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We thank anonymous referee (1) for the time he/she dedicated in reading and revising the 
manuscript and for the proposed suggestions to improve the manuscript quality.  

Anonymous referee (1) 

The manuscript presents OH reactivity measurements from a receptor site in the Western 
Mediterranean. OH reactivity represents an important top-down constraint on the amount of (OH) 
reactive species, which is directly relevant to radical cycling. At this site, which has low 
anthropogenic influence the OH reactivity furthermore mainly reflects the reactivity of biogenic 
volatile organic compounds (BVOCs) and their oxidation products. Important is also that the site 
has high terpene/isoprene ratios with a large contribution of alpha-terpinene, likely distinct from 
other sites for which OH reactivity has been reported. The manuscript thus presents a valuable data 
set providing insight into our understanding of contribution of BVOCs and their oxidation products 
to radical cycling. Two periods are identified that show larger discrepancies between the measured 
reactivity and that calculated from observed BVOCs and their reaction products. The work is an 
important addition to understanding the emission and fate reactive carbon in the atmosphere and 
should be published after the following comments have been addressed. 

1. It would be very helpful to learn a little more about the OH reactivity measurement. 

(a) 

(i)How does the instrument sample the air and does this allow for observations of sesquiterpenes in 
the OH reactivity instrument or will they likely be lost. This is important for the comparison with 
calculated reactivity as sesquiterpenes were not observed. 

(ii)The CRM sampled air through a 3 m long, 1/8’’ OD PFA sampling line at a flow rate of 0.25 
L/min with a residence time of the sample of 3 s. The sampling line was covered and kept at 
ambient temperature and installed at about 1.5 m above the trailer were the CRM was placed. We 
did not use any sampling pump before the reactor, but we used a PFTE filter at the inlet of the 
sampling line to avoid sampling particles. We think that the CRM was unable to sample 
sesquiterpenes due to losses on the walls of the sampling lines and/or on the filter surface. Sampling 
from CRM and GCs/PTR-MS instruments occurred within an area of about 100 m2. The sampling 
system for the PTR-MS consisted of a 5 m PFA sampling line, installed above the PTR-MS trailer 
(see Fig. 1). The line was covered and heated at 50°C. The residence time in the PTRMS sampling 
line was 4 s. The PTR-MS was operated at 1.33 mbar pressure and 40°C temperature of the drift 
tube for an E/N of 135 Td. Calibrations were performed every three days using certified gas 
mixtures including 15 VOCs (Restek, France), 9 VOCs (Praxair, USA), 9 OVOCs (Praxair, USA). 
More details on the calibration standards can be found in Michoud et al. (Atmos. Chem. Phys. 
Discuss., doi:10.5194/acp-2016-955, in review, 2017). The PTR-MS may have sampled a fraction 
of the sesquiterpenes but did not detect them during the campaign. The Mediterranean maquis 
around the site is expected to emit sesquiterpenes but they were very likely lost before sampling due 
to their high reactivity in ambient air and due to adsorption in the sampling lines. We added a few 
remarks in the text.  

(iii) page 5, line 25 please add:  
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Sampling was performed through a 3 m long, 1/8’’ OD PFA sampling line at a flow rate of 0.25 
sL/min with a residence time of the sample of 3 s. The sampling line was covered and kept at 
ambient temperature and installed at about 1.5 m above the trailer were the CRM was placed. We 
did not use any sampling pump before the reactor, but we used a PFTE filter at the inlet of the 
sampling line to avoid sampling particles. Some highly-reactive chemical species (i.e. 
sesquiterpenes) may have been lost before reaching the reactor due to wall losses in the sampling 
line and/or filter surface.  

Line 5, page 7, please add: 

Most of the chemical species used to calculate the OH reactivity were measured by PTR-MS and 
GC. The sampling system for the PTR-MS consisted of a 5 m PFA sampling line, installed above 
the PTR-MS trailer (see Fig. 1). The residence time in the sampling line was 4 s. The PTR-MS was 
operated at 1.33 mbar pressure and 40°C temperature of the drift tube for an E/N of 135 Td. The 
PTR was calibrated every 3 days using certified mixtures of different VOCs  (15 VOCs from 
Restek, France, 9 VOCs from Praxair, USA, 9 OVOCs (Praxair, USA). More details on the 
calibration standards are available in Michoud et al. (2017). The GCs were calibrated twice at the 
beginning and at the end of the field campaign with certified gas mixtures: one including 29 VOCs 
(Praxair, USA), another including 29 NMHCs and three terpenes (NPL, UK). 

(b) 

(i)Definition of OH reactivity. There are a number of compounds in the atmosphere that after attack 
of OH can recycle OH rapidly. Probably the best known examples would be MACR, which recycles 
OH with a rate constant of 0.5 s-1 (Crounse et al. JPCA 116, 5756-5762, 2012, probably too slow to 
have an effect), isoprene hydroxyhydroperoxides forming isoprene epoxydiols, which likely recycle 
OH extremely fast, and RO2 that can recycle OH via reaction with HO2, (Praske et al. JPCA 119, 
4562-4572, 2015, for example). Depending on the HO2 concentration in the instrument and the 
residence time, this could result in an underestimate of the actual OH reaction rate. It should be 
simple to model this, for the example of MVK+OH with the instrumental HO2 and residence time 
between OH addition and detection of pyrrole in the PTR. 

(ii) OH recycling from unimolecular reactions such as the isomerization of peroxy radicals 
(MACRRO2) produced during the OH oxidation of methacrolein is not expected to be significant 
due to the large concentrations of HO2 in the CRM reactor. For instance, a HO2 concentration of 
1012 molecules/cm3 would lead to a reaction rate of 14 s-1 for the reaction of MACRRO2 with HO2, 
which is significantly faster than the unimolecular isomerization rate of 0.5 s-1 for MACRRO2. In 
addition, MACRRO2 will also react with other organic peroxy radicals present in the CRM reactor, 
especially peroxy radicals from pyrrole oxidation, reducing again the OH fraction recycled from 
MACRRO2 isomerization. For the same reason, the impact of OH recycling from the isomerization 
of isoprene derived peroxy radicals is expected to be negligible. 

OH recycling occurring when isoprene derived hydroxyhydroperoxide species (ISOPOOH) react 
with OH in the CRM reactor will effectively lead to an overestimation of the calculated reactivity 
since ISOPOOH can be mistaken for MVK+MACR and the measured OH reactivity does not 
reflect the neutrality of the ISOPOOH-OH reaction. ISOPOOH was not measured during the 
ChArMEx field campaign but Liu et al. (PNAS, 13, 6125-613, 2016) showed that the 
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ISOPOOH/(MVK+MACR) ratio ranges from 0.4-0.6 for the pristine area of the Amazon forest. 
This ratio is anticorrelated to NOy concentrations, which are very low in the Amazon forest. The 
NOx measured during our campaign were low as well, 600 pptv on average, therefore from the 
study of Liu and coworkers we can assume a range between 0-0.4 as an upper limit for ISOPOOH 
concentration in Corsica. During ChArMEx, [MVK+MACR] was 88 pptv on average, therefore we 
can assume [ISOPOOH] to be between 0-35 pptv. For such conditions, the calculated OH reactivity 
due to MVK+MACR would be overestimated of 0.03 s-1 on average. 

 
Recycling of OH can also occur when acyl peroxy radicals react with HO2. For instance Dillon and 
Crowley (ACP, 8, 4877-4889, 2008) measured an OH yield of 0.5 for the reaction between 
acetylperoxy (CH3CO3) and HO2. CH3CO3 is produced in the CRM reactor during the OH-
oxidation of acetaldehyde. The oxidation of higher aldehydes will also lead to acyl peroxy radicals 
that are likely capable of recycling OH. We investigated the impact of this chemistry on CRM 
measurements using the modeling methodology described in Michoud et al. (AMT, 8, 3537-3553, 
2015). The simulations showed that the OH reactivity would be underestimated by approximately a 
factor of 2 for acetaldehyde. Measured acetaldehyde contributed to an OH reactivity of 0.12 s-1 on 
average during ChArMEx. Assuming an underestimation by a factor 2 for the OH reactivity due to 
acetaldehyde would lead to an underestimation of 0.06 s-1 on average. Concentrations of other 
aldehydes were lower than for acetaldehyde and the underestimation of the measured OH reactivity 
related to these compounds is expected to be negligible. 

 
OH recycling from the reaction of other hydroxy-containing RO2 radicals with HO2 was also 
studied by Dillon and Crowley (ACP, 8, 4877-4889, 2008). The authors highlighted that OH was 
not a major product for the reaction, with an upper limit for the OH yield of 5-6%. An 
underestimation of the total OH reactivity from OH recycling from these species will therefore be 
negligible. 
As a whole, the OH recycled by ISOPOOH and acetaldehyde would lead to a lower calculated 
reactivity by 0.03 s-1 and a higher measured reactivity of 0.06 s-1. Since the measured OH reactivity 
was on average 5±4 s-1, and the summed calculated OH reactivity was 3±2 s-1, the recycling effects 
are negligible.  

This is briefly commented in the manuscript. 

(iii) Line 12, page 6: 

The impact on CRM measurements of OH recycling reactions observed during the oxidation of 
some ambient species (e.g. methylvinylketone and methacrolein (MVK+MACR), isoprene 
hydroxyhydroperoxides (ISOPOOH), aldehydes) was determined to be negligible due to the low 
concentrations of these species and the high HO2 concentration in the CRM reactor, which disfavor 
unimolecular reactions. 

2. (i)P. 3 line 13: I did not see how this work “better elucidates the chemical processes, including 
ozone and secondary organic aerosol formation...over the Mediterranean basin”. This requires more 
than comparing observed with calculated concentrations, i.e., a more quantitative framework 
addressing these chemical processes, ozone, SOA. I suggest removing this statement and simply 
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stating, what the very nice observational data at one specific location in the Mediterranean set 
actually shows, which is what the two bullet points do. 

(ii)The referee is right, this study provides some elements but they are not enough to better 
elucidate the complexity of the atmospheric chemical processes, which is not actually done in the 
article, so this sentence is removed from the manuscript. 

(iii)Please, substitute line 13 p. 3 with: “In our study, we address the following scientific 
questions:”  

3.  There are too many references to work in preparation. 

(a)  

(i) P. 12 line 27-30. The comparison GC and PTR has to be shown. It is mentioned that isoprene 
correlated well for the GC and PTR but they could be of by a large factor. This has to be shown in 
the manuscript.  

In extension of this, how were the GC and PTR measurements calibrated? Uncertainty in these 
directly relates to uncertainty in calculated reactivity. Extending the section on the (O)VOC 
measurements would be very helpful to this end. How was the terpene reactivity calculated, was the 
speciated one from the GC scaled up to give the same total as the PTR measurement?  

I also recommend extending table 1, to include the rate constants used. 

(ii) GC and PTRMS measurements were compared for isoprene and monoterpenes. The regression 
between the measurements of isoprene is reported in Fig 2 included in the supplementary material, a 
comment is also added in the text.  

Figure 2 (supplement): 

 

Most of the chemical species used to calculate the OH reactivity were measured by PTR-MS and 
GC. The sampling system for the PTR-MS consisted of a 5 m PFA sampling line, installed above 
the PTR-MS trailer (see Fig. 1). The residence time in the sampling line was 4 s. The PTR-MS was 
operated at 1.33 mbar pressure and 40°C temperature of the drift tube for an E/N of 135 Td. The 
PTR was calibrated every 3 days using certified mixtures of different VOCs  (15 VOCs from 
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Restek, France, 9 VOCs from Praxair, USA, 9 OVOCs (Praxair, USA). More details on the 
calibration standards are available in Michoud et al. (2017). The GCs were calibrated twice at the 
beginning and at the end of the field campaign with certified gas mixtures: one including 29 VOCs 
(Praxair, USA), another including 29 NMHCs and three terpenes (NPL, UK). 

Total uncertainties from measurements (including precision and calibration procedure) were in the 
range 5-23% for compounds measured by PTR-MS and GC-FID,  and in the range 5-14% for GC-
MS. 

The monoterpenes OH reactivity was calculated using the speciated GC measurements, the 
concentrations were not scaled up to match the PTRMS measurements (sum of monoterpenes).   

The referee is right, section 3.2 is extended including more information of VOCs measurements and 
an extended version of table 1 is included in the supplementary material.  

(iii) Page 7 line 7, please add: 

Most of the chemical species used to calculate the OH reactivity were measured by PTR-MS and 
GC. The sampling system for the PTR-MS consisted of a 5 m PFA sampling line, installed above 
the PTR-MS trailer (see Fig. 1). The residence time in the sampling line was 4 s. The PTR-MS was 
operated at 1.33 mbar pressure and 40°C temperature of the drift tube for an E/N of 135 Td. The 
PTR was calibrated every 3 days using certified mixtures of different VOCs  (15 VOCs from 
Restek, France, 9 VOCs from Praxair, USA, 9 OVOCs (Praxair, USA). More details on the 
calibration standards are available in Michoud et al. (2017). The GCs were calibrated twice at the 
beginning and at the end of the field campaign with certified gas mixtures: one including 29 VOCs 
(Praxair, USA), another including 29 NMHCs and three terpenes (NPL, UK). Total uncertainties 
from measurements (including precision and calibration procedure) were in the range 5-23% for 
compounds measured by PTR-MS and GC-FID,  and in the range 5-14% for GC-MS. 

Page 13 line 22  

Isoprene was measured by both PTR-MS and GC and the results correlated within the measurement 
uncertainty (slope and R2 of the regression for 415 data points are 0.93±0.03 and 0.77, respectively; 
see supplement). A small offset in the scatter plot (approximately 100 ppt) may indicate a small 
interference at m/z 69 for the PTR-MS measurements. 

Page 14 line  2 

Here, the summed calculated OH reactivity is obtained from data of isoprene and monoterpenes 
measured by GC. 

Table 2. Rate constants for the reactions with OH of the measured OH reactants. 

