
1 

Evaluation and Error Apportionment of an Ensemble of Atmospheric 1 

Chemistry Transport Modelling Systems: Multi-variable Temporal 2 

and Spatial Breakdown  3 
 4 

Efisio Solazzo1*, Roberto Bianconi2, Christian Hogrefe3, Gabriele Curci4,5, Paolo Tuccella5, Ummugulsum Alyuz6, 5 
Alessandra Balzarini7, Rocío Baró8, Roberto Bellasio2, Johannes Bieser9, Jørgen Brandt10, Jesper H. Christensen10, 6 
Augistin Colette11, Xavier Francis12, Andrea Fraser13, Marta Garcia Vivanco11,14, Pedro Jiménez-Guerrero8, Ulas Im10, 7 
Astrid Manders15, Uarporn Nopmongcol16, Nutthida Kitwiroon 17, Guido Pirovano7, Luca Pozzoli6,1, Marje Prank18, 8 
Ranjeet S. Sokhi12, Alper Unal6, Greg Yarwood16, Stefano Galmarini1 9 
 10 
1 European Commission, Joint Research Centre (JRC), Directorate for Energy, Transport and Climate, Air and Climate Unit, Ispra 11 
(VA), Italy 12 
2 Enviroware srl, Concorezzo, MB, Italy 13 
3 Atmospheric Model Application and Analysis Branch - Computational Exposure Division - NERL, ORD, U.S. EPA 14 
4 CETEMPS, University of L’Aquila, Italy 15 
5 Dept. Physical and Chemical Sciences, University of L’Aquila, Italy 16 
6 Eurasia Institute of Earth Sciences, Istanbul Technical University, Turkey 17 
7 Ricerca sul Sistema Energetico (RSE SpA), Milano, Italy 18 
8 University of Murcia, Department of Physics, Physics of the Earth, Campus de Espinardo, Ed. CIOyN, 30100 Murcia, Spain 19 
9 Institute of Coastal Research, Chemistry Transport Modelling Group, Helmholtz-Zentrum Geesthacht, Germany 20 
10 Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark 21 
11 INERIS, Institut National de l'Environnement Industriel et des Risques, Parc Alata, 60550 Verneuil-en-Halatte, France 22 
12 Centre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire, Hatfiled, UK 23 
13 Ricardo Energy & Environment, Gemini Building, Fermi Avenue, Harwell, Oxon, OX11 0QR, UK 24 
14 CIEMAT. Avda. Complutense, 40.  28040. Madrid, Spain 25 
15 Netherlands Organization for Applied Scientific Research (TNO), Utrecht, The Netherlands 26 
16 Ramboll Environ, 773 San Marin Drive, Suite 2115, Novato, CA 94998, USA 27 
17 Environmental Research Group, Kings’ College London, London, United Kingdom 28 
18 Finnish Meteorological Institute, Atmospheric Composition Research Unit, Helsinki, Finland 29 
 30 
*Author for correspondence: E.Solazzo, efisio.solazzo@jrc.ec.europa.eu, Phone: +390332789944 31 
 32 

Abstract. Through the comparison of several regional-scale chemistry transport modelling systems that simulate 33 
meteorology and air quality over the European and American continents, this study aims at i) apportioning the 34 
error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) 35 
identifying the processes and scales most urgently requiring dedicated investigations.  36 

The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation 37 
International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model 38 
comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, 39 
NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the 40 
bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its 41 
constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the 42 
error components is analysed independently and apportioned to specific processes based on the corresponding 43 
timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the 44 
former phases of AQMEII. 45 
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The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key 46 
insights. In addition to reaffirming the strong impact of model inputs (emissions and boundary conditions) and 47 
poor representation of the stable boundary layer on model bias, results also highlighted the high inter-48 
dependencies among meteorological and chemical variables, as well as among their errors. This indicates that the 49 
evaluation of air quality model performance for individual pollutants needs to be supported by complementary 50 
analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model 51 
development perspective. This will require evaluation methods that are able to frame the impact on error of 52 
processes, conditions, and fluxes at the surface. For example, error due to emission and boundary conditions is 53 
dominant for primary species (CO, PM), while errors due to meteorology and chemistry are most relevant to 54 
secondary species, such as ozone. Some further aspects emerged whose interpretation requires additional 55 
consideration, such as, among others, the uniformity of the synoptic error being region and model-independent, 56 
observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of 57 
error caused by deposition and at which scale.  58 

1. INTRODUCTION 59 

The Air Quality Model Evaluation International Initiative (AQMEII, Rao et al., 2010) has been active since 2008 with 60 
the aim of promoting the research on regional air quality model evaluation across the modelling communities of 61 
Europe and North America. It is coordinated by the European Joint Research Centre (JRC) and the U.S. 62 
Environmental Protection Agency (EPA) and it has now reached its third phase, referred to as AQMEII3 hereafter. 63 
The experience gathered in the first two phases consisted of important advancement in the model evaluation 64 
research as well as establishing a large community of participating regional modeling groups, and have made 65 
AQMEII a natural candidate to collaborate with the Hemispheric Transport of Air Pollution (HTAP) initiative. HTAP, 66 
a taskforce of the Long Range Transport of Air Pollution program (LTRAP) acting within the UNECE program, relies 67 
on a community of global scale chemical transport models to investigate the fate of air pollutants emitted in the 68 
Northern hemisphere and determine the contribution of remote sources as well as their impacts to the 69 
background concentration in different parts of the globe. HTAP is in its second phase and the activities undertaken 70 
during this second phase include coordinating simulations by both global and regional scale models. The regions of 71 
interest in the Northern hemisphere are North America, Europe and South East Asia. The regional-scale modelling 72 
component of this activity for Europe and North America is being coordinated by AQMEII while the Asian 73 
component is being coordinated by MICs-ASIA (Model Intercomparison Study-Asia). Global-scale models 74 
participating in HTAP are used by the AQMEII regional models as boundary conditions and special attention has 75 
been given to the emission inventory to ensure that it is consistent between the global and regional-scale 76 
simulations as described in Janssens-Maenhout et al. (2015). The activity described here relates to the evaluation 77 
of the base case scenario set up within the context of HTAP and AQMEII (Galmarini et al., 2017).    78 

Following the simulation strategy developed over the first two phases of the AQMEII activity, two continental-scale 79 
domains have been used in the exercise - one over Europe (EU) and one over North America (NA) (Figure 1). The 80 
modelling groups participating in AQMEII3 performed air quality (AQ) simulations over one or both of these 81 
domains. Each group has been provided the same inputs for anthropogenic emissions and boundary conditions 82 
and has been left the choice of the optimal configuration of the modelling systems, including meteorology, grid 83 
spacing, and natural emissions.  To facilitate the cross-comparison among models, the modelled outputs have 84 
been successively interpolated to a common regular grid of 0.25° spacing over both continents. The comparison 85 
with observational data is performed by interpolating (or by simply taking the value from the grid cell where the 86 
monitoring sites are situated) the model values to prescribed observation stations (receptors) for surface 87 
measurements and at specified vertical heights for comparisons against measured profiles. As in the previous two 88 
phases of AQMEII, the ENSEMBLE system (Galmarini et al., 2012) hosted by the JRC has been used to 89 
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accommodate the data and to pair modelled to observational values in time and space to provide direct 90 
comparison and statistical analysis.  91 

The model evaluation approach proposed and applied in this study combines aspects of operational and diagnostic 92 
evaluation as defined by Dennis et al. (2010). It makes use of the classical statistical indicators typically employed 93 
for operational evaluation based on the direct comparison with observations, but also provides more indications 94 
on the processes contributing to model errors, which is the focus of diagnostic model evaluation (Solazzo and 95 
Galmarini, 2016). The data used in the analysis are not process specific but are ordinary time series of modelled 96 
and monitoring data which are decomposed into four spectral components: ID (intra-day), DU (diurnal), SY 97 
(synoptic), and LT (long-term), each determined by different physical and chemical processes (Rao et al., 1997). 98 
The error apportionment applied to each spectral component can provide indications on the possible sources of 99 
error. The scope of the diagnostic evaluation, as also highlighted by Gupta et al. (2009), is to move beyond the 100 
usual aggregate metrics that only offer a statistical interpretation, towards the use of measures selected for the 101 
quality of the information they can provide to model developers and users. 102 

The evaluation of the AQMEII3 suite of model runs is carried out for surface temperature (Temp), wind speed (WS) 103 
and wind direction (WD), and for the species CO, NO, NO2, ozone, SO2, PM10 (EU) and PM2.5 (NA). Additional 104 
analyses making use of emission reduction scenarios (CO and NO) and vertical profiles (Temp, WS, ozone) are also 105 
presented.  106 

The main scope of the analysis is to present a detailed overview of the skill of AQ models when compared against 107 
measurements, for several regulatory pollutants and their precursors. For each species, the error is  108 

1. quantified seasonally for three sub-regions of each continent;  109 
2. qualified in terms of bias, variance, or covariance type of error, and 110 
3. apportioned to the atmospheric time-scale, i.e. ID, DU, SY, or LT. 111 

Given the large amount of models and species for two continents and the screening scopes of this work, maps of 112 
model metrics at individual receptor are omitted. Instead, spatial averaging over pre-selected homogenous sets of 113 
measurement points is presented. Investigation of signal associativity through clustering analysis has been 114 
performed for ozone and PM (PM10 for EU and PM2.5 for NA) over both continents following the procedure 115 
outlined by Solazzo and Galmarini (2015), allowing the detection of three sub-regions (hereafter referred to as 116 
EU1, EU2, EU3 and NA1, NA2 NA3) (Figure 1) where the LT and SY components have shown robust clustering 117 
features. For consistency and to facilitate the interpretation of the results, the same sub-regions have been 118 
adopted for all species.  119 

The error break-down, the time series decomposition, and the models and observational data used are presented 120 
in Section 2. In Section 3, the results of the error apportionment analysis are presented and discussed. A novel 121 
analysis based on the autocorrelation function (acf) of the LT component is presented in Section 4 for ozone. 122 
Conclusions are drawn in Section 5. 123 

2. METHODOLOGY 124 

The first step of the analysis is the spectral decomposition of the time series of modelled and observed species, as 125 
outlined in the methodology proposed in Solazzo and Galmarini (2016). Because each spectral component 126 
represents a range of processes in a specific spectral range, the deviation of the modelled from the observed 127 
spectral component is informative about the process(es) causing the error. The second step is to separate the 128 
mean square error (MSE) of each spectral component into its constituent parts: the bias, variance and covariance. 129 
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These time-scale specific errors, expressed in terms of bias, variance, and covariance then allow a more precise 130 
diagnosis of their cause.     131 

2.1 ERROR BREAK DOWN 132 
The MSE is the squared difference of the modelled and observed values: 133 

ܧܵܯ = ݀݉)ܧ − ଶ(ݏܾ = ∑ −݀݉) )ଶ௧ୀଵݏܾ ݊௧  
EQ 1
 

 134 

where E(⋅) denotes expectation and nt is the length of the time series. The bias is: 135 ܾ݅ܽݏ = ݀݉)ܧ − (ݏܾ EQ 2
 

i.e., ܾ݅ܽݏ = തതതതതത݀݉ − ܧܵܯ തതതതത  (the overbar indicates temporal averaging). The following relationship holds:  136ݏܾ = ݀݉)ݎܽݒ − (ݏܾ + ଶݏܾܽ݅ EQ 3
 137 

 (var(⋅) is the variance operator). By applying the known property of the variance for correlated fields: 138 ݀݉)ݎܽݒ − (ݏܾ = (݀݉)ݎܽݒ + (ݏܾ)ݎܽݒ − ,݀݉)ݒ2ܿ (ݏܾ EQ 4

 139 

the MSE can be expressed as: 140 ܧܵܯ = ଶݏܾܽ݅ + (݀݉)ݎܽݒ + (ݏܾ)ݎܽݒ − ,݀݉)ݒ2ܿ ,(ݏܾ EQ 5
 141 

where the covariance term (last term on the right hand side of Eq 5) accounts for the degree of correlation 142 
between the modelled and observed time series. Following Solazzo and Galmarini (2016), the MSE Eq 5 is 143 
rewritten as:  144 ܧܵܯ =	 ൫݉݀തതതതതത − തതതതത൯ଶݏܾ + ௗߪ) − ௦)ଶߪݎ +  ܧܵܯ݉
 

