV model (Beijing). Therefore, in the revised 

manuscript, we revised the emission factors for MDPV-gasoline as well as 

LDT-gasoline based on the remote sensing based results (i.e., fuel based emission 

ratios between MDPV-gasoline to LDPV-gasoline). The revised emission factors are 



presented in the Table 4. These modifications would lead to lower total vehicular 

emissions of THC by 1%, CO by 4% and NOX by 1%, which would play a minor role 

in the overall temporal and spatial emission patterns. We have revised the data and 

figure throughout the manuscript according to the new emission factors for 

MDPV-gasoline and LDT-gasoline (see Table 4). 

In addition, because no emission standards have been adopted in Macao until 2012, 

therefore, the emission standard category defined by the emission model actually 

represents the aggregated model year group for emission estimation. The uncertainty 

in fleet-average emission factors is related to the data availability (sample size) and 

fleet configuration. For example, for diesel taxis that were dominant by one vehicle 

model (e.g., Toyota Corolla diesel), the relative uncertainty ranges (95% CI) of 

average emissions are 37% for THC, 22% for CO and 48% for NOX. The uncertainty 

for MDPV-gasoline and LDT-gasoline would be higher because of less data samples. 

However, the traffic fractions for MDPV-gasoline and LDT-gasoline are less than 

2.5%, so their impacts on total vehicle emissions are less significant. 

 

Reply to comments from Anonymous Referee #1:  

This study develops a high-resolution motor vehicle emissions inventory for a city in 

China, models the inventory, and evaluates the modeling results against ambient 

monitoring data. Main findings of this paper are that it is important to capture the 

spatial heterogeneity of the vehicle fleet mix across the urban domain, and to use local 

information on emission factors. Overall, the authors present a novel approach to 

mapping vehicle emissions, especially in cities where traffic activity and emission 

factor data are not as readily available. This is a major accomplishment and worth 

replicating in other cities. In regards, to the second major aspect of this study, the air 

quality modeling, I have some concerns that I believe need to be addressed more fully 

in revision. My comments mostly refer to the treatment of atmospheric chemistry in 

the dispersion model. With major revision, I do believe it is possible for this 

manuscript to be considered for publication in Atmospheric Chemistry & Physics. 

We appreciate the referee’s positive comments on traffic and emission aspects. In the 

initial manuscript, we attempted to use the NO2 simulation results as a validation of 

emission inventory results. After carefully considered the comments from this referee, 

we acknowledge the model limitation of the application in the city scale. In addition, 

the uncertainty from air quality modeling may also undermine the efforts of system 

validation.  

Therefore, in the revised manuscript, we additionally use the statistical fuel 

consumption data to validate emission inventory, which is feasible because Macao is 

a specially closed island city (i.e., one Special Administration Region of China that 

requires special certificates for cross-border vehicle use) (see Page 14 Line 28 to Page 

15 Line 15). The results indicate that a nice agreement between gasoline consumption 

record and gasoline fuel CO2 emissions. Although this might be still not sufficient to 

address emissions more related to diesel fleets (e.g., NOX, PM2.5), we could see it as a 



robust evaluation of overall traffic patterns by avoiding the uncertainty of air quality 

modeling.  

Second, we note the major limitations of the NO2 concentration simulation with the 

AERMOD in the methodology section, which include the absence of other NOX 

related reactions, the lack of adequate ozone concentration profiles, and the simplified 

time framework of NO/NO2 conversion (see Page 12 Lines 1 to 18). The NO2 

concentration simulation with the AERMOD is not included in the revised manuscript. 

However, given the fact of NO2 pollution in Macao, we add a discussion on the future 

research requirement of high-resolution air quality modeling, because the CMAQ 

model might underestimate the NO2 concentration for traffic populated areas and 

shrink the useful features of link-level emission inventory (see Page 18 Line 28 to 

Page 19 Line 11, and the Supplementary Information). The following comments 

regarding the NO2 concentration simulation are also responded individually.  

We appreciate the papers this referee suggested, which are helpful to understand the 

complex chemical transport and vehicle emissions. We also adequately add these 

publications as references for readers’ information. 

 

General Comments 

(1) My concerns with respect to the air quality modeling are with the treatment of 

chemistry, and how background levels are estimated. Unless the following concerns 

can be addressed, I believe that statements that quantify the fractional contribution of 

motor vehicle emissions to ambient concentrations observed should be removed 

(bottom of page 15 and top of page 16), and commentary restricted to qualitative 

statements.  

We have removed this paragraph from the manuscript. In addition, we add the 

detailed setups of the CMAQ modeling in the supplementary information, which 

supports the discussion on the research requirements for high resolution air quality 

modeling.  

 

(i) More detail is needed on how a dispersion model like AERMOD accounts for 

chemistry, especially for NO2. Given that authors present high-resolution air quality 

maps, it seems important to capture spatial gradients that may arise due to interactions 

between ozone and fresh NO emissions; i.e., ozone tends to be suppressed near 

highways, and NO2 elevated (Murphy et al., 2007). On page 10, Lines 15-17, the 

authors mention using ozone data to account for the oxidation of NO to NO2, but do 

not describe how. How many monitoring sites are used in this calculation? Where are 

they located, and what is their proximity to roadways? What is the timescale of the 

NO -> NO2 conversion employed in AERMOD, and how was this estimated from 

observations?  

Murphy, J. G., Day, D. A., Cleary, P. A., Wooldridge, P. J., Millet, D. B., Goldstein, A. 

H., and Cohen, R. C.: The weekend effect within and downwind of Sacramento – Part 

1: Observations of ozone, nitrogen oxides, and VOC reactivity, Atmos. Chem. Phys., 

7, 5327-5339, doi:10.5194/acp-7-5327-2007, 2007. 



We do not have spatially resolved ozone profiles in Macao to support a dedicated 

simulation of NO2 concentration. Ozone concentrations at three air quality monitoring 

sites (i.e., one in the MP, one in Taipa, and one in Coloane) were used as input for 

each region. The AERMOD model simply assumes that the oxidation of NO is 

instantaneous and irreversible on hourly basis. In the revised manuscript, all these 

limitations have been noted in the methodology section. 

 

(ii) It is also not clear how AERMOD treats the loss of NO2 to PAN and HNO3. In an 

urban mass, these products of NO2 can comprise up to half of daytime NOy (= NOx 

+PAN + HNO3, see Pollack et al., 2012). If the authors’ only account for the 

production of NO2 from fresh NO emissions, without accounting for the loss of NO2 

from daytime chemistry, then the NO2 concentrations simulated from local vehicle 

emissions shown in Figure 7 could be overestimated. Consequently, the authors may 

overestimate the motor vehicle contribution to ambient NO2. The importance of the 

loss term will depend on the photochemical age of the air mass that reaches the 

monitoring site, which could vary by time of day, wind speed/direction, and synoptic 

events. A robust estimation of the local vehicle contribution to ambient NO2 (as 

shown in Figure 8) should take into account both the production and loss of NO2. 

Pollack, I. B., et al. (2012), Airborne and ground-based observations of a weekend 

effect in ozone, precursors, and oxidation products in the California South Coast Air 

Basin, J. Geophys. Res., 117, D00V05, doi:10.1029/2011JD016772. 

Two EPA Tier-3 methods (OLM and PVMRM) incorporated to the AERMOD both 

only take account of the oxidation of fresh NO to NO2. The other oxidation processes 

to NOY products (e.g., HNO3, PAN, NO3) are ignored by the AERMOD. This issue 

has been noted in the manuscript (see Page 12 Lines 1 to 19).  

 

(iii) As I understand, the NO2 observations shown in Figure 8, are daily 

concentrations from a single monitoring site (Page 16, Lines 10-13). Is this the 

average of 24-hours of data? The use of daily averages could be influenced by 

nighttime chemistry, which presumably would not be taken into account with 

AERMOD. To avoid these complications, it is better to restrict the model comparison 

to daytime values only. 

The original results are average of 24-hours data. This section is dropped off due to 

the model limitations. 

 

(iv) I found the description of the CMAQ model (on Page 10, Lines 20-26) used to 

estimate regional background and cross-boundary transport lacking. This is important 

since background levels (Page 10: 304 ug/m3, 27 ug/m3, and 23 ug/m3 of CO, NO2, 

and PM2.5, respectively) are as big or much larger than the motor vehicle 

contribution to these pollutants (Page 15: 88 ug/m3, 22 ug/m3, and 1.3 ug/m3 of CO, 

NO2, and PM2.5, respectively) in Macao. For example, what was the domain of the 

CMAQ model used? Did it include a much wider region that encompassed other 

cities/provinces of China? What meteorological data and chemical schemes were used 



to run the model? What were the chemical and meteorological boundary conditions 

used to drive the CMAQ model? On Page 10, Lines 20-24, the authors mention 

turning off local stationary and mobile source emissions, but it is not clear what 

emissions inventory was used to drive the background concentrations of CO, NO2, 

and PM2.5 elsewhere. What about shipping emissions, which are sources of NOx? 

The emissions and meteorological data used to drive the 4 km x 4km CMAQ model 

need to be described in detail; the CMAQ model is as critical as the AERMOD model 

in calculating the local vs. regional contribution. Since the prevailing wind direction is 

from the northeast (shown in Figure S5), it appears there would be a strong influence 

from emissions occurring in Hong Kong and other major cities in Southeast China. 

(v) If the authors’ used CMAQ to calculate background concentrations, why isn’t 

CMAQ also used to quantify the local contribution of vehicle emissions to ambient 

concentrations of CO, NO2, and PM2.5, along with AERMOD? Some of these 

concerns I have raised with regards to chemistry could be mitigated with a chemical 

transport model like CMAQ. If there is similarity in the result between AERMOD and 

CMAQ in the local vs. regional contribution, then chemistry may not play such an 

important role and the modeling results presented may be valid. 

We add a section in the Supplementary Information to illustrate the regional air 

quality modeling with the CMAQ model. First, we did include a wider region in the 

CMAQ modeling framework, as a triple-nested simulation domain was applied. 

Domain 1 covers most of China of 36 km × 36 km horizontal resolution. Domain 2 

covers East of China with 12 km × 12 km horizontal resolution. Domain 3 covers Perl 

River Delta (PRD) with 4 km × 4 km horizontal resolution. Second, in terms of 

emission input data, we referred to Zhao et al. 2013a and 2013b for the emissions in 

other provinces of China. The local emissions for other sectors (e.g., residential, 

power, and industrial sectors) in Macao were provided by the Macao Environmental 

Protection Bureau, together with the vehicle emissions estimated by this study. It is 

noted that the shipping emissions were not estimated by the local stakeholders due to 

the lack of ship position information (i.e., not in the local waters).  