Molecule  k i+OH (cm3molecules-1s-1) Reference 
a-terpinene 3.60E-10 Atkinson, 1986 
g-terpinene 1.76E-10 Atkinson, 1986 
limonene 1.69E-10 Atkinson, 1986 
isoprene 1.00E-10 Atkinson, 1986 
2-methyl-2-butene 8.72E-11 Atkinson, 1986 
b-pinene 7.81E-11 Atkinson, 1986 
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1,3-butadiene 6.66E-11 Atkinson, 1986 
T2-butene 6.37E-11 Atkinson, 1986 
T2-pentene 5.71E-11 Grosjean and Williams, 1992 
C2-pentene 5.71E-11 Grosjean and Williams, 1992 
C2-butene 5.60E-11 Atkinson, 1986 
a-pinene 5.33E-11 Atkinson, 1986 
camphene 5.33E-11 Atkinson, 1986 
styrene 5.30E-11 Chiorboli et al., 1982 
pinonaldehyde 4.00E-11 Davis et al., 2007 
hexane 3.70E-11 Grosjean and Williams, 1992 
ethyl vinyl ketone 3.60E-11 Grosjean and Williams, 1992 
3-methyl-1-butene 3.17E-11 Atkinson, 1986 
1-butene 3.11E-11 Atkinson, 1986 
MVK+MACR 3.00E-11 Atkinson, 1986 
1-pentene 2.74E-11 McGillen et al., 2007 
propene 2.60E-11 Atkinson, 1986 
m-xylene 2.45E-11 Atkinson, 1986 
NO  1.53E-11 Atkinson et al., 2004 
p-xylene 1.52E-11 Atkinson, 1986 
acetaldehyde 1.50E-11 Zhu et al., 2008 
mglyox 1.50E-11 Atkinson et al., 1997 
o-xylene 1.47E-11 Atkinson, 1986 
nopinone 1.43E-11 Atkinson and Aschmann, 1993 
dodecane 1.32E-11 Atkinson, 2003 
undecane 1.23E-11 Atkinson, 2003 
NO2 1.20E-11 Atkinson et al., 2004 
nonane 9.70E-12 Atkinson, 2003 
formaldehyde 9.38E-12 Atkinson et al., 2001 
ethylene 8.51E-12 Atkinson, 1986 
octane 8.11E-12 Atkinson, 2003 
ethylbenzene 7.51E-12 Atkinson, 1986 
1-butyne 7.27E-12 Boodaghians et al., 1987 
cyclohexane 6.97E-12 Atkinson, 2003 
2-methylhexane 6.69E-12 Sprengnether et al., 2009 
2,3,4-trimethylpentane 6.50E-12 Wilson et al., 2006 
2,3-dimethylpentane 6.46E-12 Wilson et al., 2006 
toluene 6.16E-12 Atkinson, 1986 
2,4-dimethylpentane 5.48E-12 Baulch et al., 1986 
2-methylpentane 5.20E-12 Atkinson, 2003 
hexane 5.20E-12 Atkinson, 2003 
pentane 3.84E-12 Atkinson, 2003 
2,2,3-trimethylbutane 3.81E-12 Atkinson, 2003 
n-butane 2.36E-12 Atkinson, 2003 
2,2-dimethylbutane 2.23E-12 Atkinson, 2003 
butiric acid 1.79E-12 Zetzsch, C. and Stuhl, F.. 1982 
benzene 1.28E-12 Atkinson, 1986 
methyl ethyl ketone 1.20E-12 Atkinson et al., 2001 
propionic acid 1.20E-12 Atkinson et al., 2001 
propane 1.09E-12 Atkinson, 2003 
methanol 9.00E-13 Dillon et al., 2005 
2,2-dimethylpropane 8.40E-13 Atkinson, 2003 
acetic acid 8.00E-13 Atkinson et al., 2001 
acetylene 7.79E-13 Atkinson, 1986 
formic acid 4.50E-13 Atkinson et al., 2001 
ethane 2.41E-13 Atkinson et al., 2001 
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acetone 1.80E-13 Raff et al., 2005 
CO 1.44E-13 Atkinson et al., 1976 
acetonitrile 2.20E-14 Atkinson et al., 2001 
methane 6.40E-15 Vaghjiani and Ravishankara, 1991. 
 
(b)  

(i) More importantly, I recommend removing the PMF factorization aspect from the manuscript. As 
the actual PMF factorization is not presented it is impossible to evaluate this. For example, how 
high is the covariance between these factors, or in other words, in how far are these factors 
significant. I also think that this section is speculative and does not add much value to the 
manuscript. For example, it is stated that the first period (23/7-27/7) is “dominated” by OVOCs, 
referring to figure 2. Inspection of figure 2, to me, does not show any such dominance. In fact, to 
me it looks like the primary BVOCs dominate during the day, but I could be wrong. I also don’t see 
how such a clear distinction as is made in the manuscript that the first period discrepancy is caused 
by “higher oxygenated chemicals” and for the second period by “oxidation products of BVOCs” is 
possible. This again requires a much more quantitative framework than presented here. The 
conclusion section thus is not very conclusive but rather has a lot of speculation. This does not 
detract from the importance of the observational data set and comparison with calculated reactivity. 

(ii) The comparison between OH reactivity and PMF factors as presented in the manuscript is 
indeed not at its best supported by literature and explanations. However, the PMF study adds more 
elements of comparison with the OH reactivity and offers an original alternative to look into these 
type of datasets. For this reason we prefer to keep the analysis but we modified the section in order 
to make the study more robust and less speculative.   

For the PMF factorization, the optimal solution was found after performing the PMF for different 
numbers of factors from 3 to 12. The best solution was finally retained regarding the residual, the 
rotational ambiguity and the minimum correlation between factor contributions in order to find the 
most independent factors.  

Figure 8 is modified to show the PMF factors and OH reactivity datasets, including the primary 
biogenic factor – instead of the ln (ethane/propane) plot - indicating the component of the primary 
compounds emitted by biogenic sources as significant.  

More information of PMF analysis are provided and additional information are available in the 
work of Michoud et al., now in review in ACPD (doi:10.5194/acp-2016-955). 

Additionally, it is true, as the reviewer noticed that OVOCs contribution to the calculated OH 
reactivity dominates over BVOCs during the first period (23/07-27/07). OVOCs and BVOCs diel 
contributions are similar (27% and 26% respectively) but BVOCs dominates during daytime (38% 
against 24%). We thank the referee also for the next comment. It is not possible to differentiate 
among oxidation products of BVOCs and higher oxygenated chemicals from the elements provided. 
We show however a number of elements to support the idea that oxidation products play an 
important role in the missing reactivity during both periods.  

The whole section has been rewritten. 
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(iii)Line 2, page 9, please add: 

The data set is considered as a X matrix composed of i samples and j measured chemical species; 
the analysis decomposes X into a product of two matrices: f the species profiles for each source, g 
the contribution of the factors to each sample for the minimized residual error e (eq.3). Finally the p 
factors that drive the concentration of the measured species are determined.   





p

k
ijkjikij efgX

1
*            (3) 

The optimal solution is found performing the PMF for a number of different factors from 3 to 12. 
The best solution in terms of residual error, rotational ambiguity and minimum correlation among 
factor contribution was finally retained in order to have 6 independent factors. From the 6 factors (3 
for primary anthropogenic sources, 2 for biogenic sources, 1 for oxygenated molecules from mixed 
sources both primary as secondary emitted), three are used to help interpreting the OH reactivity 
data set.   

The complete description of PMF analysis performed on the VOC database of the CARBOSOR-
ChArMEx campaign is available in Michoud et al., (2017).  

Figure 8: 

 

Figure 8. Time series of missing OH reactivity (left axis) reported with the factors obtained from 
positive matrix factorization analysis (right axis): primary-emitted biogenic volatile organic 
compounds factor (pBVOCs), oxygenated volatile organic compounds factor and secondary 
biogenic volatile organic compounds factor (sBVOCs). Missing data points of missing OH 
reactivity correspond to either data points ≤ 0 either data points of missing measured OH reactivity 
values. 

Please substitute section 4.4 and conclusions with:  
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Insights into the missing OH reactivity 

We here consider the contribution of each chemical group to the OH reactivity during the period of 
the campaign when a significant missing reactivity was observed (23/07/2013- 30/07/2013).  

We first focus on the primary-emitted BVOCs measured: isoprene and monoterpenes. Isoprene was 
measured by both PTR-MS and GC and the results correlated within the measurement uncertainty 
(slope and R2 of the regression for 415 data points are 0.93±0.03 and 0.77, respectively; see 
supplement). A small offset in the scatter plot (approximately 100 ppt) may indicate a small 
interference at m/z 69 for the PTR-MS measurements. 

Individual monoterpenes were either sampled on-line through GC-FID, or collected on adsorbent 
tubes to be analysed in the laboratory through GC-MS shortly after the campaign. At the same time, 
monoterpenes were also measured by PTR-MS as total monoterpene fraction since the instrument 
cannot distinguish between structural isomers. We compared the total monoterpene concentration 
observed by PTR-MS to the summed monoterpenes concentration from GC techniques and 
calculated a concentration difference between 0.2 and 0.6 ppbv(see supplement). Although small, 
the difference observed is significant, being outside the combined measurement uncertainty. Here, 
the summed calculated OH reactivity is obtained from data of isoprene and monoterpenes measured 
by GC. The unmeasured compounds could be either monoterpenes not detected individually, or 
monoterpenes lost in the sampling tubes after being collected. We roughly estimated how much OH 
reactivity can result from unmeasured monoterpenes: a number of monoterpenes emitted by 
Mediterranean plants surrounding the monitoring station were considered and a weighted reaction 
rate coefficient with OH of 1.56x10-10 cm3 molecule-1 s-1 was determined from them (see rosemary 
from Bracho-Nunez et al., 2011). A volume mixing ratio of 0.2-0.6 ppbv of missing monoterpenes 
results in 0.8-2.3 s-1of OH reactivity, which, even in the upper limit, is too low to explain the 
missing OH reactivity for the specific time frame, including during nighttime.  

Figure 6 shows the volume mixing ratios of BVOCs and oxidation products variability with local 
drivers, such as temperature, wind speed and solar irradiance. Volume mixing ratios are reported for 
the protonated masses measured by PTR-MS, including: m/z 69 (isoprene) and m/z 137 
(monoterpenes) for the primary-emitted BVOCs, and m/z 71 (isoprene first generation oxidation 
products: Methyl Vinyl Ketone (MVK) + methacrolein (MACR) + possibly isoprene 
hydroxyperoxides (ISOPOOH)), m/z 139 (nopinone, β-pinene first generation oxidation product), 
m/z 151 (pinonaldehyde, α-pinene first generation oxidation product) and m/z 111, m/z 113 
oxidation products of several terpenes. As recently reported by Rivera-Rios et al., 2014, the m/z 71 
might also include the ISOPOOH which could have formed at the site and fragmented inside the 
PTR-MS. However, it is important for the reader to know that we did not separate the different 
components of the m/z 71, therefore the presence of ISOPOOH on m/z 71 is assumed based on the 
recent literature. For all the above mentioned masses, except for m/z 111 and m/z 113, the 
corresponding rate coefficient of reaction with OH of the unprotonated molecule was found and 
their OH reactivity summed in the calculated OH reactivity. The reported time series show that both 
primary BVOCs and most of the OVOCs resulting from their oxidation had a diurnal profile. 
Temperature, light and wind speed affected both isoprene and m/z 71 while monoterpenes and 
corresponding products were more influenced by temperature and wind speed. Contrastingly, m/z 
113 was also present during nighttime in low amounts, which might indicate the presence of more 
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oxidation products associated with its formation present during the night. A sharp increase of m/z 
71, m/z 113, m/z 139 began after 26/07 when wind speed was lower and increased again after 27/07 
when also air temperature was higher. Although only a fair correlation was found for the measured 
OH reactivity with some masses, generally higher coefficients for all masses and good correlation 
coefficients of the linear regressions, specifically for m/z 71, m/z 111 and m/z 151 were found from 
July 27th to 30th. Some of these oxidation products (m/z 111, m/z 113, m/z 151) have already been 
observed in chamber and field studies (Lee et al., 2006, Holzinger et al., 2005) as they are formed 
from the photo-oxidation of different parent compounds belonging to the class of terpenes. 
Interestingly, the highest yields of the mentioned products were attributed to terpenes also common 
to the Mediterranean ecosystem, such as myrcene, terpinolene, linalool, methyl-chavicol and 3-
carene (Lee et al., 2006, Bracho-Nunez et al., 2011). 

The effect of temperature was also considered for the period of missing OH reactivity. However, it 
was only from July 27th that the missing reactivity showed a clear temperature dependence. 
Terpenes emissions are temperature dependent. Their emissions are usually fitted to temperature 
with the expression E(T) =E(Ts)exp[β(T –Ts)], where E(Ts) is the emission rate at Ts, β the 
temperature sensitivity factor and T is the ambient temperature. The dependence of the missing 
reactivity on temperature was originally demonstrated by Di Carlo and coworkers for a temperate 
forest in northern Michigan (Di Carlo et al., 2004). They found the same temperature sensitivity 
factor for the missing reactivity as for terpenes, β= 0.11 K-1, with a correlation coefficient of 
R2=0.92. Following the same approach, Mao et al., (2012) reported a β factor of 0.168 K-1 from a 
study in a temperate forest in California. They were able to explain the discrepancy between the 
measured reactivity and the calculated reactivity simulating the species formed from the oxidation 
of the BVOCs. Figure 7 displays a scatter plot of the missing OH reactivity observed during this 
study as a function of ambient temperature. Here, the coefficients β= 0.173 K-1 and R2=0.568 were 
found when data from July 27th -30th are plotted, whereas a weaker correlation and higher 
coefficient is found for data within the July 23rd -26th period. From the similarities with the study of 
Mao et al., (2012) we think that unmeasured oxidation products of BVOCs could be the dominant 
cause of missing OH reactivity at our field site. However, it should be noted that the missing OH 
reactivity can be influenced by processes that do not affect BVOC emissions, such as boundary 
layer height and vertical mixing (see also comments reported in Hansen et al., 2014).  