EQ 6

where 145 ݉ܧܵܯ = ௦ଶߪ (1 − ଶ) EQ 7ݎ
 

is the minimum error achievable by an accurate (unbiased, ݉݀തതതതതത = ௗߪ) തതതതത) and preciseݏܾ =  ௦) modelling 146ߪ
system (r is the linear correlation coefficient). The first term on right hand side of Eq 6 is the mean unconditional 147 
bias (how much the time averaged modelled concentration is shifted with respect to the averaged observation); 148 
the second term includes variance and covariance types of error (due to differences in the amplitude and timing 149 
between the modelled and observed signals), and the MSE is the ‘unexplained’ portion of the error, reflecting the 150 
amount of observed variance not accounted for by a linear model (Murphy, 1995). The mMSE type of error is 151 
caused by the variability of the observation not reproduced by the models, which includes incommensurability, 152 
noise, timing of the signal, and linearization of non-linear processes, summarised by the coefficient of 153 
determination (Solazzo and Galmarini, 2016).  154 
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The decomposition in Eq 6 includes all the operational metrics commonly adopted to evaluate the AQ models 155 
(bias, variance, correlation coefficient, and their sum, the MSE), and is thus suitable to be used as compact 156 
estimator of model performance.  157 

2.2. SPECTRAL DECOMPOSITION AND ERROR ATTRIBUTION 158 
Spectral filtering has been applied to the measured and modelled hourly-averaged time series at the monitoring 159 
sites using the Kolmogorov-Zurbenko (kz) low-pass filter (Zurbenko, 1986). This allows to separate different 160 
phenomena having distinct signals, such as long-term and short-term fluctuations in the observed and modelled 161 
time series (Rao et al., 1997). Applications of the kz filter to ozone have been described in a number of previous 162 
studies (Rao et al., 1997; Wise and Comrie, 2005; Hogrefe et al., 2000; 2003; 2014; Galmarini et al., 2013; Kang et 163 
al., 2013; Solazzo and Galmarini, 2015 and 2016; Kioutsioukis et al., 2016).  164 

The kz filter depends on the length of the moving average window m and the number of iterations k (kzm,k) (k also 165 
indicates the level of noise suppression). Since the kz is a low-pass filter, the filtered time series consists of the low-166 
frequency component, while the difference between two filtered time series (with different k and m) provides a 167 
band-pass filter. This latter property has been used in this study, as well as in a number of previous studies, to 168 
decompose the modelled and observed time series as:   169 

FT(S) = LT(S) + SY(S) + DU(S) +ID(S) EQ 8

 170 

where S is the time series of the species being analysed and FT is the full (un-decomposed) time series. Another 171 
possibility, not explored here, is to avoid the use of the band-pass property but rather use the kz filter to filter out 172 
the unwanted fluctuations directly from the FT time series.  173 

The base line component LT is the long term component (periods longer than 21 days) and accounts for the 174 
temporal fluctuations determined by low frequencies, such as boundary conditions and seasonal variation in 175 
emissions and photo-chemistry. SY is the synoptic component containing fluctuations related to weather- 176 
processes and precursor emissions occurring on scales between 2.5 and 21 days. The DU (diurnal) component 177 
accounts for fluctuations due to diurnal periodicity occurring on temporal scales between 0.5 and 2.5 days, and ID 178 
is the intra-day component, accounting for fast-acting, local-level processes (time scale less than 12 hours) (the 179 
spectral components have the same units as the un-decomposed time series).  180 

The decomposition Eq 8 is such that the un-decomposed time series is perfectly returned by the summation (or by 181 
the exponential product, see Appendix 1 for details) of the components. The band-pass nature of the SY, DU, and 182 
ID components is such that they only describe the processes in the time window the filter allows the signal to 183 
‘pass’. For instance, the DU component is insensitive to processes outside the range between 0.5 and 2.5 days.  184 

Because the kz filter was originally developed to deal with ozone, the parameters k and m (Appendix 1) are 185 
specifically tailored for ozone, taking into consideration its chemistry and life-time. In this study we have applied 186 
the kz filter to other species and kept the same values for k and m for consistency and to facilitate the comparison 187 
of the results. Although some species (e.g. PM, CO, SO2) may be less sensitive to day/night cycles than ozone, the 188 
distinction between DU and ID are still revealing of emission patterns like vehicular traffic and industrial activities 189 
as well as diurnal variations in vertical mixing. Moreover, the SY and LT are associated with transport and other 190 
weather processes common to all species.  191 

Two aspects of the signal filtering having a profound impact on model evaluation are: 192 
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1. The non-orthogonality of the spectral components is one of the major drawbacks of the signal decomposition. 193 
The relationship among the spectral components of Eq 8 is non-linear in m and k and thus an orthogonal 194 
separation is not achievable (Rao et al., 1997; Kang et al., 2013). The leakage among components mixes together in 195 
each component different physical processes. Galmarini et al. (2013) found that the explained variance by the 196 
spectral components accounts for 75 to 80% of the total variance while the remaining portion of the variance is 197 
due to the interactions between the estimated components. The effect of these interactions on the error 198 
apportionment pursued in this study is outlined and quantified in section 3. Other spectral techniques could be 199 
used but either they do not guarantee the absence of signal leakage (e.g. anomaly perturbation method) or 200 
require special treatment of missing data (e.g. wavelet transform method) (Rao et al., 1997; Eskridge et al., 1997), 201 
or are more convoluted (e.g. kz-Fourier Transform), or simply have not been applied as frequently as the kz filter to 202 
air quality data (e.g. Bowdalo et al., 2016). Hogrefe et al. (2003) provided an exhaustive comparison among four 203 
techniques for separating different time scales in atmospheric variables (kz, kz-Fourier Transform, wavelet 204 
transform and elliptic filter) and concluded that they all gave qualitatively similar results in terms of the variance 205 
distribution among components and that no single filter outperformed the others for all applications.  206 

2. The bias is calculated as the distance between the time average modelled and observed time series. In such a 207 
‘time average’ sense, the base line LT is the only biased component, containing the entire bias of the original time 208 
series. The other components are zero-mean fluctuations about LT and are unbiased. Although inaccuracy at each 209 
time step can also derive from the SY, DU and ID components (Johnson, 2008), in this study the signal is taken as 210 
time-averaged over a finite period, and therefore the entire bias is apportioned to the base-line (LT) component.  211 

2.3 MODELS AND OBSERVATIONAL DATA 212 
Table 1 summarises the modelling systems participating in AQMEII3. Twelve modelling groups produced outputs 213 
over EU and four over NA (although not all fields were made available by all groups). Sensitivity simulations 214 
performed by two groups, in which alternate emission inventories were used, raises the number of EU 215 
contributions to fourteen.  216 

The ‘standard’ emission inventories are those developed for the second phase of AQMEII for EU and NA and 217 
extensively described in Pouliot et al. (2015). For EU, the TNO-MACC-II (Netherlands Organization for Applied 218 
Scientific Research, Monitoring Atmospheric Composition and Climate) inventory of anthropogenic emissions for 219 
the year 2009 was used, while biogenic emissions (meteorology-dependent) were specifically calculated for the 220 
year of 2010 by several groups. Five modelling systems have used the EDGAR-HTAPv2.2 emission inventory 221 
(Janssens-Maenhout et al., 2015), which complements the standard MACC inventory in regions outside EU (Table 222 
1). The two inventories (MACC and HTAP) are approximately the same over the common part of EU (the standard 223 
MACC inventory does not cover North Africa, while it does cover eastern Europe, including Russia and Turkey) and 224 
only differ for regions outside the EU borders but within the domain boundaries, such as North Africa. Some 225 
discrepancies might exist among the two inventories (e.g in the emissions from ships). Two EU modelling systems 226 
(CHIMERE and SILAM) made results available with both the MACC and the HTAP inventories. For CHIMERE, the 227 
MACC inventory over France and the UK was spatially redistributed considering national inventories (having higher 228 
spatial resolution), while for the other countries it was redistributed by considering point source locations, land-229 
use and population. For processing the HTAP inventory, population was not used as a parameter for spatially 230 
distributing the emissions. 231 

For the NA domain, the 2008 National Emission Inventory was used as the basis for the 2010 emissions, providing 232 
the inputs and datasets for processing with the Sparse Operating Operator Kernel Emissions (SMOKE) processing 233 
system (Mason et al., 2012). Specific updates for the year of 2010 were made for several sectors, including mobile 234 
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sources, power plants, wildfires, and biogenic emissions.  Details are given in Im at al. (2015a,b) and Pouliot et al. 235 
(2015).  236 

Typically, emission processors use annual emission total, while AQ models require hourly input values. Therefore, 237 
proxies variables and surrogate fields are used to spatially disaggregate the annual total and to allocate them 238 
temporally. The overall model accuracy heavily depends on the degree of similarity between the disaggregation of 239 
total emission and the true spatial and temporal distribution (Makar et al., 2014). Furthermore, the emissions for 240 
EU, being compiled on a country-wise basis, are affected by gaps and inconsistency across borders which require 241 
further processing and manipulation (Pouliot et al., 2015).  242 

Emissions from lightning and volcanic sources are not contained in the EU and NA emissions inventories, since not 243 
all participating models include robust methods for estimating these emissions. 244 

Chemical boundary conditions were provided by the Composition – Integrated Forecast System (C-IFS) model 245 
(Flemming et al., 2015), including ozone, NOx, CO, CH4, SO2, NMVOCs, dust, organic matter, black carbon and 246 
sulphate.  Sea salt at the boundaries, although provided, was not used due to unrealistically high values.  247 

2.3.1 MODEL FEATURES 248 
This section presents the main features of the modelling systems participating to AQMEII3. Complementary 249 
information is provided in Table 1.  250 

Three models (CHIMERE, SILAM, Lotos-Euros) have used the meteorological inputs extracted by the ECMWF 251 
(European Centre for Medium-Range Weather Forecasts) operational archive, the Cosmo-CLM (CCLM from now 252 
on) model has driven the CMAQ simulations provided by the HZG (Helmholtz-Zentrum Geesthacht) institute, and 253 
all remaining models have been driven by the meteorological fields generated by the WRF (Weather Research and 254 
Forecasting, Grell et al., 2005) model.  255 

Bearing in mind that small changes in model configuration can produce significantly different outcomes (e.g. 256 
Herwehe et al., 2011), Table 2 summarises the configuration of the WRF runs, detailing difference and 257 
commonalities. Without entering in the detail of each parameterisation, the differences among the PBL 258 
formulations (detailed review provided by Cohen et al., 2015) have a profound impact on the discussion of the 259 
error, especially (but not exclusively) on the diurnal scale. One of the main differences is the local vs. non-local 260 
closure of the PBL equations, indicating the depth over which the PBL variables influence the prediction at a given 261 
point. Non-local scheme offer more advantages with respect to local ones, as the latter may not fully account for 262 
deeper vertical mixing associated with larger eddies, while non-local schemes are overall more accurate in 263 
simulating deeper vertical mixing in buoyancy-driven PBLs (Cohen et al., 2015). With reference to Table 2, the 264 
MYNN, MYJ (Janjic, 1994) are local schemes, the YSU (Hong et al., 2006) is a non-local scheme, while the ACM2 265 
(Pleim, 2007) can be regarded as hybrid one in that it incorporates local and non-local closures for potential 266 
temperature and velocity, resulting in more accurate vertical mixing.      267 

The land-surface processes are used to calculate the surface heat and moisture fluxes and strongly affect the 268 
prediction of temperature and humidity. RUC and NOAH land surface models have shown to behave similarly over 269 
US (Jin at al., 2010), while Mooney et al. (2013) found the NOAH surface scheme yielding more accurate surface 270 
temperature results compared to RUC.  271 

 272 
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Six groups have operated the CMAQ (Community Multiscale Air Quality) model. The main differences among the 273 
CMAQ runs reside in the number of vertical levels (minimum of 23 for CMAQ4 up to 35 for CMAQ3 and WRF-274 
CMAQ in NA) and horizontal spacing (from 12 km by WRF-CMAQ in NA down to 30 km by CMAQ3 and CMAQ4) and 275 
in the estimation of biogenic emissions. CMAQ4, CCLM-CMAQ and WRF-CMAQ calculated  biogenic emissions 276 
using the BEIS (Biogenic Emission Inventory System version 3) either as implemented in SMOKE v2.6 277 
(https://www.cmascenter.org/smoke) or as implemented directly into CMAQ while CMAQ1, CMAQ2 and CMAQ3 278 
calculated biogenic emissions through the MEGAN model (Guenther et al., 2012).  Moreover, the CCLM-CMAQ 279 
model does not include the dust module, while the other CMAQ instances use the inline calculation (Appel et al., 280 
2013) and CMAQ1 uses the dust calculation previously calculated for AQMEII phase 2. Finally, all runs have been 281 
carried out by using CMAQ version 5.0.2 except for CMAQ1, which is based on the 4.7.1 version.  A series of known 282 
shortcomings of CMAQ v.5.0.2 are discussed in Appel et al. (2016) (and partially addressed in the new version 5.1 283 
of the model), among which is the tendency to underestimate the vertical mixing during transition periods, with 284 
the net results of increasing the concentration of primary pollutants and reduce that of ozone as consequence of 285 
more availability of NOx.   286 