Although the CMAQ model is more sophisticated in chemical transport mechanisms 

than the AERMOD model, however, there are still significant limitations. First, the 

number of 4 km x 4 km cells (note: 2 cells only occupied by Macao, and 4 cells 

occupied by Macao and Zhuhai together, which is the city adjacent to Macao) are 

quite rare to cover the entire Macao, which indicates less spatial resolution. Second, 

the simulated results using the CMAQ is much lower than observed levels. Although 

the AERMOD model may yield higher NO2 concentrations in traffic populated areas, 

however, the model limitations would bring in considerable uncertainty (e.g., diurnal 

fluctuations). Thus, we suggest that future efforts are required to develop more 

advanced air quality model to enhance spatial heterogeneity and chemical transport at 

the same time. We add a discussion paragraph in the manuscript to highlight the 

research gap.  

We clarify that CO was not included in the CMAQ modeling study (we checked this 

issue with the researcher who operated the regional air quality modeling). This was 

because the regional emission inventory did not report results for CO. The regional 



background of ambient CO concentration was approximated by the CO concentration 

of an air quality monitoring station in the remote rural area of Hong Kong (air quality 

data in the Mainland China were not publicly available then). 

Zhao, B.; Wang, S. X.; Dong, X. Y.; Wang, J. D.; Duan, L.; Fu, X.; Hao, J. M.; Fu, J., 

Environmental effects of the recent emission changes in China: implications for 

particulate matter pollution and soil acidification. Environmental Research Letters 

2013a, 8, (2). 

Zhao, B.; Wang, S.; Wang, J.; Fu, J. S.; Liu, T.; Xu, J.; Fu, X.; Hao, J., Impact of 

national NOx and SO2 control policies on particulate matter pollution in China. 

Atmospheric Environment 2013b, 77, (0), 453-463. 

 

(2) Page 6, Lines 6-15: What were the criteria used that defined a “typical” road link? 

Especially, how were the 5 road links investigated for the entire day chosen? For 

example, in Figure S3, it appears that many of the observations were on arterial and 

residential roads, and relatively few observations on freeways. However, I would 

think it would be more important to characterize the freeways since they have much 

higher traffic volumes, and account for a significant fraction of vehicle traffic. Also, it 

would help to create a map similar to Figure S6, showing traffic volumes for each link 

simulated using the TransCAD model, and to also highlight which links were 

surveyed. 

First, the tropology of road network in Macao is significantly different with that in 

other large cities in Mainland China or the US. Because of very densely populated 

city landscape, the total number and length share (e.g., 12%) of urban freeways in 

Macao are less than other larger cities. These urban freeways in Macao are all three 

cross-sea bridges or the main traffic corridors connected to these bridges. We agree 

with the reviewer’s comment that urban freeways should be paid more attention to. In 

this study, we investigated the traffic volume data for six urban freeway links, which 

accounted for 17% of the total length for urban freeways in Macao. This investigation 

proportion is higher than that for arterial roads and residential roads (both less than 

10%). The 5 typical roads were selected according to their road class and region (now 

noted in the revised manuscript), including one urban freeway, two arterial roads, two 

residential roads (see Page 6 Lines 9 to 13). The road links used in the GIS map are 

highly fragmented (e.g., average link length below 200 m for arterial and residential 

roads) because of the densely distributed and intersected roads, which also lead to 

lower proportions of the coverage. This issue is also the main reason to apply the 

TransCAD for volume mapping. We add a new figure (Fig. S2) in the Supplementary 

Information to highlight the links with observation data. 

 

(3) Page 6, Lines 27-28: It would help to show a line with trucks in Figure S2 to 

illustrate this point. 

We have revised the current Fig. S3 by adding the hourly volume fractions for trucks 

(LDTs and HDTs combined). In two regions (e.g., MP and TCC), the hourly volume 



fractions for trucks in the total fleet were both higher during daytime, and a major part 

was contributed by LDTs (~70% of total trucks in daytime).  

 

(4) Page 7, Line 2: To extrapolate to other hours using Equation 3, how consistent is 

the temporal variability observed across road links? If they are consistent, then it is 

appropriate to spatially model traffic flows for the 6 PM hour only, and to extrapolate 

traffic patterns to other times of the day. However, if they are not, I would imagine its 

better to run the traffic model for each hour of the day. To support the assumption that 

temporal variability is consistent across space, Figures 2 and 3 would benefit from 

estimating uncertainty bands for each road class shown. 

We add the standard deviations for hours from 6 a.m. to 11 p.m. in the Fig. 2 for each 

road category to indicate the traffic volume bias among individual roads. To improve 

the presentation quality, we split the figure into three sub-figures. Nevertheless, the 

wide bias of hourly traffic volume data are largely attributed to the variations in 

designed capacity (e.g., number of lanes), location and other issues. As for Fig. 3, 

adding the uncertainty ranges would be very occupied by too many makers in one 

figure. Thus, we state the spatial bias of hourly speeds during various hours and 

estimate the impact on the variability of emission factors (see Page 8 Lines 24 to 27). 

Therefore, to better watch the consistency of the temporal variability between 

individual roads, we estimate the average hourly allocation of traffic volumes for the 

period from 6 a.m. to 11 p.m (see the figure below, added as Fig. S5). The results 

indicate that the average correlation variations (i.e., the ratio of standard deviation to 

mean value) are 13% for freeways, 14% for arterial roads, and 16% for residential 

roads (note: observed data only, not including links without field investigation). 

Therefore, given the narrow relative bias regarding the temporal variability of traffic 

volume data, we use the traffic volume for 6 p.m. to estimate other times of the day as 

an efficient way, because running traffic demand models would also bring in 

uncertainty. We add this required information in the revised manuscript.  

 

 

 



 

 

 

Figure S5. Average allocations of hourly traffic volume in the total traffic volume 

from 6 a.m. to 11 p.m. Only roads with observed traffic volume data included in this 

figure. 

 

(5) Section 2.4: It is not clear from the description here of the EMBEV-Macao model 

whether gross-emitters are taken into account with the emission factor data collected 

between PEMS and remote sensing. Average emission factors could be significantly 

underestimated if gross-emitters are not included (Bishop et al., 2012). Also, how are 

cold start emissions taking into account? It is ok to reference prior papers, but I think 

it is important to address these issues explicitly here. 

Bishop, G. A., et al. (2012), Multispecies remote sensing measurements of vehicle 

emissions on Sherman Way in Van Nuys, California, J. Air & Waste Management 

Association, 62.  

According to the reviewer’s comment, we revised this section with more clarifications 

about the emission factor development. We use the gasoline LDPV as an example to 

illustrate key processes. First, we used the remote sensing data to observe the 

long-term emission trends by model year and to develop several model year groups. 



Second, for each model year group, we developed the emission parameters according 

to the local PEMS results with adequate modifications. It is noted that the original 

EMBEV model has developed distribution functions of individual emission factors 

based on large-sized vehicle samples (e.g., dynamometer tests, PEMS tests). We 

applied the function curve (long-tail distribution with the presence of high-emitters) to 

estimate the effect of high-emitters. Third, according to the original EMBEV 

framework, we modified the parameters regarding speed correction and start 

emissions (both using the PEMS data) and corrected other local features (e.g., fuel 

quality, environmental conditions). For some fleets that have few tests data involved 

in the EMBEV model, we developed the emission factors based on the remote sensing 

results (e.g., motorcycles) (see Page 9 Line 28 to Page 10 Line 21). 

In the Table 4, we now have added the data sources for readers’ better information. 

 

(6) Page 9, Lines 17-18: It is important to describe here the advantages and 

disadvantages of Gaussian models in relation to the other types of models. As 

highlighted in Comment 1, I have concerns over whether Gaussian models can 

accurately model constituents that undergo complex chemistry, including 

NOx-VOCs-O3 and secondary aerosols, which are pertinent to this study. 

Please see our associated comments above.  

 

(7) Page 14, Lines 20-24: The authors mention that traffic loop detector data is 

collected in many Chinese cities. Is traffic loop detector data not being collected in 

Macao? If so, it should be mentioned here. 

In Macao, the intelligent transportation system is not well developed. The traffic loop, 

floating car system (based on taxis), and radio frequency identification detectors are 

not present in Macao. We note this in the revised manuscript (see Page 8 Lines 27 to 

29; Page 17 Line 28). 

 

(9) Figure 8: Why are results not shown for CO? It seems relevant to the model 

evaluation described (Page 15, Lines 29-31). 

As we have clarified in a previous response, regional CO concentration was not 

simulated by the CMAQ model. Therefore, we are not able to adequately use CO 

concentration to evaluate the model.  

 

(10) Page 16, Lines 16-20: Another source of uncertainty are effects due to chemistry 

(see Comment 1). 

Please see our response to the Comment 1 above. 

 

(11) Table 4. For the most part, the fleet-averaged emission factors seem reasonable, 



except for MDPV-Gasoline and LDT-Gasoline. Why are emission factors for CO and 

THC nearly as large as motorcycles, presumably with two-stroke engines, which are 

expected to have the highest emission factors for these pollutants? 

As our response to the first referee, we don’t have dynamometer or PEMS testing data 

for these two vehicle categories (e.g., LDT-Gasoline, MDPV-Gasoline) in Macao. We 

understand the concerns from the referee and revise the emissions by refereeing to the 

local remote sensing results. To be specifically, we now estimate their fleet-average 

emissions based on the ratios of their average fuel-based emissions to those of 

LDGVs. For example, the remote sensing results indicate that fuel-based emissions of 

THC, CO, and NOX are higher than LDPV-Gasoline by 285%, 172%, 132%, 

respectively, although the average engine size of the LDT-gasoline is smaller than 

that of LDPV-gasoline. So, fleet-average emission factors of LDT-gasoline for CO, 

THC and NOX are revised as 6.36 g km-1, 1.75 g km-1 and 0.61 g km-1 (See Table 4). 

High emission factors may attributed to relatively poorer usage and maintenance 

conditions of the LDT-gasoline for freight purpose than those of LDPVs mainly for 

passenger transportation. Changes for MDPV-gasoline are made in a similar way. It is 

noted that compared with LDPV-gasoline vehicles, the numbers of valid remote 

sensing samples for LDT-gasoline and MDPV-gasoline are both significantly less, 

indicating potentially higher uncertainty in emission factor results. However, on the 

other hand, the total traffic volume fractions for LDT-Gasoline and MDPV-gasoline 

are both less than 2.5%, so the variations in emission factors would only lead to minor 

variations in the total emissions (1% for CO and 4% for NOX).  

In terms of the estimated emission factors for MC, the reviewer understands correctly. 

The significantly higher THC emission factors for MC-light are because of two-stroke 

engines, and the deterioration is very significant according to the remote sensing data 

by model year (Zhou et al., 2014). Based on the remote sensing results, both MC-light 

(two-stroke) and MC-heavy (four-stroke) have higher CO emissions than gasoline 

passenger cars. 

Zhou, Y., Wu, Y., Zhang, S., Fu, L., Hao, J.: Evaluating the emission status of 

light-duty gasoline vehicles and motorcycles in Macao with real-world remote sensing 

measurement. J. Environ. Sci., 26(11): 2240-2248, 2014. 