Positive Matrix Factorization analysis on the collected VOCs data sets at the site identified 6 
independent factors. These describe the source of the VOCs which includes: a primary biogenic 
factor (pBVOCs), a secondary biogenic factor (sBVOCs) and an oxygenated factor. The factor 
represtenting pBVOCs is composed of short-lived molecules directly emitted by biogenic sources, 
such as isoprene and the sum of monoterpenes. sBVOCs factor is composed by secondary oxidation 
products of biogenic-emitted molecules, such as: MVK+MACR, nopinone and pinonaldehyde. The 
oxygenated factor includes oxygenated molecules of mixed origin, both primary and secondary 
emitted, such as carboxylic acids, alcohols and carbonyls. Figure 8 reports the variability of the 
three factors with the missing OH reactivity. A clear influence on the missing OH reactivity is given 
by all the three factors: during daytime this is predominantly by pBVOCs and sBVOCs, while 
during nighttime it is driven by oxygenated molecules. Additionally, pBVOCs factor significant 
contributes to the OH reactivity during the whole campaign period, while sBVOCs factor is more 
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variable, higher during the missing OH reactivity event, suggesting a significant impact of 
unmeasured secondary species to the missing OH reactivity. 

Conclusions 

The total OH reactivity was used in this study to evaluate the completeness of the measurements of 
reactive trace gases at a coastal receptor site in the western Mediterranean basin during three weeks 
in summer 2013 (16/07/2013-05/08/2013). OH reactivity had a clear diurnal profile and varied with 
air temperature, suggesting that biogenic compounds were significantly affecting the local 
atmospheric chemistry. Ancillary gas measurements confirmed that most of the reactivity during 
daytime was due to biogenic VOCs, including relevant contributions from oxygenated VOCs, while 
during nighttime inorganic species and oxygenated VOCs had the largest contribution. The OH 
reactivity was on average 5±4 s-1 (1σ) with a maximum value of 17±6 s-1 (35% uncertainty). The 
observed maximum is comparable to values of OH reactivity measured at forested locations in 
northern latitudes (temperate and boreal forests as reported by Di Carlo et al., 2004, Ren et al., 
2006, Sinha et al., 2010 and Noelscher et al., 2013). This finding highlights the importance of 
primary-emitted biogenic molecules on the OH reactivity, especially where air temperature and 
solar radiation are high; even though our site was specifically selected for a focused study on mixed 
and aged continental air masses reaching the basin.  

A comparison between the measured OH reactivity and the summed reactivity from the measured 
species showed that on average 56% of the measured OH reactivity was not explained by 
simultaneous gas measurements during 23/07/2013-30/07/2013. During this period, the air masses 
originated from the West (23/07/2013-27/07/2013 and 29/07/2013-30/07/2013) and the South 
(27/07/2013-29/07/2013); calm wind conditions and peaks of air temperature were registered at the 
field site (28/07/2013). In contrast, when the site was exposed to air masses from the eastern and 
northern sectors, namely northern Italy and South of France, weak pollution events mostly enriched 
by anthropogenic gases were observed. In such cases, the measured and calculated OH reactivity 
values were in agreement. During 23/07/2013-30/07/2013 we observed increased concentration of 
BVOCs and OVOCs, lack of pollution events, higher temperature and relatively high missing 
reactivity (~10 s-1). Specifically, a maximum value of 2.3 s-1 of OH reactivity was estimated for 
unmeasured primary BVOCs, namely non-oxygenated monoterpenes. Such missing reactivity is not 
linked to any specific event and is rather distributed along the whole time frame of the campaign. 

During 27/07/2013-30/07/2013 an increase in oxygenated VOCs originating from the photo-
oxidation of primary-emitted BVOCs was also detected. Highest yields of these oxidation products 
(m/z 111, m/z 113, m/z 151) were attributed to terpenes, which are emitted in abundance by 
Mediterranean ecosystems (Lee et al., 2006, Bracho-Nunez et al., 2011). We found that the missing 
reactivity during 27/07/2013-30/07/2013 had a similar temperature dependency to a reported study 
conducted in a temperate forest in the US, for which model predictions highlighted that unmeasured 
oxidation products of BVOCs could explain the missing reactivity (Mao et al., 2012). We conclude 
that, specific to this period and ecosystem, unmeasured oxidation products of terpenes could be the 
cause of the observed discrepancy between measured and calculated OH reactivity. Complementary 
analysis, including PMF, helped confirm the influence of the secondary biogenic VOCs and 
highlighted the influence of oxygenated molecules during nighttime and part of the missing 
reactivity period (July 23rd-27th ).  
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Mediterranean plants are known to emit large quantities of reactive BVOCs, including 
sesquiterpenes and oxygenated terpenes (Owen et al., 2001), which were not investigated during our 
fieldwork. We assume therefore that these molecules, as well as their oxidation products, might also 
have played an important role in the missing OH reactivity detected.  

We can therefore answer the research questions addressed in the introduction, as the presence of 
missing reactivity reveals that some reactive compounds were not measured during the fieldwork. 
Most of these molecules were likely oxidation products of biogenic compounds. Two main 
conclusions are obtained from this study: first, although several state-of-the-art instruments were 
deployed for this campaign, major difficulties are still encountered for the accurate detection of 
oxygenated chemicals. Second, as various other studies on OH reactivity have pointed out so far, 
many unknowns are still associated with the photo-oxidation processes of BVOCs.  

Further studies with chemical and transport models to identify the important chemical functions of 
these oxygenated molecules, as well as the effects of long-range transport would be beneficial to 
provide a complete picture of this work.  

Finally, as the Mediterranean basin differs from side to side, ( air masses reception as well as type 
of ecosystems) more intensive studies at different key spots, e.g. western vs eastern basin and 
remote vs. periurban ecosystems, would be helpful for a better understanding of the atmospheric 
processes linked to the reactive gases over the Mediterranean basin.  

4. (i) p. 10 line 1 and line 17-19: The measured reactivity peaks around 16:00. However, no 
calculated contribution peaks at that time but rather around 14:00, hence the statement that the OH 
reactivity diurnal profiles resembles the one of the BVOC OH reactivity, which is significantly 
lower at 16:00 is not correct. This lag in the shape of the OH reactivity with respect to BVOCs, 
could lend support to oxidation products being important, which typically build up during the day, 
unless they are very short lived. 

(ii) We thank the referee for this observation. It is true, the OH reactivity has a diurnal profile but it 
does not agree with none of the profiles from the calculated reactivity. Also, it can support the 
importance of unmeasured oxygenated products. This sentence is modified in the text. 

(iii) Page 11, line 13, please add: 

Here, the shape of the diurnal pattern of the measured reactivity is slightly shifted to the BVOCs 
OH reactivity, which might suggest the influence of oxidation products of biogenic molecules. 

Additional/technical comments: 

(i) 

P. 1 line 27 “inferred” I would say that “calculated” from measured reactive gases. Inferred to me 
sounds like a vague, estimated process, but it is actually calculated here. 

P. 2 line 3 “the biogenic volatile compounds” I assume this means with the reactivity calculated 
from the concentrations of biogenic VOCs. As written it is vague and could mean concentration of 
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BVOCs, which probably is not ideal, as different BVOCs have different diurnal profiles, as pointed 
out in the manuscript. 

p. 2 line 5 associated respectively “with” instead of “to” 

p. 2 line 7. biogenic “gas” not “gases” 

p.2 line 7 delete “the” before “missing” 

p.2 line 14: typically I see volatile organic compounds written in lower case, even if explaining the 
acronym. 

p. 2 line 17 “all reactive compounds”, strictly “compounds reactive with OH” 

p. 2 line 18 product “of” not “between” 

p. 2 line 25 associated “with” 

p.2 line 26 delete “either” before “secondary generated” 

p. 2 line 28. I don’t think Portugal has a shore line on the Mediterranean, rather the strait of 
Gibraltar defines the western end of it, but I could be wrong. 

p. 3 line 1-2. Is it relevant afterward in the manuscript that these species have not been identified 
anywhere else? It seems out of context. 

p. 3 line 6, delete “a” 

p.3 line 10-12: I am not sure that one paper proves this. Other regions of the world are even less 
sampled. I would suggest rephrasing as that additional observations are useful, but a minor point. 

P. 3 line 18 “site” not “side” 

P. 3 line 27 “local anthropogenic pollutants” is a little vague. Does it mean the same compounds 
could be coming from somewhere else? 

P. 4 line 19: “measurements of gases and aerosol properties over a total surface area of ∼ 100 
square meters”. Please clarify, you measured the species across the whole area and nowhere else or 
the instruments were distributed over this area? 

p. 8 line 17: “Here,...here” 

p. 9 line 16 either “maximum” or “peak” 

p. 9 line 31: To me the reactivity in figure 3 looks as it goes to about 4s-1 but not below 3s-1 at 
night. 

P. 10 line 22: delete “to” in front of “the largest fraction” 

P. 10 line 26 “larger” than what or simply state “large” 
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P. 11 line 18: Is it true that monoterpenes in all plant species have only-temperature dependent 
emission? 

P. 11 line 14-30. It would be very helpful to have references to all reaction rate constants used for 
the calculated reactivities (I may have missed this, and apologize if I did). 

P. 11 line 26: I do not understand the “hence” used here 

P. 12 line 7. Perhaps clarify how the discrepancy is calculated, i.e.., calculated was 56% lower than 
measured, was 56% of measured, or measured was 56% higher than calculated etc. 

P. 12 line 15: On the other “hand” 

P. 12 line 16 “of “ the wind sector 

P. 12 line 22-23. Again, at least during the day BVOCs dominate OVOCs, so statement as made, 
does not seem accurate. 

p. 13 line 9: “or” monoterpenes. 

p. 13 line 17-18: “Figure 6 shows the variability of the volume mixing ratios of BVOCs and 
oxidation products with local drivers such as temperature...” 

P. 14 line 2 “effective” What does it mean for wind speed to be effective for monoterpernes? 

P. 14 line 5 “small” instead of “little” 

P. 17 line 11: Perhaps the term “secondary biogenic VOCs” could be redefined as it is a little 
unusual. 

Figure 2: Does others not include methane, which probably contributes around 0.3 s-1. 

Figure 3: Please add a total calculated reactivity trace, which would be very helpful. 

Figure 7: Please show the same for the second period. 

Lastly, the manuscript may benefit from language editing by a native speaker, if this is possible. 

(ii) All comments were taken into account in the text and figures, we are very thankful to referee for 
the suggested edits. In figure 2 “others” refer only to CO and NOx.  

Figure 3: 
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Figure 3. Diurnal patterns of measured (value with ±1σ, right axis) and calculated OH reactivity 
(left axis). Others, AVOCs, OVOCs, BVOCs are the contribution of CO and NOx (others), 
anthropogenic volatiles, oxygenated volatiles and biogenic volatiles to the summed calculated OH 
reactivity. 

Figure 7: 

 

Figure 7. The difference between measured and calculated reactivity (missing OH reactivity) during 
July 23rd -26th July (red data points) and during July 27th -30th (black data points), dependence to 
temperature. The missing OH reactivity is fitted to E(T)=E(293) exp(β(T-293)), with β=0.37 K-1 
and R2=0.47 during July 23rd -26th July and β=0.17 K-1 and R2=0.57 during July 27th -30th.  

(iii) Please consider the final version of the manuscript for the technical edits. 
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We thank anonymous referee (2) for revising the manuscript and providing helpful comments and 
suggestions. 

Anonymous referee (2)  

General comments:  

Zanoni et al. report the first total OH reactivity dataset from a Mediterranean receptor site acquired 
during the summer of 2013 within the framework of the CHARMEX campaign. The dataset 
includes comprehensive speciated VOC measurements, along with the total OH reactivity 
measurements. The measured total OH reactivity at the site was between 3 to 17 s-1 , with an 
average of 5 s-1 , co-varying with the air temperature. High missing OH reactivity greater than 50% 
was observed occasionally which the authors speculate to be majorly due to oxygenated molecules, 
mostly formed from reactions biogenic trace gases. The results demonstrate that local biogenic 
emissions are more important than transported pollution at the receptor site for ambient OH 
reactivity. These findings are very interesting and the work will be a valuable addition to OH 
reactivity datasets in the literature, especially from remote sites. The paper is well structured and 
generally well written. I recommend publication in ACP after the following specific concerns/points 
have been addressed by the authors.  

Major points that should be clarified/added in revised MS:  

1) (i) The classification of anthropogenic VOCs needs to be qualified. There are several published 
reports now that show release of aromatic compounds from stressed vegetation (e.g. Misztal, P. K. 
et al., Scientific Reports (Nature Publishing Group), 5, 2015. Have the authors examined the co-
variation of aromatics with ambient temperature?  

(ii) We thank the referee for this comment and idea. The proposed classification can be a bit 
controversial since many of the measured compounds can be emitted by more sources, as 
mentioned by the referee for the aromatic compounds. At the site, the aromatic compounds had a 
VMR below 1 ppbv (e.g. benzene maximum VMR was 0.07 ppbv and toluene maximum VMR was 
0.14 ppbv, see left axes of the following figure). It is hard to see a trend for benzene, for its 
concentration is close to the instrumental detection limit. Toluene highest VMR occurred when the 
air masses were transported from East (North of Italy) and during nighttime when the air 
temperature was lower (see figure reported below). Therefore it seems unlikely that these 
compounds have been released due to stressed vegetation at the site and we decided to keep the 
classification as initially proposed. 
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2) (i) Use of PMF factors and data: Too many in prep papers ( e.g. Michoud et al.) are being relied 
upon for interpretation of the results of this MS and since the details of those are unavailable this 
does weaken the MS a bit. I don’t really think it is good idea to show such PMF data in a Figure 
wherein the primary MS has not yet been published. Few lines attributing it to as personal 
communication should be enough. The major results of the current paper do not rest on the PMF 
analyses, so this should be ok. In case you do retain Figure 8, the units of PMF factors should be 
explained.  

(ii) The referee is right. This is also a comment from referee 1. However, we decided to keep the 
information obtained from PMF analysis because it brings an additional insight into our study. It is 
important to note that the paper from Michoud et al. is now available (http://www.atmos-chem-
phys-discuss.net/acp-2016-955/) and it gives detailed information about the PMF results. 
Nevertheless, the section has been modified to make the interpretation clearer and less speculative, 
including explanations of the PMF factors and unit (ppbv) reported in Fig. 8.  

(iii) Line 2, page 9, please add: 

The data set is considered as a X matrix composed of i samples and j measured chemical species; 
the analysis decomposes X into a product of two matrices: f the species profiles for each source, g 
the contribution of the factors to each sample for the minimized residual error e (eq.3). Finally the p 
factors that drive the concentration of the measured species are determined.   





p

k
ijkjikij efgX

1
*            (3) 

The optimal solution is found performing the PMF for a number of different factors from 3 to 12. 
The best solution in terms of residual error, rotational ambiguity and minimum correlation among 
factor contribution was finally retained in order to have 6 independent factors. From the 6 factors (3 
for primary anthropogenic sources, 2 for biogenic sources, 1 for oxygenated molecules from mixed 
sources both primary as secondary emitted), three are used to help interpreting the OH reactivity 
data set.   