Hereafter, more detailed information is provided for each modelling system.  287 

The FMI (Finnish Meteorological Institute) has taken part with the ECMWF-SILAM system (ECMWF-SILAM_M and 288 
ECMWF-SILAM_H of Table 1, indicating the instances of the SILAM model using the MACC and the HTAP emission 289 
inventory, respectively). SILAM v5.4 (Sofiev et al., 2015) has been used, with meteorological input extracted from 290 
the ECMWF operational archives. The simulation included sea-salt emissions as in Sofiev et al. (2011) (but not from 291 
the boundaries), biogenic VOC (volatile organic compounds) emissions as in Poupkou et al. (2010) and wild-land 292 
fire emissions as in Soares et al. (2015). The wind-blown dust is only included from the lateral boundary conditions. 293 
The volatility distribution of anthropogenic OC was taken from Shrivastava et al. (2011). The gas phase chemistry 294 
was simulated with CBM-IV, with reaction rates updated according to the recommendations of IUPAC 295 
(http://iupac.pole-ether.fr) and JPL (http://jpldataeval.jpl.nasa.gov). The secondary inorganic aerosol formation 296 
was computed with updated DMAT scheme (Sofiev 2000) and secondary organic aerosol formation with the 297 
Volatility Basis Set (VBS, Ahmadov et al., 2012). Pressure and latitude dependent photolysis rates of the FinROSE 298 
model (Damski et al., 2007) are used and reduced proportionally to cloud cover below the clouds down to half the 299 
original value at full cloud cover. The SILAM model does not account for extra plume rise in addition to that 300 
prescribed by the emission profiles. A known deficiency of the SILAM version used in this study is the 301 
overestimation of ozone dry deposition. 302 

The LOTOS-EUROS modelling system (Schaap et al. 2008, Sauter et al. 2012) has been applied by TNO (the 303 
Netherlands Organization for Applied Scientific Research), using version v1.10.1. The meteorological inputs have 304 
been extracted from the ECMWF operational archives. For biogenic emissions the approach as described in 305 
Beltman et al. (2013) has been used. Gas-phase chemistry is based on CBM-IV (modified reaction rates, see Sauter 306 
et al., 2012), secondary inorganic aerosol (SIA) formation on Isorropia II (Fountoukis and Nenes, 2009) and for 307 
semivolatile species the VBS approach was used (Donahue et al. 2006, Bergström et al. 2012), with 100% of the 308 
emitted OC mass in the 4 lowest volatility classes that are predominantly solid and an additional 150% in the five 309 
higher volatility bins. Modelled terpene emissions were reduced by 50% to limit their contribution to SOA 310 
(secondary organic aerosol) formation which was found to be too high otherwise (Bergström et al., 2012). No NOx 311 
emissions from soil were taken into account. The model includes pH dependent conversion rates for SO2 (Banzhaf 312 
et al., 2012), while only below-cloud scavenging is used for wet deposition. Mineral dust emissions were calculated 313 
on-line, including emissions from road resuspension and agricultural activities, according to Schaap et al. (2009). 314 
For sea spray the parameterizations by Monahan et al. (1986) and Martensson et al. (2003) were used. Photolysis 315 
rates are based on clear-sky photolysis rate by Roeths flux algorithm (function of solar zenith angle) (Poppe et al., 316 
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1996) and multiplied by an attenuation factor in case of clouds. The LOTOS-EUROS model does not account for 317 
extra plume rise in addition to that prescribed by the emission profiles. A specific feature of LOTOS-EUROS is that it 318 
only covers the lower 3.5 km of the atmosphere, with a static 25 m surface layer, a dynamic mixing layer and two 319 
dynamic reservoir layers. This makes the model relatively fast in terms of computation time but has implications 320 
for the vertical mixing of species for instances where the mixing layer rapidly changes in height.    321 

The INERIS and CIEMAT institutes jointly applied the ECMWF-CHIMERE system. CHIMERE (version CHIMERE 2013) 322 
has been run with meteorology provided by ECMWF IFS (Integrated Forecast System). Biogenic VOC emissions 323 
from vegetation and soil NO emissions have been calculated with the MEGAN model (version 2.04; Guenther et al., 324 
2006, 2012). Sea salt emissions inside the domain have been calculated according to Monahan (1986). The wind-325 
blown dust is only included from the lateral boundary conditions. CHIMERE uses the MELCHIOR2 chemical 326 
mechanism (Lattuati, 1997) and ammonium nitrate equilibrium was calculated with ISORROPIA (Nenes et al., 327 
1999). Dry deposition is based on the resistance approach (Emberson 2000a,b) and both in-cloud and sub-cloud 328 
scavenging have been considered for wet deposition. 329 

WRF-WRF/Chem1 is applied by the University of L’Aquila (Italy). The version 3.6 of the Weather Research and 330 
Forecasting model with Chemistry model (WRF/Chem) has been used, modified to include the new chemistry 331 
option implemented by Tuccella et al. (2015) that includes in the simulation of direct and indirect aerosol effects a 332 
better representation of the secondary organic aerosol mass, calculated as in Ahmadov et al. (2012). Here only 333 
direct effects have been included in the simulation, for computational expediency. The model uses RACM-ESRL gas 334 
phase chemical mechanism (Kim et al., 2009), an updated version of the Regional Atmospheric Chemistry 335 
Mechanism (RACM) (Stockwell et al., 1997). The inorganic aerosols are treated with the Modal Aerosol Dynamics 336 
Model for Europe (MADE) (Ackermann et al., 1998). The parameterization for SOA production is based on the VBS 337 
approach. The aerosol direct and semi direct effects are taken in account following Fast et al. (2006).  Cloud 338 
chemistry in the convective updraft is modelled using the scheme of Walcek and Taylor (1986), while the aqueous 339 
phase oxidation of SO2 by H2O2 in the grid-resolved clouds is parameterized with the scheme used in GOCART 340 
(Goddard Chemistry Aerosol Radiation and Transport). Wet deposition from convective and resolved precipitation 341 
is included following Grell and Freitas (2014). The photolysis frequencies are calculated with the Fast-J scheme 342 
(Fast et al., 2006). Dry deposition and photolysis schemes were modified to take in account the effects of the soil 343 
snow coverage following Ahmadov et al. (2015). The anthropogenic emissions are taken from TNO-MACC 344 
inventory for 2009 (Kuenen et al., 2014) and have been adapted to the chemical mechanism used following the 345 
method of Tuccella et al. (2012). .  346 

WRF-WRF/Chem2 applied by the University of Murcia (Spain) relies on the WRF-Chem model. The following 347 
physics options have been applied for the simulations: RRTMG long-wave and short-wave radiation scheme; Lin 348 
microphysics (Lin et al., 1993), the Yonsei University (YSU) PBL scheme (Hong et al., 2006), the NOAH land-surface 349 
model and the updated version of the Grell-Devenyi scheme (Grell and Devenyi, 2002) with radiative feedback. 350 
Chemical options include: RADM2 chemical mechanism (Stockwell et al., 1990); MADE/SORGAM aerosol module 351 
(Schell et al., 2001) including some aqueous reactions; Fast-J photolysis scheme. The modelling domain covers 352 
Europe and a portion of Northern Africa.  353 

Simulations of WRF-CAMx over EU have been performed by RSE (Italy) using CAMx version 6.10 (Environ, 2014) 354 
with Carbon Bond 2005 (CB05) gas phase chemistry (Yarwood et al., 2005) and the Coarse-Fine (CF) aerosol 355 
module. Input meteorological data were generated by WRF model version 3.4.1 (Skamarock et al., 2008a,b), driven 356 
by ECMWF analysis fields. Grid nudging of wind speed, temperature and water vapour mixing ratio has been 357 
employed within the PBL, with a nudging coefficient of 0.0003 sec-1. WRF-Chem has been adopted to predict 358 
GOCART dust emissions (Ginoux et al., 2001) along with the meteorology. The WRFCAMx pre-processor (version 359 
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4.2; ENVIRON, 2014) was used to create CAMx ready input files collapsing the 33 vertical layers used by WRF to 14 360 
layers in CAMx but keeping identical the layers up to 230 m above ground level. Biogenic VOC emissions were 361 
computed by applying the MEGAN emission model v2.04. Sea salt emissions were computed using published 362 
algorithms (de Leeuw et al., 2000; Gong, 2003).  363 

Aarhus University (Denmark) applied the WRF-DEHM modelling system over EU and NA. The DEHM model used 364 
anthropogenic emissions from the EDGAR-HTAP database and biogenic emissions are calculated using the MEGAN 365 
model. The gas-phase chemistry module includes 58 chemical species, 9 primary particles and 122 chemical 366 
reactions (Brandt et al., 2012). Secondary organic aerosols (SOA) are calculated following the two-product 367 
approach assuming that hydrocarbons undergo oxidation through O3, OH and NO3 and for only  two semi-volatile 368 
gas products (Zare et al., 2014). However, the module is simple as it does not include aging processes and further 369 
reactions in the gas and particulate phase (Zare et al., 2014).  370 

 WRF-CMAQ1 has been applied by the ITU (Istanbul Technical University) over EU. The MCIP version 3.6 (Otte and 371 
Pleim, 2010) has been used to process WRF output for CMAQ. The MEGANv2.1 (Guenther et al., 2012) model has 372 
been used to calculate the biogenic VOC emissions from vegetation, using surface temperature and radiation from 373 
MCIP output. CMAQv4.7.1 (Foley et al., 2010) was configured with the CB05 chemical mechanism and the AERO5 374 
module (Foley et al., 2010) for the simulation of gas-phase chemistry and aerosol and aqueous chemistry, 375 
respectively.  376 

The WRF-CMAQ2 system has been applied by Ricardo Energy & Environment (Ricardo-E&E) over EU. It has been 377 
configured using WRFv3.5.1 and CMAQ v5.0.2. The CMAQ model adopted the CB05-TUCL chemical mechanism 378 
(Whitten et al., 2010; Sarwar et al., 2011a), the AERO6 three mode aerosol module (Appel et al., 2013). The MCIP 379 
version 4.2 has been used to process WRF output for CMAQ. The MEGANv2.0.4 model has been used to calculate 380 
the biogenic VOC emissions from vegetation, using surface temperature and radiation from MCIP output. 381 

The WRF-CMAQ3 modelling system has been applied by the University of Hertfordshire and utilized the uncoupled 382 
version of the WRF-v3.4.1 model and CMAQ v5.0.2. The results from WRF simulations were pre-processed for 383 
CMAQ using Meteorology-Chemistry Interface Process (MCIP) version 3.6 (Otte et al., 2005). In CMAQ model, the 384 
gas phase chemical mechanism was based on carbon bond chemical mechanism version 5 (Foley et al., 2010) with 385 
updated toluene and chlorine chemistry (CB05-TUCL) and the aerosol chemical reaction were treated with AERO6 386 
module. The biogenic emissions were derived from MEGAN. 387 

The WRF-CMAQ4 simulation has been performed by the Kings College (UK) using CMAQ v5.0.2 (Byun and Schere, 388 
2006) with CB05 chemical mechanism that includes aqueous and aerosol chemistry. The CMAQ model is driven by 389 
meteorological fields from the WRF v3.4.1. The anthropogenic emissions for most part of the model domain are 390 
from MACC and the missing information have been filled with the emissions provided by EDGAR/HTAP. The 391 
biogenic emissions were estimated using the BEIS3 model. The dust (Tong, et al, 2011) and sea-salt (Gantt et al., 392 
2015) emissions are generated using CMAQ inline modules.  393 