 

 

(12) Tables 5 and 6. Too many significant figures are shown, especially for CO2. 

Probably no more than 3 significant figures are justified given uncertainties in 

emission intensities. 

We revise the data presentation for emissions by limiting significant figures less than 

three.  

 

(13) Figure S5. Where are weather stations located? Should be shown on Figure S1. 
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Abstract:  15 

Vehicle emissions of air pollutants created substantial environmental impacts on air quality for many 16 

traffic-populated cities in East Asia. A high-resolution emission inventory is a useful tool compared with 17 

traditional tools (e.g., registration data based approach) to accurately evaluate real-world traffic dynamics 18 

and their environmental burden. In this study, Macao, one of the most populated cities in the world, is 19 

selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air 20 

pollutant concentrations by coupling multi-models. First, traffic volumes by vehicle category on 47 typical 21 

roads were investigated during weekdays of 2010 and further applied in a networking demand simulation 22 

with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving 23 

speed and vehicle age distribution data were also collected in Macao. Second, based on a localized vehicle 24 

emission model (e.g., the EMBEV-Macao), this study established a link-based vehicle emission inventory 25 

in Macao with high resolution meshed in a temporal and spatial framework. Furthermore, we employed 26 

the AERMOD model to map concentrations of CO and primary PM2.5 contributed by local vehicle 27 

emissions during the weekdays of November 2010. This study has discerned the strong impact of traffic 28 

flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy 29 

of spatial allocation up to 26% between THC and PM2.5 emissions owing to spatially heterogeneous 30 

vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 31 

mailto:ywu@tsinghua.edu.cn
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emissions from gasoline vehicles were in a nice agreement with the statistical fuel consumption in Macao. 1 

Therefore, this paper provides a case study and a solid framework for developing high-resolution 2 

environment assessment tools for other vehicle-populated cities in East Asia. 3 

 4 

1. Introduction 5 

The soaring vehicle stock driven by social-economic development has created a series of substantial 6 

challenges regarding air pollution, energy insecurity, and public health within many countries (Uherek et 7 

al., 2010; Saikawa et al., 2011; Shindell et al., 2011; Walsh, 2014). At the national level, we take nitrogen 8 

oxides (NOX) emissions as an example as it is an essential precursor to the formation of ozone and nitrate 9 

aerosol in the atmosphere. On-road vehicles are currently responsible for 29% of national anthropogenic 10 

NOX emissions in China (MEP, 2014), 37% in U.S. (U.S. EPA, 2014) and 40% in Europe Union (EEA, 11 

2014; Vestreng et al., 2009). At the city level, the vehicular contribution to ambient nitrogen dioxide (NO2) 12 

concentration is very significant in traffic related areas (Carslaw et al., 2011). For example, in European 13 

countries where diesel vehicles make up a considerable part of private passenger cars, near-road NO2 14 

concentration exceeds the ambient air quality standard. This issue is seen as one of the most significant 15 

air pollution problems in Europe although great efforts have been made to cope with the NO2 exceedance, 16 

including the implementation of stringent emission standards for diesel vehicles (e.g., the latest Euro 6 17 

requirements) (Franco et al., 2014; Carslaw et al., 2011; Carslaw and Rhys-Tyler, 2013; Chen and Borken-18 

Kleefeld, 2014). Higher health risk as a result of exposure to vehicular emissions (e.g., particle, NOX) is 19 

understandable in traffic-populated cities, and is probably associated with the large resident population, 20 

greater traffic congestion and unfavorable dispersion due to dense buildings (Du et al., 2012; Ji et al., 21 

2012). In 2012, the International Agency for Research on Cancer Group 1 assessed the carcinogenicity of 22 

diesel emissions as “carcinogenic to humans” with sufficient evidence for it to be characterized as a cause 23 

of lung cancer (Benbrahim-Tellaa et al., 2012). 24 

The high-resolution vehicle emission inventory can be a valuable tool to accurately evaluate impacts 25 

on air quality and public health, as it can well reflect the close connections between environmental impacts 26 

and traffic flows. McDonald et al. (2014) analyzed the impacts of enhanced spatial resolution from 10 km 27 

to 500 m on vehicular CO2 emission inventory for Los Angeles, which clearly demonstrated substantial 28 

improvements in the accuracy for areas containing traffic-dense microenvironments (e.g., heavily 29 

trafficked highways). Consequently, link-based emission inventory is a preferred tool owing to its 30 

substantial advantage in spatial resolution for local traffic and environmental management. Over the past 31 
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decade, high-resolution emission inventory initiatives have been carried out in China’s vehicle-populated 1 

cities. Taking Beijing, the capital city of China for example, Huo et al. (2009) established a link-based 2 

emission inventory for light-duty gasoline vehicles (LDGVs) in the urban area based on estimated 3 

emission factors with the IVE model. However, significant emissions of NOX and fine particulate matter 4 

(PM2.5) may be attributed to heavy-duty diesel vehicles (HDDVs) instead of LDGVs, including the gross 5 

emitters registered in other provinces (Wang et al., 2011 and 2012a), whose contributions are currently 6 

not evidenced in the registration-based inventories for China’s vehicle-populated cities (Wu et al., 2011; 7 

Zhang et al., 2014a; Zheng et al., 2014). Wang et al. (2009) and Zhou et al. (2010) estimated vehicular 8 

emissions for the urban area of Beijing by using grid-based data of average speed and aggregated vehicle 9 

kilometers travelled. However, their resolutions are not sufficient to present hourly fluctuation of network 10 

traffic volume and quantify vehicular emissions at the link level.  11 

As traffic management actions become more important for vehicle emission control, such as the 12 

license control policies effective in seven vehicle-populated cities of China (e.g., Shanghai, Beijing, 13 

Guangzhou, Tianjin, etc.) and the Electronic Road Pricing (ERP) program adopted in Singapore (Goh, 14 

2002). We therefore envision greater demand for high-resolution vehicle emission inventories by local 15 

environmental protection administrations in the near future. A few technical barriers are expected to be 16 

shortly overcome for improving the high-resolution vehicular emission inventory based on the 17 

development experience of the London Atmospheric Emission Inventory (LAEI) (TfL, 2014). First, high-18 

resolution traffic data including traffic counts, vehicle speed and fleet composition should be investigated 19 

or estimated at the link level with hourly fluctuations. Second, real-world emission factors should be 20 

developed based on a sufficient measurement database to effectively address potential uncertainties (e.g., 21 

gaps between regulatory cycle and off-cycle conditions) (Carslaw et al., 2011; Wu et al., 2012; Zhang et 22 

al., 2014a). Third, technology allocations of the total fleet (e.g., traffic counts by fuel type and vehicle age) 23 

should be derived based on real-world traffic data instead of registration data, considering vehicular 24 

emissions are fairly sensitive to vehicle technology allocations (Vallamsundar and Lin, 2012). Finally, the 25 

application of high-resolution emission inventory can be significantly enhanced by extending the 26 

evaluation framework from vehicular emissions to pollutant concentration, which are of overriding 27 

concerns to residents, pedestrians and policy-makers (Vallamsundar and Lin, 2012; Misra et al., 2013). 28 

In this study, we selected Macao as a case city to demonstrate high-resolution simulation for vehicle 29 

emissions and primary concentrations of air pollutants in this traffic-populated city. Macao is well-30 

renowned for its tourism and gaming industry, which attracts numerous visitors and created a large 31 
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transportation demand. Owing to the absence of massive rail-based public transit system, which is now 1 

under construction in Macao, local transportation completely depends on on-road vehicles. The vehicle-2 

population density (including motorcycles, MCs) in Macao is approaching 7800 veh km-2 in 2014, 3 

significantly more dense as compared with other East Asian cities (e.g., 430 veh km-2 of Shanghai, 340 4 

veh km-2 of Beijing and 700 veh km-2 of Hong Kong) (DESC, 2014; HKS, 2014; NBSC, 2014). 5 

Furthermore, Macao’s total vehicle population has surpassed 240 thousand in 2014, more than double the 6 

level in 2000 (DESC, 2014). Significant gridlock has been caused due to rapid motorization in the Macao 7 

Peninsula during rush hours, when the average speed of arterial roads is frequently lower than 15 km h-1 8 

(TMB, 2010). On the other hand, local air quality data indicate several nonattainment sites for annual 9 

ambient PM2.5 and NO2 concentrations in the traffic-dense and residential areas of Macao (DESC, 2014). 10 

On-road vehicles have been identified as the major local contributor to air pollution, because industrial 11 

emissions in Macao are quite minor compared with the on-road transportation sector. Thus, there is an 12 

urgent need to attach importance to controlling vehicular emissions with the support of high-resolution 13 

emission inventory technology in this traffic-populated city.  14 

 15 

2. Methodology and data 16 

2.1 General study framework and components 17 

This study generally consists of three components: (1) characterizing hourly traffic profiles at the 18 

link level, (2) establishing a high-resolution vehicle emission inventory, and (3) simulating the 19 

concentrations of typical primary air pollutants (e.g., CO, PM2.5) contributed by local vehicle emissions 20 

in Macao (see Fig. 1). The core task of this study is to calculate emissions of air pollutants and carbon 21 

dioxide (CO2) from local vehicles meshed in the high resolution matrix of the “hour-link-vehicle 22 

technology group”, which is illustrated by Equation 1.  23 

 (1) 24 

where  are the emissions of pollutant category p from vehicle classification v during hour h for 25 

link l, kg h-1;  is speed-dependent average emission factor of pollutant category p for vehicle 26 

technology group defined by classification v, fuel type f and vehicle age y, g veh-1 km-1;  is the total 27 

length of link l, km;  is total traffic volume of vehicle classification v during hour h, veh h-1; and 28 

 is the volume fraction of vehicle technology group (e.g., model year group) defined by fuel type 29 

3
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f and vehicle age y. We define eight vehicle classifications in this study that were recognized from road 1 

traffic video records as follow: light-duty passenger vehicle (LDPV), MC, taxi, public bus (PB), medium-2 

duty passenger vehicle (MDPV), heavy-duty passenger vehicle (HDPV), light-duty truck (LDT) and 3 

heavy-duty truck (HDT).  4 

Therefore, we further characterized total hourly emissions from the total vehicle fleet based on the 5 

bottom-up method, namely from each link to the entire road net, as Equation 2 illustrates.  6 

 (2) 7 

where  are the total vehicle emissions of pollutant category p during hour h from the total vehicle 8 

fleet in Macao, kg h-1. In the following two sub-sections, we present detailed methods for developing high-9 

resolution traffic data and vehicle emission factors. Due to the time limitation on the traffic field 10 

investigation, we only focus the case study for weekdays during 2010; weekends were not investigated 11 

when traffic flows might be different. 12 

 13 

2.2 Summary of geography and road network in Macao 14 

Macao is one of the two Special Administrative Regions (SAR) in China lies on the western side of 15 

the Pearl River Delta, with a total land area of only 30 km2, which is the most densely populated city in 16 

the world (~20 thousand people km2) (DSEC, 2014). The Macao SAR now consists of the Macao 17 

