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Abstract. Through the comparison of several regional-scale chemistry transport modelling systems that 33 

simulate meteorology and air quality over the European and American continents, this study aims at i) 34 

apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of 35 

models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations.  36 

The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation 37 

International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model 38 

comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, 39 

SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, 40 

sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning 41 

the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of 42 

the error. Each of the error components is analysed independently and apportioned to specific processes 43 

based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error 44 

apportionment technique devised in the former phases of AQMEII. 45 

The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key 46 

insights. In addition to reaffirming the strong impact of model inputs (emissions and boundary conditions) and 47 

poor representation of the stable boundary layer on model bias, results also highlighted the high inter-48 

dependencies among meteorological and chemical variables, as well as among their errors. This indicates that 49 
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the evaluation of air quality model performance for individual pollutants needs to be supported by 50 

complementary analysis of meteorological fields and chemical precursors to provide results that are more 51 

insightful from a model development perspective. The error embedded in the emissions is dominant for 52 

primary species (CO, PM, NO) and largely outweighs the error from any other source. The uncertainty in 53 

meteorological fields is most relevant to ozone. Some further aspects emerged whose interpretation requires 54 

additional consideration, such as, among others, the uniformity of the synoptic error being region and model-55 

independent, observed for several pollutants; the source of unexplained variance for the diurnal component; 56 

and the type of error caused by deposition and at which scale.  57 

1. INTRODUCTION 58 

The Air Quality Model Evaluation International Initiative (AQMEII, Rao et al., 2010) has been active since 2008 59 

with the aim of promoting the research on regional air quality model evaluation across the modelling 60 

communities of Europe and North America. It is coordinated by the European Joint Research Centre (JRC) and 61 

the U.S. Environmental Protection Agency (EPA) and it has now reached its third phase, referred to as AQMEII3 62 

hereafter. The experience gathered in the first two phases consisted of important advancement in the model 63 

evaluation research as well as establishing a large community of participating regional modeling groups, and 64 

have made AQMEII a natural candidate to collaborate with the Hemispheric Transport of Air Pollution (HTAP) 65 

initiative. HTAP, a taskforce of the Long Range Transport of Air Pollution program (LTRAP) acting within the 66 

UNECE program, relies on a community of global scale chemical transport models to investigate the fate of air 67 

pollutants emitted in the Northern hemisphere and determine the contribution of remote sources as well as 68 

their impacts to the background concentration in different parts of the globe. HTAP is in its second phase and 69 

the activities undertaken during this second phase include coordinating simulations by both global and 70 

regional scale models. The regions of interest in the Northern hemisphere are North America, Europe and 71 

South East Asia. The regional-scale modelling component of this activity for Europe and North America is being 72 

coordinated by AQMEII while the Asian component is being coordinated by MICs-ASIA (Model Intercomparison 73 

Study-Asia). Global models participating in HTAP are used by the AQMEII regional models as boundary 74 

conditions and special attention has been given to the emission inventory to ensure that it is consistent 75 

between the global and regional-scale simulations as described in Janssens-Maenhout et al. (2015). The 76 

activity described here relates to the evaluation of the base case scenario set up within the context of HTAP 77 

and AQMEII (a description of the HTAP program can be found at www.htap.org).    78 

Following the simulation strategy developed over the first two phases of the AQMEII activity, two continental-79 

scale domains have been used in the exercise - one over Europe (EU) and one over North America (NA) (Figure 80 

1). The modelling groups participating in AQMEII3 performed air quality (AQ) simulations over one or both of 81 

these domains. Each group has been provided the same inputs for anthropogenic emissions and boundary 82 

conditions and has been left the choice of the optimal configuration of the modelling systems, including 83 

meteorology, grid spacing, and natural emissions.  To facilitate the cross-comparison among models, the 84 

modelled outputs have been successively interpolated to a common regular grid of 0.25° spacing over both 85 

continents. The comparison with observational data is performed by interpolating (or by simply taking the 86 

value from the grid cell where the monitoring sites are situated) the model values to prescribed observation 87 

stations (receptors) for surface measurements and at specified vertical heights for comparisons against 88 

measured profiles. As in the previous two phases of AQMEII, the ENSEMBLE system (Galmarini et al., 2012) 89 

hosted by the JRC has been used to accommodate all of the data and to pair modelled to observational values 90 

in time and space to provide direct comparison and statistical analysis.  91 

The model evaluation approach proposed and applied in this study combines aspects of operational and 92 

diagnostic evaluation as defined by Dennis et al. (2010). It makes use of the classical statistical indicators 93 

typically employed for operational evaluation based on the direct comparison with observations, but also 94 

provides more indications on the processes contributing to model errors, which is the focus of diagnostic 95 
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model evaluation (Solazzo and Galmarini, 2016). The data used in the analysis are not process specific but are 96 

ordinary time series of modelled and monitoring data which are decomposed into four spectral components: 97 

ID (intra-day), DU (diurnal), SY (synoptic), and LT (long-term), each determined by different physical and 98 

chemical processes (Rao et al., 1997). The error apportionment applied to each spectral component can 99 

provide indications on the possible sources of error. The scope, as also highlighted by Gupta et al. (2009), is to 100 

move beyond the usual aggregate metrics that only offer a statistical interpretation, towards the use of 101 

measures selected for the quality of the information they can provide to model developers and users. 102 

The evaluation of the AQMEII3 suite of model runs is carried out for surface temperature (Temp) and wind 103 

speed (WS), and for the species CO, NO, NO2, ozone, SO2, PM10 (EU) and PM2.5 (NA). Additional analyses 104 

making use of emission reduction scenarios (CO and NO) and vertical profiles (Temp, WS, ozone) are also 105 

presented.  106 

The main scope of the analysis is to present a detailed overview of the skill of AQ models when compared 107 

against measurements, for several regulatory pollutants and their precursors. For each species, the error is  108 

1. quantified seasonally for three sub-regions of each continent;  109 

2. qualified in terms of bias, variance, or covariance type of error, and 110 

3. apportioned to the atmospheric time-scale, i.e. ID, DU, SY, or LT. 111 

Given the large amount of models and species for two continents and the screening scopes of this work, maps 112 

of model metrics at individual receptors are omitted. Instead, spatial averaging over pre-selected homogenous 113 

sets of measurement points is presented. Investigation of signal associativity through clustering analysis has 114 

been performed for ozone and PM (PM10 for EU and PM2.5 for NA) over both continents following the 115 

procedure outlined by Solazzo and Galmarini (2015), allowing the detection of three sub-regions (hereafter 116 

referred to as EU1, EU2, EU3 and NA1, NA2 NA3) (Figure 1) where the LT and SY components have shown 117 

robust clustering features. For consistency and to facilitate the interpretation of the results, the same sub-118 

regions have been adopted for all species.  119 

The error break-down, the time series decomposition, and the models and observational data used are 120 

presented in Section 2. In Section 3, the results of the error apportionment analysis are presented and 121 

discussed. A novel analysis based on the autocorrelation function (acf) of the LT component is presented in 122 

Section 4 for ozone. Conclusions are drawn in Section 5. 123 

2. METHODOLOGY 124 

The first step of the analysis is the spectral decomposition of the time series of modelled and observed 125 

species, as outlined in the methodology proposed in Solazzo and Galmarini (2016). Because each spectral 126 

component represents a range of processes in a specific spectral range, the deviation of the modelled from the 127 

observed spectral component is informative about the process(es) causing the error. The second step is to 128 

separate the mean square error (MSE) of each spectral component into its constituent parts: the bias, variance 129 

and covariance. These time-scale specific errors, expressed in terms of bias, variance, and covariance then 130 

allow a more precise diagnosis of their cause.     131 

2.1 ERROR BREAK DOWN 132 

The MSE is the squared difference of the modelled and observed values: 133 

𝑀𝑆𝐸 = 𝐸(𝑚𝑜𝑑 − 𝑜𝑏𝑠)2 =
∑ (𝑚𝑜𝑑𝑖− 𝑜𝑏𝑠𝑖)2𝑛𝑡

𝑖=1

𝑛𝑡

 
EQ 1 

 

 134 

where E() denotes expectation and nt is the length of the time series. The bias is: 135 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-682, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 

𝑏𝑖𝑎𝑠 = 𝐸(𝑚𝑜𝑑 − 𝑜𝑏𝑠) EQ 2 

 

i.e., 𝑏𝑖𝑎𝑠 = 𝑚𝑜𝑑̅̅ ̅̅ ̅̅ − 𝑜𝑏𝑠̅̅ ̅̅ ̅  (the overbar indicates temporal averaging). The following relationship holds:  136 

𝑀𝑆𝐸 = 𝑣𝑎𝑟(𝑚𝑜𝑑 − 𝑜𝑏𝑠) + 𝑏𝑖𝑎𝑠2 EQ 3 

 137 

 (var() is the variance operator). By applying known the known property of the variance for correlated fields: 138 

𝑣𝑎𝑟(𝑚𝑜𝑑 − 𝑜𝑏𝑠) = 𝑣𝑎𝑟(𝑚𝑜𝑑) + 𝑣𝑎𝑟(𝑜𝑏𝑠) − 2𝑐𝑜𝑣(𝑚𝑜𝑑, 𝑜𝑏𝑠) EQ 4 

 139 

the MSE can be expressed as: 140 

𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟(𝑚𝑜𝑑) + 𝑣𝑎𝑟(𝑜𝑏𝑠) − 2𝑐𝑜𝑣(𝑚𝑜𝑑, 𝑜𝑏𝑠), EQ 5 

 141 

where the covariance term (last term on the right hand side of Eq 5) accounts for the degree of correlation 142 

between the modelled and observed time series. Following Solazzo and Galmarini (2016), the MSE Eq 5 is 143 

rewritten as:  144 

𝑀𝑆𝐸 =  (𝑚𝑜𝑑̅̅ ̅̅ ̅̅ − 𝑜𝑏𝑠̅̅ ̅̅ ̅)
2

+ (𝜎𝑚𝑜𝑑 − 𝑟𝜎𝑜𝑏𝑠)2 + 𝑚𝑀𝑆𝐸 

 

EQ 6 

where 145 

𝑚𝑀𝑆𝐸 = 𝜎𝑜𝑏𝑠
2 (1 − 𝑟2) EQ 7 

is the minimum error achievable by an accurate (unbiased, 𝑚𝑜𝑑̅̅ ̅̅ ̅̅ = 𝑜𝑏𝑠̅̅ ̅̅ ̅) and precise (𝜎𝑚𝑜𝑑 = 𝜎𝑜𝑏𝑠) modelling 146 

system (r is the linear correlation coefficient). mMSE is the unexplained portion of the error and reflects the 147 

amount of observed variance not explained by the models (Solazzo and Galmarini, 2016). The mMSE type of 148 

error is caused by the variability of the observation not reproduced by the models, which includes 149 

incommensurability, noise, and timing of the signal summarised by the coefficient of determination (Solazzo 150 

and Galmarini, 2016), as well as by the error induced by the meteorological drivers (for primary and secondary 151 

species) and by the short and long range transport of precursors (for secondary species such as ozone)). 152 

The decomposition in Eq 6 includes all the operational metrics commonly adopted to evaluate the AQ models 153 

(bias, variance, correlation coefficient, and their sum, the MSE), and is thus suitable to be used as compact 154 

estimator of model performance.  155 

2.2. SPECTRAL DECOMPOSITION AND ERROR ATTRIBUTION 156 

Spectral filtering has been applied to the measured and modelled hourly-averaged time series at the 157 

monitoring sites using the Kolmogorov-Zurbenko (kz) low-pass filter (Zurbenko, 1986). This allows to separate 158 

different phenomena having distinct signals, such as long-term and short-term fluctuations in the observed 159 

and modelled time series (Rao et al., 1997). Applications of the kz filter to ozone have been described in a 160 

number of previous studies (Rao et al., 1997; Wise and Comrie, 2005; Hogrefe et al., 2000; 2014; Galmarini et 161 

al., 2013; Kang et al., 2013; Solazzo and Galmarini, 2015 and 2016).  162 

The kz filter depends on the length of the moving average window m and the number of iterations k (kzm,k) (k 163 

also indicates the level of noise suppression). Since the kz is a low-pass filter, the filtered time series consists of 164 

the low-frequency component, while the difference between two filtered time series (with different k and m) 165 

provides a band-pass filter. This latter property has been used in this study, as well as in a number of previous 166 

studies, to decompose the modelled and observed time series as:   167 

FT(S) = LT(S) + SY(S) + DU(S) +ID(S) EQ 8 

 168 
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where S is the time series of the species being analysed and FT is the full (un-decomposed) time series. 169 

The base line component LT is the long term component (periods longer than 21 days) and accounts for the 170 

temporal fluctuations determined by low frequencies, such as boundary conditions and seasonal variation in 171 

emissions and photo-chemistry. SY is the synoptic component containing fluctuations related to weather- 172 

processes and precursor emissions occurring on scales between 2.5 and 21 days. The DU (diurnal) component 173 

accounts for fluctuations due to diurnal periodicity occurring on temporal scales between 0.5 and 2.5 days, 174 

and ID is the intra-day component, accounting for fast-acting, local-level processes (time scale less than 12 175 

hours) (the spectral components have the same units as the un-decomposed time series).  176 

The decomposition Eq 8 is such that the un-decomposed time series is perfectly returned by the summation 177 

(or by the exponential product, see Appendix 1 for details) of the components. The band-pass nature of the SY, 178 

DU, and ID components is such that they only describe the processes in the time window the filter allows the 179 

signal to ‘pass’. For instance, the DU component is insensitive to processes outside the range between 0.5 and 180 

2.5 days.  181 

Because the kz filter was originally developed to deal with ozone, the parameters k and m (Appendix 1) are 182 

specifically tailored for ozone, taking into consideration its chemistry and life-time. In this study we have 183 

applied the kz filter to other species and kept the same values for k and m for consistency and to facilitate the 184 

comparison of the results. Although some species (e.g. PM, CO, SO2) may be less sensitive to day/night cycles 185 

than ozone, the distinction between DU and ID are still revealing of emission patterns like vehicular traffic and 186 

industrial activities as well as diurnal variations in vertical mixing. Moreover, the SY and LT are associated with 187 

transport and other weather processes common to all species.  188 

Two aspects of the signal filtering having a profound impact on model evaluation are: 189 

1. The non-orthogonality of the spectral components is one of the major drawbacks of the signal 190 

decomposition. A clear-cut separation of the components of Eq 8 is not achievable, since the separation is a 191 

non-linear function of the parameters m and k (Rao et al., 1997; Kang et al., 2013) and the leakage among 192 

components mixes together in each component different physical processes. Galmarini et al. (2013) found that 193 

the explained variance by the spectral components accounts for 75 to 80% of the total variance while the 194 

remaining portion of the variance is due to the interactions between the estimated components. The effect of 195 

these interactions on the error apportionment pursued in this study is outlined and quantified in section 3.  196 

Other spectral techniques could be used but either they not guarantee the absence of signal leakage (e.g. 197 

anomaly perturbation method) or require special treatment of missing data (e.g. wavelet transform method) 198 