HZG has used the COSMO-CLM meteorological model to drive the CMAQ model. For AQMEII3 the CMAQ version 394 
5.0.1 was used, with the CB05-TUCL scheme and the multi-pollutant aerosol module AERO6. CMAQ was run using 395 
the optional in-line calculation of dry deposition velocities. Wet deposition processes include in-cloud and sub-396 
cloud scavenging processes. All atmospheric parameters were taken from regional atmospheric simulations with 397 
the COSMO-CLM (CCLM) mesoscale meteorological model (version 4.8) for the year 2010 (Geyer, 2014) using NCEP 398 
forcing data employing a spectral nudging method for large-scale effects (Kalnay et al., 1996). CCLM is the climate 399 
version of the regional scale meteorological community model COSMO (Rockel et al., 2008; Steppeler et al., 2003; 400 
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Schaettler et al. 2008). CCLM uses the TERRA-ML land surface model (Schrodin and Heise, 2001), a TKE closure 401 
scheme for the PBL (Doms et al., 2011), cloud microphysics after Seifert and Beheng (2001), the Tiedtke scheme 402 
(Tiedtke, 1989) for cumulus clouds and a long wave radiation scheme following Ritter and Geleyn (1992). The 403 
meteorological fields were afterwards processed to match the 24x24km² CMAQ grid using the LM-MCIP pre-404 
processor. The emission input for CCLM-CMAQ is based on the EDGAR HTAPv2 database, interpolated to the 405 
CMAQ model grid and aggregated following the SNAP emission sector nomenclature. Sector specific hourly 406 
temporal profiles and speciation factors of PM and VOC species were applied by the SMOKE for Europe emissions 407 
model (Bieser et al., 2011a). The temporal profiles used were fixed monthly, weekly, and diurnal profiles. Biogenic 408 
emissions and NO emissions from soil were calculated using the BEIS3 model. Sea-salt emissions are calculated in-409 
line by CMAQ including sulphate emissions based on an average sulphate content of 7.7%. Finally, fixed vertical 410 
profiles were applied for each source sector (Bieser et al., 2011b). 411 

The WRF-CMAQ system applied over NA by the US EPA (Environmental Protection Agency) has been configured 412 
using WRFv3.4 and CMAQv5.0.2 (Appel et al., 2013; see also Foley et al., 2010 and Byun and Schere, 2006). The 413 
options used in these WRF and CMAQ simulations are identical to those described in Hogrefe et al. (2015) except 414 
that the current simulations were performed in offline rather than two-way coupled mode. Temperature, wind 415 
speed, and water vapor mixing ratio were nudged above the PBL following the approach described in Gilliam et al. 416 
(2012). Soil temperature and moisture were nudged following Pleim and Xiu (2003) and Pleim and Gilliam (2009). 417 
The NO2/NOx split applied during SMOKE emissions processing varies for different categories. For many categories 418 
is the assumed split 90% NO / 10% NO2, but for mobile sources the split varies for different types of vehicles and 419 
different emission processes. 420 

Ramboll Environ used CAMx (version 6.2, Ramboll Environ, 2015) for simulations over NA, with CB05 chemical 421 
mechanism for gas-phase. Biogenic emissions were obtained from the MEGAN model version 2.1 (Guenther et al., 422 
2006). Meteorological fields were produced by the US EPA (Environmental Protection Agency) using WRF model 423 
and reformatted using the WRFCAMx pre-processor to be readily used by the CAMx model. 424 

2.3.2 OBSERVATIONAL DATA USED 425 
The observational data used in this study is the same as the dataset used in second phase of AQMEII (Im et al., 426 
2015a,b) and was derived from the surface air quality monitoring networks operating in EU and NA. In EU, surface 427 
data were provided by the European Monitoring and Evaluation Programme (EMEP; http://www.emep.int/) and 428 
the European Air Quality Database (AirBase; http://acm.eionet.europa.eu/ databases/airbase/). In NA 429 
observational data were obtained from the NAtChem (Canadian National Atmospheric Chemistry) Database and 430 
from the Analysis Facility operated by Environment Canada (http://www.ec.gc.ca/natchem/). For the purposes of 431 
comparing the models against observations, only stations with data completeness greater than 75% for the whole 432 
year and elevation above ground below 1000 m have been included in the analysis. Stations with continuous 433 
missing records for periods longer than 15 days have been removed from the dataset. No imputation on missing 434 
values has been performed.  435 

In addition, we also make use of vertical profiles of ozone, temperature and wind speed data measured by 436 
ozonesondes and extracted from the World Meteorological Organization (WMO) World Ozone, and Ultraviolet 437 
Radiation Data Centre (Toronto, Canada) and made available to the AQMEII community. These measurements 438 
report vertical profiles of ozone at several vertical levels. Further details on these data are given in Solazzo et al. 439 
(2013). 440 

Time-averaged statistics have been calculated after the spatial aggregation of the modelled and observed time 441 
series over the sub-regions shown in Figure 1, and prior to the spectral decomposition (the original time series 442 
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have been spatially averaged first and then this spatial average time series has been spectrally decomposed). As 443 
noted in the introduction, unsupervised hierarchical clustering was used to determine sub-regions where the LT 444 
and SY components showed similar characteristics – spatial averaging within these sub-regions was carried out due 445 
to the similarity of the observation data within these regions implying they will experience common physical and 446 
chemical characteristics. Errors due to the heterogeneity induced by country-specific emission profiles (in EU) are 447 
therefore included in the DU component. As a consequence of the spatial averaging, the relative importance of the 448 
ID component is likely reduced, since the ID fluctuations are highly variable in space (Hogrefe et al., 2014). Further, 449 
no land-use type filtering has been applied to the stations used for evaluation. While this choice has limited impact 450 
on the SY and LT components (Solazzo and Galmarini, 2015; Galmarini et al., 2013), the DU components of some 451 
species (such as ozone, PM, NOx) might be strongly influenced by the vicinity of urban stations to emissions 452 
sources.  453 

Details of the modelled regions and number of receptors are reported in Table 3. 454 

3. RESULTS 455 

The analyses presented in this section focus on evaluating the performance of the models. The accuracy of the 456 
spectral components is first analysed in terms of the root MSE and quantified on a seasonal basis. The season most 457 
affected by error is then further investigated by applying the error apportionment (Eq 6) to the spectral 458 
components. Results are presented for one sub-region only (results for the other sub-regions are included in the 459 
supplementary material).    460 

The combination of the spectral decomposition and error apportionment has the effect of neglecting the error 461 
associated with the cross components (twelve spectral interaction terms, see Solazzo and Galmarini (2016) for 462 
details) since the apportionment only deals with the error of the ‘diagonal’ components LT, DU, SY, ID. The reason 463 
is that while the contribution of the cross components to the overall error can be quantified, the associated time 464 
series needed to carry out the apportionment analysis cannot. The neglected part of the error is quantified in 465 
Table S1. In some instances, such portion can be as high as 20% of the total error for ozone. 466 

The tables summarising the operational statistics (MB: Mean Bias; r: Pearson Correlation coefficient; RMSE: Root 467 
Mean Square Error) are reported in the Supplementary material and have been calculated using the ‘openair’ 468 
package (Carslaw and Ropkins, 2012).  469 

3.1 METEOROLOGICAL DRIVERS: TEMPERATURE, WIND SPEED, AND WIND DIRECTION 470 

3.1.1 WIND SPEED AND TEMPERATURE  471 
The RMSE for surface temperature and wind speed is reported in Figure 2 (EU) and Figure 3 (NA). For EU (Figure 472 
2a), the RMSE of the full (i.e. not spectrally decomposed and denoted as “FT” in the plots) time series of 473 
temperature for the entire year is, on a seasonal average, on the order of  ∼0.5-2K (but often exceeding 3K in EU3), 474 
with higher values typically occurring in spring and winter. The CHIMERE and SILAM models (both directly driven 475 
by the global meteorological fields provided by ECMWF) report the smallest error in EU1 and EU2, while the 476 
WRF/Chem2 model has the largest error in all sub-regions (up to ∼5K for EU3 in summer) which is largely caused 477 
by the unusually large error in the SY component when compared to other models. The RMSE of the LT component 478 
resembles the behaviour of the full time series, with the highest error in spring and winter (on average). The RMSE 479 
of the SY component is below ∼2K (slightly higher in EU3) except for WRF/Chem2, whereas the DU component 480 
shows a more marked regional dependence, with the EU3 sub-region reporting, on average, approximately 50% 481 



13 

higher seasonal error than the other two sub-regions, more pronounced in summer. The correlation coefficient is 482 
higher than 0.90 for the majority of models and spectral components (Table S2). 483 

The bias for temperature is predominantly negative (model underestimation) for all EU models and sub-regions, 484 
except for WRF-CMAQ4 in EU3, where the model overestimates the measured temperature in summer and winter. 485 
According to Katragkou et al. (2015), cold bias during summer by WRF is typically related to the CAM radiation 486 
scheme, and, in general the land surface model is pivotal in determining the sign and amount of bias (Mooney et 487 
al., 2013), and in particular the combination of NOAH surface scheme and CAM radiation model seems more prone 488 
to cold bias.    489 

For NA (Figure 3a) the temperature RMSE of the WRF-DEHM and CCLM-CMAQ models (peaking in winter and 490 
autumn) is ∼ 1-1.5K larger than the WRF-CMAQ model. The error of the SY component is of ∼0.5K, while that of the 491 
DU component is significantly higher (between 0. 5K and 2K). The WRF-CMAQ model has a small bias (LT error 492 
small) so that the overall error is dominated by the error in the DU component. The bias is negative for the WRF-493 
DEHM model in all sub-regions and has the same sign for CCLM-CMAQ and WRF-CMAQ, i.e. negative in spring and 494 
positive in the other seasons (although for NA2 and NA3 WRF-CMAQ reports a slightly negative bias also in winter) 495 
(Table S2). 496 

The RMSE of the surface WS for EU shows large model-to-model variability, more markedly for the LT and SY 497 
components (all sub-regions, Figure 2b), whereas the error of the DU component is more evenly distributed across 498 
models (and significantly higher in EU3, where low-wind speed conditions are predominant). Although the 499 
meteorological fields are assimilated within the models (either from NCEP or from ECMWF, see Table 2), there are 500 
profound differences in the way these fields are ingested and interpolated to the model grid, as well as differences 501 
in the parameterisation of the boundary and surface layer which impact the modelled wind speed and 502 
temperature. For example, the two instances of WRF/Chem applied the assimilation of the meteorological fields 503 
(wind speed, temperature, and relative humidity) of global meteorological fields only above the PBL, whereas 504 
other models (e.g. WRF-CAMx) assimilated the global data also within the PBL. For the models directly driven by 505 
the global fields, (e.g SILAM, CHIMERE) the seasonal error for WS (∼0.5-1 ms-1) and temperature (0.4-1.2K) (Figure 506 
2a,b) can be considered as the uppermost limit the accuracy of the models can achieve. Thus, the assimilation and 507 
interpolation methods errors (which are specific to the configuration of the meteorological model) can add up 508 
more than 1.5K and 2ms-1 to the total error. 509 

The full WS time series of the WRF-DEHM, WRF/Chem1 and WRF/Chem2 models report the largest error (in excess 510 
of 1.5m/s), and the WRF-CAMx model even up to 2.4 m/s in winter (all sub-regions, Figure 2b). On average, the 511 
remaining models have an error of 0.5-0.7m/s. Most of the error is apportioned to the LT component, with the SY 512 
and DU below 0.3 m/s (except for WRF-CAMx and the other models mentioned above).  513 

The WS bias is positive for all models (model over-prediction), for all seasons and sub-regions (only exception is the 514 
CCLM-CMAQ model, biased low during spring and summer in EU3 and WRF-CMAQ2 during summer in EU1). The 515 
correlation coefficient is above 0.9 for the majority of models and components (except for the models affected by 516 
large errors such as the WRF-CAMx model). In general, r is slightly lower in EU3, and is at maximum for the SY 517 
component (Table S3). 518 

For NA (Figure 3b), the WRF-DEHM model reports an error of ∼1-1.2 m/s during all seasons and sub-regions, while 519 
the error of the WRF-CMAQ model ranges between 0.45 and 0.75 m/s for all seasons and sub-regions. The error of 520 
the SY and DU components is small (below 0.3m/s for each season) for both models. Both models are biased high 521 
(all instances) and the correlation coefficient is in the order of ∼0.9 or above (Table S3).    522 
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 3.1.2 VERTICAL PROFILES OF WIND SPEED AND TEMPERATURE 523 
Vertical profiles of mean bias for Temp and WS are reported in Figure 4 to Figure 7. The modelled profiles have 524 
been evaluated using ozonesondes measurements. The frequency and local time of the launches are summarised 525 
in Table 4. The launches in EU predominately occurred during daylight hours, whereas for NA measurements are 526 
also available for night-time and late afternoon. The sign and magnitude of the bias are informative about error in 527 
the PBL processes, which will help the discussion on the error of the modelled pollutants (section 3.3). 528 