  The complete description of PMF analysis performed on the VOC database of the CARBOSOR-
ChArMEx campaign is available in Michoud et al., (2017).  
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Figure 8: 

 

Figure 8. Time series of missing OH reactivity (left axis) reported with the factors obtained from 
positive matrix factorization analysis (right axis): primary-emitted biogenic volatile organic 
compounds factor (pBVOCs), oxygenated volatile organic compounds factor and secondary 
biogenic volatile organic compounds factor (sBVOCs). Missing data points of missing OH 
reactivity correspond to either data points ≤ 0 either data points of missing measured OH reactivity 
values. 

Please substitute section 4.4 and conclusions with:  

Insights into the missing OH reactivity 

We here consider the contribution of each chemical group to the OH reactivity during the period of 
the campaign when a significant missing reactivity was observed (23/07/2013- 30/07/2013).  

We first focus on the primary-emitted BVOCs measured: isoprene and monoterpenes. Isoprene was 
measured by both PTR-MS and GC and the results correlated within the measurement uncertainty 
(slope and R2 of the regression for 415 data points are 0.93±0.03 and 0.77, respectively; see 
supplement). A small offset in the scatter plot (approximately 100 ppt) may indicate a small 
interference at m/z 69 for the PTR-MS measurements. 

Individual monoterpenes were either sampled on-line through GC-FID, or collected on adsorbent 
tubes to be analysed in the laboratory through GC-MS shortly after the campaign. At the same time, 
monoterpenes were also measured by PTR-MS as total monoterpene fraction since the instrument 
cannot distinguish between structural isomers. We compared the total monoterpene concentration 
observed by PTR-MS to the summed monoterpenes concentration from GC techniques and 
calculated a concentration difference between 0.2 and 0.6 ppbv(see supplement). Although small, 
the difference observed is significant, being outside the combined measurement uncertainty. Here, 
the summed calculated OH reactivity is obtained from data of isoprene and monoterpenes measured 
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by GC. The unmeasured compounds could be either monoterpenes not detected individually, or 
monoterpenes lost in the sampling tubes after being collected. We roughly estimated how much OH 
reactivity can result from unmeasured monoterpenes: a number of monoterpenes emitted by 
Mediterranean plants surrounding the monitoring station were considered and a weighted reaction 
rate coefficient with OH of 1.56x10-10 cm3 molecule-1 s-1 was determined from them (see rosemary 
from Bracho-Nunez et al., 2011). A volume mixing ratio of 0.2-0.6 ppbv of missing monoterpenes 
results in 0.8-2.3 s-1of OH reactivity, which, even in the upper limit, is too low to explain the 
missing OH reactivity for the specific time frame, including during nighttime.  

Figure 6 shows the volume mixing ratios of BVOCs and oxidation products variability with local 
drivers, such as temperature, wind speed and solar irradiance. Volume mixing ratios are reported for 
the protonated masses measured by PTR-MS, including: m/z 69 (isoprene) and m/z 137 
(monoterpenes) for the primary-emitted BVOCs, and m/z 71 (isoprene first generation oxidation 
products: Methyl Vinyl Ketone (MVK) + methacrolein (MACR) + possibly isoprene 
hydroxyperoxides (ISOPOOH)), m/z 139 (nopinone, β-pinene first generation oxidation product), 
m/z 151 (pinonaldehyde, α-pinene first generation oxidation product) and m/z 111, m/z 113 
oxidation products of several terpenes. As recently reported by Rivera-Rios et al., 2014, the m/z 71 
might also include the ISOPOOH which could have formed at the site and fragmented inside the 
PTR-MS. However, it is important for the reader to know that we did not separate the different 
components of the m/z 71, therefore the presence of ISOPOOH on m/z 71 is assumed based on the 
recent literature. For all the above mentioned masses, except for m/z 111 and m/z 113, the 
corresponding rate coefficient of reaction with OH of the unprotonated molecule was found and 
their OH reactivity summed in the calculated OH reactivity. The reported time series show that both 
primary BVOCs and most of the OVOCs resulting from their oxidation had a diurnal profile. 
Temperature, light and wind speed affected both isoprene and m/z 71 while monoterpenes and 
corresponding products were more influenced by temperature and wind speed. Contrastingly, m/z 
113 was also present during nighttime in low amounts, which might indicate the presence of more 
oxidation products associated with its formation present during the night. A sharp increase of m/z 
71, m/z 113, m/z 139 began after 26/07 when wind speed was lower and increased again after 27/07 
when also air temperature was higher. Although only a fair correlation was found for the measured 
OH reactivity with some masses, generally higher coefficients for all masses and good correlation 
coefficients of the linear regressions, specifically for m/z 71, m/z 111 and m/z 151 were found from 
July 27th to 30th. Some of these oxidation products (m/z 111, m/z 113, m/z 151) have already been 
observed in chamber and field studies (Lee et al., 2006, Holzinger et al., 2005) as they are formed 
from the photo-oxidation of different parent compounds belonging to the class of terpenes. 
Interestingly, the highest yields of the mentioned products were attributed to terpenes also common 
to the Mediterranean ecosystem, such as myrcene, terpinolene, linalool, methyl-chavicol and 3-
carene (Lee et al., 2006, Bracho-Nunez et al., 2011). 

The effect of temperature was also considered for the period of missing OH reactivity. However, it 
was only from July 27th that the missing reactivity showed a clear temperature dependence. 
Terpenes emissions are temperature dependent. Their emissions are usually fitted to temperature 
with the expression E(T) =E(Ts)exp[β(T –Ts)], where E(Ts) is the emission rate at Ts, β the 
temperature sensitivity factor and T is the ambient temperature. The dependence of the missing 
reactivity on temperature was originally demonstrated by Di Carlo and coworkers for a temperate 
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forest in northern Michigan (Di Carlo et al., 2004). They found the same temperature sensitivity 
factor for the missing reactivity as for terpenes, β= 0.11 K-1, with a correlation coefficient of 
R2=0.92. Following the same approach, Mao et al., (2012) reported a β factor of 0.168 K-1 from a 
study in a temperate forest in California. They were able to explain the discrepancy between the 
measured reactivity and the calculated reactivity simulating the species formed from the oxidation 
of the BVOCs. Figure 7 displays a scatter plot of the missing OH reactivity observed during this 
study as a function of ambient temperature. Here, the coefficients β= 0.173 K-1 and R2=0.568 were 
found when data from July 27th -30th are plotted, whereas a weaker correlation and higher 
coefficient is found for data within the July 23rd -26th period. From the similarities with the study of 
Mao et al., (2012) we think that unmeasured oxidation products of BVOCs could be the dominant 
cause of missing OH reactivity at our field site. However, it should be noted that the missing OH 
reactivity can be influenced by processes that do not affect BVOC emissions, such as boundary 
layer height and vertical mixing (see also comments reported in Hansen et al., 2014).  

Positive Matrix Factorization analysis on the collected VOCs data sets at the site identified 6 
independent factors. These describe the source of the VOCs which includes: a primary biogenic 
factor (pBVOCs), a secondary biogenic factor (sBVOCs) and an oxygenated factor. The factor 
represtenting pBVOCs is composed of short-lived molecules directly emitted by biogenic sources, 
such as isoprene and the sum of monoterpenes. sBVOCs factor is composed by secondary oxidation 
products of biogenic-emitted molecules, such as: MVK+MACR, nopinone and pinonaldehyde. The 
oxygenated factor includes oxygenated molecules of mixed origin, both primary and secondary 
emitted, such as carboxylic acids, alcohols and carbonyls. Figure 8 reports the variability of the 
three factors with the missing OH reactivity. A clear influence on the missing OH reactivity is given 
by all the three factors: during daytime this is predominantly by pBVOCs and sBVOCs, while 
during nighttime it is driven by oxygenated molecules. Additionally, pBVOCs factor significant 
contributes to the OH reactivity during the whole campaign period, while sBVOCs factor is more 
variable, higher during the missing OH reactivity event, suggesting a significant impact of 
unmeasured secondary species to the missing OH reactivity. 

Conclusions 

The total OH reactivity was used in this study to evaluate the completeness of the measurements of 
reactive trace gases at a coastal receptor site in the western Mediterranean basin during three weeks 
in summer 2013 (16/07/2013-05/08/2013). OH reactivity had a clear diurnal profile and varied with 
air temperature, suggesting that biogenic compounds were significantly affecting the local 
atmospheric chemistry. Ancillary gas measurements confirmed that most of the reactivity during 
daytime was due to biogenic VOCs, including relevant contributions from oxygenated VOCs, while 
during nighttime inorganic species and oxygenated VOCs had the largest contribution. The OH 
reactivity was on average 5±4 s-1 (1σ) with a maximum value of 17±6 s-1 (35% uncertainty). The 
observed maximum is comparable to values of OH reactivity measured at forested locations in 
northern latitudes (temperate and boreal forests as reported by Di Carlo et al., 2004, Ren et al., 
2006, Sinha et al., 2010, Noelscher et al., 2013, Kumar and Sinha, 2014 and Nakashima et al., 
2014). This finding highlights the importance of primary-emitted biogenic molecules on the OH 
reactivity, especially where air temperature and solar radiation are high; even though our site was 
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specifically selected for a focused study on mixed and aged continental air masses reaching the 
basin.  

A comparison between the measured OH reactivity and the summed reactivity from the measured 
species showed that on average 56% of the measured OH reactivity was not explained by 
simultaneous gas measurements during 23/07/2013-30/07/2013. During this period, the air masses 
originated from the West (23/07/2013-27/07/2013 and 29/07/2013-30/07/2013) and the South 
(27/07/2013-29/07/2013); calm wind conditions and peaks of air temperature were registered at the 
field site (28/07/2013). In contrast, when the site was exposed to air masses from the eastern and 
northern sectors, namely northern Italy and South of France, weak pollution events mostly enriched 
by anthropogenic gases were observed. In such cases, the measured and calculated OH reactivity 
values were in agreement. During 23/07/2013-30/07/2013 we observed increased concentration of 
BVOCs and OVOCs, lack of pollution events, higher temperature and relatively high missing 
reactivity (~10 s-1). Specifically, a maximum value of 2.3 s-1 of OH reactivity was estimated for 
unmeasured primary BVOCs, namely non-oxygenated monoterpenes. Such missing reactivity is not 
linked to any specific event and is rather distributed along the whole time frame of the campaign. 

During 27/07/2013-30/07/2013 an increase in oxygenated VOCs originating from the photo-
oxidation of primary-emitted BVOCs was also detected. Highest yields of these oxidation products 
(m/z 111, m/z 113, m/z 151) were attributed to terpenes, which are emitted in abundance by 
Mediterranean ecosystems (Lee et al., 2006, Bracho-Nunez et al., 2011). We found that the missing 
reactivity during 27/07/2013-30/07/2013 had a similar temperature dependency to a reported study 
conducted in a temperate forest in the US, for which model predictions highlighted that unmeasured 
oxidation products of BVOCs could explain the missing reactivity (Mao et al., 2012). We conclude 
that, specific to this period and ecosystem, unmeasured oxidation products of terpenes could be the 
cause of the observed discrepancy between measured and calculated OH reactivity. Complementary 
analysis, including PMF, helped confirm the influence of the secondary biogenic VOCs and 
highlighted the influence of oxygenated molecules during nighttime and part of the missing 
reactivity period (July 23rd-27th ).  

Mediterranean plants are known to emit large quantities of reactive BVOCs, including 
sesquiterpenes and oxygenated terpenes (Owen et al., 2001), which were not investigated during our 
fieldwork. We assume therefore that these molecules, as well as their oxidation products, might also 
have played an important role in the missing OH reactivity detected.  

We can therefore answer the research questions addressed in the introduction, as the presence of 
missing reactivity reveals that some reactive compounds were not measured during the fieldwork. 
Most of these molecules were likely oxidation products of biogenic compounds. Two main 
conclusions are obtained from this study: first, although several state-of-the-art instruments were 
deployed for this campaign, major difficulties are still encountered for the accurate detection of 
oxygenated chemicals. Second, as various other studies on OH reactivity have pointed out so far, 
many unknowns are still associated with the photo-oxidation processes of BVOCs.  

Further studies with chemical and transport models to identify the important chemical functions of 
these oxygenated molecules, as well as the effects of long-range transport would be beneficial to 
provide a complete picture of this work.  
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Finally, as the Mediterranean basin differs from side to side, (air masses reception as well as type of 
ecosystems) more intensive studies at different key spots, e.g. western vs eastern basin and remote 
vs. periurban ecosystems, would be helpful for a better understanding of the atmospheric processes 
linked to the reactive gases over the Mediterranean basin.  

 

3) (i) The current MS can benefit by including and discussing comparisons with the following 
relevant studies on OH reactivity measurements from high isoprene concentration sites : 

i) Nakashima, Y., Kato, S., Greenberg, J., Harley, P., Karl, T., Turnipseed, A., Apel, E., Guenther, 
A., Smith, J., and Kajii, Y.: Total OH reactivity measurements in ambient air in a southern Rocky 
mountain ponderosa pine forest during BEACHON-SRM08 summer campaign, Atmos. Environ., 
85, 1– 8, doi:10.1016/j.atmosenv.2013.11.042, 2014.  

ii) Kumar V. and Sinha V.: VOC–OHM: A new technique for rapid measurements of ambient total 
OH reactivity and volatile organic compounds using a single proton transfer reaction mass 
spectrometer, Int. J. Mass Spectrom., 374, 55–63, doi:10.1016/j.ijms.2014.10.012, 2014.  

(ii) We thank the referee for the suggestion, the two studies are included in the conclusion of the 
manuscript. 

Technical comments:  

1) (i) Please mention the temperature and pressure values and list the the rate constants used for 
determining calculated OH reactivity and CRM OH reactivity (the latter can be added to the 
supplement).  

(ii) We thank both referees for this comment. Table 1 is extended with the rate constants of each 
species considered at ambient temperature (298 K) and atmospheric pressure (please see Table 2 in 
the supplementary material).  

(iii) Table 2 in supplementary material: 
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Table 2. Rate constants for the reactions with OH of the measured OH reactants. 