(Rao et al., 1997; Eskridge et al., 1997).  199 

2. The bias is calculated as the distance between the time average modelled and observed time series. In such 200 

a ‘time average’ sense, the base line LT is the only biased component, containing the entire bias of the original 201 

time series. The other components are zero-mean fluctuations about LT and are unbiased. Although inaccuracy 202 

at each time step can also derive from the SY, DU and ID components (Johnson, 2008), in this study the signal 203 

is taken as time-averaged over a finite period, and therefore the entire bias is apportioned to the base-line (LT) 204 

component.  205 

2.3 MODELS AND OBSERVATIONAL DATA 206 

Table 1 summarises the modelling systems participating in AQMEII3. Twelve modelling groups produced 207 

outputs over EU and four over NA (although not all fields were made available by all groups). Sensitivity 208 

simulations performed by two groups, in which alternate emission inventories were used, raises the number of 209 

EU contributions to fourteen.  210 
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The ‘standard’ emission inventories are those developed for the second phase of AQMEII for EU and NA and 211 

extensively described in Pouliot et al. (2015). For EU, the 2009 inventory of anthropogenic emissions was used, 212 

although biogenic emissions (meteorology-dependent) were specifically calculated for the year of 2010 by 213 

several groups. In regions not covered by the standard inventory, such as North Africa, five modelling systems 214 

(Table 1) have complemented the standard inventory with the HTAPv2.2 (Janssens-Maenhout et al., 2015) 215 

datasets. The two inventories are the same over EU and in the MACC inventory the non-European emissions 216 

are not included. Other small differences might exist among the two inventories (like in the shipping 217 

emissions), but we consider them to be of small impact for the spatial averaged analysis carried out in this 218 

study. Emissions from lightning and volcanic sources are not contained in the EU and NA emissions inventories, 219 

since not all participating models include robust methods for estimating these emissions. 220 

Two EU modelling systems (CHIMERE, SILAM) made results available with both inventories. For both 221 

continents the regional scale emission inventories where embedded in the global scale inventory (Janssens-222 

Maenhout et al., 2015) to guarantee coherence and harmonization of the information used by the two 223 

communities. The ability of some modelling groups to perform sensitivity simulations with both the TNO MAC 224 

and the HTAP v2.2 information allowed also to determine the impact of North African emissions on the 225 

European domain. For Chimere, the MACC inventory over France and the UK was spatially redistributed 226 

considering national inventories (having higher spatial resolution), while for the other countries it was 227 

redistributed by considering point source locations, land-use and population. For processing the HTAP 228 

inventory, population was not used as a parameter for spatially distributing the emissions.  229 

For the NA domain, the 2008 National Emission Inventory was used as the basis for the 2010 230 

emissions, providing the inputs and datasets for processing with the SMOKE emissions processing system 231 

(Mason et al., 2012). Year specific updates for the year of 2010 were made for several sectors, including 232 

mobile sources, power plants, wildfires, and biogenic emissions.  Additional details can be found in Im at al. 233 

(2015a,b) and Pouliot et al. (2015).  234 

Chemical boundary conditions were provided by the Composition – Integrated Forecast System (C-IFS) model 235 

(Flemming et al., 2015), including ozone, NOx, CO, CH4, SO2, NMVOCs, dust, organic matter, black carbon and 236 

sulphate.  Sea salt at the boundaries, although provided, was not used due to unrealistically high values.  237 

[Table 1 here] 238 
 239 

2.3.1 MODEL FEATURES 240 

This section presents the main features of the modelling systems participating to AQMEII3. Complementary 241 

information is provided in Table 1.  242 

The FMI (Finnish Meteorological Institute) has taken part with the ECMWF-SILAM system (ECMWF-SILAM_M 243 

and ECMWF-SILAM_H of Table 1, indicating the instances of the SILAM model using the MACC and the HTAP 244 

emission inventory, respectively) (ECMWF: European Centre for Medium-Range Weather Forecasts). SILAM 245 

v5.4 (Sofiev et al., 2015) has been used, with meteorological input extracted from the ECMWF operational 246 

archives. The thickness of the first layer is 30m. The simulation included sea-salt emissions as in Sofiev et al. 247 

(2011) (but not from the boundaries), biogenic VOC (volatile organic compounds) emissions as in Poupkou et 248 

al. (2010) and wild-land fire emissions as in Soares et al. (2015). The wind-blown dust is only included from the 249 

lateral boundary conditions. Anthropogenic NOx emissions have been treated as 10% NO2 and 90% NO. The 250 

volatility distribution of anthropogenic OC was taken from Shrivastava et al. (2011). The gas phase chemistry 251 

was simulated with CBM-IV, with reaction rates updated according to the recommendations of IUPAC 252 

(http://iupac.pole-ether.fr) and JPL (http://jpldataeval.jpl.nasa.gov). The secondary inorganic aerosol 253 

formation was computed with updated DMAT scheme (Sofiev, 2000) and secondary organic aerosol formation 254 
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with the Volatility Basis Set (VBS, Ahmadov et al., 2012). A known deficiency of the SILAM version used in this 255 

study is the overestimation of ozone dry deposition. 256 

The LOTOS-EUROS modelling system (Schaap et al. 2008, Sauter et al. 2012) has been applied by TNO (the 257 

Netherlands Organization for Applied Scientific Research), using version v1.10.1. The meteorological inputs 258 

have been extracted from the ECMWF operational archives. For biogenic emissions the approach as described 259 

in Beltman et al. (2013) has been used. Gas-phase chemistry is based on CBM-IV (modified reaction rates, see 260 

Sauter et al., 2012), secondary inorganic aerosol (SIA) formation on Isorropia II (Fountoukis and Nenes, 2009) 261 

and for semivolatile species the VBS approach was used (Donahue et al. 2006, Bergström et al. 2012), with 262 

100% of the emitted OC mass in the 4 lowest volatility classes that are predominantly solid and an additional 263 

150% in the five higher volatility bins. Modelled terpene emissions were reduced by 50% to limit their 264 

contribution to SOA (secondary organic aerosol) formation which was found to be too high otherwise. This is 265 

justified since contributions of terpene to SOA formation is known to be very uncertain and at the same time 266 

the model is very sensitive to terpene emissions (Bergström et al., 2012). 3% of the total anthropogenic NOx 267 

emissions were attributed to NO2 while 97% were attributed to NO. No NOx emissions from soil were taken 268 

into account. The model includes pH dependent conversion rates for SO2 (Banzhaf et al., 2012), while only 269 

below-cloud scavenging is used for wet deposition. Mineral dust emissions were calculated on-line, including 270 

emissions from road resuspension and agricultural activities, according to Schaap et al. (2009). For sea spray 271 

the parameterizations by Monahan et al. (1986) and Martensson et al. (2003) were used.  A specific feature of 272 

LOTOS-EUROS is that it only covers the lower 3.5 km of the atmosphere, with a static 25 m surface layer, a 273 

dynamic mixing layer and two dynamic reservoir layers. This makes the model relatively fast in terms of 274 

computation time but has implications for the vertical mixing of species for instances where the mixing layer 275 

rapidly changes in height.    276 

WRF-WRF/Chem1 is applied by the University of L’Aquila (Italy). The version 3.6 of the Weather Research and 277 

Forecasting model with Chemistry model (WRF/Chem) (Grell et al., 2005) has been used for AQMEII3. This 278 

version of the model has been modified to include the new chemistry option implemented by Tuccella et al. 279 

(2015) that includes in the simulation of direct and indirect aerosol effects a better representation of the 280 

secondary organic aerosol mass, calculated as in Ahmadov et al. (2012). Here only direct effects have been 281 

included in the simulation, for computational expediency. The model uses RACM-ESRL gas phase chemical 282 

mechanism (Kim et al., 2009), an updated version of the Regional Atmospheric Chemistry Mechanism (RACM) 283 

(Stockwell et al., 1997). The inorganic aerosols are treated with the Modal Aerosol Dynamics Model for Europe 284 

(MADE) (Ackermann et al., 1998). The parameterization for SOA production is based on the VBS approach. The 285 

aerosol direct and semi direct effects are taken in account following Fast et al. (2006).  Cloud chemistry in the 286 

convective updraft is modelled using the scheme of Walcek and Taylor (1986), while the aqueous phase 287 

oxidation of SO2 by H2O2 in the grid-resolved clouds is parameterized with the scheme used in GOCART 288 

(Goddard Chemistry Aerosol Radiation and Transport). Wet deposition from convective and resolved 289 

precipitation is included following Grell and Freitas (2014). The photolysis frequencies are calculated with the 290 

Fast-J scheme (Fast et al., 2006), the dry deposition velocities are simulated with the parameterization 291 

developed by Wesely (1989). Dry deposition and photolysis schemes were modified to take in account the 292 

effects of the soil snow coverage following Ahmadov et al. (2015). The anthropogenic emissions are taken 293 

from TNO-MACC inventory for 2009 (Kuenen et al., 2014) and have been adapted to the chemical mechanism 294 

used following the method of Tuccella et al. (2012). The biogenic emissions have been calculated online by 295 

using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006). 296 

Anthropogenic NOx sources were assumed 95% of NO and 5% of NO2. The main physical parameterization used 297 

include the Rapid Radiative Transfer Method for Global (RRTMG) for solar and infrared radiation (Iacono et 298 

al. 2008), Morrison microphysics (Morrison et al., 2010), the Mellor-Yamada Nakanishi-Niino (MYNN) planetary 299 

boundary layer (PBL) scheme (Nakanishi-Niino, 2006), the NOAH land-surface model (Chen and Dudhia, 2001) 300 

and the Grell-Freitas scheme for cumulus clouds (Grell and Freitas, 2014). The meteorological analysis used to 301 

initialize WRF are provided by the ECMWF with a horizontal resolution of 0.5° every 6 hours. Chemical 302 
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boundary conditions are taken from C-IFS. A series of 72-hour simulations has been performed on each day 303 

starting at 00 UTC. Each run is preceded by a pre-forecast of 12 hours (from 12 to 00 UTC) only with 304 

meteorology, in which the model is nudged toward analysis above the PBL in order to prevent a drift from 305 

synoptic circulation patterns. The last hour of this spin-up is then used as meteorological initial condition for 306 

WRF/Chem. The chemical state is restarted from the previous 72-hours run. 307 

WRF-WRF/Chem2 applied by the University of Murcia (Spain) relies on the WRF-Chem model (Grell et al., 308 

2005). The following physics options have been applied for the simulations: RRTMG long-wave and short-wave 309 

radiation scheme; Lin microphysics (Lin et al., 1993), the Yonsei University (YSU) PBL scheme (Hong et al., 310 

2006), the NOAH land-surface model and the updated version of the Grell-Devenyi scheme (Grell and 311 

Devenyi, 2002) with radiative feedback. Chemical options include: RADM2 chemical mechanism (Stockwell et 312 

al., 1990); MADE/SORGAM aerosol module (Schell et al., 2001) including some aqueous reactions; Fast-J 313 

photolysis scheme. The modelling domain covers Europe and a portion of Northern Africa.  314 

Simulations of WRF-CAMx over EU have been performed by RSE (Italy) using CAMx version 6.10 (Environ, 315 

2014) with Carbon Bond 2005 (CB05) gas phase chemistry (Yarwood et al., 2005) and the Coarse-Fine (CF) 316 

aerosol module. Input meteorological data were generated by WRF-Chem model version 3.4.1 (Skamarock et 317 

al., 2008a,b), driven by ECMWF analysis fields. Grid nudging of wind speed, temperature and water vapour 318 

mixing ratio has been employed within the PBL, with a nudging coefficient of 0.0003 sec-1. WRF-Chem has 319 

been adopted to predict GOCART dust emissions (Ginoux et al., 2001) along with the meteorology. The 320 

WRFCAMx pre-processor (version 4.2; ENVIRON, 2014) was used to create CAMx ready input files collapsing 321 

the 33 vertical layers used by WRF to 14 layers in CAMx but keeping identical the layers up to 230 m above 322 

ground level. Anthropogenic emissions were derived by the TNO-MACC data applying a NO2/NOX ratio of 5% 323 

for each emission category. Biogenic VOC emissions were computed by applying the MEGAN emission model 324 

v2.04. Sea salt emissions were computed using published algorithms (de Leeuw et al., 2000; Gong, 2003).  325 

Aarhus University (Denmark) applied the WRF-DEHM modelling system over EU and NA. The DEHM model 326 

used anthropogenic emissions from the EDGAR-HTAP database and biogenic emissions are calculated using the 327 

MEGAN model. The gas-phase chemistry module includes 58 chemical species, 9 primary particles and 122 328 

chemical reactions (Brandt et al., 2012). Secondary organic aerosols (SOA) are calculated following the two-329 

product approach assuming that hydrocarbons undergo oxidation through O3, OH and NO3 and for only  two 330 

semi-volatile gas products (Zare et al., 2014). However, the module is simple as it does not include aging 331 

processes and further reactions in the gas and particulate phase (Zare et al., 2014). Other modelling options 332 

include the Noah Land Surface Model (Chen and Dudhia, 2001), Eta similarity surface layer (Janjic, 2002), the 333 

Mellor-Yamada-Janjic (Eta operational) boundary layer scheme (Mellor and Yamada, 1982), the Kain-Fritsch 334 

(Kain, 2004) scheme for cumulus parameterisation, the WRF Single-Moment 5-class Microphysics scheme 335 

(Hong et al., 2004), and the CAM scheme for both long and short radiation (Collins et al., 2004). 336 

 WRF-CMAQ1 has been applied by the ITU (Istanbul Technical University) over EU. The WRFv3.5 model has 337 

been used with the following physical options: WSM3 microphysics scheme (Hong et al., 2004), RRTM (long-338 

wave radiation scheme, Dudhia shortwave radiation scheme (Dudhia, 1989), NOAH land surface model, Yonsei 339 

University PBL scheme and Kain–Fritsch cumulus parameterization scheme (KF2, Kain, 2004). The NCEP 340 

(National Centers for Environmental Prediction) FNL Operational Model Global Tropospheric Analyses has 341 

been used for boundary conditions and nudging the meteorological simulation. The MCIP version 3.6 (Otte and 342 

Pleim, 2010) has been used to process WRF output for CMAQ. The MEGANv2.1 (Guenther et al., 2012) model 343 

has been used to calculate the biogenic VOC emissions from vegetation, using surface temperature and 344 

radiation from MCIP output. CMAQv4.7.1 (Foley et al., 2010) was configured with the CB05 chemical 345 

mechanism and the AERO5 module (Foley et al., 2010) for the simulation of gas-phase chemistry and aerosol 346 

and aqueous chemistry, respectively. 95% of NOx anthropogenic emissions were considered as NO. 347 
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The WRF-CMAQ2 system has been applied by Ricardo Energy & Environment (Ricardo-E&E) over EU. It has 348 

been configured using WRFv3.5.1 and CMAQ v5.0.2. The WRF model adopted the KF2 cumulus cloud 349 

parameterization and Morrison microphysics scheme (Morrison et al., 2009), the ACM2 (Asymmetric 350 