The bias for temperature in EU ranges between -3K (CCLM-CMAQ at station 308, Figure 5) and +2K (WRF-CMAQ4 529 
at station 308 and SILAM at station 156) at the surface. In most cases the temperature bias profiles fluctuate 530 
around zero (station 053, located between EU1 and EU2; station 043; station 242 in EU2, and partially station 316 531 
in EU2), whereas for some stations the bias keeps the same sign throughout the troposphere, negative for station 532 
156 (launches at 10-12 LT) and positive for station 099 (early morning launches). The difference in altitudes (491 m 533 
asl the former and 1000 m asl the latter) and the complex terrain of the alpine region might also be responsible for 534 
the large model differences at these two (relatively close) stations. 535 

Vertical profiles of Temp in NA (Figure 6) shows strong surface bias (negative) at station 021 and 457 (both close to 536 
the western border of the domain), for both models. At station 021 (data collected under daylight conditions) the 537 
bias becomes positive and small in magnitude above the PBL, whereas at station 457 (data collected under night-538 
time conditions) the bias keeps the same sign throughout the troposphere. At the other stations, the bias within 539 
the PBL is overall small and either positive (107, 456) or slightly negative (stations 458, 338).  540 

Bias profiles for WS at eight ozonesondes stations in EU (Figure 4) show a tendency of overestimation in the PBL 541 
and of underestimation above ∼1000m, although there are some exceptions for different models and/or launching 542 
stations. The WRF/Chem1 has the largest positive bias at all sites, with the bias staying positive well above the PBL 543 
at all stations in contrast with all other models (WRF/Chem1 model adopted the nudging of meteorological fields 544 
only above the PBL, and only during the first 12 hours of meteorological spin-up, while for the other WRF instances 545 
the nudging is active during the entire run). WS overestimation by WRF/Chem is a known concern (e.g. Tuccella et 546 
al., 2012b; Jimenez and Dudhia, 2012; Mass and Ovens, 2011) and it is likely to have a major impact on the 547 
dispersion of pollutants. As for EU, the WS bias profiles in NA are biased high near the surface (except for the 548 
station 338 and, partially, station 021) (Figure 6). Above the PBL the tendency is to underestimate the WS (up to 549 
∼1.5m/s), although less dramatically than in EU. As both NA models are driven by WRF for meteorology, the WS 550 
profiles are alike and the magnitude of the bias very similar.   551 

3.2 WIND DIRECTION 552 
The spatial and temporal distributions of wind direction (WD) are reported in Figure 8.  The boxes summarize the 553 
temporal and spatial variability of the WD values at the receptors of each sub-region (no averages have been 554 
applied). For EU1 (Figure 8a), the median of all models but WRF-CAMx is within ±5 degrees that of the observation, 555 
and similarly for EU2. Also the modelled 22th and 75th percentiles are in line with the observations in these two 556 
sub-regions (the CCLM model predicts slightly larger variability).  557 

The EU3 sub-region is topographically more complex, and the analysis is based on four stations with only 55% data 558 
validity over the entire period. Southern winds are predominant (based on the observation) while the models 559 
show large variability and, even the several instances of WRF (but not all) and the ECMWF data tend to under-560 
predict the median value. The only two models over-predicting the median observed value are WRF-CMAx and 561 
WRF-CMAQ1, both apply grid nudging also within the PBL along with WRF-CAMQ4 which, however, shows a slight 562 
under-estimation.   563 
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Results for NA Figure 8b) shows that the modelled WD follows the same distribution as the observation, with some 564 
excess (or deficiency) of variability by CCLM in NA1 (also the median value slightly under-estimated) and in NA3. In 565 
NA2, all models tend to under-estimate the observed median value (CCLM by ∼20 degree), indicating a modelled 566 
abundance of southerly-rotated winds. The WRF-CAMx model for NA, although not reported, uses the same 567 
meteorology as WRF-CMAQ and therefore the same WD distribution.   568 

It is difficult to state which error component is more impacted by WD error. The wrong directionality of polluted 569 
air masses likely affects the mean value (bias) as well the shape (variance) of the signal, as it alters the source-570 
receptor relationship (Vautard et al., 2012; Gilliam et al., 2015). WD error effects on the associativity structure of 571 
the modelled-observed time series is less clear however.   572 

3.3 CHEMICAL SPECIES: MEAN SQUARE ERROR AND ERROR APPORTIONMENT  573 

3.3.1 CO 574 
CO is a moderately long-lived primary pollutant principally produced by incomplete combustion of fossil fuels, 575 
wildfires and, on the global scale, by the oxidation of methane. CO also acts as precursor to ozone. Results of the 576 
AQMEII3 models for CO are reported in Figure 9 and Figure 10, and in Table S5.   577 

In general, there are profound differences between the CO statistics for EU and NA, with the latter showing a more 578 
marked temporal and spatial dependency as well as model-to-model variability (the yearly mean observed values 579 
of CO in EU and NA are of 336 ppb and of 248 ppb, respectively). The EU error (Figure 9a) is, generally, uniform 580 
across models and sub-regions, approximately three times higher in winter than in summer. The magnitude of the 581 
SY and DU errors is comparable (∼15-25 ppb on average in EU1 and EU2, sensibly higher in EU3). Also for NA 582 
(Figure 9b) the DU and SY errors are similar, but varying by model, sub-region, and season. 583 

The homogeneity of error in EU suggests that it is originated by a common source. Previous investigations (Innes et 584 
al., 2013; Giordano et al., 2015) indicate that the boundary conditions have a limited contribution to the bias of CO 585 
within the interior of the domain, where the emissions are far more important. In particular, the MACC inventory 586 
used by the EU regional models likely underestimates the CO emissions (especially in winter) (Giordano et al., 587 
2015). We conclude that most probably the cause of model bias for CO is attributable to the emissions and, to a 588 
lesser extent, the generally overestimated surface wind speed (section 3.1.1). Sensitivity of the model error to 589 
emission changes for CO is discussed in the next section.  590 

The correlation coefficient for EU generally peaks in spring (LT component) while it is at a minimum for the LT 591 
component in winter and overall poor for the DU and SY components. In contrast, for NA the minimum correlation 592 
coefficient is observed in spring/summer (LT component), with the correlation for DU component having a mixed 593 
behaviour depending on the sub-region, but it is typically low in summer (Table S5 of the supplementary material).  594 

The winter LT error for EU is of ∼140-220 ppb in EU1 and EU2, and up to 600 ppb in EU3, typically higher than in 595 
NA (∼100 ppb, peaking in autumn and mostly due to model underestimation), while the opposite holds for the DU 596 
and ID error which are significantly lower in EU (Figure 10) than in NA (except for EU3). Since CO is a primary 597 
pollutant, its error is affected by the diurnal dynamics of the PBL height, which is most problematic in winter, when 598 
modelled PBL has the tendency to become too stable too early, anticipating the evening transition (Pleim et al., 599 
2016). In fact the biases of CO and that of PM10 (another primary pollutant) in winter are highly correlated for 600 
almost all models (not shown), indicating a common causes of the error. The overestimation of WS discussed in 601 
section 3.1 also contributes to further dilute the concentration of primary species such as CO (for example 602 
corr(biasCO, biasWS) = 0.60 for the CMAQ4 model in EU2 during winter). 603 
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The error due to variance in EU (under-estimated by the models) and mMSE are significant in the DU and SY 604 
components in winter (Figure 10a). In particular, the variance error of winter DU is small compared to the mMSE, 605 
which accounts for almost the entire DU error, up to over 30 ppb. For SY, the model SILAM_H shows an mMSE 606 
error of over 75 ppb, the variance part being approximately null. On average, the DU and SY errors are 607 
approximately similar for all EU models (∼45 ppb for DU and ∼65 ppb for SY), indicating some common error 608 
leading to poor associativity, which typically corresponds to lagged timing of the observed and modelled signals. 609 
An example of such might be the poor representation of the diurnal variation of the emissions (e.g. Makar et al., 610 
2014). A further reason could stem from the lack of temperature dependent emissions (the current emission 611 
inventory processing approach employs constant temporal emission profiles, and therefore cold/warm episodes 612 
are not incorporated in the modelled emissions while these episodes do affect real-world emissions). The lack of 613 
temperature-dependant emission is likely to have a strong effect for CO, as about 50% CO emissions comes from 614 
residential heating (at least in mid/north European countries). A test to this hypothesis is currently under 615 
investigation by running the CCLM-CMAQ model with a set of emissions using temperature data for the temporal 616 
disaggregation for residential heating emissions. 617 

While the SY error is comparable for the two continents, the DU and ID errors are remarkably higher in NA (all sub-618 
regions, also due to an excess of variance) and for several instances comparable or even higher than the LT error. 619 
With the exception of the WRF-DEHM model (variance error negligible), the DU and ID error for the NA models are 620 
due to both mMSE and variance.   621 

3.3.1.A SENSITIVITY SIMULATIONS WITH REDUCED EMISSIONS AND BOUNDARY CONDITIONS 622 
Additional sensitivity runs have been carried out by the majority of modelling groups, in which the amount of 623 
anthropogenic emissions are reduced by 20% in both the boundary conditions  and the modelling domain. It is 624 
instructive to assess the error variation between the sensitivity runs (denoted as ‘s20%’) and the base case for 625 
primary species such as CO: 626 

ܧܵܯܴ% = 	100 ∗ ோெௌாೀೞమబ%ିோெௌாೀ್ೌೞோெௌாೀ್ೌೞ   627 

Figure 11 reports the error variation for central Europe (sub-region EU2), where the effect of local CO outweighs 628 
the influence of the CO entering from the boundaries (similar plots for the other two EU sub-regions are reported 629 
in the Supplement). A decrease of 20% CO produces a RMSE variation of ∼10% (averaged over models and 630 
components). A naïve projection indicates that a reduction of 100% (thus removing CO from emissions and 631 
boundary conditions altogether) would produce a variation of the error of ∼50%. The sign of the error variation 632 
indicates that there are circumstances where a reduction of the base case emissions is actually beneficial as the 633 
error is reduced (even substantially in the instances where the emissions were overestimated in the base case). 634 

The DU component for CO is the most sensitive to emissions changes with an average of ∼24% error variation in 635 
summer. The SILAM model is the most sensitive to changes in the amount of pollutants entering the domain. 636 
Striking error differences with respect to the base case are detected for summer CO (DU error improved by 50%), 637 
possibly pointing to false peaks in the base case that contribute heavily to the RMSE (as suggested by the low 638 
correlation coefficient, Table S5). The reduction of the emission by 20% lowers the peaks and could be the 639 
explanation for the improvement observed for the ‘s20%’ scenario for SILAM. 640 

3.3.2 NO 641 
NO is emitted by both natural and anthropogenic sources and its chemistry patterns are closely connected to those 642 
of NO2 and ozone. Due to the fast ozone-NO titration reaction, the uncertainty in emissions, transport, and vertical 643 
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mixing dominates the uncertainty in chemistry. As no observational data was available for NA, the discussion is 644 
limited to EU. The European Environment Agency (EEA) reports an estimated uncertainty for NOx emission of ∼20% 645 
(EEA, 2011); Vestreng et al. (2009) found ±8-25% uncertainties in EU NOx emissions, in line with other similar 646 
bottom-up uncertainty studies (see Pouliot et al., 2015). A further source of uncertainty and model to model 647 
difference is the vertical emission profiles adopted and how this is interpolated to the vertical grids used by the 648 
models. Within the SILAM model, for example, the vehicular traffic emissions are released largely at the bottom of 649 
the first layer and this sub-grid information about the vertical location of the plume used in the vertical transport 650 
scheme further supresses the mixing to the upper layers, thus keeping the surface concentrations higher.  651 

The analysis of the RMSE for NO in Figure 12a shows how the largest modelling error for NO occurs in winter and 652 
autumn, similar in magnitude for EU1 and EU2 (∼7 ppb), while is more than double in EU3 (up to 30 ppb). The DU 653 
and SY errors are comparable in magnitude (although the DU error is slightly higher), and are approximately evenly 654 
distributed among the models. Also for NO the error of the SY component is model-independent, as noted for CO 655 
and as will be discussed for ozone and PM10. Because it is mainly composed by mMSE error (Figure 12b) it can be 656 
hypothesized that the unexplained meteorological variance is responsible for the majority of the SY error.   657 

The winter bias and variance errors are predominantly negative, indicating model underestimation and reduced 658 
variability. The opposite holds for the two instances of SILAM, for which the bias and variance are positive (all sub-659 
regions). This can be associated with the underestimated ozone concentrations in this model also the applied 660 
vertical emission profiles mentioned earlier for this model could have an influence. The correlation coefficient 661 
varies greatly by model, by components and by season and typically degrades for the summer seasons (LT 662 
component, most models). The SY component also exhibits low values of r, especially in summer for EU1 and 663 
autumn (Table S6). The large variability of the correlation coefficient indicates that the models are not able to 664 
capture the fluctuations of this important precursor at all scales. 665 