Peninsula (MP) and the Taipa-Cotai-Coloane (TCC) islands (See Fig. S1). In particular, the CoTai 18 

Reclamation Area is a piece of newly reclaimed land on the top of the bay area between Taipa and Coloane, 19 

where new casinos and hotels have been constructed since land of Macao is scare. Nearly 90% of Macao’s 20 

total population is concentrated in the MP, where the population density is significantly higher than the 21 

combined density of Taipa-CoTai-Coloane (TCC) regions (i.e., 54 thousand vs. 4.3 thousand, unit in 22 

people km-2). The MP geographically consists of five regions, nominally parishes. Among those five 23 

parishes, the St. Anthony Parish where the Ruins of St. Pual’s Cathedral is located has the highest 24 

population density, which is approaching 120 thousand people km-2.  25 

Based on the GIS database of road network in Macao provided by the Macao Transportation Bureau, 26 

there were a total of 1704 road links in the study year of 2010. We categorized all those links into three 27 

road classes: urban freeways, arterial roads and residential roads, representing that the level of service 28 

decreasing from high to low. It should be noted that the road links are unevenly distributed among various 29 

h, p h, l, p, v

l, v

E E
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areas of Macao, but similar to the spatial patterns. For example, 77% of all road links (i.e., 1306 links) 1 

were concentrated in the Macao Peninsula, which were responsible for 59% of Macao’s total road length. 2 

 3 

2.3 Field investigation and simulation of link-based traffic data 4 

We investigated traffic data on 47 typical road links during three field investigation periods from 5 

Jan 2010 to Jan 2011 (i.e., nearly 20 weekdays during Jan 2010, May 2010 and Jan 2011) (see Fig. S2), 6 

according to the spatial heterogeneity of road network in Macao by covering all road classes and regions. 7 

The length coverage proportion of urban freeways was higher than that for arterial and residential roads, 8 

because of higher traffic volumes on the urban freeways. The real traffic flow records of each link was 9 

collected with a portable video camera for at least 20 minutes within each hour. Among all links 10 

investigated, 5 typical road links varying in road classes (1 freeway, 2 arterial roads and 2 residential roads) 11 

were investigated for the entire day (i.e., 24-h sampling). Sampling duration for the rest of the links 12 

investigated in general were from 6 a.m. to 11 p.m. (i.e., day-time sampling). Detailed hourly traffic 13 

volumes by vehicle classification for 47 road links were further broken down based on those original video 14 

profiles by major region and road class (see Table 1). We can clearly observe variations in hourly total 15 

traffic counts for three road classes, with significant peaks of traffic demand during morning and evening 16 

rush hours (see Fig. 2 and Table 1). 17 

Traffic volume fraction by vehicle classification is another essential type of data obtained from 18 

traffic video record (see Fig. S3 as an example of arterial roads). During the evening rush hour (6 p.m.), 19 

LDPVs and MCs contributed nearly 80% of total traffic volume, which are the two major vehicle types 20 

used for daily commuting demand in Macao. In particular, MCs are low-cost commuting vehicles for the 21 

relatively lower income group in Macao. Therefore, the observed traffic fraction of MCs (~45%) was 22 

higher than that of LDPVs (~35%) on arterial roads of the Macao Peninsula. By contrast, observed traffic 23 

fraction of MCs in the TCC was only approximately 15%. In addition to the spatial variations among 24 

various road classes and areas, we also observed temporal variations of various vehicle classifications. 25 

Taking arterial roads in the MP for example, their average traffic fractions of taxis were approximately 26 

10% during the day time (6 a.m. to 12 p.m.). During the night time (12 p.m. to 6 a.m.), accompanied by 27 

significantly reduced traffic demand of MCs and LDPVs, taxis could be responsible for 20~30% of total 28 

vehicle counts. Due to the minor economic contribution of local industry, the average traffic fraction of 29 

trucks in Macao indicating freight transportation was significantly lower than those in Beijing and 30 
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Guangzhou. Furthermore, for the other road links without observed traffic fraction data, we used the 1 

hourly and area aggregated proportions for further modeling (see Equation 3). 2 

   a, c, h, v a, c, h, l, v

(a, c) a, c, h, v

1

lTV

VF VF
N 

   (3) 3 

where a, c, h, vTF  is average traffic volume fraction for area a, road class c, hour h, and vehicle classification 4 

v;  a, c, h, vTVN  is the number of road links with the investigated traffic volume available for area a, road 5 

class c, hour h, and vehicle classification v; a, c, h, l, vVF  is the average traffic volume fraction for hour h, 6 

road link l and vehicle classification v and the link is in area a and under the road class c.   7 

The TransCAD 5.0 model was applied to estimate total traffic demand and its spatial allocation at 8 

the link level. TransCAD 5.0, one of the most widely-used traffic planning software, can estimate origin-9 

destination (OD) matrix of the road network from link traffic counts. In this study, we selected the multiple 10 

path matrix estimation (MPME) procedure provided by the TransCAD 5.0 and estimated total traffic 11 

volumes of all road links during the 6 p.m. hour with observed hourly traffic counts of 33 links as input 12 

data. After a number of iteration runs, the average discrepancy between simulated traffic volumes and the 13 

observed values (i.e., output vs. input) is 4.3% and the Pearson coefficient is 0.95, indicating statistically 14 

satisfactory results (see Fig. S4). We could identify wide variations in hourly traffic activity among 15 

individual roads of one road class group (see Fig. 2), and the variations may attributed to the difference in 16 

the designed traffic capacity (e.g., number of lanes) and location. In terms of the hourly allocation of 17 

traffic volume, which is a non-dimensional indicator of temporal variability, the results could indicate nice 18 

consistency among individual roads with much lower variations (see Fig. S5). Therefore, for other hours, 19 

we estimated hourly total traffic volumes based on the averaged temporal allocations and simulated traffic 20 

volumes during the 6 p.m. hour, as Equation 4 illustrates. 21 

 (4) 22 

where is the hourly total traffic volume for road link l during the hour h, veh h-1, and  is 23 

particularly the hourly data during the 6 p.m. hour simulated by the TransCAD if observed traffic volume 24 

data is unavailable); is the averaged ratio of hourly total traffic volume during the hour h to daily 25 

total traffic volume for the area a and the road class c. Therefore, the traffic volumes by vehicle 26 

classification are further estimated based on the traffic fraction data averaged by area, road class and hour. 27 

The total 24-h traffic activity by vehicle classification can be estimated with Equation 5.  28 
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23

 v l h, l, v
h, l

h=0 l

dailyTA TV L VF     (5) 1 

where  vdailyTA  is the daily traffic activity in the entire research domain for vehicle classification v, veh 2 

km d-1; h, l, vVF  is the hourly traffic volume fraction for hour h, link l and vehicle classification v, and if 3 

the h, l, vVF  is not available from the traffic field study data, h, l, vVF  would be applied by the aggregated 4 

data (i.e., a, c, h, vVF , (a,  c)l ) that is estimated according to Equation (3)  5 

In addition to traffic volume, traffic condition indicated by link-based hourly speed is another 6 

category of essential input data. First, we used a portable GPS receiver to collect second-by-second vehicle 7 

trajectory data for on-road vehicles during the same field sampling periods of traffic counts. Considering 8 

the distinctions of driving behaviors among MCs, PBs and other vehicle classifications (e.g., passenger 9 

vehicles and trucks), like more frequent stops for PBs to discharge and receive passengers, we used a taxi 10 

equipped with the GPS receiver to chase LDPVs randomly to represent traffic conditions for on-road 11 

vehicles other than PBs and MCs. Each targeted vehicle was chased for at least 10 minutes. For PBs and 12 

MCs, we selected typical vehicles to record their traffic trajectory data. In this study, we collected traffic 13 

trajectory data of LPDVs, PBs and MCs for 32 hours, 24 hours and 8.4 hours, respectively, with high 14 

abundance of spatial and temporal distribution. Second, we integrate the original second-by-second GPS 15 

trajectory data with the road network GIS system to identify the road link information (e.g., link name, 16 

parish and road class) for each sampling second. Third, we estimated averaged hourly speed for each road 17 

class in each parish.  18 

a. c, h, v a, c, h, l, v

(a, c) a. c, h, v

1

lV

V V
N 

   (6) 19 

where a, c, h, vV  is average hourly speed for road class c, hour h, region r, and vehicle classification v 20 

(LDPVs, PBs, and MCs in this equation), km h-1;  a, c, h, vVN  is the number of link with the investigated 21 

speed available for road class c, hour h, area a and vehicle classification v; a, c, h, l, vV  is the average speed 22 

for hour h, road link l and vehicle classification v, km h-1, and the link is in area a and under the road class 23 

c. Considerable temporal and spatial variability in the hourly speeds across road links remained due to the 24 

limited data compared with the vast entire road network. For example, the coefficients of variation for the 25 

hourly speeds of arterial roads in the MP were 48%, 40%, and 48%, respectively, during a morning rush 26 

hour (14 road samples, 8 a.m.), a noontime hour (16 road samples, 12 noon), and an evening rush hour 27 

(13 road samples, 6 p.m.) within a single investigation day. In other cities or regions where intelligent 28 
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transportation systems (ITS) are developed, we suggest the application of ITS-informed traffic data to 1 

better capture the temporal and spatial traffic heterogeneity among various road links.  2 

To validate the speed profiles, we observed variations in average hourly speeds by area and road 3 

class for LDPVs as an example, which were aggregated by link-level speed profiles with traffic volume 4 

data taken into account (see Fig. 3). Clearly, average hourly speeds for arterial and residential roads in the 5 

MP were lower than 20 km h-1 for longer than 15 hours (e.g., from 6 a.m. to 8 p.m.), indicating extremely 6 

congested traffic conditions. In particular, average hourly speeds during the evening rush period (e.g., 6 7 

p.m. and 7 p.m.) were even less than 15 km h-1, which corresponded to the officially released data. In the 8 

TCC, where traffic is less populated, average hourly speeds for arterial and residential roads were 9 

significantly higher than those in the Macao Peninsula, ranging from 20 km h-1 to 40 km h-1 except for the 10 

6 p.m. hour. On the other hand, we could also observe differences of aggregated daily speed among various 11 

vehicle classifications (see Fig. S6). For example, average daily speed of taxis was 24.0 km h-1, higher 12 

than the 21.7 km h-1 of LDPVs, due to higher traffic volume fraction of taxis in the night time when there 13 

were usually free traffic flows. Similarly, average speed of HDTs was 27.0 km h-1, topping all vehicle 14 

classifications, because their traffic volume fraction was significantly higher in the TCC compared to the 15 

MP.  16 

 17 

2.4 Emission factor development and the integration with traffic data and vehicle age distribution 18 

We initiated a comprehensive measurement program of collecting real-world emission profiles since 19 

2010, in order to establish and update a localized emission factor model for vehicles in Macao (e.g., the 20 