Convective Model version 2, Pleim, 2007) for the PBL, the Pleim-Xiu land-surface model (Xiu and Pleim, 2001), 351 

and the RRTMG radiative module. The NCEP FNL Operational Model Global Tropospheric Analyses has been 352 

used to generate boundary conditions for the European meteorological simulation. Nudging of temperature, 353 

wind speed, and water vapour mixing ratio has been applied above the PBL (Gilliam et al., 2012). The CMAQ 354 

model adopted the CB05-TUCL chemical mechanism (Whitten et al., 2010; Sarwar et al., 2011a), the AERO6 355 

three mode aerosol module (Appel et al., 2013). The MCIP version 4.2 has been used to process WRF output 356 

for CMAQ. The MEGANv2.0.4 model has been used to calculate the biogenic VOC emissions from vegetation, 357 

using surface temperature and radiation from MCIP output. For road transport, 86% of NOx anthropogenic 358 

emissions were considered as NO and 95% of NOx anthropogenic emissions were considered as NO for all 359 

other emissions. 360 

The WRF-CMAQ3 modelling system has been applied by the University of Hertfordshire and utilized the 361 

uncoupled version of the WRF-v3.4.1 model and CMAQ v5.0.2. The WRF simulations were performed using 362 

18km x 18km horizontal grid resolution with 36 vertical sigma layers. The simulations used Unified Noah Land 363 

Surface Model as the land surface scheme, Pleim-Xiu Scheme for the surface layer, RRTMG as the long-wave 364 

and shortwave radiation scheme, Morrison 2-moment scheme for microphysics parameterization, KF2 scheme 365 

for cumulus parameterization, and ACM2 scheme for PBL parameterization. Meteorological initial and lateral 366 

boundary conditions were derived from the ECMWF analysis. In order to constrain the meteorological model 367 

towards the analyses a grid nudging technique was employed every 6 hours of WRF simulation. The results 368 

from WRF simulations were pre-processed for CMAQ using Meteorology-Chemistry Interface Process (MCIP) 369 

version 3.6 (Otte et al., 2005). In CMAQ model, the gas phase chemical mechanism was based on carbon bond 370 

chemical mechanism version 5 (Foley et al., 2010) with updated toluene and chlorine chemistry (CB05-TUCL) 371 

and the aerosol chemical reaction were treated with AERO6 module. The CMAQ model consisted of 35 vertical 372 

layers and extending up to ~16 km height with the thickness of lowest layer is approximately 20 m. The EDGAR 373 

HTAP V2 emissions (0.1
o
 x 0.1

o
) as well as TNO emissions data (7 km x 7 km) were used as anthropogenic area 374 

and point sources emission data respectively in CMAQ.  The biogenic emissions were derived from MEGAN. 375 

The WRF-CMAQ4 simulation has been performed by the Kings College (UK) using CMAQ v5.0.2 (Byun and 376 

Schere, 2006) with CB05 chemical mechanism that includes aqueous and aerosol chemistry. The CMAQ model 377 

is driven by meteorological fields from the WRF v3.4.1. The lateral boundary conditions for WRF are taken 378 

from the Global Forecast System (GFS) model with 6-hr interval and 1° grid resolution. The WRF physic 379 

schemes include RRTM radiation module KF2 cumulus parameterization, WSM6 microphysics (Hong and Lim, 380 

2006), Pleim-Xiu surface layer scheme (Pleim and Xin, 2003), RUC land surface model (Benjamin et al., 2004), 381 

and ACM2 PBL scheme. The anthropogenic emissions for most part of the model domain are from MACC and 382 

the missing information have been filled with the emissions provided by EDGAR/HTAP. The biogenic emissions 383 

were estimated using the Biogenic Emission Inventory System version 3 (BEIS3) model in SMOKE v2.6 384 

(https://www.cmascenter.org/smoke). The dust (Tong, et al, 2011) and sea-salt (Gantt et al., 2015) emissions 385 

are generated using CMAQ inline modules. The ratio for NO2/NOx emissions is 10% (Bieser et al., 2011a). 386 

The INERIS and CIEMAT institutes jointly applied the ECMWF-Chimere system. CHIMERE (version CHIMERE 387 

2013) has been run for a 0.25x0.25 horizontal resolution and 9 vertical levels, extending up to 500 hPa with a 388 

first (lower)-layer depth of 20 m, using the meteorology provided by ECMWF IFS (Integrated Forecast System). 389 

Biogenic VOC emissions from vegetation and soil NO emissions have been calculated with the MEGAN model 390 

(version 2.04; Guenther et al., 2006, 2012). Sea salt emissions inside the domain have been calculated 391 

according to Monahan (1986). No sea salt condition was considered at the boundaries. The wind-blown dust is 392 

only included from the lateral boundary conditions. CHIMERE uses the MELCHIOR2 chemical mechanism 393 

(Lattuati, 1997) and ammonium nitrate equilibrium was calculated with ISORROPIA (Nenes et al., 1999). Dry 394 
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deposition is based on the resistance approach (Emberson 2000a,b) and both in-cloud and sub-cloud 395 

scavenging have been considered for wet deposition. 396 

HZG has used the COSMO-CLM meteorological model to drive the CMAQ model. For AQMEII3 the CMAQ 397 

version 5.0.1 was used, with the CB05-TUCL scheme and the multi-pollutant aerosol module AERO6. CMAQ is 398 

run on a 24x24km² horizontal grid, using 30 vertical layers up to 50hPa (lowest layer of approximately 40m). 399 

CMAQ was run using the optional in-line calculation of dry deposition velocities. Wet deposition processes 400 

include in-cloud and sub-cloud scavenging processes. All atmospheric parameters were taken from regional 401 

atmospheric simulations with the COSMO-CLM (CCLM) mesoscale meteorological model (version 4.8) for the 402 

year 2010 (Geyer, 2014) using NCEP forcing data employing a spectral nudging method for large-scale effects 403 

(Kalnay et al., 1996). CCLM is the climate version of the regional scale meteorological community model 404 

COSMO (Rockel et al., 2008; Steppeler et al., 2003; Schaettler et al. 2008). CCLM uses the TERRA-ML land 405 

surface model (Schrodin and Heise, 2001), a TKE closure scheme for the PBL (Doms et al., 2011), cloud 406 

microphysics after Seifert and Beheng (2001), the Tiedtke scheme (Tiedtke, 1989) for cumulus clouds and a 407 

long wave radiation scheme following Ritter and Geleyn (1992). The meteorological fields were afterwards 408 

processed to match the 24x24km² CMAQ grid using the LM-MCIP pre-processor. The emission input for CCLM-409 

CMAQ is based on the EDGAR HTAPv2 database, interpolated to the CMAQ model grid and aggregated 410 

following the SNAP emission sector nomenclature. Sector specific hourly temporal profiles and speciation 411 

factors of PM and VOC species were applied by the SMOKE for Europe emissions model (Bieser et al., 2011a). 412 

The temporal profiles used were fixed monthly, weekly, and diurnal profiles. NOx emissions were split using a 413 

NO/NO2 ratio of 0.9/0.1 for mobile sources and a fixed ratio of 0.9/0.1 for all other source sectors. Biogenic 414 

emissions and NO emissions from soil were calculated using BEISv3.14. Sea-salt emissions are calculated in-line 415 

by CMAQ including sulphate emissions based on an average sulphate content of 7.7%. Finally, fixed vertical 416 

profiles were applied for each source sector (Bieser et al., 2011b). 417 

The WRF-CMAQ system applied over NA by the US EPA (Environmental Protection Agency) has been 418 

configured using WRFv3.4 and CMAQv5.0.2 (Appel et al., 2013; see also Foley et al., 2010 and Byun and 419 

Schere, 2006). The options used in these WRF and CMAQ simulations are identical to those described in 420 

Hogrefe et al. (2015) except that the current simulations were performed in offline rather than two-way 421 

coupled mode. Temperature, wind speed, and water vapor mixing ratio were nudged above the PBL following 422 

the approach described in Gilliam et al. (2012). Soil temperature and moisture were nudged following Pleim 423 

and Xiu (2003) and Pleim and Gilliam (2009). The NO2/NOx split applied during SMOKE emissions processing 424 

varies for different categories. For many categories is the assumed split 90% NO / 10% NO2, but for mobile 425 

sources the split varies for different types of vehicles and different emission processes. 426 

Ramboll Environ used CAMx (version 6.2, Ramboll Environ, 2015) for simulations over NA, with CB05 chemical 427 

mechanism for gas-phase. The modeling domain covers the CONUS US with 459 by 299 grid cells of 12 by 12 428 

km size and 26 vertical layers. Height of first layer is 20 m. Biogenic emissions were obtained from the MEGAN 429 

model version 2.1 (Guenther et al., 2006). Meteorological fields were produced by the US EPA (Environmental 430 

Protection Agency) using WRF model and reformatted using the WRFCAMx pre-processor to be readily used by 431 

the CAMx model. 432 

2.3.2 OBSERVATIONAL DATA USED 433 

The observational data used in this study is the same as the dataset used in second phase of AQMEII (Im et al., 434 

2015a,b) and was derived from the surface air quality monitoring networks operating in EU and NA. In EU, 435 

surface data were provided by the European Monitoring and Evaluation Programme (EMEP; 436 

http://www.emep.int/) and the European Air Quality Database (AirBase; http://acm.eionet.europa.eu/ 437 

databases/airbase/). In NA observational data were obtained from the NAtChem (Canadian National 438 

Atmospheric Chemistry) Database and from the Analysis Facility operated by Environment Canada 439 

(http://www.ec.gc.ca/natchem/). For the purposes of comparing the models against observations, only 440 
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stations with data completeness greater than 75% for the whole year and elevation above ground below 1000 441 

m have been included in the analysis. Stations with continuous missing records for periods longer than 15 days 442 

have been removed from the dataset.  443 

In addition, we also make use of vertical profiles of ozone, temperature and wind speed measured by 444 

ozonesondes. Ozonesonde data have been extracted from the World Meteorological Organization (WMO) 445 

World Ozone, and Ultraviolet Radiation Data Centre (Toronto, Canada) and made available to the AQMEII 446 

community. These measurements report vertical profiles of ozone at several vertical levels. Further details on 447 

these data are given in Solazzo et al. (2013). 448 

Time-averaged statistics have been calculated after the spatial aggregation of the modelled and observed time 449 

series and prior to the spectral decomposition (the original time series have been spatially averaged first and 450 

then this spatial average time series has been spectrally decomposed). As a consequence of the spatial 451 

averaging, the relative importance of the ID component is likely reduced, since the ID fluctuations are highly 452 

variable in space (Hogrefe et al., 2014). Further, no land-use type filtering has been applied to the stations 453 

used for evaluation. While this choice has limited impact on the SY and LT components (Solazzo and Galmarini, 454 

2015; Galmarini et al., 2013), the DU components of some species (such as PM, NOx) might be strongly 455 

influenced by the vicinity of urban stations to emissions sources.  456 

Details of the modelled regions and number of receptors are reported in Table 2. 457 

[Table 2 here] 458 

3. RESULTS 459 

The analyses presented in this section focus on evaluating the performance of the models. The accuracy of the 460 

spectral components is first analysed in terms of the root MSE and quantified on a seasonal basis. The season 461 

most affected by error is then further investigated by applying the error apportionment (Eq 6) to the spectral 462 

components. Results are presented for one sub-region only (EU2 and NA1 or NA2) in the main portion of the 463 

manuscript while results for the other sub-regions are included in the supplementary material.    464 

The combination of the spectral decomposition and error apportionment approaches has the effect of 465 

neglecting the error associated with the cross components (twelve spectral interaction terms, see Solazzo and 466 

Galmarini (2016) for details) since the apportionment only deals with the error of the ‘diagonal’ components 467 

LT, DU, SY, ID. The reason is that while the contribution of the cross components to the overall error can be 468 

quantified, the associated time series needed to carry out the apportionment analysis cannot. The neglected 469 

part of the error is quantified in Table S1. In some instances, such portion can be as high as 20% of the total 470 

error for ozone. 471 

Tables summarising the operational statistics (MB: Mean Bias; r: Pearson Correlation coefficient; RMSE: Root 472 

Mean Square Error) are reported in the Supplementary material and have been calculated using the ‘openair’ 473 

package (Carslaw and Ropkins, 2012).  474 

3.1 METEOROLOGICAL DRIVERS: TEMPERATURE AND WIND SPEED 475 

3.1.1 NEAR-SURFACE MODEL EVALUATION  476 

The RMSE for surface temperature and wind speed is reported in Figure 2 (EU) and Figure 3 (NA). For EU 477 

(Figure 2a), the RMSE of the full (i.e. not spectrally decomposed and denoted as “FT” in the plots) time series 478 

of temperature for the entire year is, on a seasonal average, on the order of  0.5-2K (but often exceeding 3K 479 

in EU3), with higher values typically occurring in spring and winter. The CHIMERE and SILAM models (both 480 

directly driven by the global meteorological fields provided by ECMWF) report the smallest error in EU1 and 481 

EU2, while the WRF/Chem2 model has the largest error in all sub-regions (up to 5K for EU3 in summer) which 482 
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is largely caused by the unusually large error in the SY component when compared to other models. The RMSE 483 

of the LT component resembles the behaviour of the full time series, with the highest error in spring and 484 

winter (on average). The RMSE of the SY component is below 2K (slightly higher in EU3) except for 485 

WRF/Chem2, whereas the DU component shows a more marked regional dependence, with the EU3 sub-486 

region reporting, on average, approximately 50% higher seasonal error than the other two sub-regions, more 487 

pronounced in summer.  488 

The bias is predominantly negative (model underestimation) for all EU models and sub-regions, except for 489 

WRF-CMAQ4 in EU3, where the model overestimates the measured temperature in summer and winter. 490 

Finally, the correlation coefficient is higher than 0.90 for the majority of models and spectral components 491 

(Table S2).    492 

For NA (Figure 3a) the temperature RMSE of the WRF-DEHM and CCLM-CMAQ models (peaking in winter and 493 

autumn) is  1-1.5K larger than the WRF-CMAQ model. The error of the SY component is of 0.5K, while that 494 

of the DU component is significantly higher (between 0. 5K and 2K). The WRF-CMAQ model has a small bias (LT 495 

error small) so that the overall error is dominated by the error in the DU component. The bias is negative for 496 

the WRF-DEHM model in all sub-regions and has the same sign for CCLM-CMAQ and WRF-CMAQ, i.e. negative 497 

in spring and positive in the other seasons (although for NA2 and NA3 WRF-CMAQ reports a slightly negative 498 

bias also in winter) (Table S2). 499 

The RMSE of the surface WS for EU shows large model-to-model variability, more markedly for the LT and SY 500 

components (all sub-regions, Figure 2b), whereas the error of the DU component is more evenly distributed 501 

across models (and significantly higher in EU3, where low-wind speed conditions are predominant). Although 502 

the meteorological fields are assimilated within the models (either from NCEP or from ECMWF, see Table 2), 503 

there are profound differences in the way these fields are ingested and interpolated to the model grid, as well 504 

as differences in the parameterisation of the boundary and surface layer which impact the modelled wind 505 

speed and temperature. For example, the two instances of WRF/Chem applied the assimilation of the 506 

meteorological fields (wind speed, temperature, and relative humidity) of global meteorological fields only 507 

above the PBL, whereas other models (e.g. WRF-CAMx) assimilated the global data also within the PBL. For the 508 

models directly driven by the global fields, (e.g SILAM, Chimere) the seasonal error for WS (0.5-1 ms
-1