Molecule  k i+OH (cm3molecules-1s-1) Reference 
a-terpinene 3.60E-10 Atkinson, 1986 
g-terpinene 1.76E-10 Atkinson, 1986 
limonene 1.69E-10 Atkinson, 1986 
isoprene 1.00E-10 Atkinson, 1986 
2-methyl-2-butene 8.72E-11 Atkinson, 1986 
b-pinene 7.81E-11 Atkinson, 1986 
1,3-butadiene 6.66E-11 Atkinson, 1986 
T2-butene 6.37E-11 Atkinson, 1986 
T2-pentene 5.71E-11 Grosjean and Williams, 1992 
C2-pentene 5.71E-11 Grosjean and Williams, 1992 
C2-butene 5.60E-11 Atkinson, 1986 
a-pinene 5.33E-11 Atkinson, 1986 
camphene 5.33E-11 Atkinson, 1986 
styrene 5.30E-11 Chiorboli et al., 1983 
pinonaldehyde 4.00E-11 Davis et al., 2007 
hexene 3.70E-11 Grosjean and Williams, 1992 
ethyl vinyl ketone 3.60E-11 Grosjean and Williams, 1992 
3-methyl-1-butene 3.17E-11 Atkinson, 1986 
1-butene 3.11E-11 Atkinson, 1986 
MVK+MACR 3.00E-11 Atkinson, 1986 
1-pentene 2.74E-11 McGillen et al., 2007 
propene 2.60E-11 Atkinson, 1986 
m-xylene 2.45E-11 Atkinson, 1986 
NO  1.53E-11 Atkinson et al., 2004 
p-xylene 1.52E-11 Atkinson, 1986 
acetaldehyde 1.50E-11 Zhu et al., 2008 
mglyox 1.50E-11 Atkinson et al., 1997 
o-xylene 1.47E-11 Atkinson, 1986 
nopinone 1.43E-11 Atkinson and Aschmann, 1993 
dodecane 1.32E-11 Atkinson, 2003 
undecane 1.23E-11 Atkinson, 2003 
NO2 1.20E-11 Atkinson et al., 2004 
nonane 9.70E-12 Atkinson, 2003 
formaldehyde 9.38E-12 Atkinson et al., 2001 
ethylene 8.51E-12 Atkinson, 1986 
octane 8.11E-12 Atkinson, 2003 
ethylbenzene 7.51E-12 Atkinson, 1986 
1-butyne 7.27E-12 Boodaghians et al., 1987 
cyclohexane 6.97E-12 Atkinson, 2003 
2-methylhexane 6.69E-12 Sprengnether et al., 2009 
2,3,4-trimethylpentane 6.50E-12 Wilson et al., 2006 
2,3-dimethylpentane 6.46E-12 Wilson et al., 2006 
toluene 6.16E-12 Atkinson, 1986 
2,4-dimethylpentane 5.48E-12 Baulch et al., 1986 
2-methylpentane 5.20E-12 Atkinson, 2003 
hexane 5.20E-12 Atkinson, 2003 
pentane 3.84E-12 Atkinson, 2003 
2,2,3-trimethylbutane 3.81E-12 Atkinson, 2003 
n-butane 2.36E-12 Atkinson, 2003 
2,2-dimethylbutane 2.23E-12 Atkinson, 2003 
butiric acid 1.79E-12 Zetzsch, C. and Stuhl, F.. 1982 
benzene 1.28E-12 Atkinson, 1986 
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methyl ethyl ketone 1.20E-12 Atkinson et al., 2001 
propionic acid 1.20E-12 Atkinson et al., 2001 
propane 1.09E-12 Atkinson, 2003 
methanol 9.00E-13 Dillon et al., 2005 
2,2-dimethylpropane 8.40E-13 Atkinson, 2003 
acetic acid 8.00E-13 Atkinson et al., 2001 
acetilene 7.79E-13 Atkinson, 1986 
formic acid 4.50E-13 Atkinson et al., 2001 
ethane 2.41E-13 Atkinson et al., 2001 
acetone 1.80E-13 Raff et al., 2005 
CO 1.44E-13 Atkinson et al., 1986 
acetonitrile 2.20E-14 Atkinson et al., 2001 
methane 6.40E-15 Vaghjiani and Ravishankara, 1991. 
 

2) (i) Authors should discuss the potential influence of the boundary layer dynamics on the diurnal 
variability of OH reactivity, if any? Was the site above the nocturnal boundary layer? 

(ii) The boundary layer height was only measured at a site near Bastia (about 50 km away from our 
measurement site), where it was about 400 m with some small fluctuations <100 m. However, these 
data are not completely representative for the site where the OH reactivity was measured, since it 
was influenced also by the proximity to the sea. Measurements of Rn-222 are available from the 
same site of measurements than the OH reactivity. This tracer can be used to estimate the variability 
of the boundary layer height (e.g. Chambers et al., 2015 and Karstens et al., 2015). Such estimates 
do not show a diurnal variability for the boundary layer to explain a connection with the variability 
of the OH reactivity. Due to the difficulty in interpreting the data of Radon, and to make a correct 
estimate of the BL height from the cited literature we did not consider this information as robust 
enough to include it in the discussion.      

3) (i) Please mention whether the back trajectories consistent with the local wind direction 
measurements?  

(ii) Yes, the back-trajectories were compared to wind roses for each cluster of data and showed a 
good consistency with the origin of the sector of the clusters.  

Table 2: (i) LOD for GHG and CO measurements is missing 

(ii) It is in the ppbv range. The information is added in the table.  

Fig 4: (i) AVOCs % contribution is not legible; How were day and night time hours chosen?  

(ii) The caption is modified and % are specified there as well. Daytime data were collected between 
07.30 and 19.30 while nighttime data were between 19.30 and 07.30. This allowed to have at least 
three data points for the nighttime intervals since the calculated reactivity had a time resolution of 
three hours. This information is included in the caption as well.  

(iii) Figure 4. Daytime (left pie) and nighttime (right pie) contributions of the measured compounds 
to the calculated OH reactivity. Daytime data were collected between 07.30 and 19.30 while 
nighttime data were between 19.30 and 07.30. Summed OH reactivity during daytime was 
maximum 11 s-1, on average 4±2 s-1; while during nighttime it was maximum 3 s-1, on average 
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2±0.4 s-1. BVOCs (green), AVOCs (blue), OVOCs (orange) and others (red) stand for biogenic, 
anthropogenic, oxygenated volatile organic compounds and carbon monoxide and nitrogen oxides, 
respectively. During daytime, BVOCs, AVOCs, OVOCs and others contribution were 45%, 12%, 
19%, 24%, respectively; while it was 7%, 23%, 27%, 43%, respectively during nighttime.   

Page 11; Lines 27-30: (i) Please report the rate constants correctly. “x or E” is missing  

(ii) Thanks, they have been corrected. 

(iii) 3.6 x 10-10 cm3 molecule-1 s-1, see Atkinson, (1986) and Lee et al., (2006), more than three-fold 
higher than the one of the reactive isoprene (kisoprene+OH=1 x 10-10 cm3 molecule-1 s-1, Atkinson, 
1986). 

Page 13: (i) Not clear what is meant here…  

“We considered a number of relevant monoterpenes emitted by Mediterranean 12 shrubs, including 
rosemary which was abundantly surrounding our monitoring station and 13 determined a rosemary-
terpenes weighted reaction rate coefficient with OH of 1.56 10-10 cm3 14 molecule-1 s-1 (Bracho-
Nunez et al., 2011).” 

(ii) The meaning is that for the monoterpene reactivity we considered a weighted rate constant with 
OH accounting for different monoterpenes that are emitted by the Mediterranean maquis 
surrounding our measuring site. The sentence has been rephrased in the manuscript.    

(iii) We roughly estimated how much OH reactivity can result from unmeasured monoterpenes: a 
number of monoterpenes emitted by Mediterranean plants surrounding the monitoring station was 
considered and a weighted reaction rate coefficient with OH of 1.56 10-10 cm3 molecule-1 s-1 was 
determined from them (see rosemary from Bracho-Nunez et al., 2011). 

(i)Last line is not clear, please make it quantitative: “Our results demonstrate the relatively-high 
observed reactivity and the large impact of biogenic compounds” 

(ii) The referee is right and the whole section about the missing reactivity and conclusion have been 
rewritten to clarify it. 

(i)Page 4; Line 2: Suggest replacing "....makes a powerful means... " by "is a powerful means..." 
Page 6; Equation 2; Xi is missing , only i has been typed  

(ii) We thank the reviewer. The text has been modified. 

(iii)  

        (2) 

With i being any measured compound listed in Table 1 and X its concentration.   

(i)Section 3.2.2: Please mention the efficiency of the photolytic converter used in the NOx analyzer  

(ii) The efficiency of the conversion was 86%, this information has been added to the text.  

  
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(iii) NO2 is quantified indirectly after being photolytically converted to NO (conversion 
efficiency=86%). 

(i)Page 8; Line 14: “Measurements are corrected for H2O dilution to calculate the molar fractions in 
dry air”: Please explain how as there are a number of ways that have been reported in the literature  

(ii) Yes, here measurements were corrected for an empirical correction which takes into account the 
dilution effect and pressure broadening effect. A humidifying bench was developed to humidify a 
certified concentration of a gas stream at different humidity levels (see Rella et al., 2013). The 
sentence is rephrased and the new reference added.   

(iii) Measurements were corrected for an empirical correction which takes into account the dilution 
effect and pressure broadening effect. A humidifying bench was developed to humidify a certified 
concentration of a gas stream at different humidity levels (see Rella et al., 2013). 

Rella, C. W., Chen, H., Andrews, A. E., Filges, A., Gerbig, C., Hatakka, J., Karion, A., Miles, N. L., 
Richardson, S. J., Steinbacher, M., Sweeney, C., Wastine, B., and Zellweger, C.: High accuracy 
measurements of dry mole fractions of carbon dioxide and methane in humid air, Atmos. Meas. Tech., 6, 
837-860, doi:10.5194/amt-6-837-2013, 2013. 

(i)Page 8, Line 17: “Here” is used twice  

Page 18; Line 19; Reference Paatero has a typo  

Page 12; Line 23: throughout has been spelt as "through"  

Page 12; Line28: Should be adsorbent instead of adsorbant  

Page 13; Line 8: Typo in spelling of abundantly  

Page 13; Line 32: Please correct the incorrect english phrase : ".....associated to its formation..."  

(ii) Done, thank you. 

(i)Page 11: Line 14and later on as well: What is alpha terpinene? Terpinenes are a class of 
compounds. Do you mean alpha pinene?  

(ii) Alpha-terpinene is a terpinene, known also as 1-Isopropyl-4-methyl-1,3-cyclohexadiene, it has 
the empirical formula C10H16 
(http://www.sigmaaldrich.com/catalog/product/aldrich/86473?lang=it&region=IT).  

(i) Page 15; Line 23: Please correct english : "...associated to an increase....." 

(ii) Done, thank you. 

Summary:  

(i)I suggest replacing “…technologies” by “… techniques”. 

(ii)Ok.  
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Abstract 

Total OH reactivity, the total loss frequency of the hydroxyl radical in ambient air, provides the 
total loading of OH reactants in air. We measured the total OH reactivity for the first time during 
summertime at a coastal receptor site located in the western Mediterranean basin. Measurements 
were performed at a temporary field site located in the northern cape of Corsica (France), during 
summer 2013 for the project CARBOSOR (CARBOn within continental pollution plumes: SOurces 
and Reactivity) -ChArMEx (Chemistry-Aerosols Mediterranean Experiment). Here, we compare 
the measured total OH reactivity with the OH reactivity calculated from the measured reactive 
gases. The difference between these two parameters is termed missing OH reactivity, i.e., the 
fraction of OH reactivity not explained by the measured compounds. The total OH reactivity at the 
site varied between the instrumental LoD (limit of detection= 3 s-1) to a maximum of 17±6 s-1 (35% 
uncertainty) and was 5±4 s-1 (1σ standard deviation) on average. It varied with air temperature 
exhibiting a diurnal profile comparable to the reactivity calculated from the concentration of the 
biogenic volatile organic compounds measured at the site. For part of the campaign, 56% of OH 
reactivity was unexplained by the measured OH reactants (missing reactivity).  We suggest that 
oxygenated molecules formed mostly from reactions of biogenic gas precursors, were the major 
contributors to missing OH reactivity. 
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1 Introduction  

Atmospheric photo-oxidation reactions are initiated by three main oxidants: the hydroxyl radical 
(OH), ozone (O3) and the nitrate radical (NO3). Among those, the OH radical is by far the most 
important, capable of reacting with the vast majority of chemical species in the troposphere (Levy, 
1971). Photo-oxidation reactions are the most efficient cleansing processes occurring in the 
atmosphere, and constitute an important sink for reactive gases including volatile organic 
compounds (VOCs).  

Total OH reactivity is the first-order total loss rate of the hydroxyl radical in the atmosphere due to 
reactive molecules. It is the total sink of OH, therefore representing a top-down measure of OH 
reactants present in ambient air.  

Measurements of the total loss of OH and reactive gases are often coupled. The total reactivity of 
the latter is determined by summing each gas individual reactivity as the product of their 
atmospheric concentration and their reaction rate coefficient with OH. Here, this is referred to as 
calculated OH reactivity and comparisons between the calculated and the measured OH reactivity 
have showed that discrepancies in various environments and different proportions exist (di Carlo et 
al., 2004, Nölscher et al., 2016). The missing OH reactivity, namely the fraction of OH reactivity 
not explained by simultaneous measurements of reactive gases, has been associated with 
unmeasured compounds either primary emitted, secondary generated, or both (e.g. Sinha et al., 
2010, Nölscher et al., 2012, Nölscher et al., 2013, Edwards et al., 2013, Hansen et al., 2014, Kaiser 
et al., 2016).  

The Mediterranean basin comprises countries from three different continents and a population of 
450 million inhabitants. Its climate is characterized by humid-cool winters to hot-dry summers, 
when the area is usually exposed to intense solar radiation and high temperatures. Forests, 
woodlands and shrubs occupy large areas of the region, which has rich biodiversity and is the 
habitat to a high number of identified species (Cuttelod et al., 2008). The dominant airflow in 
summertime is driven from North to South and the basin is exposed to air masses coming from 
European cities and industrialized areas. Therefore, transported pollution and the intense local 
anthropogenic and biogenic activity result in high loadings of atmospheric gases, particles and 
complex chemistry (Lelieveld, 2002).  