EMBEV-Macao model). So far, more than 60 typical vehicles, LDPVs, taxis, PBs, LDTs and HDTs, have 21 

been measured on road by using a portable emission measurement system (PEMS). Furthermore, a large-22 

scale remote sensing vehicle emission measurement project was conducted during March and April 2008, 23 

which enabled the collection of fuel-based emission factors for MCs in Macao. Detailed experimental 24 

section in Macao and the measurement results are documented in several of our previous papers regarding 25 

gasoline, diesel and more advanced vehicles (e.g., hybrid electric vehicles) (Hu et al., 2012; Wang et al., 26 

2014; Zhang et al., 2014b; Zhou et al., 2014; Wu et al., 2015a and 2015b; Zheng et al., 2015). We 27 

developed an emission factor model, the EMBEV-Macao model, with reference to the modeling 28 

framework and methodology of the EMBEV model which is originally developed for the vehicle fleet in 29 

Beijing (Zhang et al., 2014a). Technically, these two emission measurement methods (PEMS and remote 30 

sensing) have their owner useful features and practical limitations for developing emission factors. As for 31 
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the PEMS testing, it could provide accurate measurement of real-world emissions for an entire trip for 1 

each vehicle. However, the PEMS method usually collects limited vehicle samples due to the expensive 2 

and time consuming experimental process. In contrast, the remote sensing method could collect large-3 

sized vehicle samples so it is capable of presenting the emission trends over a wide spectrum of model 4 

years and vehicle conditions (Zhou et al., 2014; Bishop et al., 2012). However, the short test duration and 5 

limited test sites of remote sensing measurements are also questioned for the representativeness of vehicle 6 

emissions (Lee and Frey, 2012; Chen and Borken-Kleefeld, 2015). Thus, we attempted to use the 7 

advantage of each measurement method to develop local emission factors. Tasking the gasoline LDPVs 8 

for example, the remote sensing results indicated that vehicles with model year (MY) later than 2004 have 9 

consistently lower gaseous emissions (Zhou et al., 2014), which were comparable to those of modern 10 

vehicles complying with the Euro 5 emission standard (Zhang et al., 2014a). We assumed these post-MY 11 

2004 gasoline LDPVs as one vehicle age group, and apply the basic emission parameters of the Euro 5 12 

for the post-MY 2004 gasoline LDPVs in Macao (e.g., basic emission factors, deterioration rates) with 13 

additional modifications. First, we developed localized speed correction curves based on a micro-trip 14 

method for each vehicle classification to integrate vehicle emission factors and traffic conditions at the 15 

link-level (Zhang et al., 2014b and 2014c; Wu et al., 2015). Second, we used the PEMS results to derive 16 

the extra emissions in the start stage, and modified the start emission parameters (e.g., gram per start). 17 

Third, the EMBEV-Macao model enables us to correct impacts of local temperature, fuel quality, air 18 

conditioning usage, and other aspects to the real conditions. For example, the sulfur content of gasoline 19 

and diesel were approximately 90 ppm and 15 ppm during 2010. In addition, the original EMBEV model 20 

has already developed detailed distribution functions of emission factors, which can address the effect of 21 

high emitters. It is noted several vehicle fleets have limited PEMS or dynamometer test data in China (e.g., 22 

MC), we developed their emission factors mainly based on the remote sensing results (Zhou et al., 2014). 23 

Considering that there was no significant policy influencing traffic flow composition during 2008-24 

2010, we estimated detailed traffic fraction by fuel type and vehicle age for each vehicle classification 25 

based on the vehicle information database from the 2008 remote sensing project (Zhou et al., 2014). It 26 

should be noted that some vehicle classifications have a single fuel type; e.g., gasoline for MCs and diesel 27 

for PBs. By contrast, other vehicle specifications like engine displacement have a more important effect 28 

on real-world emissions. Therefore, we also derived the on-road traffic volume split ratios by engine 29 

displacement for MCs and PBs (refer to the footnote of Table 2). Table 2 illustrates the detailed traffic 30 
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volume fraction by vehicle age and fuel type (or split by engine displacement for MCs and PBs) for each 1 

vehicle classification.  2 

 3 

2.5 Modeling dispersion of vehicular air pollutants 4 

Urban air quality models are commonly used to estimate the spatial distribution of vehicular 5 

pollutants by simulating their chemical and physical processes in the atmosphere within urban areas. 6 

Holmes and Morawska (2006) classified dispersion models into Box models, Gaussian models, 7 

Lagrangian models, Computational Fluid Dynamic (CFD) models. Currently, Gaussian models are 8 

recommended by the environmental protection agency of most countries all over the world. 9 

The AMS/EPA regulatory model (AERMOD) is a steady state Gaussian plume dispersion model 10 

which is recommended by U.S. EPA (U.S. EPA, 2004). The modeling system consists of one main 11 

program (AERMOD) and two pre-processors (i.e., AERMET and AERMAP). In addition, calculating 12 

urban boundary layer parameters and considering urban heat island effect makes AERMOD sensitive for 13 

local meteorological conditions. Recently, several studies have investigated the integration performances 14 

of the traffic simulation model, vehicle emission model and the AERMOD model. For example, 15 

Vallamsundar and Lin (2012) integrated MOVES and AERMOD models to simulate the PM2.5 hotspot 16 

cases of typical roads in U.S. cities (i.e., study domain area of ~0.5 km2) and provided some implications 17 

based on sensitivity analysis, such as narrowing the data gap between traffic, emissions and air quality 18 

models and further investigation of important local input data (e.g., traffic composition, fleet age 19 

distribution). Misra et al. (2013) also integrated a traffic simulation model, a vehicle emission model and 20 

the AERMOD model to estimate traffic-related pollution in downtown Toronto (i.e., study domain area 21 

of ~0.5 km2). It should be noted that, in those previous investigations at near-field level (Zannetti, 1990), 22 

the AERMOD simulated vehicular emissions as a series of point sources which approximate a traffic lane. 23 

Considering a significantly larger study area, higher road density and the scarcity of metrological 24 

data and surrounding building profiles in a sufficiently fine resolution, we divided the study domain into 25 

a grid of 350 square cells (500 m×500 m). Aggregated hourly vehicular emissions of major pollutants 26 

(e.g., CO and PM2.5) from all road links in each grid are used as the input data for the AERMOD. The 27 

receptors are placed at central points of all cells at a height of 2.0 m. In terms of the geographic data and 28 

the altitude information is obtained from the Google Earth. Building downwash effects are simulated by 29 

the AERMOD. In our study, we model the weekdays of November 2010 when rainy days were much 30 

fewer compared to other months. Hourly meteorological profiles from two monitoring sites located in MP 31 
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and TCC respectively, including temperature, wind direction, wind speed, relative humidity and air 1 

pressure are provided by the Department of Metrological Services in Macao. The northeasterly winds are 2 

prevailing during that month, supplemented by a minor part of northerly and easterly winds (see Fig. S7).  3 

It is noted that the AERMOD has the function of simulate the dispersion of NOX as well as the 4 

oxidation process from freshly emitted NO to ambient NO2 with simplified chemical mechanisms (U.S. 5 

EPA, 2015). For example, the AERMOD considers NO conversion to NO2 by reaction with ambient ozone 6 

(i.e., NO + O3 → NO2 + O2, which is used by both two EPA Tier 3 methods such as OLM and PVMRM) 7 

(U.S. EPA, 2015; Podrez, 2015). However, the NO/NO2 conversion module of the AERMOD is developed 8 

based on simplified mechanism and regressions using historical monitoring data, which may have several 9 

limitations compared to actual complex chemistry. First, there are numerous other reactions that would 10 

further oxidize NO2 to other NOY species (e.g., nitrate radical, nitrate acid, peroxyacyl nitrates), and 11 

Pollack et al (2012) suggest that the production of these NOY species may differ by period (e.g., daytime 12 

vs. nighttime; weekdays vs. weekends). However, these reactions removing NO2 from the atmosphere 13 

have not been considered by the AERMOD. Second, this basic chemical reaction in the AERMOD (NO 14 

+ O3 → NO2 + O2) is simply assumed to be instantaneous and irreversible on hourly basis (U.S. EPA, 15 

2015). The convention ratio is greatly dependent on the ambient ozone concentration (both OLM and 16 

PVMRM) and the estimated mixing status of ambient ozone in the plume (PVMRM). However, the spatial 17 

distribution of ambient ozone concentration in a city is highly heterogeneous (Murphy et al., 2007), which 18 

is a substantial hurdle to assure the simulation accuracy over a city-level area. For these reasons, we didn’t 19 

include the NO2 simulation results in the manuscript and according have a discussion on this issue in later 20 

section. 21 

 22 

3. Results and discussion 23 

3.1  Estimated traffic activity and vehicle emissions 24 

Table 3 presents spatially-explicit traffic counts during a typical weekday and an evening rush hour 25 

(i.e., 6 p.m.), respectively. More than 80% of total daily traffic counts were concentrated in the MP, 160% 26 

higher than the overall average of Macao. In particular, the Saint Antony Parish with internationally-27 

renowned tourist attraction (e.g., the Ruins of St. Paul’s) had a top hour-based density of daily traffic 28 

volume as a result of its substantial population density. Furthermore, traffic activity (unit veh km h-1 or 29 

veh km d-1) can be estimated as the product of traffic counts and link length, namely  and  (see 30 h, l, vTV
lL
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Equation 1), which is an essential indicator of vehicle-use intensity. Estimated daily traffic activity of 1 

Macao’s total vehicles in a typical weekday of 2010 is 4.04×106 veh km d-1 (see Table S1). LDPVs and 2 

MCs rank first and second among all vehicle classifications, accounting for 43% and 30% of total daily 3 

traffic activity in Macao. Therefore, fleet-average daily vehicle kilometers travelled (VKT) of LDPVs and 4 

MCs during weekdays of 2010 are 20.8 km and 11.7 km, respectively. If we ignore potential difference 5 

between weekdays and weekends, fleet-average annual VKT of LDPVs and MCs registered in Macao are 6 

7600 km and 4300 km as of 2010, which are quite comparable with our previous survey results. Those 7 

values could be only responsible for traffic demand within Macao, considering a part of LDPVs travel 8 

cross the boundary of the Macao SAR into Mainland China. It is worth noting that annual VKT of LDPVs 9 

registered in Macao is significantly lower than those of Beijing and Guangzhou (Zhang et al., 2013 and 10 

2014a). The major reason is the scale of Macao is much smaller than those megacities of Mainland China 11 

(e.g., Beijing, Guangzhou), approximately 15 km from the northernmost parish in MP to the Coloane 12 

Island. Since fewer MCs drive on the cross-sea bridges, a major part of MCs’ traffic activity (note: in 13 

particular for light-duty two-stroke MCs) is largely limited within MP or TCC. Therefore, traffic activity 14 

of MCs is lower than LDPVs although with higher traffic counts, whose estimated annual VKT is 15 

comparable to the value in Mainland China (e.g., 5000~6000 km) (Zhang et al., 2013 and 2014a). 16 