) and 509 

temperature (0.4-1.2K) (Figure 2a,b) can be considered as the uppermost limit the accuracy of the models can 510 

achieve. Thus, the assimilation and interpolation methods errors (which are specific to the configuration of the 511 

meteorological model) can add up more than 1.5K and 2ms
-1

 to the total error. 512 

The full WS time series of the WRF-DEHM, WRF/Chem1 and WRF/Chem2 models report the largest error (in 513 

excess of 1.5m/s), and the WRF-CAMx model even up to 2.4 m/s in winter (all sub-regions, Figure 2b). On 514 

average, the remaining models have an error of 0.5-0.7m/s. Most of the error is apportioned to the LT 515 

component, with the SY and DU below 0.3 m/s (except for WRF-CAMx and the other models mentioned 516 

above).  517 

The WS bias is positive for all models (model over-prediction), for all seasons and sub-regions (only exception 518 

is the CCLM-CMAQ model, biased low during spring and summer in EU3 and WRF-CMAQ2 during summer in 519 

EU1). The correlation coefficient is above 0.9 for the majority of models and components (except for the 520 

models affected by large errors such as the WRF-CAMx model). In general, r is slightly lower in EU3, and is at 521 

maximum for the SY component (Table S3). 522 

For NA (Figure 3b), the WRF-DEHM model reports an error of 1-1.2 m/s during all seasons and sub-regions, 523 

while the error of the WRF-CMAQ model ranges between 0.45 and 0.75 m/s for all seasons and sub-regions. 524 

The error of the SY and DU components is small (below 0.3m/s for each season) for both models. Both models 525 

are biased high (all instances) and the correlation coefficient is in the order of 0.9 or above (Table S3).    526 
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 3.1.2 VERTICAL PROFILES  527 

Vertical profiles of mean bias for Temp and WS are reported in Figure 4 to Figure 7. The modelled profiles have 528 

been evaluated using ozonesondes measurements. The frequency and local time of the launches are 529 

summarised in Table 3. The launches in EU predominately occurred during daylight hours, whereas for NA 530 

measurements are available also for night-time and late afternoon. The sign and magnitude of the bias are 531 

informative about error in the PBL processes, which will help the discussion on the error of the modelled 532 

pollutants (section 3.3). 533 

The bias for temperature in EU ranges between -3K (CCLM-CMAQ at station 308, Figure 5) and +2K (WRF-534 

CMAQ4 at station 308 and SILAM at station 156) at the surface. In most cases the temperature bias profiles 535 

fluctuate around zero (station 053, located between EU1 and EU2; station 043; station 242 in EU2, and 536 

partially station 316 in EU2), whereas for some stations the bias keeps the same sign throughout the 537 

troposphere, negative for station 156 (launches at 10-12 LT) and positive for station 099 (early morning 538 

launches). The difference in altitudes (491 m asl the former and 1000 m asl the latter) and the complex terrain 539 

of the alpine region might also be factors for the large model differences at these two (relatively close) 540 

stations. 541 

Vertical profiles of Temp in NA (Figure 6) shows strong surface bias (negative) at station 021 and 457 (both 542 

close to the western border of the domain), for both models. At station 021 (data collected under daylight 543 

conditions) the bias becomes positive and small in magnitude above the PBL, whereas at station 457 (data 544 

collected under night-time conditions) the bias keeps the same sign throughout the troposphere. At the other 545 

stations, the bias within the PBL is overall small and either positive (107, 456) or slightly negative (stations 458, 546 

338).  547 

Bias profiles for WS at eight ozonesondes stations in EU (Figure 4) show a tendency of overestimation in the 548 

PBL and of underestimation above 1000m, although there are some exceptions for different models and/or 549 

launching stations. The WRF/Chem1 has the largest positive bias at all sites, with the bias staying positive well 550 

above the PBL at all stations in contrast with all other models (WRF/Chem1 model adopted the assimilation of 551 

meteorological fields only above the PBL, and only during the first 12 hours of meteorological spin-up). WS 552 

overestimation by WRF/Chem is a known concern (e.g. Tuccella et al., 2012b; Jimenez and Dudhia, 2012; Mass 553 

and Ovens, 2011) and it is likely to have a major impact on the dispersion of pollutants. As for EU, the WS bias 554 

profiles in NA are biased high near the surface (except for the station 338 and, partially, station 021) (Figure 6). 555 

Above the PBL the tendency is to underestimate the WS (up to 1.5m/s), although less dramatically than in EU. 556 

As both NA models are driven by WRF for meteorology, the WS profiles are alike and the magnitude of the bias 557 

very similar.   558 

3.2 DRY DEPOSITION  559 

The simulated annual accumulated dry deposition per unit area over the continental areas for NO2, ozone, and 560 

PM2.5 is reported in Figure 8 for EU and NA. The graphs report the modelled values only (no observations are 561 

readily available). The model-to-model variability in dry deposition is mainly attributable to land cover and 562 

model grid size, as the majority of the models employ variations of the resistance scheme (Table 1). As recently 563 

noted by Valmartin et al. (2014), developments of the dry deposition schemes can have a profound impact on 564 

the overall model bias and on the accuracy of the modelled cycle of the pollutants. 565 

The deposition of NO2 is very similar among all the models for both continents, with the only exception of the 566 

WRF-DEHM model in EU and NA, whose median and 75
th

 percentile values are below 0.5 and 1.5 kg/km2, 567 

respectively. For ozone, the medians of the distribution are in the range 80-200 kg/km
2
 for EU (nine models), 568 

whereas the 75
th

 percentile shows larger variability, ranging between 150kg/km
2
 for WRF-CMAQ1 and 569 

500kg/km
2
 for the WRF-DEHM and WRF/Chem1 models. The median difference for ozone is more marked in 570 
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NA (Figure 8b), between 200 and 300 kg/km
2
 (two models), with a notably relative impact of 50% and 33% 571 

of the median values for WRF-CMAQ and WRF-DEHM respectively.  572 

Finally, deposited PM2.5 in EU is modelled with varying magnitudes, from below 5 kg/km
2
 (SILAM, WRF-573 

CMAQ1, WRF-CMAQ2) up to 35 kg/km
2
 (WRF/Chem1) (median values). The median values for the two NA 574 

models are very similar 25kg/km
2
, but there is a large discrepancy between the 75

th
 percentile values, with 575 

that of WRF-CMAQ (170kg/km
2
) more than four times higher than values predicted by WRF-DEHM. 576 

3.3 CHEMICAL SPECIES: MEAN SQUARE ERROR AND ERROR APPORTIONMENT  577 

3.3.1 CO 578 

CO is a moderately long-lived primary pollutant principally produced by incomplete combustion of fossil fuels, 579 

wildfires and, on the global scale, by the oxidation of methane. CO also acts as precursor to ozone. Results of 580 

the AQMEII3 models for CO are reported in Figure 9 and Figure 10, and in Table S5.   581 

In general, there are profound differences between the CO statistics for EU and NA, with the latter showing a 582 

more marked temporal and spatial dependency as well as model-to-model variability (the yearly mean 583 

observed values of CO in EU and NA are of 336 ppb and of 248 ppb, respectively). The EU error (Figure 9a) is, 584 

generally, uniform across models and sub-regions, approximately three times higher in winter than in summer. 585 

The magnitude of the SY and DU errors is comparable (15-25 ppb on average in EU1 and EU2, sensibly higher 586 

in EU3). Also for NA (Figure 9b) the DU and SY errors are similar, but varying by model, sub-region, and season. 587 

The homogeneity of error in EU suggests that it is originated by a common source. Previous investigations 588 

(Innes et al., 2013; Giordano et al., 2015) indicate that the boundary conditions have a limited contribution to 589 

the bias of CO within the interior of the domain, where the emissions are far more important. In particular, the 590 

MACC inventory used by the EU regional models likely underestimates the CO emissions (especially in winter) 591 

(Giordano et al., 2015). We conclude that most probably the cause of model bias for CO is attributable to the 592 

emissions and, to a lesser extent, the generally overestimated surface wind speed (section 3.1.1). Sensitivity of 593 

the model error to emission changes for CO is discussed in the next section.  594 

The correlation coefficient for EU generally peaks in spring (LT component) while it is at a minimum for the LT 595 

component in winter and overall poor for the DU and SY components. In contrast, for NA the minimum 596 

correlation coefficient is observed in spring/summer (LT component), with the correlation for DU component 597 

having a mixed behaviour depending on the sub-region, but it is typically low in summer (Table S5 of the 598 

supplementary material).  599 

The winter LT error for EU is of 140-220ppb in EU1 and EU2, and up to 600ppb in EU3, typically higher  than 600 

in NA (100 ppb, peaking in autumn and mostly due to model underestimation), while the opposite holds for 601 

the DU and ID error which are significantly lower in EU (Figure 10) than in NA (except for EU3). Since CO is a 602 

primary pollutant, its error is affected by the diurnal dynamics of the PBL height, which is most problematic in 603 

winter, when modelled PBL has the tendency to become too stable too early, anticipating the evening 604 

transition (Pleim et al., 2016). In fact the biases of CO and that of PM10 (another primary pollutant) in winter 605 

are highly correlated for almost all models (not shown), indicating a common causes of the error.  606 

The error due to variance in EU (under-estimated by the models) and mMSE are significant in the DU and SY 607 

components in winter (Figure 10a). In particular, the variance error of winter DU is small compared to the 608 

mMSE, which accounts for almost the entire DU error, up to over 30 ppb. For SY, the model SILAM_H shows an 609 

mMSE error of over 75 ppb, the variance part being approximately null. On average, the DU and SY errors are 610 

approximately similar for all EU models (45ppb for DU and 65ppb for SY), indicating some common error 611 

source such as missing sources and process and strong emission underestimation at these time-scales. A 612 

further reason could stem from the lack of temperature dependent emissions (the current emission inventory 613 
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processing approach employs constant temporal emission profiles, and therefore cold/warm episodes are not 614 

incorporated in the modelled emissions while these episodes do affect real-world emissions). The lack of 615 

temperature-dependant emission is likely to have a strong effect for CO, as about 50% CO emissions comes 616 

from 617 

residential heating (at least in mid/north European countries). A test to this hypothesis is currently under 618 

investigation by running the CCLM-CMAQ model with a set of emissions using temperature data for the 619 

temporal disaggregation for residential heating emissions. 620 

While the SY error is comparable for the two continents, the DU and ID errors are remarkably higher in NA (all 621 

sub-regions, also due to an excess of variance) and for several instances comparable or even higher than the LT 622 

error. With the exception of the WRF-DEHM model (variance error negligible), the DU and ID error for the NA 623 

models are due to both mMSE and variance.   624 

3.3.1.A SENSITIVITY SIMULATIONS WITH REDUCED EMISSIONS AND BOUNDARY CONDITIONS 625 

Additional sensitivity runs have been carried out by the majority of modelling groups, in which the amount of 626 

anthropogenic emissions are reduced by 20% in both the boundary conditions  and the modelling domain. It is 627 

instructive to assess the error variation between the sensitivity runs (denoted as ‘s20%’) and the base case for 628 

primary species such as CO: 629 

%𝑅𝑀𝑆𝐸 =  100 ∗
𝑅𝑀𝑆𝐸𝐶𝑂

𝑠20%−𝑅𝑀𝑆𝐸𝐶𝑂
𝑏𝑎𝑠𝑒

𝑅𝑀𝑆𝐸𝐶𝑂
𝑏𝑎𝑠𝑒   630 

Figure 11 reports the error variation for central Europe (sub-region EU2), where the effect of local CO 631 

outweighs the influence of the CO entering from the boundaries (similar plots for the other two EU sub-632 

regions are reported in the Supplement). A decrease of 20% CO produces a RMSE variation of 10% (averaged 633 

over models and components). A naïve projection indicates that a reduction of 100% (thus removing CO from 634 

emissions and boundary conditions altogether) would produce a variation of the error of 50%. The sign of the 635 

error variation indicates that there are circumstances where a reduction of the base case emissions is actually 636 

beneficial as the error is reduced (even substantially in the instances where the emissions were overestimated 637 

in the base case). 638 

The DU component for CO is the most sensitive to emissions changes with an average of 24% error variation 639 

in summer. The SILAM model is the most sensitive to changes in the amount of pollutants entering the 640 

domain. Striking error differences with respect to the base case are detected for summer CO (DU error 641 

improved by 50%), possibly pointing to false peaks in the base case that contribute heavily to the RMSE (as 642 

suggested by the low correlation coefficient, Table S5). The reduction of the emission by 20% lowers the peaks 643 

and could be the explanation for the improvement observed for the ‘s20%’ scenario for SILAM. 644 

3.3.2 NO 645 

NO is emitted by both natural and anthropogenic sources and its chemistry patterns are closely connected to 646 

those of NO2 and ozone. Due to the ozone-NO titration reaction (timescale < 1 hour at all temperatures), the 647 

uncertainty in emissions, transport, and vertical mixing dominates the uncertainty in chemistry. As no 648 

observational data was available for NA, the discussion is limited to EU. The European Environment Agency 649 

(EEA) reports an estimated uncertainty for NOx emission of 20% (EEA, 2011); Vestreng et al. (2009) found 8-650 

25% uncertainties in EU NOx emissions, in line with other similar bottom-up uncertainty studies (see Pouliot et 651 

al., 2015). A further source of uncertainty and model to model difference is the vertical emission profiles 652 

adopted and how this is interpolated to the vertical grids used by the models. Within the SILAM model, for 653 

example, the vehicular traffic emissions are released largely at the bottom of the first layer and this sub-grid 654 

information about the vertical location of the plume used in the vertical transport scheme further supresses 655 

the mixing to the upper layers, thus keeping the surface concentrations higher.  656 
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The analysis of the RMSE for NO in Figure 12a shows how the largest modelling error for NO occurs in winter 657 

and autumn, similar in magnitude for EU1 and EU2 (7ppb), while is more than double in EU3 (up to 30 ppb). 658 

The DU and SY errors are comparable in magnitude (although the DU error is slightly higher), and are 659 

approximately evenly distributed among the models. Also for NO the error of the SY component is model-660 

independent, as noted for CO and as will be discussed for ozone and PM10. Because it is mainly composed by 661 

mMSE error (Figure 12b) it can be hypothesized that the unexplained meteorological variance is responsible 662 

for the majority of the SY error.   663 

The winter bias and variance errors are predominantly negative, indicating model underestimation and 664 

reduced variability. The opposite holds for the two instances of SILAM, for which the bias and variance are 665 

positive (all sub-regions). This can be associated with the underestimated ozone concentrations in this model 666 

also the applied vertical emission profiles mentioned earlier for this model could have an influence. The 667 

correlation coefficient varies greatly by model, by components and by season and typically degrades for the 668 

summer seasons (LT component, most models). The SY component also exhibits low values of r, especially in 669 

summer for EU1 and autumn (Table S6). The large variability of the correlation coefficient indicates that the 670 

models are not able to capture the fluctuations of this important precursor at all scales. 671 

From the error decomposition plots (Figure 12b) it emerges that  672 

- the LT components shows a mMSE error approximately uniform for all modelling systems (between 673 

3 and 4 ppb);  674 

- in the majority of the cases the mMSE error dominates the ID, DU and SY components; 675 

- the SY component has an error comparable to that of DU for the mMSE part, but overall higher due to 676 

a predominant lack of variance (as high as 50% of the total SY error for some models).  677 