From the error decomposition plots (Figure 12b) it emerges that  666 

- the LT components shows a mMSE error approximately uniform for all modelling systems (between ∼3 667 
and 4 ppb);  668 

- in the majority of the cases the mMSE error dominates the ID, DU and SY components; 669 
- the SY component has an error comparable to that of DU for the mMSE part, but overall higher due to a 670 

predominant lack of variance (as high as 50% of the total SY error for some models).  671 

Due to its fast chemistry and short travelling distance,  the error of representativity for NO (mismatch of the area 672 
of representativeness between models with grid spacing of ∼15 km up to 50 km and point measurements) is likely 673 
more significant than for other pollutants with longer life-time. NO is almost a primary pollutant with negligible 674 
deposition (Wesely and Hicks, 2000) and small influence of the boundary conditions (Giordano et al., 2015), 675 
therefore observational sites are affected by local scale effects in the range of a few kilometres, below the grid 676 
spacing of the majority of the models. This has the effect of higher observed mean values compared to the models 677 
(enhancing the bias error) and stronger variability in the observations than the models (variance error).  678 

The correlation between the bias of NO with the bias of the other species reveals strong links at several temporal 679 
scales (less for the DU time scale though) and also in terms of processes, although it varies greatly by model. For 680 
instance, corr(biasNO, biasO3) is overall strong (and negative) for the majority of the models, but for different time 681 
scales, i.e. stronger for the SY components for some models (e.g. LOTOS-EUROS), or for the LT (SILAM), or for the 682 
DU (CHIMERE). Additional analysis are envisioned to determine the causes of such a behaviour.    683 
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3.3.2.A SENSITIVITY SIMULATIONS WITH REDUCED EMISSIONS AND BOUNDARY CONDITIONS 684 
The analysis discussed in Section 3.3.1.A is repeated here for NO and results are presented in Figure 13. A decrease 685 
by 20% of the amount of NO in the domain produces a variation of RMSE of ∼8% (averaged over models and 686 
spectral components). A naïve projection indicates that a reduction of 100% (thus removing the production of NO 687 
from emissions and boundary conditions) would produce a variation of the error of ∼35%. Such an amount is less 688 
than that found for CO (∼50%, section 3.3.1.A), which is consistent with the photochemical processes involving NO 689 
but not CO.  690 

The LT component is the most sensitive to changes for NO, with an average of ∼17% error variation (and up to 20% 691 
in autumn, both positive and negative). Again, the SILAM model is the most sensitive to changes in the amount of 692 
pollutants entering the domain. Remarkable differences between the ‘s20%’ scenario and the base case are 693 
detected for summer and autumn (LT error variation of 100%) (Figure 13). The improvement of the error of SILAM 694 
(and of the other models) for the ‘s20%’ scenario is due to the overestimation of NO mean concentration in the 695 
base case (positive bias, Table S6). 696 

3.3.3 NO2 697 
Primary NO2 is emitted by a variety of combustion sources and plays a major role in atmospheric reactions that 698 
produce ground-level ozone. NO2 is also a precursor to nitrates, which contribute to PM formation. As for NO, only 699 
a small portion of the total error is expected to stem from the boundary conditions. The AQMEII3 modelling 700 
systems attribute a fraction of NO2 emission ranging between 3% and 10% of the total NOx emissions (some 701 
models treat the NO2 emission from the transport sector differently, see Table 1). The results of the error analysis 702 
discussed hereafter do not reveal, though, grouping of model behaviour consistent with the choice of the NO2 to 703 
NOx emissions ratio, also in light of the fast chemistry between NO and NO2. 704 

The RMSE distribution (Figure 14a,b) shows a marked model-to-model variability in the LT and DU components, 705 
while it is more uniform for the SY component, also in the seasonal stratification. Moreover, the error distribution 706 
shows to be weakly dependant on the specific sub-region (for both continents, especially for the DU component), 707 
suggesting that regional features (e.g. differences in climate between the regions) have little impact on NO2 708 
performance, which is most affected by chemistry and error in the meteorology. Local-scale features (e.g. 709 
representation of urban / rural emission differences) may still be important, but they may have similar errors in all 710 
regions.  711 

The largest error occurs in winter (both continents), and is shared approximately equally between the SY and DU 712 
components (for some models the SY and LT errors are comparable due to the little bias). 713 

The bias is the main contributor to the NO2 error and stems from a model under-prediction of the mean observed 714 
concentration during the entire year (but, with the exception of the winter season, is positive for WRF-CMAQ in NA 715 
and WRF-CMAQ1 in EU) (Table S7). The bias is probably caused by a combination of factors, including emissions 716 
estimate (e.g. underestimation of residential combustion), PBL height and vertical mixing at night (when wood 717 
combustion emissions tend to be maximum, e.g. Denier Van Der Gon et al., 2015), and missing processes acting as 718 
systematic errors, such as  shading effects of forested canopies (e.g. Makar et al., 2016). However, the tendency of 719 
NO2 measurements to be likely overestimated by the majority of commercially available instruments for detecting 720 
NOx (Steinbacher et al., 2007) needs to be taken in to account. The magnitude of the bias is higher in EU (from 721 
∼1.3pbb of WRF-CMAQ1 in EU1 to ∼-12.5 ppb of CCLM-CMAQ in EU3) than in NA (the maximum being ∼5.5 ppb in 722 
NA3 by the WRF-DEHM model), with the mean observed values being of 11.5 ppb and 10.5 ppb for EU and NA, 723 
respectively.  724 
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The correlation coefficient is typically higher in spring/autumn and poorer in summer/winter (in summer there are 725 
several instances of negative correlation) (Table S7). The LT component for EU, and the LT and SY components for 726 
NA, are those with higher correlation coefficients, while SY and DU are the poorest in EU and DU the poorest in NA 727 
(but still higher than ∼0.4).  728 

The median value of the modelled accumulated deposition per unit area (Fig. S11) for NO2 ranges from ∼0.4 to 729 
∼1.9 kg/km2 for EU (nine models) and from ∼0.3 to 2.3 kg/km2 for NA (two models). With the exception of the 730 
WRF-DEHM model (similar values for EU and NA of 0.3-0.4 kg/km2), the modelled values for NO2 deposition are 731 
uniform across the EU models, while the deviation between the two NA models for deposition is not negligible, 732 
also in light of the different native grid sizes of 50km and 12km (WRF-DEHM and WRF-CMAQ, respectively). 733 
Therefore, for the majority of the EU models model-to-model differences in the error are unlikely due to significant 734 
difference in the deposition, while it remains a possibility for NA. 735 

The magnitude of the error for NO2 resembles that of NO and ozone, although the apportionment reveals 736 
significant differences. In fact, while NO includes variance error and a uniform share of mMSE, the LT error of NO2 737 
for winter is almost completely determined by the bias, for both continents (Figure 15 and Figure 16). The other 738 
NO2 spectral components (ID, DU, SY) reveal more profound difference with respect to NO, both in terms of bias 739 
and of error apportionment. The ID error for NO2 is even smaller than that of NO (less than 1 ppb) and can be 740 
regarded as noise. Also the DU (∼1.5 ppb) and SY (∼1 ppb) errors are considerably smaller than for NO (both 741 
continents), although the DU error presents some excess of variance for WRF-CMAQ3 and the two instances of the 742 
CHIMERE model (Figure 15).  743 

The model-to-model variability of RMSE for the LT component Figure 15) is very similar to that of NO (Figure 12), 744 
while the DU variability resembles that of ozone (Figure 18), although for NO2 the DU error is lower in magnitude 745 
and more uniform across seasons.  746 

Moreover, NOx observations are strongly affected by local emissions and thus the error may stem from the 747 
incommensurability of comparing grid-averaged values against point measurements highly affected by local-scale 748 
emissions. However, the error apportionment analysis carried out separately for ‘rural’ and ‘urban’ background 749 
stations (the area type classification is taken for the stations metadata) does not reveal any relevant differences 750 
(Figure 15 for EU2 and Figure 16 for NA1), if not a slight increase of the variance error over both continents, thus 751 
likely excluding chemistry-related model errors. 752 

3.3.4 OZONE 753 
Due to the adverse effects on human health and to the impact on climate, tropospheric ozone is regulated in EU 754 
and NA and substantial efforts are made to improve the models’ predictive skill for this pollutant. Tropospheric 755 
ozone can be either transported from regions outside the modelled domain, be the result of 756 
stratosphere/troposphere exchange, or be produced locally by photochemistry through oxidation of VOCs (volatile 757 
organic compounds) and CO in the presence of NOx and sunlight. Due to its photochemical nature, ozone 758 
production is directly influenced by temperature through speeding up the rates of the chemical reactions and 759 
increasing the emissions of VOCs (e.g. isoprene) from vegetation (Jacob and Winner, 2009). Along with dry 760 
deposition, chemistry can act as local sink to ozone depending on the photochemical regime.  761 

Results of the AQMEII3 modes for ozone are reported in Figure 17 and Figure 18, and in Table S4. Overall, the 762 
correlation between modelled and observed ozone time series is higher for the winter and fall seasons than the 763 
spring and summer seasons in EU, while the opposite holds true in NA where the maximum correlation is observed 764 
in summer (all sub-regions) (Table S4). In EU, the RMSE is generally lower in winter than in the warm seasons 765 
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(summer and spring) (RMSE in summer ranges between 4.3 ppb of WRF/Chem1 in EU1 and 21 ppb of WRF-CAMQ1 766 
in EU3), with the exception of the CCLM-CMAQ model for which the RMSE peaks in autumn (all sub-regions). 767 

Due to the strong and well defined diurnal cycle characterized by ozone formation and loss, the correlation 768 
coefficient is generally higher for the DU component, while it tends to be lowest for the SY component (Table S4 769 
and Figure 18). The SY component often exhibits the lowest correlation among all components, especially in 770 
summer (EU) and spring (NA), possibly due to the combined effect of transport of precursors, deposition and 771 
chemistry (formation/depletion of ozone from precursor emission in the regions where the ozone is transported) 772 
(Bowdalo et al., 2016). However, the SY error is generally small (∼2-3 ppb, although higher for EU3, where the SY 773 
error is double that of the other sub-regions) and is mostly due to mMSE. It is thus characterised by poor 774 
coefficients of determination and underestimated variability (Eq 6). Therefore, the SY component suffers from low 775 
precision (for some models r < 0.3) meaning that the variability of the synoptic mechanisms needs further 776 
attention, especially in the meteorological conditions leading to high ozone level episodes and in relation to 777 
temperature, cloudiness, and radiation. The WRF/Chem2 model (having the highest error for temperature, Figure 778 
2b) reports the largest SY error for ozone (especially the variance part). For this model, the correlation between 779 
the ozone and the Temp error for the SY component corr(errO3, errTemp)SY is 0.44 for the summer months in EU2 780 
(not shown), among the highest, which helps to explain part of the SY error for ozone. Further possible causes 781 
could be associated to tropopause folding events, especially downwind of mountain areas (e.g. Bonasoni et al., 782 
2000; Makar et al., 2010), which would also be in line with the larger synoptic error of ozone in EU3 (Figure S4b), 783 
comparable for all models in the range of 3-4 ppb. In order to characterise better the mMSE part of the error for 784 
the periodic components, such as DU and SY, analysis of the phase and amplitude are ongoing.  785 

The error of the DU component is largely due to the mMSE term (Figure 18a) which is comparable for all models in 786 
the range of 2-5 ppb, with some significant excess of variance for WRF-CMAQ2 and WRF-CMAQ3 in EU2 (∼5 ppb). 787 
One possible reason is the dynamics of the nocturnal PBL as well as the timing of the ozone cycle, with an either 788 
too fast or too slow modelled ozone peak (e.g. Pirovano et al., 2012). Limitations of the models to reproduce the 789 
amplitude and phase of the daily ozone cycle were already highlighted in the first and second phase of AQMEII, 790 
mostly related to the representation of night-time and stable conditions. Further, the variance error for WRF-791 
CMAQ2 and WRF-CMAQ3 can be induced by the bias of temperature and/or concentration of ozone precursors.  792 
For WRF-CMAQ2 (WRF-CMAQ3), corr(errO3, errTemp)DU is 0.88 (0.94) and corr(errO3, errNO2)DU is 0.86 (0.83) (summer 793 
months, EU2) (not shown), which indicates that the error of the Temp and NO2 fields are strongly associated with 794 
the error of ozone at the DU scale. PBL representation during transitions is a long standing issue of AQ models.  795 