Table 4 presents estimated average distance-specific emission factors of major air pollutants by 17 

vehicle classification and fuel type for that typical weekday in Macao during 2010. Average CO and THC 18 

emission factors for gasoline powered LDPVs in Macao are significantly lower by 57% and 30%, 19 

respectively, compared to those of gasoline LDPVs registered in Beijing, although the average driving 20 

speed of LDPVs in Macao is lower than Beijing (e.g., ~22 km h-1 vs. 30 km h-1). A major reason for that 21 

estimation is a majority of the gasoline cars are imported from Japan, where vehicle emission standards 22 

are in general more stringent than those implemented in Mainland China (Wang et al., 2014). By contrast, 23 

compared to gasoline taxis in Beijing, diesel engines applied in the taxi fleet in Macao led to significantly 24 

higher NOX and PM2.5 emission factors by 3.5 times and 17 times (Hu et al., 2012; Zhang et al., 2014a). 25 

For heavy-duty trucks and buses, lower speed and a higher proportion of older vehicles result in higher 26 

NOX and PM2.5 emission factors for those heavy-duty diesel vehicles in Macao than those in Beijing. For 27 

MCs, in particular light-duty two-stroke MCs, their fleet-average THC emission factors are significantly 28 

higher than other vehicle technology types (Zhou et al., 2014).  29 

Estimated total vehicular emissions in a typical weekday during 2010 are 16.8 tons of CO, 3.58 tons 30 

of THC, 5.00 tons of NOX and 0.28 tons of PM2.5. As Fig. 4 illustrates, emission allocation patterns by 31 
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vehicle classification are different for various pollutant categories. Compared to well-controlled CO and 1 

THC emission factors of LDPVs, MCs are estimated to have been responsible for 69% and 72% of total 2 

vehicular emissions for CO and THC respectively. In particular, two-stroke MCs contribute 45% of total 3 

THC vehicular emissions, which led Macao government to initiate a replacement of two-stroke MCs with 4 

small-size four-stroke MCs after 2010. Further, a possible promotion of electric MCs in Macao is also 5 

under consideration by policy-makers in Macao. For both NOX and PM2.5, diesel-powered passenger fleets 6 

contributed 60~65% of total vehicular emissions, including PBs, taxis and HDPVs mainly owned by hotels 7 

and casinos. By contrast, diesel trucks contributed approximately 15% to 20% of total NOX and PM2.5 8 

emissions in Macao, substantially lower than the contribution of diesel trucks registered in other populated 9 

cities of China (e.g., 30~35% for Beijing and Guangzhou) (Zhang et al., 2013 and 2014a). This 10 

phenomenon should be attributed to the significantly higher passenger transportation demand than freight 11 

transportation in Macao, as tourism and entertainment industry is the pillar of the local economy. Our 12 

results clearly suggest policy-makers in Macao should carefully focus on various vehicle classifications 13 

when facing emission mitigation targets for various air pollutants. 14 

For CO2 emissions, unfavorable operating conditions like lower driving speeds and frequent use of 15 

air-conditioning systems resulted in substantial climate and energy penalties for passenger vehicles (e.g., 16 

LDPVs, taxis, PBs). For example, the estimated average CO2 emission factor of LDPVs is 263 g km-1 (see 17 

Table 4), a significant increase of approximately 25% compared to on-road measurement results under a 18 

higher average speed (205~210 g km-1 at 30 km h-1). This is equivalent to ~13 L per 100 km  fuel 19 

consumption, indicating a substantial increase of CO2 and fuel consumption under real-world driving 20 

conditions than those measured under the type-approval conditions applied in current regulatory systems 21 

(e.g., both Japan and Europe). Overall, the estimated total CO2 emissions from all vehicle classifications 22 

and all road links are 1001 tons during a typical day. LDPVs, PBs and taxis are estimated to have been 23 

responsible for 46%, 14% and 12% of total daily CO2 emissions, respectively (see Fig. 4), ranking in the 24 

top three among all classifications.  25 

Our previous evaluation indicates estimated macro uncertainty (i.e., annual emission inventory by 26 

using registration data) for air pollutants (e.g., CO, THC, NOX and PM2.5) is approximately -30%/+50% 27 

at a 95% confidence level (Zhang et al., 2014a). The skewed probability distribution is due to high emitters 28 

of air pollutants within the fleet. The uncertainty in CO2 emissions would be narrower due to detailed 29 

localized vehicle information and fuel economy data are used in estimation, plus it is strongly corrected 30 

by average speed. It is noted that the Macao SAR is a relatively closed island city with special broader 31 
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controls (e.g., road transport to Mainland China). Only the vehicles issued with special license plates in 1 

the Macao SAR and Guangdong province (i.e., two license plates) can be driven across the border. This 2 

circumstance offers an opportunity to validate the gasoline fuel CO2 emissions with the statistical fuel 3 

consumption record, since almost all the gasoline fuels are consumed by on-road vehicles in Macao. Our 4 

emission inventory estimated that total gasoline consumption by on-road vehicles in Macao would be 180 5 

t during a typical weekday of 2010 (note: the carbon mass fraction is assumed 0.87). If using this value as 6 

the daily average through 365 days in a year, total gasoline consumption would be 65.7 kt in 2010, 7 

compared to a statistical consumption amount of 81.7 thousand m3 (approximately 60 kt). The relative 8 

bias is within a reasonably narrow range (~10%) and can be attributed to two major reasons. First, the 9 

yearly estimation of gasoline consumption (65.7 kt) assumed the same vehicle activity on weekdays and 10 

weekends. The vehicle activity on weekends might be probably less than that on weekdays due to the 11 

absent commuting demand. Second, the gasoline price in Guangdong province was lower by 12 

approximately 20% than Macao during 2010, which could be an important incentive for the users of those 13 

LDPVs with two license plates to choose refilling their vehicles in Guangdong while using in Macao. For 14 

the diesel sector, the statistical data don’t specify the amount consumed by on-road vehicles, and non-road 15 

engines would contribute substantially to the total diesel use in Macao. We suggest further validation be 16 

conducted if the on-road diesel consumption amount is available, since diesel vehicles could considerably 17 

account for total NOX and PM2.5 emission even their traffic fractions are at a low level (Dallmann et al., 18 

2013). We could address the uncertainty in link-level vehicle emissions with the traffic big data (see the 19 

discussion in the next sub-section) available for typical roads in the future.   20 

 21 

3.2 Temporal and spatial variations in traffic-related emissions  22 

High strong correlations between temporal variations in traffic activity and emissions are clearly 23 

observed for all air pollutants and CO2 (R2>0.92, see Fig. 5). For example, the 6 p.m. hour contributed 24 

6.9% of total daily traffic activity, when hourly emissions of gaseous species (CO, THC, NOX and CO2) 25 

were responsible for 7.9%~8.7% of their daily emissions. This was because emission factors of gaseous 26 

pollutants and CO2 were increased during the rush hours due to lower driving speed. The increases were 27 

15%~26% for their emission factors compared to the daily averages. Compared with the night time, 28 

average gaseous emission factors of the total fleet were increased by 51%~120%. The elevation of PM2.5 29 

emissions in the rush hour was not as significant as gaseous species, because the traffic demand of diesel 30 
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fleets (e.g., HDPVs, taxis, PBs, trucks) was increased less relative to gasoline fleets (e.g., MCs, LDPVs) 1 

in Macao.  2 

Spatial distributions of vehicular emissions are associated with real-world traffic characteristics 3 

including total traffic counts, traffic conditions and fleet composition. To sum up, 58% of NOX, 52% of 4 

PM2.5 and 59% of CO2 vehicular emissions were estimated from the road network of the MP (see Fig. 6 5 

for NOX, Fig. S8 for other pollutants and Table S2 for the summary of spatial distribution). Meanwhile, 6 

76% of CO and 78% of THC emissions were aggregated from on-road vehicles within the MP. The 7 

discrepancy of emission spatial allocations between CO/THC and NOX/PM2.5/CO2 is primarily because 8 

the higher fleet penetration of MCs in the MP. That is to say, relative inaccuracy associated with emission 9 

spatial allocation by the top-down approach could be up to 20% if real-world fleet composition 10 

information is not taken into account. By contrast, the spatial allocations of NOX, PM2.5 and CO2 at three 11 

cross-sea bridges were estimated to be higher by approximately 55~110% than CO and THC, because the 12 

traffic volume fraction of MCs was significantly lower than in other regions, in particular compared with 13 

the MP.  14 

Detailed statistical profiles of spatial-related vehicular emission are summarized by length-specific 15 

emission intensity of road groups and area-specific emission intensity of gridded cells (see Table 5 and 16 

Table 6). Higher length-specific emission intensities of CO and THC are unexpectedly identified on 17 

arterial roads in the MP with less traffic accounts compared with their urban freeway counterparts, owing 18 

to higher traffic activity of MCs and more severe traffic congestion increasing all-fleet emission factors. 19 

For NOX, PM2.5 and CO2, higher length-specific emission intensities are all associated with higher level 20 

of service for the three road classes, both in the MP and the TCC. Area-specific emission intensities of all 21 

pollutants and CO2 had decreasing trends from north to south (i.e., from the MP to the Coloane Island), 22 

similar to the patterns of road density and traffic demand. Emission hotspots are identified in traffic-23 

populated cells of the MP, e.g., the region close the Ruins of St. Paul’s, where daily area-specific emission 24 

intensity of NOX was as high as 600 kg km-2 d-1. This level is ~4 times of that in the entire Macao and ~40 25 

times of the Coloane Island. Not surprisingly, significant near-field air pollution problems in MP are 26 

caused by those extremely higher vehicular emissions due to higher traffic activity density and more 27 

significant traffic congestion. 28 

It should be noted that increasingly broad application of an intelligent traffic system (ITS) and smart 29 

vehicle technologies can play a significant role in improving our understanding of dynamic traffic flows, 30 

namely enabling the big data collection regarding total traffic volume, fleet composition and traffic 31 
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conditions (e.g., speed). For example, the traffic loop detector (TLD) and the vehicle license plate 1 

recognition (VLPR) are both widely-used and economic ITS technologies that began in the early 2000s in 2 

China and are integrated to provide category-informed vehicle volume, on which many cities in China 3 

(e.g., Beijing, Guangzhou) depend to release official data including year-by-year variations in total urban 4 

traffic demand (BJTRC, 2013; Zhang et al., 2013). The traffic loop detector is able to provide vehicle 5 

passing speed, however, which is often criticized due to the limited coverage for the entire trips or entire 6 

traffic network. The floating car system, namely using the taxi fleet as probe vehicles based on GPS 7 

technology, is an advanced monitoring tool for real-time traffic conditions. Taking Beijing for example, 8 

its floating car system is capable of mapping link-based traffic conditions for the urban area (~1000 km2) 9 

every five minutes based on 66 thousand taxis and mesh urban average speed layer down at a link level. 10 