Due to its fast chemistry and short travelling distance,  the error of representativity for NO (mismatch of the 678 

area of representativeness between models with grid spacing of 15 km up to 50 km and point measurements) 679 

is likely more significant than for other pollutants with longer life-time. NO is almost a primary pollutant with 680 

negligible deposition (Wesely and Hicks, 2000) and small influence of the boundary conditions (Giordano et al., 681 

2015), therefore observational sites are affected by local scale effects in the range of a few kilometres, below 682 

the grid spacing of the majority of the models. This has the effect of higher observed mean values compared to 683 

the models (enhancing the bias error) and stronger variability in the observations than the models (variance 684 

error).  685 

The correlation between the bias of NO with the bias of the other species reveals strong links at several 686 

temporal scales (less for the DU time scale though) and also in terms of processes, although it varies greatly by 687 

model. For instance, corr(biasNO, biasO3) is overall strong (and negative) for the majority of the models, but for 688 

different time scales, i.e. stronger for the SY components for some models (e.g. LOTOS-EUROS), or for the LT 689 

(SILAM), or for the DU (CHIMERE). Additional analysis are envisioned to determine the causes of such a 690 

behaviour.    691 

3.3.2.A SENSITIVITY SIMULATIONS WITH REDUCED EMISSIONS AND BOUNDARY CONDITIONS 692 

The analysis discussed in Section 3.3.1.A is repeated here for NO and results are presented in Figure 13. A 693 

decrease by 20% of the amount of NO in the domain produces a variation of RMSE of 8% (averaged over 694 

models and spectral components). A naïve projection indicates that a reduction of 100% (thus removing the 695 

production of NO from emissions and boundary conditions) would produce a variation of the error of 35%. 696 

Such an amount is less than that found for CO (50%, section 3.3.1.A), which is consistent with the 697 

photochemical processes involving NO but not CO.  698 

The LT component is the most sensitive to changes for NO, with an average of 17% error variation ((and up to 699 

20% in autumn, both positive and negative). Again, the SILAM model is the most sensitive to changes in the 700 
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amount of pollutants entering the domain. Remarkable differences between the ‘s20%’ scenario and the base 701 

case are detected for summer and autumn (LT error variation of 100%) (Figure 13). The improvement of the 702 

error of SILAM (and of the other models) for the ‘s20%’ scenario is due to the overestimation of NO mean 703 

concentration in the base case (positive bias, Table S6). 704 

3.3.3 NO2 705 

Primary NO2 is emitted by a variety of combustion sources and plays a major role in atmospheric reactions that 706 

produce ground-level ozone. NO2 is also a precursor to nitrates, which contribute to PM formation. As for NO, 707 

only a small portion of the total error is expected to stem from the boundary conditions. The AQMEII3 708 

modelling systems attribute a fraction of NO2 emission ranging between 3% and 10% of the total NOx 709 

emissions (some models treat the NO2 emission from the transport sector differently, see Table 1). The results 710 

of the error analysis discussed hereafter do not reveal, though, grouping of model behaviour consistent with 711 

the choice of the NO2 to NOx emissions ratio.    712 

The RMSE distribution (Figure 14a,b) shows a marked model-to-model variability in the LT and DU 713 

components, while it is more uniform for the SY component, also in the seasonal stratification. Moreover, the 714 

error distribution shows to be weakly dependant on the specific sub-region (for both continents, especially for 715 

the DU component), suggesting that regional features (e.g. differences in climate between the regions) have 716 

little impact on NO2 performance, which is most affected by chemistry and error in the meteorology. Local-717 

scale features (e.g. representation of urban / rural emission differences) may still be important, but they may 718 

have similar errors in all regions.  719 

The largest error occurs in winter (both continents), and is shared approximately equally between the SY and 720 

DU components (for some models the SY and LT errors are comparable due to the little bias). 721 

The bias is the main contributor to the NO2 error and stems from a model under-prediction of the mean 722 

observed concentration (but, with the exception of the winter season, is positive for WRF-CMAQ in NA) (Table 723 

S7). However, the tendency of NO2 measurements to be likely overestimated by the majority of commercially 724 

available instruments for detecting NOx (Steinbacher et al., 2007) needs to be taken in to account. The 725 

magnitude of the bias higher in EU (from 1.3pbb of WRF-CMAQ1 in EU1 to -12.5ppb of CCLM-CMAQ in EU3) 726 

than in NA (the maximum being 5.5ppb in NA3 by the WRF-DEHM model), with the mean observed values 727 

being of 11.5ppb and 10.5ppb for EU and NA, respectively.  728 

The correlation coefficient is typically higher in spring/autumn and poorer in summer/winter (in summer there 729 

are several instances of negative correlation) (Table S7). The LT component for EU, and the LT and SY 730 

components for NA, are those with higher correlation coefficients, while SY and DU are the poorest in EU and 731 

DU the poorest in NA (but still higher than 0.4).  732 

The median value of the modelled accumulated deposition per unit area (Figure 8) for NO2 ranges from 0.4 to 733 

1.9 kg/km
2
 for EU (nine models) and from 0.3 to 2.3 kg/km

2
 for NA (two models). With the exception of the 734 

WRF-DEHM model (similar values for EU and NA of 0.3-0.4 kg/km
2
), the modelled values for NO2 deposition 735 

are uniform across the EU models, while the deviation between the two NA models for deposition is not 736 

negligible, also in light of the different native grid sizes of 50km and 12km (WRF-DEHM and WRF-CMAQ, 737 

respectively). Therefore, for the majority of the EU models model-to-model differences in the error are 738 

unlikely due to significant difference in the deposition, while it remains a possibility for NA. 739 

The magnitude of the error for NO2 resembles that of NO and ozone, although the apportionment reveals 740 

significant differences. In fact, while NO includes variance error and a uniform share of mMSE, the LT error of 741 

NO2 for winter is almost completely determined by the bias, for both continents (Figure 15 and Figure 16). The 742 

other NO2 spectral components (ID, DU, SY) reveal more profound difference with respect to NO, both in terms 743 

of bias and of error apportionment. The ID error for NO2 is even smaller than that of NO (less than 1 ppb) and 744 
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can be regarded as noise. Also the DU (1.5 ppb) and SY (1 ppb) errors are considerably smaller than for NO 745 

(both continents), although the DU error presents some excess of variance for WRF-CMAQ3 and the two 746 

instances of the CHIMERE model (Figure 15).  747 

The model-to-model variability of RMSE for the LT component Figure 15) is very similar to that of NO (Figure 748 

12), while the DU variability resembles that of ozone (Figure 18), although for NO2 the DU error is lower in 749 

magnitude and more uniform across seasons.  750 

Moreover, NOx observations are strongly affected by local emissions and thus the error may stem from the 751 

incommensurability of comparing grid-averaged values against point measurements highly affected by local-752 

scale emissions. However, the error apportionment analysis carried out separately for ‘rural’ and ‘urban’ 753 

background stations (the area type classification is taken for the stations metadata) does not reveal any 754 

relevant differences (Figure 15 for EU2 and Figure 16 for NA1), if not a slight increase of the variance error 755 

over both continents.  756 

3.3.4 OZONE 757 

Due to the adverse effects on human health and to the impact on climate, tropospheric ozone is regulated in 758 

EU and NA and substantial efforts are made to improve the models’ predictive skill for this pollutant. 759 

Tropospheric ozone can be either transported from regions outside the modelled domain, be the result of 760 

stratosphere/troposphere exchange, or be produced locally by photochemistry through oxidation of VOCs 761 

(volatile organic compounds) and CO in the presence of NOx and sunlight. Due to its photochemical nature, 762 

ozone production is directly influenced by temperature through speeding up the rates of the chemical 763 

reactions and increasing the emissions of VOCs (e.g. isoprene) from vegetation (Jacob and Winner, 2009). 764 

Along with dry deposition, chemistry can act as local sink to ozone depending on the photochemical regime.  765 

Results of the AQMEII3 modes for ozone are reported in Figure 17and Figure 18, and in Table S4. Overall, the 766 

correlation between modelled and observed ozone time series is higher for the winter and fall seasons than 767 

the spring and summer seasons in EU, while the opposite holds true in NA where the maximum correlation is 768 

observed in summer (all sub-regions) (Table S4). In EU, the RMSE is generally lower in winter than in the warm 769 

seasons (summer and spring) (RMSE in summer ranges between 4.3 ppb of WRF/Chem1 in EU1 and 21 ppb of 770 

WRF-CAMQ1 in EU3), with the exception of the CCLM-CMAQ model for which the RMSE peaks in autumn (all 771 

sub-regions). 772 

Due to the strong and well defined diurnal cycle characterized by ozone formation and loss, the correlation 773 

coefficient is generally higher for the DU component, while it tends to be lowest for the SY component (Table 774 

S4 and Figure 18). The SY component often exhibits the lowest correlation among all components, especially in 775 

summer (EU) and spring (NA), possibly due to the combined effect of transport of precursors, deposition and 776 

chemistry (formation/depletion of ozone from precursor emission in the regions where the ozone is 777 

transported) (Bowdalo et al., 2016). However, the SY error is generally small (2-3 ppb, although higher for 778 

EU3, where the SY error is double that of the other sub-regions) and is mostly due to mMSE, it is thus 779 

characterised by poor coefficients of determination and underestimated variability (Eq 7). Therefore, the SY 780 

component suffers from low precision (for some models r < 0.3) meaning that the variability of the synoptic 781 

mechanisms needs further attention, especially in the meteorological conditions leading to high ozone level 782 

episodes, especially in relation to temperature, cloudiness, and radiation. The WRF/Chem2 model (having the 783 

highest error for temperature, Figure 2b) reports the largest SY error for ozone (especially the variance part). 784 

For this model, the correlation between the ozone and the Temp error for the SY component corr(biasO3, 785 

biasTemp)SY is 0.44 for the summer months in EU2 (not shown), among the highest, which helps explain part of 786 

the SY error for ozone. In order to characterise better the mMSE part of the error for the periodic components, 787 

such as DU and SY, analysis of the phase and amplitude are foreseen.  788 
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The error of the DU component is largely due to the mMSE term (Figure 18a) which is comparable for all 789 

models in the range of 2-5 ppb, with some significant excess of variance for WRF-CMAQ2 and WRF-CMAQ3 in 790 

EU2 (5 ppb). One possible reason is the dynamics of the nocturnal PBL as well as the timing of the ozone 791 

cycle, with an either too fast or too slow modelled ozone peak (e.g. Pirovano et al., 2012). Limitations of the 792 

models to reproduce the amplitude and phase of the daily ozone cycle were already highlighted in the first and 793 

second phase of AQMEII, mostly related to the representation of night-time and stable conditions. Further, the 794 

variance error for WRF-CMAQ2 and WRF-CMAQ3 can be induced by the bias of temperature and/or 795 

concentration of ozone precursors. For WRF-CMAQ2 (WRF-CMAQ3), corr(biasO3, biasTemp)DU is 0.88 (0.94) and 796 

corr(biasO3, biasNO2)DU is 0.86 (0.83) (summer months, EU2) (not shown), which indicates that the bias of the 797 

Temp and NO2 fields are strongly associated with the error of ozone at the DU scale. According to Bowdalo et 798 

al. (2016) the bias of the ozone amplitude cycle linearly evolves with NOx emissions, suggesting that correction 799 

of the error for ozone needs to start from NOx emissions. Otero et al. (2106) have shown that meteorological 800 

drivers account for most of the explained variance of ozone, especially over central and northwest Europe. 801 

One of the main drivers of ozone is the daily maximum temperature, in relation to the effect of temperature 802 

on emissions of VOCs. Therefore, while part of the bias error is likely due to NOx emissions, the mMSE and 803 

variance error are also induced by error in meteorology. Other sources of biases are transcontinental transport 804 

in winter (Hogrefe et al., 2011) and missing processes during spring and summer, such as the large scale effect 805 

of forested areas.  806 

The error in the LT component is dominated by the bias error (Figure 18) (almost completely for NA) although 807 

with significant exceptions in EU (for CCLM-CMAQ the mMSE error of the LT component is larger than the bias 808 

portion). The May-September ozone LT bias for EU2 peaks at 12-13 ppb (WRF-CMAQ1), while it is 6 ppb in 809 

NA3 (but in excess of 20ppb in NA2 by the WRF-DEHM model) (the yearly average measured ozone mixing 810 

ratio is  26.5 and 29ppb for EU and NA, respectively). The bias of the precursors and of the meteorological 811 

fields is typically highly correlated with the bias of ozone. For instance, in EU2 for the WRF-CMAQ1 model 812 

corr(biasO3, biasTemp)LT is 0.65 and corr(biasO3, biasWS)LT is 0.81 (summer months).  813 

Although the concentration peaks are associated with the ID and DU components, the contribution to the total 814 

error of the ID component is small (< 2ppb) due to the flattening of the spikes operated by the spatial 815 

averaging carried out prior of the spectral decomposition. The noise of the ID component is reflected by the 816 

correlation coefficient being lower than the correlation of the DU component. However, the acf (auto-817 

correlation function) associated with the signal of the ID component is well structured and periodic (not 818 

shown), indicating that the ID component for ozone is not entirely a white noise-type of signal, but 819 

incorporates useful information, although there is the possibility that the ID periodicity is due to a periodic 820 

leakage from the DU component, due to the imperfect separation of the ID and DU components. This latter 821 

aspect will require additional investigation. 822 

3.3.4.A OZONE VERTICAL PROFILES 823 

A further analysis aimed at detecting errors introduced by the vertical mixing is carried out by using modelled 824 

and observed ozone profiles from ozonesondes. A summary of the records provided by the ozonesondes for 825 

ozone are reported in Table 3. Plots of the simulated and observed ozone levels at fixed heights (through the 826 

ENSEMBLE system models and measurements are paired at the heights of 0, 100, 250, 500, 750, 1000, 2000, 827 

3000, 4000, 5000, 6000 m) are reported in Figure 19 and Figure 20. The ozonesonde data are mainly available 828 

during daylight, although two stations with night-time data are available for NA (Table 3).  829 

Overall, the general tendency of the models in both continents is to underestimate the ozone levels above the 830 

PBL, suggesting that not enough ozone enters the continental domains through the inflow boundaries. The 831 

most significant underestimation (10 ppb) is observed at the two stations closer to the west boundary for EU 832 

(stations 318 and 043). The boundary layer deficit of ozone is a long standing issue, as similar conclusions were 833 

derived for the first (Solazzo et al., 2013) and second (Im et al., 2015; Giordano et al., 2015) phase of AQMEII, 834 
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as well as in other studies (Katragkou et al., 2015), emphasizing the strong dependence of regional models on 835 

the lateral boundary, whose effects propagate far into the interior of the domain.  836 

Towards the interior of the EU domain (stations 134, 157, 242) the profiles are in closer agreement with the 837 

observations, with the WRF-CMAQ1 model performing the best throughout the troposphere, possibly due to 838 

the overestimation of the entrainment of upper tropospheric ozone, as revealed by the strong gradient of 839 

WRF-CMAQ1 at 6000m (Figure 19). 840 

For NA (Figure 20), the general tendency is of good agreement within the PBL and underestimation aloft for 841 

the WRF-CMAQ model and of overestimation (stations 107, 456, and 458 – afternoon/night launches) at the 842 

surface and mild underestimation above the PBL for the WRF-DEHM model.  843 

3.3.4.B RELATIONSHIP BETWEEN THE BIAS OF OZONE, NOX AND TEMPERATURE 844 

The relationship between the bias of NO and the bias of ozone is reported in Figure 21 for the EU2 region 845 