The error in the LT component is dominated by the bias error (Figure 18) (almost completely for NA) although with 796 
significant exceptions in EU (for CCLM-CMAQ the mMSE error of the LT component is larger than the bias portion). 797 
The May-September ozone LT bias for EU2 peaks at 12-13 ppb (WRF-CMAQ1), while it is ∼6 ppb in NA3 (but in 798 
excess of 20ppb in NA2 by the WRF-DEHM model) (the yearly average measured ozone mixing ratio is 26.5 and 29 799 
ppb for EU and NA, respectively). The bias of the precursors and of the meteorological fields is typically highly 800 
correlated with the bias of ozone. For instance, in EU2 for the WRF-CMAQ1 model corr(biasO3, biasTemp) is 0.65 and 801 
corr(biasO3, biasWS) is 0.81 (summer months). The almost null NO2 bias for CMAQ1 (among the lowest), combined 802 
with the positive bias for NO suggest that chemistry also affects the ozone bias of CMAQ1. Furthermore, the excess 803 
of ozone intrusion for the troposphere (discussed next) may also factor in determining the high positive bias at the 804 
surface for this model.   805 

According to Bowdalo et al. (2016) the bias of the ozone amplitude cycle linearly evolves with NOx emissions, 806 
suggesting that correction of the error for ozone needs to start from NOx emissions. Otero et al. (2016) have 807 
shown that meteorological drivers account for most of the explained variance of ozone, especially over central and 808 



21 

northwest Europe. One of the main drivers of ozone is the daily maximum temperature, in relation to the effect of 809 
temperature on emissions of VOCs. Therefore, while part of the bias error is possibly due to NOx emissions, the 810 
mMSE and variance error are also likely induced by error in meteorology. Other documented of biases are 811 
transcontinental transport in winter (Hogrefe et al., 2011) and missing processes during spring and summer, such 812 
as the large scale effect of the absence of forest shading in the models (Makar et al., 2016), a too rapid production 813 
of ozone form available precursors together with an underestimation of ozone deposition (Herwehe et al., 2011). 814 
Im et al. (2015b) also indicated a range of factors determining the difference in performance among models, such 815 
as the chemical mechanism, biogenic module and VOC pre-processing and difference in microphysics affecting the 816 
photolysis, temperature and radiation acting on the production of ozone.  817 

Although the concentration peaks are associated with the ID and DU components, the contribution to the total 818 
error of the ID component is small (< 2 ppb) due to the flattening of the spikes operated by the spatial averaging 819 
carried out prior of the spectral decomposition. The noise of the ID component is reflected by the correlation 820 
coefficient being lower than the correlation of the DU component.  821 

3.3.4.A OZONE VERTICAL PROFILES 822 
Several studies have demonstrated the importance of extending the evaluation of air quality models to the 823 
troposphere (e.g. Solazzo et al., 2013; Makar et al., 2010; Herwehe et al., 2011), not only because of the vertical 824 
turbulent transport, but also for the key role played by coupling of the PBL and the free troposphere aloft in 825 
determining the ozone intrusion to the surface.  In this section profiles of modelled ozone are compared against 826 
ozonesondes measurements.  827 

A summary of the records provided by the ozonesondes for ozone are reported in Table 4. Plots of the simulated 828 
and observed ozone levels at fixed heights (through the ENSEMBLE system models and measurements are paired 829 
at the heights of 0, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000 m) are reported in Figure 19 and Figure 830 
20. The ozonesonde data are mainly available during daylight, although two stations with night-time data are 831 
available for NA (Table 4).  832 

Overall, the general tendency of the models in both continents is to underestimate the ozone levels above the PBL, 833 
suggesting that not enough ozone enters the continental domains through the inflow boundaries. The most 834 
significant underestimation (∼10 ppb) is observed at the two stations closer to the west boundary for EU (stations 835 
318 and 043). The boundary layer deficit of ozone is a long standing issue, as similar conclusions were derived for 836 
the first (Solazzo et al., 2013) and second (Im et al., 2015b; Giordano et al., 2015) phase of AQMEII, as well as in 837 
other studies (Katragkou et al., 2015), emphasizing the strong dependence of regional models on the lateral 838 
boundary, whose effects propagate far into the interior of the domain.  839 

Towards the interior of the EU domain (stations 134, 157, 242) the profiles are in closer agreement with the 840 
observations, with the WRF-CMAQ1 model performing the best throughout the troposphere, possibly due to the 841 
overestimation of the entrainment of upper tropospheric ozone, as revealed by the strong gradient of WRF-842 
CMAQ1 at 6000m (Figure 19). With respect to the other models (and SILAM in particular), the CMAQ runs show 843 
larger ozone availability in the residual layer above the PBL, which act as a reservoir of ozone that becomes 844 
depleted the next day, increasing the concentration at the surface. Possibly, the PBL and vertical mixing within 845 
these models is too weak (Appel et al., 2016). Further analyses restricted to specific season and time of the day are 846 
required to validate this hypothesis.     847 
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For NA (Figure 20), the general tendency is of slight to consistent (stations 71 and 75) over-estimation within the 848 
PBL and underestimation aloft for the WRF-CMAQ model and of overestimation (stations 107, 456, and 458 – 849 
afternoon/night launches) at the surface and mild underestimation above the PBL for the WRF-DEHM model.  850 

3.3.4.B RELATIONSHIP BETWEEN THE BIAS OF OZONE, NOX AND TEMPERATURE 851 
The relationship between the bias of NO and the bias of ozone is reported in Figure 21 for the EU2 region (similar 852 
plots including the bias of NO2 for EU and NA are provided in the supplementary material). A linear relationship 853 
between the biases of the two species is detectable, more evident in winter. Large, positive ozone bias is driven by 854 
underestimation of NO (a primary species) whereas the largest negative ozone bias correspond to the largest 855 
overestimation of NO. The role of the temperature bias is less clear, but the NO2 and ozone relationship (Figure S7) 856 
suggests that large NO2 bias is associated with temperature under-prediction. The partition of NOx emission into 857 
primary NO and NO2 seems to suggest that the models adopting a 95%-5% ratio suffer lower ozone bias (at least in 858 
winter), although in general the clustering of models based on the NO/NO2 share of total NOx emission is far from 859 
robust. A simple linear regression between NO bias and ozone bias (based on the yearly time series) among the EU 860 
models suggests that the NOx and temperature biases can explain, on average, ∼35% and ∼16% of the variability of 861 
the ozone bias, respectively.     862 

3.3.5 SO2  863 
SO2 is another primary regulated pollutant which, in EU and NA, is mainly emitted from coal power plants and also 864 
from the residential heating and waste disposal sector. SO2 acts as a precursor to sulfates, which are one of the 865 
main components of PM in the atmosphere. Any error in SO2 is likely inherited by these secondary species. The 866 
majority of models employed the prescribed vertical distribution by EMEP (Vestreng and Støren, 2000), while 867 
CMAQ4 in EU and WRF-CMAQ in NA adopted the Briggs plume rise algorithm (Briggs, 1971; 1972) accounting for 868 
the effects of modelled meteorology, and SILAM, CHIMERE, and CCLM-CMAQ adopted the sector dependent 869 
vertical emission profiles as in Bieser et al. (2011b). The EEA reports an estimated uncertainty for SO2 emission of 870 
∼10% (EEA, 2011), therefore SO2 emissions are expected to be more accurate than NOx emissions. This is reflected 871 
in the low bias in both continents (∼1-2 ppb in winter, mostly due to model underestimation) (Figure 22 and Figure 872 
23). The averaged observed concentration of SO2 is of 1.92 ppb and 2.7 ppb in EU and NA, respectively. 873 

The seasonal modelled error for SO2 ranges, on average, between 0.65 and 1.3 ppb in EU and between in excess of 874 
∼1 and 5 ppb in NA (the maximum error in NA2), peaking in autumn.  875 

In EU and NA1, the error of ID, DU and SY components is comparable for all seasons and, on average, below 0.6 876 
ppb. There are some exceptions, most notably the WRF-CMAQ3 model, which is the only one significantly biased 877 
high (Figure 23a) and shows an excess of variance significantly larger than the other models. By contrast, 878 
WRF/Chem2, CHIMERE and L.-Euros show significant low bias (the latter two models have the smallest number of 879 
vertical layers). Overall, though, the bias error does not group consistently by PBL scheme and/or vertical 880 
resolution. For example, CMAQ2, CMAQ3, CMAQ4 employ the same PBL scheme based on ACM2 and have 881 
comparable number of vertical levels (CMAQ3 has even more), but the bias of CMAQ3 is much larger than that of 882 
CMAQ4 and CMAQ2 which, in turn, have comparable bias but opposite in sign. The two instances of WRF/Chem 883 
show significantly different bias, which might be due to the different PBL and cloud scheme, influencing the SO2 884 
oxidation (Table 2).     885 

The large variability of the model-to-model error (especially in EU) and correlation coefficient in both continents is 886 
an indication that the mechanisms governing the initial mixing and subsequent transport and chemical 887 
transformation suffer from different sources of error, at all scales. In no instance the correlation coefficient is 888 
consistently above 0.5 for all seasons and spectral components while there are several instances of negative 889 
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correlation between the spectral components of observed and modelled SO2 (e.g. CCLM-CMAQ model in EU and 890 
several others). The poor correlation coefficient of, especially, the ID and DU components for both continents, 891 
indicates that the peaks of the SO2 concentration are not caught by the models, leading to low precision. Although 892 
the mean fluctuations are, generally, well reproduced (low variance error in both continents), it remains a 893 
significant portion of unexplained variance (mMSE) error, which can derive from meteorology and chemistry. 894 
Bieser et al. (2011b) showed that the height of the release and vertical distribution of the SO2 emission influence 895 
the SO2/SO4 ratio as the oxidation (aging) of SO2 is more effective if the emissions are higher up. As power plants 896 
are the major source of SO2 further analysis should investigate the impact of differences in the vertical emission 897 
distribution between models.  898 

3.3.6 PARTICULATE MATTER 899 
Particulate matter (PM), both in the fine and coarse fraction, is directly emitted by biomass and fossil fuel 900 
combustion in domestic and industrial activities, and also formed from precursors in the atmosphere. 901 

From the AQMEII3 suite of model runs, the error for PM is evaluated for PM10 in EU and PM2.5 in NA. The choice is 902 
dictated by the availability of hourly measurements in the two continents. The RMSE distribution is reported in 903 
Figure 24 (PM10 for EU) and Figure 25 (PM2.5 for NA). The error distribution for EU reveals that, despite the large 904 
numbers of modelling options and parameters characterising the chemistry and physics of particles, the error 905 
distribution for DU and SY is homogeneous among the EU models. For these components the error is 906 
approximately uniform over seasons, although with some exceptions (significantly higher in EU3, although based 907 
on two receptors only). EU3 is a small area compared to EU1 and EU2, but is densely populated, intensively 908 
farmed, with a large amount of wood burning in winter, and  agricultural area in summer. It is surrounded by 909 
mountains and stagnant flow conditions are predominant. It is, thus, a challenging area for current modelling 910 
systems, especially for primary species such as PM.  911 

The LT component shows some significant model-to-model variations due to the WRF-CAMx and WRF-CMAQ1 912 
models which have lower error in spring and summer compared to the other models, while the CCLM-CMAQ 913 
model has higher LT error in EU1. 914 

The magnitude of the SY error in EU is, on average, of ∼6 µg m-3 during winter, with a peak of 10.5 µg m-3 in EU2 915 
(WRF-CAMx model). The magnitude of the DU error is lower (∼2-2.5 µg m-3  in EU1 and EU2, and ∼5-6 µg m-3 in 916 
EU3) with the largest share in autumn, spring, and winter and slightly lower in summer. The error of the LT 917 
component ranges between ∼11-15 µg m-3 in EU1 and EU2 and up to 25 µg m-3 during winter in EU3.  918 

The analysis of the correlation coefficient reveals that the model to model differences in the correlation coefficient 919 
with the observed component time series tend to be most pronounced for the DU and ID components, indicating 920 
that these two components are pivotal in determining the overall model skill in terms of capturing observed 921 
fluctuations in PM10 concentration. In more detail, the correlation is poor for the DU component (especially in EU2 922 
and EU3, Table S9), possibly due to PBL dynamics and emission profiles (as discussed above for the RMSE at the DU 923 
scale). The LT component has correlation values highly varying among models and, for the same model, among 924 
seasons (e.g. the LT correlation of the WRF-CMAQ4 model in EU3 is ∼0.9 during spring but only of 0.35 in summer).  925 