During 2012, 24-h average speeds of the urban area of Beijing were estimated at 23.2±2.3 km h-1 for 11 

weekdays and 26.9±3.9 km h-1 for weekends and holidays, respectively (BJTRC, 2014; Zhang et al., 12 

2014a and 2014b). Therefore, daily variations in traffic conditions could result in a coefficient of variation 13 

(i.e., the ratio of standard deviation to mean value) of 6% for the distance-specific CO2 emission factor all 14 

year around in Beijing. The speed correction applied for this variation estimation is also applicable to the 15 

Macao’s road network. If the evaluation level is refined into a link-level, the variability and uncertainty 16 

in vehicle emissions would be greater due to traffic flows became inherently greater as the spatial 17 

resolution was enhanced. For example, the variations in hourly speeds of arterial roads in the MP could 18 

led to variations (e.g., one standard deviation, namely 40% in the noon time and 48% in the rush hours) 19 

in fleet-average CO2 emission factors of gasoline LDPVs of approximately -20% to 45% during the noon 20 

time and -25% to 60% during rush hours relative to the average CO2 emission factor levels. In terms of 21 

total vehicle emissions, it would be further complicated since the traffic volume is inherently associated 22 

with the level of service (e.g., speed) in reality. Most recently, the radio frequently identification (RFID) 23 

technology has been applied in a few Chinese cities (e.g., Nanjing, the capital city of Jiangsu province) to 24 

provide more accurate vehicle recognition with detailed specifications (e.g., category, fuel type, emission 25 

standard, model year, and vehicle size) than the TLD and the VLPR. The RFID data in Nanjing are further 26 

connected with a smartphone application, based on which more capabilities like environmentally-27 

constrained traffic management (e.g., low emission zone, congestion fee program) could be developed in 28 

the future. From the perspective of vehicles, for instance, more real vehicle data can be accessed through 29 

the on-board diagnostic (OBD) decoders. The second-by-second data of driving conditions (e.g., speed, 30 

acceleration) are able to be combined with operating mode-based (e.g., VSP-informed) emission model 31 
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to provide finer emission estimations. While foregoing advanced traffic data collection methods (e.g., 1 

TLD, RFID, taxi fleet based floating car system) are not available in Macao, the framework of this study 2 

is technically feasible to large cities in China when the traffic big data are adequately available. 3 

 4 

3.3 Simulated concentrations of primary traffic-related pollutants in Macao 5 

Fig. 7 presents a spatial map of average concentrations of primary vehicle-contributed CO (see PM2.5 6 

in Fig. S9), which shows the simulated results of all receptors (i.e., central points of cells) with the 7 

AERMOD model. The spatial variations in simulated concentrations highly resemble the patterns of area-8 

specific emission intensity for vehicular pollutants. For example, average concentrations contributed by 9 

local vehicular emissions in Macao were 86.1 ± 89.4 μg m-3 of CO and 1.30 ± 0.91 μg m-3 of PM2.5, 10 

respectively (see Table 7). Highest receptor concentrations of CO and PM2.5 are 415 and 4.42 μg m-3, 11 

respectively, all occurring at traffic-populated cells in the MP. 12 

We further compared modeled concentrations of primary pollutants from local vehicles and official 13 

air quality data. Traffic contributions at the monitoring sites are approximated by simulated results for 14 

their closest receptors as to estimate monthly-average source proportions of on-road vehicles in Macao. 15 

Therefore, source proportions vary from pollutant categories and locations during the time framework of 16 

this study. For example, estimated proportions of vehicular CO emissions are ~25-30% in the MP and 17 

~15% in the Taipa Island, indicating lower impacts compared to regional contributions. With regard to 18 

PM2.5, estimated proportions of primary vehicular PM2.5 emissions are minor, since the atmospheric 19 

secondary PM2.5 considerably contributed by vehicle emissions is not considered in this study, which need 20 

to be applied with a very detailed regional emission inventory including all anthropogenic emission 21 

sources and complex air quality models with sophisticated source apportionment functions. This is beyond 22 

the scope of this paper. We acknowledge two aspects of uncertainty regarding the AERMOD simulation. 23 

First, the strong street-canyon effects in the building-dense MP which are not sophisticatedly addressed 24 

by the AERMOD. Tang and Wang (2007) coupled the OSPM model and detailed building-based 25 

geography layer to simulate CO concentrations in the MP under assumed traffic scenarios to address the 26 

street canyon effect. Second, the setup of 500 m×500 m cells used in the AERMOD simulation is not 27 

adequate to present the concentration gradients near major roads and the fine air pollution hotspots. For 28 

hotspots, advanced computational fluid dynamics (CFD)-based micro-scale air quality model coupled 29 

with sophisticated gaseous chemical mechanisms and aerosol dynamics are suggested to quantitatively 30 
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assess potential impacts and mitigation strategies from perspectives of traffic flows, weather conditions 1 

and architecture layout (Tong et al., 2011).  2 

Usually, ambient NO2 pollution in the urban area has strong associations with traffic emissions. In 3 

Macao, the ambient NO2 concentration exceedance of the 40 μg m-3 level were seen in Macao. However, 4 

as we note in the methodology section, we don’t include the NO2 results in the manuscript due to major 5 

model limitations of AERMOD (e.g., instantaneous time framework of the basic reaction, inadequate 6 

spatial-resolved ambient ozone concentrations, and lacking considerations of other NOX related chemical 7 

reactions). If the Community Multiscale Air Quality (CMAQ) model, a regional scale air quality model 8 

including regional transport and sophisticated chemical mechanisms, is applied to address these issues, 9 

the simulated NO2 results by using CMAQ would be significantly lower than observed concentrations 10 

(see Supplementary Information). Moreover, although a fine grid setup with a 4 km × 4 km resolution is 11 

used over Macao, only 6 cells would be created in Macao (note: 4 cells shared by Macao and Zhuhai 12 

together, a city in Mainland China and adjacent to Macao). Thereby, advanced air quality simulation 13 

technology with finer spatial resolution is required to make the use of this link-level emission inventory, 14 

since the urban air quality and health impact issues could be very spatially heterogeneous because of the 15 

land use policy and the topology of traffic network.  16 

 17 

4. Conclusions 18 

High-resolution vehicle emission inventory is a valuable assessment tool to achieve the fine air 19 

quality administration, in particular for traffic-populated East Asian cities where traffic management is an 20 

essential approach to reduce emissions. Due to the difficulties in obtaining link-level traffic flow data and 21 

localized emission measurement profiles, such a dedicated environmental tool has not been developed at 22 

the link-level which covers a whole city and all vehicle categories. This study selected the entire area of 23 

Macao, the most populated city in this world, to demonstrate a high-resolution simulation of vehicular 24 

pollution by coupling detailed local data collected and inter-disciplinary models (e.g., traffic demand).  25 

Our traffic flow investigation and simulation results showed that total daily traffic activity during a 26 

typical weekday of 2010 was estimated at 4.06 million veh km d-1. Passenger trips using MCs, LDPVs, 27 

taxis and buses were responsible for a dominant part of travel demand in Macao, accompanied by a smaller 28 

traffic fraction of on-road freight transportation (e.g., trucks) than other cities in Mainland China. Spatial 29 

heterogeneity of traffic flow characteristics has been discerned between the MP and the remaining parts 30 

(i.e., the TCC) of Macao. For example, the MP contributed over 80% of total traffic accounts in Macao 31 
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during a weekday of 2010 and MCs were more prevalent in this more populated peninsula compared to 1 

the TCC. Tremendous travel demand created during rush hours resulted in significant traffic congestion, 2 

indicated by an average speed lower than 15 km h-1 for arterial and residential roads in the MP.  3 

Based on a localized vehicle emission model (e.g., the EMBEV-Macao) and high-resolution traffic 4 

profiles regarding traffic volume, average speed and fleet composition, this study established a link-based 5 

vehicle emission inventory with high resolution meshed in a temporal and spatial framework (e.g., hourly 6 

and link-level). We estimated that total daily vehicle emissions in Macao were 16.6 tons of CO, 3.58 tons 7 

of THC, 5.00 tons of NOX, 0.28 tons of PM2.5 and 1001 tons of CO2 during a typical weekday of 2010. 8 

The gasoline fuel CO2 emissions based on the link-level inventory were in a good agreement with the 9 

statistical gasoline consumption record in Macao. MCs are the major contributor to CO and THC 10 

emissions due to their higher emission factors than LDPVs. Diesel-powered passenger fleets like buses 11 

and taxis contributed 60~65% of total vehicular emissions of NOX and PM2.5. With a special focus on the 12 

MP region, where traffic density and congestion are more significant, area-specific emission intensity can 13 

be higher than the average of the entire Macao area by 135% for CO, 145% for THC, 85% for NOX, 65% 14 

for PM2.5 and 90% for CO2. The geographic discrepancy of spatial allocation between THC and PM2.5 15 

emissions can be attributed to the spatially heterogeneous vehicle-use intensity between MCs and diesel 16 

fleets (e.g., higher use intensity of MCs in the MP); and this trait could not be identified by using the 17 

traditional emission inventory tool. From the perspective of temporal variations, hourly emissions of CO, 18 

THC, NOX and CO2 during the evening traffic peak could be responsible for 7.9%~8.7% of total daily 19 

emissions, when their emission factors were increased by 15%~26% compared to the daily averages due 20 

to the traffic congestion.  21 

We further employed the AERMOD model to quantify average concentrations of CO and PM2.5 22 

contributed by primary vehicle emissions in Macao. Our simulation indicated receptor-averaged 23 

concentrations from primary vehicle emissions were 84.5 ± 86.1 μg m-3 of CO and 1.30 ± 0.91 μg m-3 of 24 

PM2.5, respectively, during the weekdays of November, 2010. The highest receptor concentrations of CO, 25 

NOX and PM2.5 were 415 μg m-3 and 4.42 μg m-3, respectively, all occurring at traffic-populated cells in 26 

the MP. Advanced air quality simulation technology with higher spatial resolution and sophisticated 27 

chemical transport mechanisms is required to make the use of the link-level emission inventory and better 28 

address local air quality issues (e.g., NO2 pollution). This paper can provide a useful case study and a solid 29 

framework for developing high-resolution environmental assessment tools for other vehicle-populated 30 

cities in the world. We also highlighted the importance of real traffic data using ITS techniques and the 31 
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traffic big data approaches to future high-resolution simulation for larger cities in the East Asia and all 1 

over the world. 2 
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Tables 1 

 2 

Table 1. 24-h allocations of total traffic counts by region and road class during weekdays in Macao, 2010 3 