(similar plots including the bias of NO2 for EU and NA are provided in the supplementary material). A linear 846 

relationship between the biases of the two species is detectable, more evident in winter. Large, positive ozone 847 

bias is driven by underestimation of NO (a primary species) whereas the largest negative ozone bias 848 

correspond to the largest overestimation of NO. The role of the temperature bias is less clear, but the NO2 and 849 

ozone relationship (Figure S7) suggests that large NO2 bias is associated with temperature under-prediction. 850 

The partition of NOx emission into primary NO and NO2 seems to suggest that the models adopting a 95%-5% 851 

ratio suffer lower ozone bias (at least in winter), although in general the clustering of models based on the 852 

NO/NO2 share of total NOx emission is far from robust. A simple linear regression between NO bias and ozone 853 

bias (based on the yearly time series) among the EU models suggests that the NOx and temperature biases can 854 

explain, on average, 35% and 16% of the variability of the ozone bias, respectively.     855 

3.3.5 SO2  856 

SO2 is another primary regulated pollutant which, in EU and NA, is mainly emitted from coal power plants and 857 

also from the residential heating and waste disposal sector. SO2 acts as a precursor to sulphates, which are one 858 

of the main components of PM in the atmosphere. Any error in SO2 is likely inherited by these secondary 859 

species. The EEA reports an estimated uncertainty for SO2 emission of 10% (EEA, 2011), therefore SO2 860 

emissions are expected to be more accurate than NOx emissions. This is reflected in the low bias in both 861 

continents (1-2ppb in winter, mostly due to model underestimation) (Figure 22 and Figure 23). The averaged 862 

observed concentration of SO2 is of 1.92ppb and 2.7ppb in EU and NA, respectively. 863 

The seasonal modelled error for SO2 ranges, on average, between 0.65 and 1.3ppb in EU and between in 864 

excess of 1 and 5ppb in NA (the maximum error in NA2), peaking in autumn.  865 

In EU and NA1, the error of ID, DU and SY components is comparable for all seasons and, on average, below 866 

0.6ppb. There are some exceptions, most notably the WRF-CMAQ3 model, which is the only one significantly 867 

biased high (Figure 23a) and shows an excess of variance significantly larger than the other models.    868 

The large variability of the model-to-model error (especially in EU) and correlation coefficient in both 869 

continents is an indication that the mechanisms governing the initial mixing and subsequent transport and 870 

chemical transformation suffer from different sources of error, mostly covariance, at all scales. In no instance 871 

is the correlation coefficient consistently above 0.5 for all seasons and spectral components while there are 872 

several instances of negative correlation between the spectral components of observed and modelled SO2 (e.g. 873 

CCLM-CMAQ model in EU and several others). The poor correlation coefficient of, especially, the ID and DU 874 

components for both continents, indicates that the peaks of the SO2 concentration are not caught by the 875 

models, leading to low precision. Although the mean fluctuations are, generally, well reproduced (low variance 876 

error in both continents), it remains a significant portion of unexplained variance (mMSE) error, which can 877 

derive from meteorology and chemistry. Bieser et al. (2011b) showed that the height of the release and 878 
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vertical distribution of the SO2 emission influence the SO2/SO4 ratio as the oxidation (aging) of SO2 is more 879 

effective if the emissions are higher up. As power plants are the major source of SO2 further analysis should 880 

investigate the impact of differences in the vertical emission distribution between models.  881 

3.3.6 PARTICULATE MATTER 882 

Particulate matter (PM), both in the fine and coarse fraction, is directly emitted by biomass and fossil fuel 883 

combustion in domestic and industrial activities, and also formed from precursors in the atmosphere. 884 

From the AQMEII3 suite of model runs, the error for PM is evaluated for PM10 in EU and PM2.5 in NA. The 885 

choice is dictated by the availability of hourly measurements in the two continents. The RMSE distribution is 886 

reported in Figure 24 (PM10 for EU) and Figure 25 (PM2.5 for NA). The error distribution for EU reveals that, 887 

despite the large numbers of modelling options and parameters characterising the chemistry and physics of 888 

particles, the error distribution for DU and SY is homogeneous among the EU models. For these components 889 

the error is approximately uniform over seasons, although with some exceptions (significantly higher in EU3, 890 

although based on two receptors only). EU3 is a small area compared to EU1 and EU2, but is densely 891 

populated, intensively farmed, with a large amount of wood burning in winter, and  agricultural area in 892 

summer. It is surrounded by mountains and stagnant flow conditions are predominant. It is, thus, a challenging 893 

area for current modelling systems, especially for primary species such as PM.  894 

The LT component shows some significant model-to-model variations due to the WRF-CAMx and WRF-CMAQ1 895 

models which have lower error in spring and summer compared to the other models, while the CCLM-CMAQ 896 

model has higher LT error in EU1. 897 

The magnitude of the SY error in EU is, on average, of 6 µg m
-3 

during winter, with a peak of 10.5 µg m
-3

 in 898 

EU2 (WRF-CAMx model). The magnitude of the DU error is lower (2-2.5 µg m
-3

  in EU1 and EU2, and 5-6 µg 899 

m
-3

 in EU3) with the largest share in autumn, spring, and winter and slightly lower in summer. The error of the 900 

LT component ranges between 11-15 µg m
-3

 in EU1 and EU2 and up to 25 µg m
-3

 during winter in EU3.  901 

The analysis of the correlation coefficient reveals that the model to model differences in the correlation 902 

coefficient with the observed component time series tend to be most pronounced for the DU and ID 903 

components, indicating that these two components are pivotal in determining the overall model skill in terms 904 

of capturing observed fluctuations in PM10 concentration. In more detail, the correlation is poor for the DU 905 

component (especially in EU2 and EU3, Table S9), possibly due to PBL dynamics and emission profiles (as 906 

discussed above for the RMSE at the DU scale). The LT component has correlation values highly varying among 907 

models and, for the same model, among seasons (e.g. the LT correlation of the WRF-CMAQ4 model in EU3 is 908 

0.9 during spring but only of 0.35 in summer).  909 

In winter the LT and SY error is more severe likely due to the larger uncertainties in PM10 emissions of 910 

combustion processes (wood burning, residential heating) (Van der Gon et al., 2014), as well as due to the 911 

current limitations in modelling the vertical mixing during stable conditions, as mentioned for the gaseous 912 

species (especially CO, being another primary species). The majority of the EU models show an LT error in 913 

winter between 12 and 16 µg m
-3

, eight models above 16 µg m
-3

 and only one (WRF-CAMx) below 10 µg m
-3

. 914 

The SY winter error exceeds 5 µg m
-3

 for all models (all sub-regions) and three instances (WRF-CAMx, 915 

WRF/Chem1 and WRF/Chem2, this latter showing the highest accumulated deposition for PM2.5, Figure 8b) 916 

report an error above 7.5 µg m
-3

. All the remaining models have comparable mMSE and variance errors (Figure 917 

26), and are biased low (model under-prediction), possibly due to missing PM source and overestimated 918 

surface wind speed.  As for the WRF-CAMx model, the low bias on LT component and the relatively high error 919 

on covariance in SY fraction suggest that the model was able to capture the mean magnitude of PM 920 

concentration over the entire year, but failed in reconstructing the correct variability of the different episodes, 921 

whose timing is generally driven by the synoptic time scale. 922 
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The PM2.5 evaluation in NA is restricted to two models, WRF-DEHM and WRF-CMAQ, which show comparable 923 

error (Figure 25). The WRF-CMAQ (WRF-DEHM) model has an error ranging between 3.5 (2) and 6 (8.5) 924 

µg m
-3

. The main contribution to the total error stems from the LT component (predominantly negative bias) 925 

and from the SY component (2-3 µg m
-3

). The DU component contributes to about 1.5 µg m
-3

 (comparable 926 

mMSE and variance error). 927 

Both NA models are biased low in summer (all sub-regions), which can be attributed to limitations in the SOA 928 

mechanism (Zare et al., 2014). Because of the higher contribution of primary PM2.5 to total PM2.5 during 929 

wintertime, differences in horizontal and vertical resolution (Table 1) likely contribute to the difference in 930 

wintertime LT bias. The correlation coefficient for the two models is in general higher in winter (full time 931 

series) and deteriorated for the DU component (all seasons and sub-regions). 932 

As inferred for the species discussed above, the uniformity of model behaviour is indicative of errors stemming 933 

from external fields, likely emissions, where missing sources of PM can affect the error within certain time 934 

scales for all models. Further common causes of error are intrinsic to the model-observation comparison as 935 

modelled PMs is commonly dry while this is not always the conditions for the measurements. For instance, the 936 

filter-based gravimetric measurements as recommended by the European Committee for Standardization 937 

(CEN) are likely to retain part of the particle-bound water after the filter conditioning at a constant 938 

temperature of 20° C and relative humidity of 50%. Recent findings by Prank et al. (2016) report the aerosol 939 

water content from the gravimetric measurements to range between 5 and 20% for PM2.5 and between 10 and 940 

25% for PM10. The particle-bound water was found to be associated with hygroscopic particles such as 941 

sulphate, nitrate, and organic compounds. This remaining water content can be up to approximately 10-35% 942 

depending on the chemical composition of aerosols being measured (Tsyro, 2005, Kajino, et al., 2006, Jones 943 

and Harrison, 2006). The water aerosols should therefore be accounted when compared with these 944 

measurements. Part of the problem lies in secondary organic aerosol. In winter, in particular for wood burning 945 

part of the emissions are condensable gases that rapidly change to the aerosol phase (Van der Gon et al 2014), 946 

but are missed since they are not part of the presently used PM emission inventory. In summer, biogenic 947 

emissions that contribute to SOA formation and their yields are quite uncertain. A good representation of SOA 948 

is still a problem for all models. In spring, the application of manure and fertilizer leads to peaks of NH3 949 

emissions and subsequent NH4 aerosol formation, contributing to PM10 and PM2.5. The timing of these 950 

emissions is parameterized based on long-time averages, whereas in practice they are strongly related to 951 

meteorology. This can explain part of the discrepancy on the diurnal to synoptic time scale (Hendriks et al 952 

2015). 953 

4. MEMORY OF THE SIGNAL AND REMOVAL PROCESSES: THE CASE OF OZONE 954 

The evaluation of the removal processes (chemical transformation, transport, and deposition) is difficult to 955 

assess in isolation with respect to other sources of error because of the bias of the signal. In this section we 956 

propose a bias-independent spatial analysis aimed at the quantification of the ‘memory’ of the signal. The 957 

analysis seeks the time interval (or memory) after which the signal loses any memory of its past. The memory 958 

of the modelled and observed signals is then compared. The methodology consists of:  959 

1. calculating the autocorrelation function (acf) of the modelled and observed LT component;  960 

2. then, calculating the quantity acfmod=0 and acfobs=0, i.e. the lag (time interval) where the acf of the modelled 961 

and observed LT component falls to zero, and finally 962 

3. determining the difference between the two, yielding the difference between the modelled and the 963 

observed memory of the signal: 964 

Δ𝑚𝑒𝑚𝑜𝑟𝑦 = 𝑎𝑐𝑓𝑚𝑜𝑑=0 − 𝑎𝑐𝑓𝑜𝑏𝑠=0 Eq 9 
 965 
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The acf is simply a measure of the degree of associativity of a time series with its lagged version. The 966 

associativity is typically measured through the correlation coefficient, and the lag extends from one time step 967 

(one hour in the case of hourly time series) to, generally, a third of the length of the time series. Because the 968 

correlation is bias-independent, we conclude that the acf is also bias-independent therefore information from 969 

memory is useful for the interpretation of the variance and covariance errors discussed in section 3.1. The 970 

memory of the signal is different from the persistence indicator (previous day concentration) as used e.g. by 971 

Otero et al. (2016) for accounting for pollutant episodes. As we deal with the LT component of the signal, short 972 

term and synoptic episodes are in fact filtered out in this analysis.  973 

In the supplementary material Figure S9 and Figure S10, the acf for the network-wide spatial average and for 974 

the full year is reported. The acf is calculated for the LT component of the observed (first panel) and modelled 975 

ozone time series. The zero of the acf and the slope of the decay of acf of the observations (approximately a 976 

straight line from 1 to 0 in 2000 hours) are replicated by the models with various degree of success (Figure 977 

S10). Our intent is to apply this analysis to the seasonal ozone time series at each receptor, and derive useful 978 

information about the modelled removal/production processes. The spatial analysis is proposed for ozone, for 979 

the months of May to September (Figure 28 and Figure 29) and for the full year (supplementary material 980 

Figure S9 and Figure S10). 981 

The average life time of ozone in the troposphere is of approximately 20-30 days (Solomon et al., 2007). By 982 

analysing the LT component (processes > 21 days) we therefore screen out the daily removal/transformation 983 

due to chemistry and can focus on seasonal transport, deposition of the free tropospheric ozone, long term 984 

chemistry (seasonal changes in vegetation that affect biogenic VOCs emissions and ozone deposition, and also 985 

the monthly variations applied to the anthropogenic emission) and influence of boundary conditions. The 986 

structure of the acf also benefits from the removal of short time scale processes as it is less affected by noise 987 

and the results are easier to interpret.   988 

The spatially distributed Δ𝑚𝑒𝑚𝑜𝑟𝑦 shows some clear regional effects for the majority of the models. The 989 

Δ𝑚𝑒𝑚𝑜𝑟𝑦 > 0 along the Mediterranean coast of Spain and France, with some severe excess of ozone 990 

production (or underestimation of sinks) in southern/central France for some models (SILAM, WRF-CAMx, 991 

WRF-CMAQ1, WRF-CMAQ2 and especially the L.-Euros model, for which the acf at the French receptors did 992 

not reach zero).   993 

The region covering the Po valley, Austria and extending into the continental eastern EU is affected by 994 

negative Δ𝑚𝑒𝑚𝑜𝑟𝑦 (sometimes a deficit of one month for some models). The negative memory indicates that 995 

the observed signal is more persistent than the modelled one, and that long term weather transitions are 996 

smoother in gradient and longer in duration, and thus that the seasonal modulation of the signal is 997 

overestimated by the models, thus producing variance error. Coupling the two behaviours (excess of ozone in 998 

south France and south Spain with the short memory from the interior of east EU extending to the Po valley), 999 

might indicate an easterly synoptic transport of ozone (or of LT ozone precursor, such as the impact of CH4 and 1000 

CO on OH and photochemistry) masses whose duration is underestimated by the models. The relationship 1001 

between the sign of Δ𝑚𝑒𝑚𝑜𝑟𝑦 and the land use type (vegetation vs urban) is subject of on-going investigations 1002 

in the attempt to determine the role of VOCs emissions and deposition over different land types.  1003 

The central part of Germany is affected by positive (on average in the range of 7 to 10 days) Δ𝑚𝑒𝑚𝑜𝑟𝑦, mostly 1004 

visible for the HTAP-emission based SILAM and Chimere results in contrast with the MACC-emission based 1005 

ones of the same models. When the HTAP inventory is used the largest differences are observed in the central 1006 