Climate model predictions indicate that the Mediterranean area will face unique impacts of climate 
change. Predictions show that this region will suffer higher temperatures and extended drought 
periods, thus affecting the strength and type of emissions which will further impact air quality and 
climate (Giorgi and Lionello, 2008). Finally, additional observations are useful for better predicting 
the future state of this region (Mellouki and Ravishankara, 2007).  

In this study, we address the following scientific questions:  

1) What proportion of the total reactive gases emitted and formed over the area do we know 

and can we detect? 

2) Which species mostly influence the OH reactivity over this site within the basin? 
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To answer these questions, we measured the total OH reactivity at a receptor coastal site in the 
western Mediterranean basin during summer 2013. Measurements were part of an intensive 
fieldwork campaign aimed at investigating sources and sinks of gaseous constituents in the area 
(CARBOSOR, CARBOn within continental pollution plumes: Sources and Reactivity, within the 
ChArMEx project, Chemistry and Aerosols in a Mediterranean Experiment; charmex website: 
http://charmex.lsce.ipsl.fr/). Total OH reactivity was measured with the comparative reactivity 
method instrument (CRM) (Sinha et al., 2008) during 16/07/2013-05/08/2013 at the monitoring 
station of Ersa, France. The field site was chosen for being: (i) far from anthropogenic sources; (ii) 
exposed to aged air masses of different origins, including air masses enriched in oxidation products 
transported from continental industrialized areas. Total OH reactivity here served to evaluate 
whether the ambient reactive gases were all identified or not. Specifically, we were able to 
determine what kind of pollution event could be better captured through the instrumentation 
deployed at the site, assuming that a group of reactive gases traces a specific type of event (primary 
anthropogenic or biogenic emissions, secondary formation). Due to the high number of existing 
VOCs, OH reactivity also makes a powerful means for investigating VOC emissions and reactions. 
Comparisons with a VOC factorial analysis and with a number of additional parameters provided 
crucial insights into the summertime reactive gases budget in this area of the western basin. The 
following sections will describe the field site under study, the methodologies used, our results of 
OH reactivity and insights into the unmeasured reactive gases.   

2 Field site  

The Ersa windfarm (42.97°N, 9.38°E, altitude 533 m) is located in the northern cape of Corsica 
(France), in the western Mediterranean basin (figure 1). It is 2.5 km away from the nearest coast 
(West side) and 50 km away from the largest closest city and harbour Bastia (South side). It is 
located on a hill (533 m a.s.l.) and it is surrounded by the Mediterranean Sea on West, North and 
East sides. The site was chosen for its peculiarities of receiving air masses from continental areas 
especially France and northern Italy, with the harbours of Marseille and Genoa about 300 km away, 
and the industrialized areas of Milan and the Po valley 400 km away. Furthermore, the 
measurement station is densely surrounded by the Mediterranean maquis, a shrubland biome typical 
of the whole Mediterranean region. The ground station consists of a long-term meteorology, trace 
gas concentrations, aerosol size, a composition monitoring laboratory (measurements collected from 
2012 to 2014), and temporary measurements of gases and aerosol properties over a total surface 
area of ~100 square meters where instruments are distributed. Measurements of total OH reactivity 
and trace gases reported in this study were all performed within this area (see figure 1 for details). 

We measured the OH reactivity during two main periods: an intercomparison exercise for OH 
reactivity between two CRM instruments during 8/07/2013-13/07/2013 (see Zannoni et al., 2015), 
and the intensive ambient monitoring campaign, CARBOSOR during 16/07/2013-05/08/2013. 
Within the same project, instruments for measuring radicals, inorganic and organic compounds, 
aerosol chemical composition and their physical properties, and meteorology were simultaneously 
deployed. The next section will provide an overview of the methods selected for this study. 
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3 Methods 

3.1 Comparative Reactivity Method 

We carried out measurements of total OH reactivity using a comparative reactivity method 
instrument assembled in our laboratory (CRM-LSCE from Laboratoire des Sciences du Climat et de 
l’ Environnement, see Zannoni et al., 2015). In brief, the comparative reactivity method is based on 
the concept of producing a competition for in-situ generated OH radicals, between a reactive 
reference compound, in our case pyrrole (C4H5N), and ambient reactive gases (Sinha et al., 2008). 
This is achieved by introducing a known amount of pyrrole diluted in zero air and N2 in a flow 
reactor coupled to a Proton Transfer Reaction-Mass Spectrometer (PTR-MS, see Lindinger et al., 
1998, De Gouw and Warneke, 2007). Pyrrole is chosen as a reference compound for its well 
characterized kinetics (Atkinson et al., 1984, Dillon et al., 2012), for not being present in the 
atmosphere at normal conditions, and for being easily detectable at the protonated m/z 68 
(C4H5NH+) through PTR-MS without any interference. The Proton Transfer Reaction-Mass 
Spectrometer run at standard conditions (Pdrift = 2.2 mbar, E/N = 130 Td (1 Td=10−17 Vcm−1), 
Tinlet = 60 ◦C) is the detector of choice for its real-time measurement capabilities and robustness 
over time (see also Nölscher et al., 2012b). 

The CRM usual experimental procedure includes the following stages: monitoring of C0 wet/dry, 
followed by C1 dry or wet, C2 wet, and C3 ambient. With C0, C1, C2, C3 being the concentration 
of pyrrole detected with the PTR-MS, in order: after injection (C0), after photolysis of pyrrole (C1), 
after reaction with OH (C2), when ambient air is injected and the competition for OH radicals starts 
(C3). Switches between C2 (background pyrrole in zero air) and C3 (pyrrole in ambient air) result 
in modulations of the pyrrole signal which are used to derive total OH reactivity values from the 
following equation: 

                                                                                                                           

(1) 

With kpyrrole+OH being the rate constant of reaction between pyrrole and OH= (1.20±0.16)×10−10 cm3 
molecule−1 s−1 (Atkinson et al., 1984, Dillon et al., 2012).    

During the whole campaign we ran systematic quality check controls on the instrument (see 
supplementary material).  

Sampling was performed through a 3 m long, 1/8’’ OD PFA sampling line at a flow rate of 0.25 
sL/min with a residence time of the sample of 3 s. The sampling line was covered and kept at 
ambient temperature and installed at about 1.5 m above the trailer were the CRM was placed. A 
PFTE filter was placed at the inlet of the sampling line to avoid sampling particles. Some highly-
reactive chemical species (i.e. sesquiterpenes) may have been lost before reaching the reactor due to 
wall losses in the sampling line and/or filter surface.  

We recorded PTR-MS data using a dwell time of 20 s for pyrrole, with a full cycle of measurements 
every 30 s. We switched between C2 and C3 every 5 minutes, resulting in a data point of reactivity 
every 10 minutes. Each data point of reactivity obtained from eq. (1) was corrected for: (i) humidity 
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changes between C2 and C3, (ii) deviation from the assumption of pseudo fist order kinetics 
between pyrrole and OH, (iii) dilution of ambient air reactivity inside the reactor. A detailed 
description on how the correction factors were obtained and how the raw data were processed can 
be found in the publication of Zannoni et al., (2015). We did not account for OH recycling in our 
reactor due to nitrogen oxides (NO+ NO2) since ambient nitrogen monoxide (NO) was below 0.5 
ppbv at the site (NO2 below 2 ppbv), which is too low for interfering with the system. Tests 
performed in the laboratory after the campaign have demonstrated that the instrument is not subject 
to ozone interference. The impact on CRM measurements of OH recycling reactions observed 
during the oxidation of some ambient species (e.g. methylvinylketone and methacrolein 
(MVK+MACR), isoprene hydroxyhydroperoxides (ISOPOOH), aldehydes) was determined to be 
negligible due to the low concentrations of these species and the high HO2 concentration in the 
CRM reactor, which disfavor unimolecular reactions. 

 The limit of detection (LoD) of CRM-LSCE was estimated to be ~3 s-1 (3σ) and the systematic 
uncertainty ~35% (1σ), including uncertainties on the rate coefficient between pyrrole and OH 
(8%), detector sensitivity changes and pyrrole standard concentration (22%), correction factor for 
kinetics regime (26%) and flows fluctuations (2%); see also Michoud et al., 2015. An 
intercomparison exercise with another CRM instrument carried out before the campaign 
demonstrated that the measured reactivities were in good agreement (linear least squares fit with a 
slope of one and R2 value of 0.75).  

3.2 Complementary measurements at the field site   

Gaseous compounds were measured using a broad set of techniques available at the site, including: 
Proton Transfer Reaction-Mass Spectrometry (PTR-Time of Flight MS, Kore Technology Ltd., 
UK), online and offline Gas Chromatography (GC-FID/FID and GC-FID/MS, Perkin Elmer), 
Liquid Chromatography (HPLC-UV, High Performance Liquid Chromatography-UV light detector), 
for VOCs and oxygenated VOCs specifically; analysis based on the Hantzsch reaction method 
(AERO-LASER GmbH, Germany) for detecting formaldehyde; and wavelength-scanned cavity ring 
down spectrometer (WS-CRDS, G2401, Picarro, USA) for CO, CH4 and CO2. The measured 
concentration and the reaction rate coefficients of each measured compound with OH were used to 
calculate the OH reactivity with eq. (2): 

                                                                                                                        (2) 

With i being any measured compound listed in Table 1 and X its concentration.   

Most of the chemical species used to calculate the OH reactivity were measured through PTR-MS 
and GC. The sampling system for the PTR-MS consisted of a 5 m PFA sampling line, installed 
above the PTR-MS trailer (see Fig. 1). The residence time in the sampling line was 4 s. The PTR-
MS was operated at 1.33 mbar pressure and 40°C temperature of the drift tube for an E/N of 135 
Td. The PTR was calibrated every 3 days using certified mixtures of different VOCs: 15 VOCs 
(Restek, France), 9 VOCs (Praxair, USA), 9 OVOCs (Praxair, USA). More details on the 
calibration standards are available in Michoud et al. (2017). The GCs were calibrated twice at the 
beginning and at the end of the field campaign with certified gas mixtures: one including 29 VOCs 
(Praxair, USA), another including 29 NMHCs and three terpenes (NPL, UK). Total uncertainties 
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from measurements (including precision and calibration procedure) were in the range 5-23% for 
compounds measured by PTR-MS and GC-FID,  and in the range 5-14% for GC-MS. 

We refer to the manuscript of Michoud et al.(2017), for a detailed description of the PTR-MS, 
online GC and offline sampling on adsorbent cartridges on GC-FID/MS deployed at the site; while 
the formaldehyde, NOx, O3 analysers and WS-CRDS are briefly introduced in the following 
sections. Table 2 provides a summary of all techniques.  

3.2.1 Hantzsch method for measuring formaldehyde 

Formaldehyde (HCHO) was measured with a commercial instrument based on the Hantzsch 
reaction (Model 4001, AERO-LASER GmbH, Germany). Gaseous HCHO is stripped into a slightly 
acidic solution, followed by reaction with the Hantzsch reagent, i.e. a diluted mixture of acetyl 
acetone acetic acid and ammonium acetate. This reaction produces a fluorescent compound which 
absorbs photons at 510 nm.  More details are given in Dasgupta et al., (1988), Junkermann, (2009) 
and Preunkert et al., (2013).  

Sampling was conducted through a 5 m long PTFE 1/4‘‘ OD line, with a 47 mm PFA in-line filter 
installed at the inlet and a flow rate of 1 L min-1.  

The liquid reagents (stripping solution and Hantzsch reagent) were prepared from analytical grade 
chemicals and ultrapure water according to the composition given by Nash, (1953) and stored at 4 
◦C on the field. The instrumental background was measured twice a day (using an external 
Hopcalite catalyst consisting of manganese and copper oxides) and calibrated three to four times a 
week using a liquid standard at 1.10-6 mol L-1, i.e volume mixing ratio in the gaseous phase of about 
16 ppbv.  The calibration points were interpolated linearly in order to correct for sensitivity 
fluctuations of the instrument. The limit of detection was 130 pptv (2σ). The coefficient of 
variation, i.e the ratio of the standard deviation to the mean background value, was estimated to be 
0.4 %. Measurements of HCHO ran smoothly from the beginning of the campaign until 11 AM LT 
(local time) of 28/07/2013. At this time an instrument failure occurred and measurements were 
stopped.  

3.2.2 Chemiluminescence for measuring NOx 

A CRANOX instrument (Ecophysics, Switzerland) was used to measure nitrogen 
oxides (NOx=NO+NO2). The instrument is based on ozone chemiluminescence therefore it can 
directly measure NO. NO2 is quantified indirectly after being photolytically converted to NO 
(conversion efficiency=86%). The instrument consists of a high performing two channel CLDs 
(Chemiluminescence Detectors) with pre-chambers background compensation, an integrated 
powerful pump, a photolytic converter, an ozone generator and a calibrator. A control software 
handles and manages the different tasks. The detection limit is 50 pptv (3σ), for a 5 minute time 
resolution. 

3.2.3 Wavelength-scanned cavity ring down spectrometry (WS-CRDS) for measuring greenhouse 
gases 

In-situ measurements of CO2, CH4, CO molar fractions at Ersa are part of the French monitoring 
network of greenhouse gases, integrated in the European Research Infrastructure ICOS (integrated 
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carbon observation system). The air is sampled at the top of a 40 m high telecomunication tower 
(573 m), and is analyzed with a wavelength-scanned cavity ring down spectrometer (WS-CRDS, 
G2401, Picarro, USA). The analyzer is calibrated every 3 weeks with a suite of four reference 
standard gases, whose molar fractions are linked to the WMO (World Meteorological Organization) 
scales through the LSCE (Laboratoire des Sciences du Climat et de l’Environnement) reference 
scale. Measurements were corrected for an empirical correction which takes into account the 
dilution effect and pressure broadening effect. A humidifying bench was developed to humidify a 
certified concentration of a gas stream at different humidity levels (see Rella et al., 2013). 