Region The Macao Peninsula The Taipa-CoTai-Coloane Region 

Road classes Freeway Arterial Residential Freeway Arterial Residential 

Hour 

0 0.021 0.017 0.021 0.021 0.017 0.022 

1 0.013 0.014 0.013 0.013 0.014 0.013 

2 0.011 0.009 0.011 0.011 0.010 0.011 

3 0.009 0.007 0.009 0.009 0.007 0.009 

4 0.008 0.007 0.008 0.008 0.007 0.008 

5 0.008 0.008 0.008 0.008 0.008 0.008 

6 0.021 0.024 0.020 0.021 0.024 0.021 

7 0.029 0.051 0.029 0.029 0.022 0.030 

8 0.051 0.057 0.059 0.048 0.053 0.061 

9 0.048 0.054 0.048 0.042 0.052 0.051 

10 0.044 0.049 0.050 0.046 0.055 0.049 

11 0.055 0.050 0.049 0.056 0.056 0.048 

12 0.051 0.056 0.055 0.051 0.056 0.058 

13 0.059 0.062 0.061 0.062 0.064 0.062 

14 0.060 0.066 0.064 0.070 0.073 0.059 

15 0.064 0.061 0.059 0.068 0.072 0.065 

16 0.066 0.061 0.060 0.071 0.070 0.046 

17 0.066 0.066 0.059 0.065 0.069 0.069 

18 0.071 0.066 0.076 0.062 0.060 0.070 

19 0.061 0.057 0.062 0.054 0.051 0.075 

20 0.049 0.045 0.052 0.049 0.046 0.045 

21 0.048 0.041 0.052 0.048 0.042 0.050 

22 0.047 0.039 0.042 0.047 0.039 0.039 

23 0.042 0.033 0.032 0.042 0.034 0.033 

 4 
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Table 2. Summary of age allocation for on-road fleets by vehicle classification in Macao 1 

Vehicle classification LDPV MC Taxi PB MDPV HDPV LDT HDT 

Sub-classification G a D b Heavy c Light c D Medium d Heavy d G D D G D D 

Ratio 0.99 0.01 0.68 0.32 1.00 0.33 0.67 0.53 0.47 1.00 0.25 0.75 1.00 

Vehicle age 

1 0.12 0.12 0.18 0.09 0.14 0.00 0.08 0.20 0.16 0.20 0.12 0.08 0.02 

2 0.10 0.17 0.15 0.08 0.13 0.00 0.08 0.17 0.17 0.06 0.17 0.18 0.15 

3 0.10 0.08 0.19 0.09 0.04 0.00 0.08 0.07 0.12 0.09 0.11 0.10 0.11 

4 0.10 0.11 0.14 0.07 0.06 0.00 0.18 0.06 0.02 0.10 0.03 0.09 0.04 

5 0.09 0.03 0.08 0.04 0.06 0.17 0.16 0.05 0.09 0.09 0.03 0.05 0.03 

6 0.06 0.05 0.05 0.07 0.02 0.12 0.14 0.05 0.03 0.09 0.09 0.04 0.01 

7 0.05 0.01 0.04 0.04 0.11 0.25 0.15 0.06 0.01 0.03 0.00 0.02 0.01 

8 0.05 0.02 0.04 0.07 0.16 0.05 0.05 0.08 0.01 0.05 0.05 0.02 0.00 

9 0.04 0.03 0.02 0.08 0.24 0.00 0.00 0.04 0.01 0.05 0.02 0.02 0.01 

10 0.04 0.06 0.01 0.13 0.01 0.07 0.00 0.06 0.02 0.04 0.01 0.03 0.02 

11 0.05 0.06 0.03 0.14 0.03 0.17 0.01 0.02 0.01 0.10 0.02 0.04 0.01 

12 0.05 0.04 0.02 0.06 0.00 0.00 0.03 0.03 0.01 0.04 0.01 0.04 0.02 

13 0.03 0.06 0.00 0.01 0.00 0.03 0.00 0.02 0.03 0.00 0.02 0.02 0.01 

14 0.04 0.05 0.01 0.01 0.00 0.10 0.00 0.02 0.03 0.00 0.06 0.04 0.04 

15 0.03 0.05 0.01 0.01 0.00 0.05 0.00 0.04 0.05 0.00 0.06 0.04 0.11 

16 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.03 0.04 0.03 0.04 0.06 0.16 

17 0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.05 0.04 0.06 

18 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.05 0.03 0.03 

19 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.02 0.02 0.07 

20 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.03 0.05 0.08 

Fleet-average vehicle age 6.7 7.3 4.4 7.2 5.8 8.6 5.5 5.7 7.9 6.0 8.1 8.1 11.4 

Note: a gasoline; b diesel; c breaking point of engine displacement 50 ml; d breaking point of engine displacement at 5.0 L.  2 
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Table 3. Spatially-explicit estimation of traffic counts in Macao 1 

Region 

Daily traffic counts by road 

class  

(105 veh) 

Hour-based density of traffic 

volume 

(104 veh h-1 km-2) 

Freeway Arterial Residential 
Daily 

average 

Evening rush 

hour 

(6 p.m.) 

Macao Peninsula 15.2 70.8 138.4 10.0 17.3 

  Saint Antony 

Parish 
2.8 20.5 35.0 25.3 44.3 

Taipa-Cotai-Coloane 6.9 13.9 28.8 1.0 1.5 

Taipa 2.2 12.5 17.8 2.0 3.1 

Cotai 3.6 1.4 7.1 0.8 1.3 

Coloane 1.1  3.9 0.3 0.5 

Total  22.2 84.7 170.2 3.8 6.5 

 2 

  3 
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Table 4. Estimated fleet-average emission factors under real-world driving conditions 1 

Vehicle 

classification 

Fleet-average emission factors (g 

km-1) Emission measurement 

data sources 
CO THC NOX PM2.5 CO2 

LDPV-Gasoline 1.74 0.34 0.28 0.006 263 PEMS a, RS b, EMBEV c 

MDPV-Gasoline 2.80 1.78 1.03 0.030 379 RS 

MDPV-Diesel 1.60 0.27 1.44 0.26 307 RS, EMBEV 

HDPV-Diesel 4.76 0.25 10.9 0.48 914 RS, EMBEV 

LDT-Gasoline 6.36 1.75 0.61 0.014 250 RS 

LDT-Diesel 1.69 0.65 4.03 0.35 485 PEMS, RS, EMBEV 

HDT-Diesel 7.40 0.94 12.3 0.95 1010 PEMS, RS, EMBEV 

Taxi 0.47 0.06 0.86 0.11 192 PEMS, RS 

MC-Light 7.95 4.07 0.26 0.030 39 RS 

MC-Heavy 10.2 1.18 0.38 0.012 86 RS 

PB-Medium 2.45 1.09 6.50 0.32 555 PEMS, RS, EMBEV 

PB-Heavy 6.05 0.35 15.8 0.57 1215 PEMS, RS, EMBEV 

Note: a PEMS measurement data in Macao; b Remote sensing data in Macao; c 2 

Dynamometer or PEMS measurement data of sufficient vehicle samples involved in the 3 

original EMBEV model (Zhang et al., 2014a). 4 
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Table 5. Length-specific emission intensity of total vehicular emissions during a typical 1 

weekday of 2010 2 

Region Road class 

Length-specific emission intensity 

(kg km-1 d-1) 

CO THC NOX PM2.5 CO2 

Macao Peninsula 

Freeway 141 28 43 2.6 9.05×103 

Arterial 195 42 39 1.9 7.82×103 

Residential 79 17 18 0.9 3.74×103 

Taipa-Cotai-

Coloane 

Freeway 73 12 41 2.9 7.41×103 

Arterial 54 9 35 2.3 595×103 

Residential 24 5 6 0.4 1.91×103 

Cross-sea bridges Freeways 109 22  59 4.0  10.8×103  

Total 

Freeway 106 20 48 3.1 9.07×103 

Arterial 122 25 38 2.1 6.85×103 

Residential 59 13 14 0.7 3.08×103 

 3 

Table 6. Area-specific emission intensity of total vehicular emissions during a typical 4 

weekday of 2010 5 

Region / Parish 

Area-specific emission intensity 

(kg km-2 d-1) 

CO THC NOX PM2.5 CO2 

Macao Peninsula 1368 297 312 15.5 6.37×104 

St. Lazarus Parish 3118 681 695 33.7 12.9×104 

St. Lawrence Parish 1407 303 305 15.4 6.13×104 

Our Lady Fatima Parish 1241 271 274 13.7 5.74×104 

St. Anthony Parish 2485 546 556 26.4 11.8×104 

Cathedral Parish 784 166 199 10.4 3.86×104 

Taipa 287 52 150 9.50 2.80×104 

CoTai Reclamation Area  155 27 70 4.67 1.41×104 

Coloane 50 10 15 0.88 0.44×104 

Total land area of Macao 566 120 168 9.42 3.37×104 

 6 

 7 
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Table 7. Simulated average contributions contributed by primarily vehicular emissions in Macao, weekdays during November 2010 1 

Region / Parish 

Simulated concentrations of primary vehicular emissions (μg m-3) 

CO PM2.5 

Mean Min Max Mean Min Max 

Macao Peninsula 199 57.8 415 2.03  0.67  3.89  

St. Lazarus Parish 330 270 415 3.14  2.59  3.89  

St. Lawrence Parish 180 139 265 1.72  1.32  2.47  

Our Lady Fatima Parish 171 77.8 209 1.64  0.67  3.21  

St. Anthony Parish 296 223 362 2.85  2.17  3.39  

Cathedral Parish 166 57.8 370 2.03  1.00  3.14  

Taipa 42.1 12.6 104 1.65  0.61  2.46  

CoTai Reclamation Area  37.1 11.2 63.1 1.08  0.27  2.39  

Coloane 16.9 7.0 54.1 0.29  0.12  0.63  

Total land area of Macao 84.5 7.0 415 1.30  0.12  3.89  

Note: Simulated results for November 6-8 are not accounted in this table due to the impact of rainfall. Mean, minimum and maximum 2 

values are for simulated average concentrations of each receptors in each region/parish during the study period. 3 
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Figures 1 

 2 

Fig. 1. Framework of high-resolution simulation for vehicle emissions and concentrations 3 

of vehicular pollutants. 4 

  5 
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 1 

 2 

 3 

Fig. 2. Mean hourly traffic accounts of observed links by road class during weekdays, 2010. 4 

The error bars indicate standard deviations of observed data, from 6 a.m to 11 p.m. 5 
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 1 

2 

 3 
 4 

Fig. 3. Variations in aggregated hourly speeds by road class and region for LDPVs during 5 

weekdays, 2010. 6 

 7 

 8 
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   1 
Fig. 4. Allocations of total vehicular emissions by vehicle classification 2 

 3 

  4 
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 1 
Fig. 5. Hourly allocations of vehicular emissions and traffic activity in Macao during 2 

weekdays, 2010. 3 

  4 



 - 37 - 

 1 
Fig. 6. The spatial distribution of NOX emission intensity for on-road vehicles in Macao 2 

during a typical weekday of 2010 3 
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  1 

Fig. 7. Simulated vehicle-contributed concentration of CO in Macao during weekdays of 2 

November, 2010 3 
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