EU regions, indicating that also the LT chemistry plays a role. 1007 

The deposition aspect of removal can be equally important as transport and chemistry. The memory of the 1008 

signal directly depends on the amount of ozone available and a large, negative Δ𝑚𝑒𝑚𝑜𝑟𝑦  might indicate that 1009 

the deposition is too high.  1010 
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For NA (Figure 29), the feature common to all models is the excess of removal in the Southern Atlantic coast 1011 

and across the Eastern Canadian border. In contrast, the central-east part of the US shows large positive 1012 

Δ𝑚𝑒𝑚𝑜𝑟𝑦 values (up to 1.3 month for the WRF-DEHM model), with the exception of the WRF-CMAQ model, 1013 

which is overall in line with the observed memory of the signal in this part of the domain. This result agrees 1014 

with the seasonal phase analysis for ozone in global models by Bowdalo et al. (2016), where a delay of up to 4 1015 

months was detected for east USA. 1016 

The west coast has a mixed behaviour, but prevalently Δ𝑚𝑒𝑚𝑜𝑟𝑦  is negative. The hypothesis that too little 1017 

ozone enters the domain trough the boundary conditions is contradicted by the Δ𝑚𝑒𝑚𝑜𝑟𝑦 0 for the full year in 1018 

the west coast (see Figure S10). A potential excess of transport in this region also seems to be contradicted by 1019 

the large number of stations for which Δ𝑚𝑒𝑚𝑜𝑟𝑦  is positive. A possible conclusion is that localised biogenic 1020 

emission sources, radiation budget, and deposition are the main factors responsible for the negative sign of 1021 

Δ𝑚𝑒𝑚𝑜𝑟𝑦 in this region. 1022 

5. CONCLUSIONS 1023 

The work presented in this paper summarises the results of the ongoing third phase of the AQMEII activity 1024 

focusing on AQ model evaluation, applied to the continental scale domains of Europe and North America. The 1025 

evaluation of the AQMEII3 suite of model runs is carried out for surface temperature and wind speed, and for 1026 

the species CO, NO, NO2, ozone, SO2, PM10 (EU) and PM2.5 (NA). Additional analyses making use of emission 1027 

reduction scenarios (CO and NO) and vertical profiles have also been performed. 1028 

This work is primarily meant to provide a wide overview of the performance of current regional AQ modelling 1029 

systems and to set the basis for additional diagnostic analysis that is currently in progress.      1030 

The model evaluation is carried out by quantifying the components of the error (bias, variance, mMSE) at four 1031 

time-scales (ID, DU, SY, LT) each describing physical processes in a specific time range. The bias and variance 1032 

measure the departure from the first and second moment of the observed distribution (mean and standard 1033 

deviation), while the mMSE accounts for the unexplained observed variability and relates to the ability of the 1034 

models to reproduce timing and shape as measured by the correlation coefficient. The apportionment of the 1035 

error to the relevant time-scales and the analysis of the quality of the error have revealed that the LT bias is, 1036 

by far, the first cause of error, followed by the variance error (fluctuations about the mean value) of the DU 1037 

component and the unexplained variance of the DU and SY components, depending on the species and 1038 

season. In more detail: 1039 

 The mean concentration of the primary species (NO, CO, PM10, SO2) is underestimated by the vast majority 1040 

of the models in both continents, more markedly during the winter and autumn seasons. The largest share 1041 

of error for these species is the bias of the LT components, most probably due to emissions and the effects 1042 

of comparing point measurements to volume averaged concentrations. 1043 

 The meteorological fields of temperature and wind speed are consistently biased low and high, 1044 

respectively. Based on the results of the European models directly driven by the global fields for 1045 

meteorology (e.g SILAM, Chimere) the error for wind speed is of 0.5-1 ms
-1

 and of 0.4-1.2K for 1046 

temperature. These errors can be considered as the uppermost limit the accuracy of the models can 1047 

currently achieve. The use of nudging and interpolation methods (specific to the configuration of the 1048 

meteorological model) can add more than 1.5K and 2ms
-1

 to the total error. The analysis of the available 1049 

vertical profiles suggests that the models overestimate the wind speed within the PBL and vice versa above 1050 

the PBL, possibly inducing a net outward flux of pollutants at the PBL interface. 1051 

 Modelled CO is affected by high errors, uniformly across models and components, more pronounced in 1052 

winter and predominantly driven by the negative bias of the LT component, followed by variance error of 1053 

the SY component. Modelled NO and NO2 also report negative bias but, in contrast to CO, there is 1054 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-682, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



25 

significant model-to-model difference in error variability, possibly due to the chemistry of NOx. The SY and 1055 

DU errors of NO are comparable in magnitude (3-5 ppb) and mostly due to mMSE error. Preliminary 1056 

sensitivity investigations for CO and NO seem to suggest that at most 50% and 35% of the total error, 1057 

respectively, could be due to emissions. Finally, based on spatially averaged analysis, the error for NO/NO2 1058 

is the same for urban and rural stations (i.e. the error is insensitive to the area-type of the stations).  1059 

 The error analysis for ozone shows large model-to-model variability for all errors and spectral components, 1060 

with the exception of the SY component for which the error is similar among models and possibly driven by 1061 

the error in temperature and in the boundary conditions, as modelled vertical ozone profiles near the 1062 

domain’s boundaries are typically underestimated in both continents by all models. The bias is prevalently 1063 

positive, while the variance error is generally small. While the bias error for ozone is likely driven by error in 1064 

NOx emissions, the error in meteorology may factor in determining the mMSE and variance error. In fact, 1065 

there are several models for which the bias of temperature and the bias of NO2 are strongly associated 1066 

with the DU error of ozone. A simple linear regression between NOx bias and ozone bias (based on the 1067 

yearly time series) among the EU models suggests that the NOx and temperature biases can explain, on 1068 

average, 35% and 16% of the variability of the ozone bias, respectively. Ongoing analyses are focusing on 1069 

explaining the origin of the mMSE error by investigating the phase shift between the modelled and 1070 

observed DU and SY components as well as on looking at maximum daily values rather than to the full time 1071 

series.    1072 

 PM analysis (PM10 for Europe and PM2.5 for North America) reveals that, for Europe, the error distribution 1073 

for DU and SY is homogeneous and season independent among the models, despite the large numbers of 1074 

modelling options and parameters characterising the chemistry and physics of particles. A common source 1075 

of model bias (model underestimation, especially in winter) for PM10 likely lies in the emissions (missing 1076 

sources) and in the overestimation of surface wind speed, whereas variance error may stem from PBL 1077 

dynamics under stable conditions and missing processes in the model (SOA formation is a known issue for 1078 

all models). The analysis of PM2.5 (based on two models only) shows an excess of variance and low 1079 

correlation coefficient in the DU component, possibly due to the timing of the PM cycle. Further analyses 1080 

dealing with the PM components are needed to draw further considerations. 1081 

 The analysis of the memory of the ozone signal has revealed a strong model deficit in continental Europe, 1082 

where the seasonal modulation of ozone is overestimated by the majority of the models. The opposite 1083 

holds true in the continental US. 1084 

Although remarkable progress has been made since the first phase of AQMEII, both in terms of model 1085 

performance and also in terms of developing a more versatile and robust evaluation procedure, results of AQ 1086 

model evaluation and inter-comparison remain generic as they fail to associate errors with processes, or at 1087 

least to narrow down the list of processes responsible for model error. AQ models are meant to be applicable 1088 

to a variety of geographic (and topographic) scenarios, under almost any type of weather, season, and 1089 

emission conditions. For such a wide range of conditions the inherent non-linearity among processes are 1090 

difficult to disentangle and specifically designed sensitivity runs seems the only viable alternative. A model 1091 

evaluation strategy relying solely on the comparison of modelled vs. observed time series would never be able 1092 

to quantify exactly the error induced e.g. by biogenic emissions, vertical emission profiles and their 1093 

dependence on temperature, deposition, vertical mixing, chemistry, and the analysis approach presented in 1094 

this work is no exception. In fact, the methodology devised to carry out the evaluation activity in this study has 1095 

not succeeded in determining the ‘actual’ causes of model error, although providing much clearer indications 1096 

of the processes responsible for the error with respect to conventional operational model evaluation.  1097 

The highly non-linear nature of current AQ models requires the study of the relationships among error fields, 1098 

those of the meteorological drivers and those of the precursors. When the seasonal and spectral structures of 1099 

these relationships is analysed together with the error of the input fields (emissions and boundary conditions), 1100 

then it would be possible to diagnose and explain accurately the processes responsible for the error. Future 1101 

evaluation activities should envision sensitivity simulations and process specific analyses. 1102 
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APPENDIX 1. 1103 

Following Hogrefe et al. (2000) and Galmarini et al. (2013) the time windows (m) and the smoothing 1104 

parameter (k) have been selected as follow: 1105 

ID(t) = x(t) – kz3,3(x(t)) 
DU(t) = kz3,3(x(t)) – kz13,5(x(t)) 
SY(t) = kz13,5(x(t)) – kz103,5(x(t)) 

LT(t) = kz103,5(x(t)) 
x(t)=ID(t)+DU(t)+SY(t)+LT(t) 

 

Eq. S1 

where x(t) is the time series vector. The additive property of the components whose summation returns the 1106 

original time series might be questioned. In the original work by Rao et al. (1997) it is highlighted the 1107 

importance of log-transform the components to stabilize the variance. In the case of log-transformation the 1108 

original time series is obtained by the product of exponential functions whose exponents are the spectral 1109 

components. For the purposes of the error apportionment analysis presented here, the results of using 1110 

additive time series component of log-transformed did not produce substantial differences. 1111 

A clear-cut separation of the components of Eq. S1 is not achievable, since the separation is a non-linear 1112 

function of the parameters m and k (Rao et al., 1997). It follows that the components of Eq. S1 are not 1113 

completely orthogonal and that there is some level of overlapping energy (Kang et al., 2013). Galmarini et al. 1114 

(2013) found that the explained variance by the spectral components account for 75 to 80% of the total, the 1115 

remaining portion being on account of the interactions between the components. 1116 

APPENDIX 2. 1117 

Statistical indicators: 1118 

Root Mean Square Error 1119 

𝑅𝑀𝑆𝐸 = (
∑ (𝑀𝑖 − 𝑂𝑖

𝑛
𝑖=1 )2

𝑛
)

0.5

 

Mean Bias (MB) 1120 

𝑀𝐵 =
1

𝑛
∑ 𝑀𝑖 − 𝑂𝑖

𝑛

𝑖=1
 

Pearson correlation coefficient (r) 1121 

𝑟 =
1

𝑛 − 1
∑ (

𝑀𝑖 − 𝑀

𝜎𝑀

) (
𝑂𝑖 − 𝑂

𝜎𝑂

)
𝑛

𝑖=1
 

Where M and O are the n-element modelled and observed time series, respectively,  is the standard 1122 

deviation and the overbar indicates temporal averaging.  1123 
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TABLE 1. PARTICIPATING MODELLING SYSTEMS AND KEY FEATURES 1609 

Operated by 
Modelling 
system 

Horizontal grid Vertical grid Deposition scheme 
Global meteo data 
provider 

NOx emission 
share of  NO and 
NO2 

Gaseous 
chemistry 
module 

EUROPEAN DOMAIN 

Finnish Meteorological 
Institute 

ECMWF- 
SILAM_H, 
SILAM_M 

0.25 x 0.25 deg 
Lat x Lon 

12 uneven layers up to 

13km. First layer 30m 

Dry: Kouznetsov and Sofiev 
(2012) 
Wet: Kouznetsov and Sofiev 
(2014) 

ECMWF 
(nudging within the 
PBL) 

90/10 CBM-IV 

Netherlands Organization 
for Applied Scientific 
Research 

ECMWF-L.-
EUROS 

0.5 x 0.25 deg 
Lat x Lon 
 

Surface layer (25m 
depth), mixing layer, 2 
reservoir layers up to 
3.5km.  

Wet: below-cloud scavening 
Dry: Zhang et al. (2001) for 
particles, Depac (Zanten et al., 
2012) for gases 

Direct interpolation 
from ECMWF 

97/3 CBM-IV 

University of L’Aquila 
WRF-
WRF/Chem1 

270x225 cells,  
23 km 

33 levels up to 50hPa. 12 
layers below 1km. First 

layer 12m 

Dry: Wesely (1989) 
Wet: Grell and Freitas (2014) 

ECMWF 
(nudging above the 
PBL) 

95/5 RACM-ESRL 

University of Murcia 
WRF-
WRF/Chem2 

270 x 225 
cells,t 
23 km x 23 km 

33 levels, from 24m to 
50hPa 

Dry: Wesley resistance 
approach, (Wesley, 1989) 
Wet: Grid scale wet deposition 
(Easter et al, 2004) and 
convective wet deposition 

ECMWF (nudging 
above the PBL) 

90/10 RADM2 

Ricerca Sistema 
Energetico 

WRF-CAMx 
265x220 cells,  
23 km x 23 km 

14 layers up to 8km. First 

layer 25m. 

Dry: Resistance model for 
gases (Zhang et al., 2003) and 
aerosols (Zhang et al., 2001) 
Wet: Scavenging model for 
gases and aerosols (Seinfeld 
and Pandis, 1998) 

ECMWF 
(nudging within the 
PBL) 

95/5 CB05 

University of Aarhus WRF-DEHM 50 km x 50 km 29 layers up to 100hPa 
Wet and dry as in  
Simpson et al. (2003) 

ECMWF 
(no nudging within 
the PBL) 

90/10 
Brandt et al. 
(2012) 

Istanbul Technical 
University  

WRF-CMAQ1 
184 x 156 cells, 
30 km x 30 km 

24 layers up to 10hPa  
Wet and Dry as in Foley et al. 
(2010) 

NCEP (nudging 
within PBL) 

95/5 CB05 

Kings College WRF-CMAQ4 15 km x  15 km 

23 layers up to 100hPa, 7 
layer below 1km. First 

layer 14m 

Wet: Taken from the RADM 
(Chang et al., 1987) 
Dry: Electrical resistance analog 
model 

NCEP (Nudging 
within the PBL) 

90/10 CB05 

Ricardo E&E WRF-CMAQ2 30 km x 30 km 

23 layers up to 100hPa, 7 
layers below 1km. First 

layer 15m 

Wet: Byun and Schere (2006) 
Dry: Pleim and Ran (2011) 

NCEP 
(nudging above the 
PBL) 

Road transport: 
86/14; non-road: 
95/5 

CB05-TUCL 
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Helmholtz-Zentrum 
Geesthacht 

CCLM-CMAQ 24 km x 24 km 
30 vertical layers from 

40m to 50hPa 
Wet: Byun and Schere (2006) 
Dry: Pleim and Ran (2011) 

NCEP 
(spectral nudging 
above free 
troposhere) 

90/10 CB05-TUCL 

University of 
Hertfordshire 

WRF-CMAQ3 18 km x 18 km 
35 vertical layers from 

20m to 16km  

Dry: resistance analogy model 
(Wesley, 1989). 
Wet: Asymmetric Convective 
model algorithm in CMAQ 
cloud module  

ECMWF 
(nudging   above 
PBL) 

90/10 CB05-TUCL 

INERIS/CIEMAT 
ECMWF-
Chimere_H 
Chimere_M 

0.25 x 0.25 deg 
Lat x Lon 

9  layers  up to 500hPa. 