3.3 Positive Matrix Factorization analysis 

Positive Matrix Factorization (PMF) analysis was here performed using EPA (environmental 
protection agency) PMF 3.0 and the protocol proposed by Sauvage et al. (2009) on a dataset of 42 
VOCs including, NMHCs (non-methane hydrocarbons) and OVOCs (oxygenated volatile organic 
compounds) and 329 observations (time resolution of 90 min). The data set is considered as an X 
matrix composed of i samples and j measured chemical species; the analysis decomposes X into a 
product of two matrices: f the species profiles for each source, g the contribution of the factors to 
each sample for the minimized residual error e (eq.3). Finally the p factors that drive the 
concentration of the measured species are determined.   
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The optimal solution is found by performing the PMF for a number of different factors from 3 to 
12. The best solution in terms of residual error, rotational ambiguity and minimum correlation 
among factor contribution was finally retained in order to have 6 independent factors. From the 6 
factors (3 for primary anthropogenic sources, 2 for biogenic sources, 1 for oxygenated molecules 
from mixed sources both primary as secondary emitted), three are used to help interpreting the OH 
reactivity data set.   

  The complete description of PMF analysis performed on the VOCs database of the CARBOSOR-
ChArMEx campaign is available in Michoud et al., (2017).  

3.4 Air masses back-trajectories 

The back-trajectories of the air masses were modelled with Hysplit (HYbrid Single-Particle 
Lagrangian Integrated Trajectory developed by the National Oceanic and Atmosphere 
Administration (NOAA) Air Resources Laboratory (ARL) (Draxler and Hess, 1998, Stein et al., 
2015) for 48 h every 6 hours. 

The back-trajectories were grouped according to their origin, altitude and wind speed, such as: 
1.North-East, 2.West, 3.South, 4.North-West and 5. Calm-low wind speed/stagnant conditions. 
More details on the air masses origin and their photochemical age is available in Michoud et al., 
(2017). 
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4 Results 

4.1 Total measured OH reactivity  

The 3-h averaged measured OH reactivity is represented by the black line in figure 2. Here, all data 
acquired during 16/07/2013- 05/08/2013 is reported, missing data points are due to minor 
instrumental issues and instrumental quality check controls. Figure 2 also shows the temperature 
profile of ambient air (gray line, right axis). The OH reactivity varied between the instrumental LoD 
(3 s-1) to 17±6 s-1 (3-h averaged maximum value ± 35% uncertainty). From the 10 minute time 
resolution data the highest value of OH reactivity was 22 s-1, reached on 28/07/2013 during the 
afternoon, when the air temperature at the site was also exhibiting its maximum. During the whole 
field campaign the average measured OH reactivity was 5±4 s-1 (1σ). This value agrees with 
averaged values of OH reactivity collected during autumn 2011 in the South of Spain for 
southernly-marine enriched air masses (Sinha et al, 2012). In contrast, higher OH reactivity was 
measured during spring 2014 in a Mediterranean forest of downy oaks, where the average campaign 
value was 26±19 s-1 and the maximum value was 69 s-1 (Zannoni et al., 2016).  

OH reactivity and air temperature at the site in Corsica co-varied during the whole campaign, with 
highest values reached during daytime in the periods between 26-28/07/2013 and 02-03/08/2013. 
Figure 2 also reports the origin of the air masses reaching the field site. The dominant origin of the 
sampled air masses was West, indicating that air masses which had travelled over the sea being 
possibly more aged. It is not evident that the variability of the OH reactivity is affected by the origin 
of the air masses. In contrast, air temperature seems to have played a major role. Indeed, during the 
periods of highest reactivity, the origin of air was different, with air masses coming from the 
western to the southern and the north-eastern sectors. The diurnal pattern of OH reactivity for the 
whole campaign is reported in figure 3. Here it is evident that the background value was about 4 s-1 
during nighttime, it increased at 8:00 AM LT, peaked at 11:00 AM LT, reached a second maximum 
at 4:00 PM LT and finally decreased at 7:00 PM LT to reach its background value at 10:00 PM LT 
(local time GMT/UTC+2 hours). It is worth noting that the large amplitude of standard deviation 
bars (1σ) highlights the large diel variability. 

4.2 Calculated OH reactivity and BVOCs influence 

Table 1 provides the number and type of chemical species measured at the same time and site as the 
OH reactivity. Their concentrations and reaction rate coefficients with OH were used to determine 
the calculated OH reactivity from eq. (2). A broad set of compounds were monitored at the site, 
herein classified as: anthropogenic volatile organic compounds (AVOCs, 44 compounds measured), 
biogenic volatile organic compounds (BVOCs, 7), oxygenated volatile organic compounds 
(OVOCs, 15) and others (3 species: CO, NO and NO2). The reader can refer to table 1 for the 
classification of the chemical species adopted throughout the manuscript. Figure 2 shows the time 
series of the summed calculated OH reactivity (thick blue line) and the contributions of each class 
of chemicals. The maximum of the summed calculated OH reactivity was 11 s-1, and the 24-h 
averaged value was 3 ±2 s-1 (1σ). As represented in figure 3, the class of the biogenic compounds 
played an important role on the daytime OH reactivity. Here, the shape of the diurnal pattern of the 
measured reactivity is slighty shifted to the BVOCs OH reactivity, which suggests there is an 
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influence from the oxidation products of biogenic molecules. The mean percentage contribution of 
each class of compounds to the summed calculated reactivity is determined for daytime (from 07:30 
to 19:30, LT) and nighttime data (from 19.30 to 04.30 LT) and is represented in figure 4. During 
daytime BVOCs contributed the largest fraction of OH reactivity (45%), followed by inorganic 
species (24%), OVOCs (19%) and finally AVOCs (12%). Interestingly, only 7 BVOCs had a higher 
impact than 44 AVOCs. This is explained by: i) the relatively high concentration of BVOCs 
(maximum values for isoprene and sum of monoterpenes is 1 and 1.5 ppbv, respectively), ii) the 
generally large BVOC reaction rate coefficients with OH (Atkinson and Arey, 2003) and iii) the 
relatively low concentration of AVOCs measured during the campaign. BVOCs accounted only for 
5% of the total VOCs concentration, followed by AVOCs (15%) and OVOCs (79%) (the 
percentages are calculated from mean campaign values, see also Michoud et al., 2017) which 
highlights the reactive nature of the measured BVOCs. During nighttime, BVOCs concentrations 
decreased (see figures 2 and 3); CO and NOx had the largest influence on OH reactivity (43%), 
followed by OVOCs (27%), AVOCs (23%) and BVOCs (7%). Particularly, CO and long-lived 
OVOCs and AVOCs constituted a background reactivity of ~ 2-3 s-1, as also shown by the diurnal 
profiles reported in fig. 3.  

Inside the BVOCs class, the total fraction of monoterpenes contributed more than isoprene to the 
OH reactivity (fig. 5). During daytime, OH reactivity due to monoterpenes was between 1.4 to 7.4 s-

1 and varied with air temperature, on the other hand, isoprene reactivity with OH varied between 
0.3-2.3 s-1 (minimum and maximum values on 29/07/13 and 03/08/2013, respectively). In contrast 
with monoterpenes OH reactivity, the reactivity of isoprene towards OH varied with both air 
temperature and solar irradiance. Overall both monoterpenes and isoprene OH reactivities had the 
characteristic diurnal profile observed for their atmospheric concentrations. High concentrations 
depended on air temperature, solar radiation as well as calm-low wind speed conditions. These 
results indicate a large impact of BVOC oxidation on the local photochemistry. 

The very reactive monoterpene α-terpinene had the largest contribution on OH reactivity among the 
measured BVOCs (31%), followed by isoprene (30%), β-pinene (17%), limonene (12%), α-pinene 
(8%), camphene (2%) and γ-terpinene (1%), over a total averaged daytime reactivity due to BVOCs 
of 2±2 s-1 (1σ), see table 3.  During the night, monoterpenes had a larger impact than isoprene due 
to their known temperature dependency (Kesselmeier and Staudt, 1999). α-terpinene was the most 
reactive-to-OH BVOC also during nighttime, see table 3. In terms of absolute values, α-terpinene 
had a maximum reactivity of 5.3 s-1 on 02/08/13 at 2:00 PM LT, which is also when the maximum 
OH reactivity reported for the whole class of BVOCs occurred. Remarkably, the mean 
concentration of this compound made it the fourth most abundant BVOC measured, with isoprene 
being the first (35%), followed by β-pinene (22%), α-pinene (15%), α-terpinene (13%), limonene 
(9%) and γ-terpinene (1%). The α-terpinene volume mixing ratio was maximum 594 pptv, with an 
average value between 10:00 AM LT and 5:00 PM LT during the field campaign of 131±110 pptv. 
Its short lifetime is due to the high reaction rate coefficient towards OH, (as reported in literature, 
i.e. 3.6 10-10 cm3 molecule-1 s-1, see Atkinson, (1986) and Lee et al., (2006)), which is more than 
three-fold higher than the one of reactive isoprene (kisoprene+OH=1 10-10 cm3 molecule-1 s-1, Atkinson, 
1986). Very little is reported in literature regarding its emission rates and ambient levels in the 
Mediterranean region. Owen et al., (2001) measured α-terpinene from a few Mediterranean tree 
species, including: Juniperus phoenicea, Juniperus oxycedrus, Spartium junceum L., and Quercus 
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ilex. Ormeno et al., (2007) published the α-terpinene content as 34.9±2.3 μg/gDM in the leaves of 
Rosmarinus officinalis; shrubs of rosemary were present in large quantity around our field site in 
Corsica.  

4.3 Missing reactivity and air masses fingerprint 

Figure 2 reports the time series of the total measured OH reactivity and calculated OH reactivity 
with their associated errors (35% and 20%, respectively). The largest significant discrepancy among 
those two quantities occurred between 23/07 and 30/07 (an average difference of 56% between 
measured and calculated OH reactivity). We combined air mass backtrajectories and atmospheric 
mixing ratios of some common atmospheric tracers to determine the chemical fingerprint of the 
sampled air and to investigate the origin of the missing reactity. We chose isoprene and pinenes for 
air masses influenced by biogenic activity, while propane and CO were used for those enriched in 
anthropogenic pollutants (see supplement). Maximum concentrations of anthropogenic pollutants 
were measured when the air masses originated from the North East sector: between 21/07-23/07 and 
between 31/07-03/08, indicating weak pollution events coming from the industrialized areas of the 
Po Valley and Milan (Italy). On the other hand, biogenic activity was independent of the wind 
sector and showed some variability linked to local drivers, such as the air temperature, solar 
irradiance and wind speed (fig. 6). Remarkably, measured OH reactivity and missing OH reactivity 
showed no dependency on the origin of air masses.  

4.4 Insights into the missing OH reactivity 

Here, we consider the contribution of each chemical group to the OH reactivity during the period of 
the campaign when a significant missing reactivity was observed (July 23rd -30th).  

We first focus on the primary-emitted BVOCs measured: isoprene and monoterpenes. Isoprene was 
measured by both PTR-MS and GC and the results correlated within the measurement uncertainty 
(slope and R2 of the regression for 415 data points are 0.93±0.03 and 0.77, respectively; see 
supplement). A small offset in the scatter plot (approximately 100 ppt) may indicate a small 
interference at m/z 69 for the PTR-MS measurements. 

Individual monoterpenes were either sampled on-line through GC-FID, or collected on adsorbent 
tubes to be analysed in the laboratory through GC-MS shortly after the campaign. At the same time, 
monoterpenes were also measured by PTR-MS as total monoterpene fraction since the instrument 
cannot distinguish between structural isomers. We compared the total monoterpene concentration 
observed by PTR-MS to the summed monoterpenes concentration from GC techniques and 
calculated a concentration difference between 0.2 and 0.6 ppbv (see supplement). Although small, 
the difference observed is significant, being outside the combined measurement uncertainty. Here, 
the summed calculated OH reactivity is obtained from data of isoprene and monoterpenes measured 
by GC. The unmeasured monoterpenes could be either monoterpenes not detected individually, or 
monoterpenes lost in the sampling tubes after being collected. We roughly estimated how much OH 
reactivity can result from unmeasured monoterpenes: a number of monoterpenes emitted by 
Mediterranean plants surrounding the monitoring station were considered and a weighted reaction 
rate coefficient with OH of 1.56x10-10 cm3 molecule-1 s-1 was determined from them (see rosemary 
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from Bracho-Nunez et al., 2011). A volume mixing ratio of 0.2-0.6 ppbv of missing monoterpenes 
results in 0.8-2.3 s-1of OH reactivity, which, even in the upper limit, is too low to explain the 
missing OH reactivity for the specific time frame, including during nighttime.  

Figure 6 shows the volume mixing ratios of BVOCs and oxidation products variability with local 
drivers, such as temperature, wind speed and solar irradiance. Volume mixing ratios are reported for 
the protonated masses measured by PTR-MS, including: m/z 69 (isoprene) and m/z 137 
(monoterpenes) for the primary-emitted BVOCs, and m/z 71 (isoprene first generation oxidation 
products: Methyl Vinyl Ketone (MVK) + methacrolein (MACR) + possibly isoprene 
hydroxyperoxides (ISOPOOH)), m/z 139 (nopinone, β-pinene first generation oxidation product), 
m/z 151 (pinonaldehyde, α-pinene first generation oxidation product) and m/z 111, m/z 113 
oxidation products of several terpenes. As recently reported by Rivera-Rios et al., 2014, the m/z 71 
might also include the ISOPOOH which could have formed at the site and fragmented inside the 
PTR-MS. However, it is important for the reader to know that we did not separate the different 
components of the m/z 71, therefore the presence of ISOPOOH on m/z 71 is assumed based on the 
recent literature. For all the above mentioned masses, except for m/z 111 and m/z 113, the 
corresponding rate coefficient of reaction with OH of the unprotonated molecule was found and 
their OH reactivity summed in the calculated OH reactivity. The reported time series show that both 
primary BVOCs and most of the OVOCs resulting from their oxidation had a diurnal profile. 
Temperature, light and wind speed affected both isoprene and m/z 71 while monoterpenes and 
corresponding products were more influenced by temperature and wind speed. Contrastingly, m/z 
113 was also present during nighttime in low amounts, which might indicate the presence of more 
oxidation products associated with its formation present during the night. A sharp increase of m/z 
71, m/z 113, m/z 139 began after July 26th when wind speed was lower and increased again after 
July 27th when also air temperature was higher. Although only a fair correlation was found for the 
measured OH reactivity with some masses, generally higher coefficients for all masses and good 
correlation coefficients of the linear regressions, specifically for m/z 71, m/z 111 and m/z 151 were 
found from July 27th to 30th. Some of these oxidation products (m/z 111, m/z 113, m/z 151) have 
already been observed in chamber and field studies (Lee et al., 2006, Holzinger et al., 2005) as they 
are formed from the photo-oxidation of different parent compounds belonging to the class of 
terpenes. Interestingly, the highest yields of the mentioned products were attributed to terpenes also 
common to the Mediterranean ecosystem, such as myrcene, terpinolene, linalool, methyl-chavicol 
and 3-carene (Lee et al., 2006, Bracho-Nunez et al., 2011). 