First layer 20m 

Wet: in-cloud and sub-cloud 
scavenging for gases and 
aerosols (Menut et al. 2013) 
Dry: resistance approach  as 
Emberson (2000a,b) 

Direct interpolation 
from ECMWF 

95% NO 
4.5% NO2 

0.5% HONO 
MELCHIOR2  

NORTH AMERICAN DOMAIN 

Helmholtz-Zentrum 
Geesthacht 

CCLM-CMAQ 24 km x 24 km 
30 vertical layers from 

40m to 50hPa.  
Wet: Byun and Schere (2006) 
Dry: Pleim and Ran (2011) 

NCEP 
(spectral nudging 
above free 
troposhere) 

90/10 CB05-TUCL 

Environmental Protection 
Agency of the USA 

WRF-CMAQ 
459x299 cells 
12 km x 12 km  

35 layers, up to 50hPa. 

First layer 19m 

Wet: Byun and Schere (2006) 
Dry: Pleim and Ran (2011) 

NCEP (nudging 
above the PBL) 

90/10 
Calculated by 
MOVES for 
transport  

CB05-TUCL 

RAMBOLL Environ  WRF-CAMx 
459x299 cells, 
12 Km x 12 km  

26 layers up to 97.5hPa 

Dry: Resistance model for 
gases (Zhang et al., 2003)  
Wet: Scavenging model for 
gases and aerosols (Seinfeld 
and Pandis, 1998) 

NCEP (nudging 
above the PBL) 

90/10 CB05 

University of Aarhus WRF-DEHM 50 km x 50 km 29 layers up to 100hPa 
Wet and dry as in  
Simpson et al. (2003) 

Direct interpolation 
from ECMWF 

90/10 
Brandt et al. 
(2012) 

 1610 

 1611 

 1612 

 1613 
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TABLE 2. EXTENSION OF THE SUB-REGIONS AND NUMBER OF RECEPTORS USED IN THE ANALYSIS 1614 

 

EU1/NA1 

4257.2N; -91.3W  

/  4049.5; -83 -
66W 

EU2/NA2 

47.556N; 1.318W / 

3038N; -91-75W 

EU3/NA3 

43.546N; 714W / 

33.543; -124-118.5W  

EU/NA 

3065N; -1033W / 

2651N; -125-55W 

Ozone 134/165 352/63 120/93 972/667 

CO 32/29 91/8 70/12 418/103 

NO (EU) 27 367 161 836 

NO2 149/97 529/21 176/54 1390/340 

SO2 96/69 296/3 55/3 865/141 

PM10 (EU) 
PM2.5 (NA) 

47 
89 

347 
9 

2 
22 

619 
226 

WS 168/229 305/245 5/59 827/1721 

Temp 168/232 305/243 5/46 830/1546 

 1615 

TABLE 3. SUMMARY OF OZONDESONDES DATA FOR OZONE 1616 

EU 
Station O3 Records Period Local time 

316 52 Year(4-5 launches per month) 11-12 

308 52 Year(4-5 launches per month) 10-11 

318 37 
Year(3-4 launches per month,  
mostly winter and autumn) 

11-12 

242 46 January-April(10-12 launches per month) 11-12 

156 144 Year(12 launches per month) 10-12 

099 66 Year(5-6 launches per month) Mostly early morning 4-6 

053 149 Year(11-13 launches per month) 11-12 

043 51 Year(4-5 launches per month) 11-12 
NA 

021 44 Year(3-4 launches per month) 11-12 

107 54 Year(4-5 launches per month) 16-20 

338 50 
Year(2-4 per month; 17 in July;  
none in September) 

14-15 July-August 
17-18 other months 

456 57 2-5 per month; 25 in July 17-18 

457 75 Year(2-5 per month; 18-20 in May-June) 23-00 

458 71 Year(3-8 per month; 20 in July) 23-00 

 1617 

 1618 
 1619 
 1620 
 1621 
 1622 
 1623 
 1624 
 1625 
 1626 
 1627 
 1628 
 1629 
 1630 
 1631 
 1632 
 1633 
 1634 
 1635 
 1636 
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FIGURES 1637 

Figure 1. Sub-regions of the two continental domains ( a) EU; b) NA ). Overlaid are the ozone monitoring stations classified 1638 

based on the network 1639 

Figure 2. RMSE for a) Temp and b) WS in Europe  1640 

FIGURE 3 RMSE for a) Temp and b) WS in North America 1641 

Figure 4. Mean Bias (mod – obs) for the vertical profiles of Wind Speed measured by ozonesondes launched from the 1642 

European locations indicated on the inset map of each panel. The number of hourly profiles available for each site is 1643 

reported in the parenthesis at the top of each panel 1644 

Figure 5. Mean Bias (mod – obs) for the vertical profiles of Temperature measured by ozonesondes launched from the 1645 

European locations indicated on the inset map of each panel. The number of hourly profiles available for each site is 1646 

reported in the parenthesis at the top of each panel 1647 

Figure 6. Mean Bias (mod – obs) for the vertical profiles of Wind Speed measured by ozonesondes launched from the North 1648 

American locations indicated on the inset map of each panel. The number of hourly profiles available for each site is 1649 

reported in the parenthesis at the top of each panel 1650 

Figure 7. Mean Bias (mod – obs) for the vertical profiles of Temperature measured by ozonesondes launched from the 1651 

North American locations indicated on the inset map of each panel. The number of hourly profiles available for each site is 1652 

reported in the parenthesis at the top of each panel 1653 

Figure 8. Cumulated modelled deposition per unit area over the continental regions of a) EU and b) NA for the full year of 1654 

2010. The boxes extend between the minimum and the 5
th

 percentile, while the maximum is reported by the number at 1655 

the top of each box. results are displayed for the models and species for which data have been made available 1656 

Figure 9. RMSE (ppb) for CO by spectral component and season (panel a for Europe and b for North America).  FT is the full 1657 

(un-filtered) time series, LT, SY, DU, are the Long Term, Synoptic and diurnal components, respectively.  1658 

Figure 10. MSE (ppb
2
) breakdown into bias squared, variance and mMSE for the spectral components of the spatial average 1659 

time series of CO during the months of December, January, and February (DJF), based on EQ.6. The bias is entirely 1660 
accounted for by the LT component. The signs within the bias and variance portion of the bars indicate model 1661 
overestimation (+) or underestimation (-) of the bias and variance. The colour of the mMSE share of the error is coded 1662 
based on the values of r, the correlation coefficient, according to the colour scale at the bottom of each plot. Top panel: 1663 
EU; lower panel: NA. Similar plots for the other two sub-regions are reported in the supplementary material.  1664 

Figure 11. RMSE variation between the ‘s20%’ scenario (anthropogenic emission and boundary condition reduced by 20%) 1665 

and  the base case for CO in EU2 1666 

Figure 12. Top panel: as in Figure 9 for NO (EU only). Lower panel: as in Figure 10 for NO (EU only) 1667 

Figure 13. RMSE variation between the ‘s20%’ scenario (anthropogenic emission and boundary condition reduced by 20%) 1668 

and  the base case for anthropogenic NO (aNO) in eu2 1669 

Figure 14. As in Figure 9 for NO2.  1670 

Figure 15. As in Figure 10 for NO2 in EU2. Upper panel: Urban sites only (223 stations); lower panel: Rural sites only (159 1671 

stations)  1672 

Figure 16. As in Figure 10 for NO2 in NA1. Upper panel: Urban sites only (39 stations); Lower panel: Rural sites only (10 1673 

stations). 1674 

Figure 17. As in Figure 9 for ozone 1675 

Figure 18. As in Figure 10 for ozone during the months from May to September 1676 
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Figure 19. Ozone mixing-ratio profiles measured by ozonesondes launched from the European location indicated on the 1677 

inset map (lower-right corner) of each panel. The profiles are time-averaged over the number of hourly records reported in 1678 

the parenthesis at the top of each panel. Legend as in the first panel. 1679 

Figure 20. As in Figure 19 for North America 1680 

Figure 21. Ozone vs NO modelled mean bias for the EU2 sub-region, color-coded by temperature bias and symbols 1681 

according to the NOx emission fraction of NO and NO2. Each point represents a model. a) winter months and b) summer 1682 

months. 1683 

Figure 22. As in Figure 9 for SO2  1684 

Figure 23. As in Figure 10 for SO2 1685 

Figure 24. As in Figure 9 for PM10 in Europe (error units in µg/m
3
) 1686 

Figure 25. As in Figure 9 for PM2.5 in North America (error units in µg/m
3
) 1687 

Figure 26. As in Figure 10 for PM10 in Europe (error units in µg/m
3
) 1688 

Figure 27. As in Figure 10 for PM2.5 in North America (error units in µg/m
3
) 1689 

Figure 28. Spatial map of the ozone monitoring stations coloured based on the ‘delta hour’ values, i.e. the difference in 1690 

hours between the zero of the autocorrelation function (acf) for the modelled ozone minus the zero of the acf of the 1691 

observed one. The acf is calculated on the long term component for the months of May to September. Negative values 1692 

indicate too short memory and excess of removal (vice-versa for positive values). The box on the right summarises the 1693 

delta hour percentile distribution. 1694 

Figure 29. As in Figure 28 for North America. 1695 

 1696 

 1697 

 1698 
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FIGURES 

a) 

a) b) 

FIGURE 1. Sub-regions of the two continental domains ( a) EU; b) NA ). Overlaid are the ozone monitoring stations classified 

based on the network 
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b) 

FIGURE 2. RMSE FOR A) TEMP AND B) WS IN EUROPE 
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b) 

FIGURE 3. RMSE FOR A) TEMP AND B) WS IN NORTH AMERICA  

 

 

 

 

 

 

 

 

Ozonesondes. Time averaged vertical profiles for WIND SPEED BIAS -EUROPE 
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Figure 4. Mean Bias (mod – obs) for the vertical profiles of wind speed measured by ozonesondes launched 
from the European location indicated on the inset map of each panel. The number of hourly profiles available 
for each site is reported in the parenthesis at the top of each panel 
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Ozonesondes. Time averaged vertical profiles for TEMPERATURE BIAS -EUROPE 
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Figure 5. Mean Bias (mod – obs) for the vertical profiles of temperature measured by ozonesondes launched 
from the European location indicated on the inset map of each panel. The number of hourly profiles available 
for each site is reported in the parenthesis at the top of each panel 
 

 

Ozonesondes. Time averaged vertical profiles for Wind Speed BIAS – North America 
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FIGURE 6. Mean Bias (mod – obs) for the vertical profiles of wind speed measured by ozonesondes launched 
from the North American locations indicated on the inset map of each panel. The number of hourly profiles 
available for each site is reported in the parenthesis at the top of each panel 
 

 

Ozonesondes. Time averaged vertical profiles for TEMPERATURE BIAS –North America 
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FIGURE 7. Mean Bias (mod – obs) for the vertical profiles of Temperature measured by ozonesondes launched 
from the North American location indicated on the inset map of each panel. The number of hourly profiles 
available for each site is reported in the parenthesis at the top of each panel 
 

 

a) 
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b) 

Figure 8. Cumulated modelled deposition per unit area over the continental regions of a) EU and b) NA for the 

full year of 2010. The boxes extend between the minimum and the 5
th

 percentile, while the maximum is 

reported by the number at the top of each box. results are displayed for the models and species for which data 

have been made available. 
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b) 

FIGURE 9. RMSE (ppb) for CO by spectral component and season (panel a for Europe and b for North America).  FT is the full 

(un-filtered) time series, LT, SY, DU, are the Long Term, Synoptic and diurnal components, respectively. 
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a) 

 

b) 

FIGURE 10. MSE (ppb
2
) breakdown into bias squared, variance and mMSE for the spectral components of the spatial average 

time series of CO during the months of December, January, and February (DJF), based on EQ.6. The bias is entirely 

accounted for by the LT component. The signs within the bias and variance portion of the bars indicate model 

overestimation (+) or underestimation (-) of the bias and variance. The colour of the mMSE share of the error is coded 

based on the values of r, the correlation coefficient, according to the colour scale at the bottom of each plot. Top panel: 

EU; lower panel: NA. Similar plots for the other two sub-regions are reported in the supplementary material. 
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FIGURE 11. RMSE variation between the ‘s20%’ scenario (anthropogenic emission and boundary condition reduced by 20%) 

and the base case for CO in EU2 
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b) 

FIGURE 12. Top panel: as in FIGURE 9 for NO (EU only). Lower panel: as in FIGURE 10 for NO (EU only)  

 

FIGURE 13. RMSE variation between the ‘s20%’ scenario (anthropogenic emission and boundary condition reduced by 20%) 

and  the base case for anthropogenic NO (aNO) in EU2 
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a) 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-682, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

58 

 

b) 

FIGURE 14. As in FIGURE 9 for NO2 
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a) Urban NO2 in EU2 sub-region (223 stations) 

 

b) Rural NO2 in EU2 sub-region(159 stations) 

FIGURE 15. AS IN FIGURE 10 FOR NO2 IN EU2. UPPER PANEL: URBAN SITES ONLY (223 STATIONS); LOWER PANEL: RURAL SITES ONLY 

(159 STATIONS) 
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a) NA1 urban (39 stations) 

 

b) NA1 rural (10 stations) 

FIGURE 16.  AS IN FIGURE 10 FOR NO2 IN NA1. UPPER PANEL: URBAN SITES ONLY (39 STATIONS); LOWER PANEL: RURAL SITES ONLY (10 

STATIONS). 
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B) 

FIGURE 17. AS IN FIGURE 9 FOR OZONE 
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a) 

 

 

b) 

FIGURE 18. AS IN FIGURE 10 FOR OZONE DURING THE MONTHS FROM MAY TO SEPTEMBER 
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Figure 19. Ozone mixing-ratio profiles measured by ozonesondes launched from the European location indicated on the 

inset map (lower-right corner) of each panel. The profiles are time-averaged over the number of hourly records reported in 

the parenthesis at the top of each panel. Legend as in the first panel. 

 

  

  

  
 

FIGURE 20 . As in FIGURE 19 for North America 
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a) 

 
b) 

FIGURE 21.  Ozone vs NO modelled mean bias for the EU2 sub-region, color-coded by temperature bias and symbols according to the NOx 

emission fraction of NO and NO2. Each point represents a model. a) winter months and b) summer months. 
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b) 

FIGURE 22. AS IN FIGURE 9 FOR SO2 
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a) 

 

b) 

FIGURE 23. AS IN FIGURE 10 FOR SO2 
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FIGURE 24. As in Figure 9 for PM10 in Europe (error units in µg/m
3
) 
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FIGURE 25. As in Figure 9 for PM2.5 in North America (error units in µg/m
3
) 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-682, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

72 

 

 

FIGURE 26. As in Figure 10 for PM10 in Europe (error units in µg/m
3
) 

 

FIGURE 27. As in Figure 10 for hourly PM2.5 in North America (error units in µg/m
3
) 
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FIGURE 28. Spatial map of the ozone monitoring stations colored based on the ‘delta hour’ values, i.e. the difference in 

hours between the zero of the autocorrelation function (acf) for the modelled ozone minus the zero of the acf of the 

observed one. The acf is calculated on the long term component for the months of May to September. Negative values 

indicate an excess of removal (viceversa for positive values). The box on the right summarises the delta hour percentile 

distribution. 

 

  

  
FIGURE 29. As in Figure 28 for North America 
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