The effect of temperature was also considered for the period of missing OH reactivity. However, it 
was only from July 27th that the missing reactivity showed a clear temperature dependence. 
Terpenes emissions are also temperature dependent. Their emissions are usually fitted to 
temperature with the expression E(T) =E(Ts)exp[β(T –Ts)], where E(Ts) is the emission rate at Ts, β 
the temperature sensitivity factor and T is the ambient temperature. The dependence of the missing 
reactivity on temperature was originally demonstrated by Di Carlo and coworkers for a temperate 
forest in northern Michigan (Di Carlo et al., 2004). They found the same temperature sensitivity 
factor for the missing reactivity as for terpenes, β= 0.11 K-1, with a correlation coefficient of 
R2=0.92. Following the same approach, Mao et al., (2012) reported a β factor of 0.168 K-1 from a 
study in a temperate forest in California. They were able to explain the discrepancy between the 
measured reactivity and the calculated reactivity simulating the species formed from the oxidation 
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of the BVOCs. Figure 7 displays a scatter plot of the missing OH reactivity observed during this 
study as a function of ambient temperature. Here, the coefficients β= 0.173 K-1 and R2=0.568 were 
found when data from July 27th -30th are plotted, whereas a weaker correlation and higher 
coefficient is found for data within the July 23rd -26th period. From the similarities with the study of 
Mao et al., (2012) we think that unmeasured oxidation products of BVOCs could be the dominant 
cause of missing OH reactivity at our field site. However, it should be noted that the missing OH 
reactivity can be influenced by processes that do not affect BVOC emissions, such as boundary 
layer height and vertical mixing (see also comments reported in Hansen et al., 2014).  

Positive Matrix Factorization analysis on the collected VOCs data sets at the site identified 6 
independent factors. These factors describe the source of the VOCs which includes: a primary 
biogenic factor (pBVOCs), a secondary biogenic factor (sBVOCs) and an oxygenated factor. The 
factor represtenting pBVOCs is composed of short-lived molecules directly emitted by biogenic 
sources, such as isoprene and the sum of monoterpenes. The factor representing sBVOCs is 
composed by secondary oxidation products of biogenic-emitted molecules, such as: MVK+MACR, 
nopinone and pinonaldehyde. The oxygenated factor includes oxygenated molecules of mixed 
origin, both primary and secondary emitted, such as carboxylic acids, alcohols and carbonyls. 
Figure 8 reports the variability of the three factors with the missing OH reactivity. A clear influence 
on the missing OH reactivity is given by all the three factors: during daytime this is predominantly 
by pBVOCs and sBVOCs, while during nighttime it is driven by oxygenated molecules. 
Additionally, pBVOCs factor significant contributes to the OH reactivity during the whole 
campaign period, while sBVOCs factor is more variable, higher during the missing OH reactivity 
event, suggesting a significant impact of unmeasured secondary species to the missing OH 
reactivity. 

5 Conclusions 

The total OH reactivity was used in this study to evaluate the completeness of the measurements of 

reactive trace gases at a coastal receptor site in the western Mediterranean basin during three weeks 

in summer 2013 (16/07/2013-05/08/2013). OH reactivity had a clear diurnal profile and varied with 

air temperature, suggesting that biogenic compounds were significantly affecting the local 

atmospheric chemistry. Ancillary gas measurements confirmed that most of the reactivity during 

daytime was due to biogenic VOCs, including relevant contributions from oxygenated VOCs, while 

during nighttime inorganic species and oxygenated VOCs had the largest contribution. The OH 

reactivity was on average 5±4 s-1 (1σ) with a maximum value of 17±6 s-1 (35% uncertainty). The 

observed maximum is comparable to values of OH reactivity measured at forested locations in 

northern latitudes (temperate and boreal forests as reported by Di Carlo et al., 2004, Ren et al., 

2006, Sinha et al., 2010,  Noelscher et al., 2013, Kumar and Sinha 2014, Nakashima et al., 2014). 

This finding highlights the importance of primary-emitted biogenic molecules on the OH reactivity, 

especially where air temperature and solar radiation are high; even though our site was specifically 

selected for a focused study on mixed and aged continental air masses reaching the basin.  
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A comparison between the measured OH reactivity and the summed reactivity from the measured 

species showed that on average 56% of the measured OH reactivity was not explained by 

simultaneous gas measurements during July 23rd-30th . During this period, the air masses originated 

from the West (July 23rd-27th and July 29th-30th) and the South (July 27th-29th); calm wind 

conditions and peaks of air temperature were registered at the field site (28th July). In contrast, when 

the site was exposed to air masses from the eastern and northern sectors, namely northern Italy and 

South of France, weak pollution events mostly enriched by anthropogenic gases were observed. In 

such cases, the measured and calculated OH reactivity values were in agreement. During July 23rd-

30th we observed increased concentration of BVOCs and OVOCs, lack of pollution events, higher 

temperature and relatively high missing reactivity (~10 s-1). Specifically, a maximum value of 2.3 s-

1 of OH reactivity was estimated for unmeasured primary BVOCs, namely non-oxygenated 

monoterpenes. Such missing reactivity is not linked to any specific event and is rather distributed 

along the whole time frame of the campaign. 

During July 27th-30th an increase in oxygenated VOCs originating from the photo-oxidation of 

primary-emitted BVOCs was also detected. Highest yields of these oxidation products (m/z 111, m/z 

113, m/z 151) were attributed to terpenes, which are emitted in abundance by Mediterranean 

ecosystems (Lee et al., 2006, Bracho-Nunez et al., 2011). We found that the missing reactivity 

during July 27th-30th  had a similar temperature dependency to a reported study conducted in a 

temperate forest in the US, for which model predictions highlighted that unmeasured oxidation 

products of BVOCs could explain the missing reactivity (Mao et al., 2012). We conclude that, 

specific to this period and ecosystem, unmeasured oxidation products of terpenes could be the cause 

of the observed discrepancy between measured and calculated OH reactivity. Complementary 

analysis, including PMF, helped confirm the influence of the secondary biogenic VOCs and 

highlighted the influence of oxygenated molecules during nighttime and part of the missing 

reactivity period.  

Mediterranean plants are known to emit large quantities of reactive BVOCs, including 

sesquiterpenes and oxygenated terpenes (Owen et al., 2001), which were not investigated during our 

fieldwork. We assume therefore that these molecules, as well as their oxidation products, might also 

have played an important role in the missing OH reactivity detected.  

We can therefore answer the research questions addressed in the introduction, as the presence of 

missing reactivity reveals that some reactive compounds were not measured during the fieldwork. 

Most of these molecules were likely oxidation products of biogenic compounds. Two main 

conclusions are obtained from this study: first, although several state-of-the-art instruments were 
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deployed for this campaign, major difficulties are still encountered for the accurate detection of 

oxygenated chemicals. Second, as various other studies on OH reactivity have pointed out so far, 

many unknowns are still associated with the photo-oxidation processes of BVOCs.  

Further studies with chemical and transport models to identify the important chemical functions of 

these oxygenated molecules, as well as the effects of long-range transport would be beneficial to 

provide a complete picture of this work.  

Finally, as the Mediterranean basin differs from side to side, (air masses reception as well as type of 

ecosystems) more intensive studies at different key spots, e.g. western vs eastern basin and remote 

vs. periurban ecosystems, would be helpful for a better understanding of the atmospheric processes 

linked to the reactive gases over the Mediterranean basin.  
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Table 1. Measured compounds (whose concentration was above the instrumental detection limits) 

and their reference group adopted throughout the manuscript for calculating the OH reactivity. 

AVOCs, BVOCs and OVOCs stand respectively for anthropogenic, biogenic and oxygenated 

volatile organic compounds. 

Species group  Species name  

AVOCs 

 

 

 

methane, ethane, propane, n-butane, n-pentane,  n-hexane, n-octane, n-
nonane, n-undecane, n-dodecane, 2-methylpentane, 2-methylhexane, 
2,2- dimethylbutane, 2,2-dimethylpropane, 2,3- dimethylpentane, 2,4- 
dimethylpentane, 2,2,3-trimethylbutane, 2,3,4- trimethylpentane, 
cyclohexane, ethylene, propylene, 1-butene, 2-methyl-2-butene, 3-
methyl-1-butene, 1,3-butadiene, trans-2-butene, cis-2-butene, 1-
pentene, trans-2-pentene, cis-2-pentene, hexene, benzene, toluene, 
ethylbenzene, styrene, m-xylene, o-xylene, p-xylene, acetylene, 1-
butyne, acetonitrile.  

BVOCs   isoprene, a-pinene, b-pinene, d-limonene, a-terpinene, g-terpinene, 
camphene.  

OVOCs   acetaldehyde, formic acid, acetone, acetic acid, mglyox, methyl ethyl 
ketone, propionic acid, ethyl vinyl ketone, butiric acid, nopinone, 
pinonaldehyde, methacrolein, methyl vinyl ketone, formaldehyde, 
methanol.  

Others   NO, NO2, CO.  

 

Table 2. Summary of the experimental methods deployed during the field campaign and needed for 

calculating the OH reactivity. The number of measured compounds includes the compounds below 

the instrumental detection limit (LoD). 

Technique Compounds measured LoD (pptv) 

PTR-MS 16 VOCs 7-500 

GC- FID/FID 43 NMHCs C2-C12 10-100 

GC-FID/MS 16 NMHCs (OVOCs+ C3-C7) 5-100 

off-line GC-FID/MS 35 NMHCs C5-C16 + 5 aldehydes C6-C12 5-40 
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Hantzsch reaction HCHO 130 

CLD NOx 50 

WS-CRDS CO2, CH4, CO 1000 

 

 

Table 3. Relative contributions of individually detected biogenic volatile organic compounds 

(BVOCs) to the total calculated OH reactivity BVOCs fraction. Daytime BVOCs OH reactivity 

accounted for a maximum value of 9 s-1, on average it was 2±2 s-1. Nighttime BVOCs OH reactivity 

fraction accounted for a maximum value of 0.5 s-1, on average it was 0.1 s-1.  

BVOCs Day (%) Night (%) 

a-pinene 7.7 20.7 

b-pinene 16.5 16.1 

limonene 12 11.4 

camphene 1.5 3.1 

a-terpinene 31.1 31.3 

g-terpinene 1.3 5 

isoprene 30 12.5 

 

 

Figure 1. Field site top-view, Corsica, France (42.97°N, 9.38°E, altitude 533 m). Measures: 1. PTR-

MS, online and offline chromatography for trace gases analysis; 2. OH reactivity; 3. NOx, O3, 
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aerosols composition and black carbon; 4. Meteo, and particles microphysics; 5. HCHO, trace gases 

and radicals; 6. CO, CO2, CH4; 7. Trace gases and particle filters; 8. Particles physics. The photo 

was shot during the installation of the instruments. 

 

 

 

  

Figure 2. 3-h averaged data of total OH reactivity measured and calculated from the measured 

gases. Summed OH reactivity is represented with the blue thick line and grouped as biogenic VOCs 

in green, anthropogenic VOCs in blue, oxygenated VOCs in orange and others in red. Others refer 

to carbon monoxide (CO) and nitrogen oxides (NOx).  
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Figure 3. Diurnal patterns of measured (value with ±1σ, right axis) and calculated OH reactivity 
(left axis). Others, AVOCs, OVOCs, BVOCs are the contribution of CO and NOx (others), 
anthropogenic volatiles, oxygenated volatiles and biogenic volatiles to the summed calculated OH 
reactivity. 

 

Figure 4. Daytime (left pie) and nighttime (right pie) contributions of the measured compounds to 

the calculated OH reactivity. Daytime data were collected between 07.30 and 19.30 while nighttime 

data were between 19.30 and 07.30. Summed OH reactivity during daytime was maximum 11 s-1, 

on average 4±2 s-1; while during nighttime it was maximum 3 s-1, on average 2±0.4 s-1. BVOCs 

(green), AVOCs (blue), OVOCs (orange) and others (red) stand for biogenic, anthropogenic, 

oxygenated volatile organic compounds and carbon monoxide and nitrogen oxides, respectively. 

BVOCs, AVOCs, OVOCs and others contribution was 45%, 12%, 19%, 24%, during daytime; 

while it was 7%, 23%, 27%, 43% for nighttime reactivity.   
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Figure 5. Absolute OH reactivity calculated for the measured biogenic compounds.  

 

Figure 6. Volume mixing ratios (ppbv) of primary-emitted (mid-panel) and secondary produced 
biogenic volatile organic compounds (BVOCs) (lower panel) measured by PTR-MS. Primary 
BVOCs include: isoprene (m/z 69) and monoterpenes (m/z 137), oxidation products include: methyl 
vinyl ketone, methacrolein, isoprene hydroperoxides MVK+MACR+ISOPOOH (m/z 71), nopinone 
(m/z 139), pinonaldehyde (m/z 151), m/z 111 and m/z 113. Top panel provides data of temperature, 
wind speed and solar irradiance. 

 

 

Figure 7. The difference between measured and calculated reactivity (missing OH reactivity) during 
July 23rd -26th July (red data points) and during July 27th -30th (black data points), dependence to 
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temperature. The missing reactivity is fitted to E(T)=E(293) exp(β(T-293)), with β=0.37 K-1 and 
R2=0.47 during July 23rd -26th July and β=0.17 K-1 and R2=0.57 during July 27th -30th.  

 

 

Figure 8. Time series of missing OH reactivity (left axis) reported with the factors obtained from 
positive matrix factorization analysis (right axis): primary-emitted biogenic volatile organic 
compounds factor (pBVOCs), oxygenated volatile organic compounds factor and secondary 
biogenic volatile organic compounds factor (sBVOCs). Missing data points of missing OH 
reactivity correspond to either data points ≤ 0 either data points of missing measured OH reactivity 
values.  
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