In winter the LT and SY error is more severe likely due to the larger uncertainties in PM10 emissions of combustion 926 
processes (wood burning, residential heating) (Van der Gon et al., 2014), as well as due to the current limitations in 927 
modelling the vertical mixing during stable conditions, as mentioned for the gaseous species (especially CO, being 928 
another primary species). The majority of the EU models show an LT error in winter between 12 and 16 µg m-3, 929 
eight models above 16 µg m-3 and only one (WRF-CAMx) below 10 µg m-3. The absence of background sea-salt for 930 
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all EU models (see end of section 2.3) can also be responsible for low bias of the LT component for PM10, especially 931 
in the vicinity of the coastline.  932 

The SY winter error exceeds 5 µg m-3
 for all models (all sub-regions) and three instances (WRF-CAMx, WRF/Chem1 933 

and WRF/Chem2, this latter showing the highest accumulated deposition for PM2.5, Fig. S11) report an error above 934 
7.5 µg m-3, possibly due to the low nitrate concentration and high sulphate concentration during winter months, 935 
resulting from the GOCART parameterization of the aqueous cloud chemistry. All the remaining models have 936 
comparable mMSE and variance errors (Figure 26), and are biased low (model under-prediction), possibly due to 937 
missing PM source and overestimated surface wind speed.  As for the WRF-CAMx model, the low bias on LT 938 
component and the relatively high mMSE error in the SY fraction suggest that the model was able to capture the 939 
mean magnitude of PM concentration over the entire year, but failed in reconstructing the correct variability of 940 
the different episodes, whose timing is generally driven by the synoptic time scale. 941 

The analysis of corr(biasTemp, biasPM10)LT shows that the error of these two variables are related, especially during 942 
the spring months and more consistently in EU3 (up to 0.74 for the WRF/Chem1 model) and during autumn in EU1 943 
(the bias of Temp and the bias of PM10 are anti-correlated up to -0.67 for CMAQ1). Other models (e.g. the CAMx 944 
model), on the other hand, do not show any significant correlation.    945 

The PM2.5 evaluation in NA is restricted to two models, WRF-DEHM and WRF-CMAQ, which show comparable error 946 
(Figure 25). The WRF-CMAQ (WRF-DEHM) model has an error ranging between ∼3.5 (∼2) and ∼6 (∼8.5) µg m-3. The 947 
main contribution to the total error stems from the LT component (predominantly negative bias) and from the SY 948 
component (2-3 µg m-3). The DU component contributes to about 1.5 µg m-3 (comparable mMSE and variance 949 
error). 950 

Both NA models are biased low in summer (all sub-regions), which can be attributed to limitations in the SOA 951 
mechanism (Zare et al., 2014). Because of the higher contribution of primary PM2.5 to total PM2.5 during 952 
wintertime, differences in horizontal and vertical resolution (Table 1) likely contribute to the difference in 953 
wintertime LT bias. The correlation coefficient for the two models is in general higher in winter (full time series) 954 
and deteriorated for the DU component (all seasons and sub-regions). 955 

As inferred for the species discussed above, the uniformity of model behaviour is indicative of errors stemming 956 
from external fields, likely emissions, where missing sources of PM can affect the error within certain time scales 957 
for all models. Further common causes of error are intrinsic to the model-observation comparison as modelled 958 
PMs is commonly dry while this is not always the conditions for the measurements. For instance, the filter-based 959 
gravimetric measurements as recommended by the European Committee for Standardization (CEN) are likely to 960 
retain part of the particle-bound water after the filter conditioning at a constant temperature of 20° C and relative 961 
humidity of 50%. Recent findings by Prank et al. (2016) report the aerosol water content from the gravimetric 962 
measurements to range between 5 and 20% for PM2.5 and between 10 and 25% for PM10. The particle-bound 963 
water was found to be associated with hygroscopic particles such as sulphate, nitrate, and organic compounds. 964 
This remaining water content can be up to approximately 10-35% depending on the chemical composition of 965 
aerosols being measured (Tsyro, 2005, Kajino, et al., 2006, Jones and Harrison, 2006). The water aerosols should 966 
therefore be accounted when compared with these measurements. Part of the problem lies in secondary organic 967 
aerosol. In winter, in particular for wood burning part of the emissions are condensable gases that rapidly change 968 
to the aerosol phase (Van der Gon et al 2014), but are missed since they are not part of the presently used PM 969 
emission inventory. In summer, biogenic emissions that contribute to SOA formation and their yields are quite 970 
uncertain. A good representation of SOA is still a problem for all models. In spring, the application of manure and 971 
fertilizer leads to peaks of NH3 emissions and subsequent NH4 aerosol formation, contributing to PM10 and PM2.5. 972 
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The timing of these emissions is parameterized based on long-time averages, whereas in practice they are strongly 973 
related to meteorology. This can explain part of the discrepancy on the diurnal to synoptic time scale (Hendriks et 974 
al 2015). 975 

4. MEMORY OF THE SIGNAL AND REMOVAL PROCESSES: THE CASE OF OZONE 976 

The evaluation of the removal processes (chemical transformation, transport, and deposition) is difficult to assess 977 
in isolation with respect to other sources of error because of the bias of the signal. In this section we propose a 978 
bias-independent spatial analysis aimed at the quantification of the ‘memory’ of the signal. The analysis seeks the 979 
time interval (or memory) after which the signal loses any memory of its past. The memory of the modelled and 980 
observed signals is then compared. The methodology consists of:  981 

1. calculating the autocorrelation function (acf) of the modelled and observed LT component;  982 

2. then, calculating the quantity acfmod=0 and acfobs=0, i.e. the lag (time interval) where the acf of the modelled and 983 
observed LT component falls to zero, and finally 984 

3. determining the difference between the two, yielding the difference between the modelled and the observed 985 
memory of the signal: 986 Δ௬ = ܽܿ ݂ௗୀ − ܽܿ ݂௦ୀ Eq 9
 987 

The acf is simply a measure of the degree of associativity of a time series with its lagged version. The associativity 988 
is typically measured through the correlation coefficient, and the lag extends from one time step (one hour in the 989 
case of hourly time series) to, generally, a third of the length of the time series. Because the correlation is bias-990 
independent, we conclude that the acf is also bias-independent therefore information from Δmemory is useful for the 991 
interpretation of the variance and covariance errors discussed in section 3.1. The memory of the signal is different 992 
from the persistence indicator (previous day concentration) as used e.g. by Otero et al. (2016) for accounting for 993 
pollutant episodes. As we deal with the LT component of the signal, short term and synoptic episodes are in fact 994 
filtered out in this analysis.  995 

In the supplementary material Figure S9 and Figure S10, the acf for the network-wide spatial average and for the 996 
full year is reported. The acf is calculated for the LT component of the observed (first panel) and modelled ozone 997 
time series. The zero of the acf and the slope of the decay of acf of the observations (approximately a straight line 998 
from 1 to 0 in 2000 hours) are replicated by the models with various degree of success (Figure S10). Our intent is to 999 
apply this analysis to the seasonal ozone time series at each receptor, and derive useful information about the 1000 
modelled removal/production processes. The spatial analysis is proposed for ozone, for the months of May to 1001 
September (Figure 28 and Figure 29) and for the full year (supplementary material Figure S9 and Figure S10). 1002 

The average life time of ozone in the troposphere is of approximately 20-30 days (Solomon et al., 2007). By 1003 
analysing the LT component (processes > ∼21 days) we therefore screen out the daily removal/transformation due 1004 
to chemistry and can focus on seasonal transport, deposition of the free tropospheric ozone, long term chemistry 1005 
(seasonal changes in vegetation that affect biogenic VOCs emissions and ozone deposition, and also the monthly 1006 
variations applied to the anthropogenic emission) and influence of boundary conditions. The structure of the acf 1007 
also benefits from the removal of short time scale processes as it is less affected by noise and the results are easier 1008 
to interpret.   1009 
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The spatially distributed Δ௬ shows some clear regional effects for the majority of the models. The 1010 Δ௬ > 0 along the Mediterranean coast of Spain and France, with some severe excess of ozone production 1011 
(or underestimation of sinks) in southern/central France for some models (SILAM, WRF-CAMx, WRF-CMAQ1, WRF-1012 
CMAQ2 and especially the L.-Euros model, for which the acf at the French receptors did not reach zero).   1013 

The region covering the Po valley, Austria and extending into the continental eastern EU is affected by negative 1014 Δ௬ (sometimes a deficit of one month for some models). The negative memory indicates that the observed 1015 
signal is more persistent than the modelled one, and that long term weather transitions are smoother in gradient 1016 
and longer in duration, and thus that the seasonal modulation of the signal is overestimated by the models, thus 1017 
producing variance error. Coupling the two behaviours (excess of ozone in south France and south Spain with the 1018 
short memory from the interior of east EU extending to the Po valley), might indicate an easterly synoptic 1019 
transport of ozone (or of LT ozone precursor, such as the impact of CH4 and CO on OH and photochemistry) masses 1020 
whose duration is underestimated by the models. The relationship between the sign of Δ௬ and the land use 1021 
type (vegetation vs urban) is subject of on-going investigations in the attempt to determine the role of VOCs 1022 
emissions and deposition over different land types.  1023 

The central part of Germany is affected by positive (on average in the range of 7 to 10 days) Δ௬, mostly 1024 
visible for the HTAP-emission based SILAM and CHIMERE results in contrast with the MACC-emission based ones of 1025 
the same models. When the HTAP inventory is used the largest differences are observed in the central EU regions, 1026 
indicating that also the LT chemistry plays a role. 1027 

The deposition aspect of removal can be equally important as transport and chemistry. The memory of the signal 1028 
directly depends on the amount of ozone available and a large, negative Δ௬	might indicate that the 1029 
deposition is too high.  1030 

For NA (Figure 29), the feature common to all models is the excess of removal in the Southern Atlantic coast and 1031 
across the Eastern Canadian border. In contrast, the central-east part of the US shows large positive Δ௬ 1032 
values (up to ∼1.3 month for the WRF-DEHM model), with the exception of the WRF-CMAQ model, which is overall 1033 
in line with the observed memory of the signal in this part of the domain. This result agrees with the seasonal 1034 
phase analysis for ozone in global models by Bowdalo et al. (2016), where a delay of up to 4 months was detected 1035 
for east USA. 1036 

The west coast has a mixed behaviour, but prevalently Δ௬ is negative. The hypothesis that too little ozone 1037 
enters the domain trough the boundary conditions is contradicted by the Δ௬ ∼0 for the full year in the west 1038 
coast (see Figure S10). A potential excess of transport in this region also seems to be contradicted by the large 1039 
number of stations for which Δ௬ is positive. A possible conclusion is that localised biogenic emission sources, 1040 
radiation budget, and deposition are the main factors responsible for the negative sign of Δ௬ in this region. 1041 

5. CONCLUSIONS 1042 

The work presented in this paper summarises the results of the ongoing third phase of the AQMEII activity focusing 1043 
on AQ model evaluation, applied to the continental scale domains of Europe and North America. The evaluation of 1044 
the AQMEII3 suite of model runs is carried out for surface temperature and wind speed and direction, and for the 1045 
species CO, NO, NO2, ozone, SO2, PM10 (EU) and PM2.5 (NA). Additional analyses making use of emission reduction 1046 
scenarios (CO and NO) and vertical profiles have also been performed. 1047 
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This work is primarily meant to provide a wide overview of the performance of current regional AQ modelling 1048 
systems and to set the basis for additional diagnostic analysis that is currently in progress.      1049 

The model evaluation is carried out by quantifying the components of the error (bias, variance, mMSE) at four 1050 
time-scales (ID, DU, SY, LT) each describing physical processes in a specific time range. The bias and variance 1051 
measure the departure from the first and second moment of the observed distribution (mean and standard 1052 
deviation), while the mMSE accounts for the unexplained observed variability. The apportionment of the error to 1053 
the relevant time-scales and the analysis of the quality of the error have revealed that the LT bias is, by far, the 1054 
first cause of error, followed by the variance error (fluctuations about the mean value) of the DU component and 1055 
the unexplained variance of the DU and SY components, depending on the species and season. In more detail: 1056 

• The mean concentration of the primary species (NO, CO, PM10, SO2) is underestimated by the vast majority of 1057 
the models in both continents, more markedly during the winter and autumn seasons. The largest share of 1058 
error for these species is the bias of the LT components, most probably due to error of the fluxes at the 1059 
boundaries (emission, deposition, and boundary conditions) and to the effects of comparing point 1060 
measurements to volume averaged concentrations. 1061 

• The bias is, by far, the primary source of error and the most important from a model evaluation/development 1062 
point of view. Because it is essentially a shift of the mean concentration, the causes of it need to be sought in 1063 
processes and conditions at the boundaries that have a systematic effect of displacing the concentration values 1064 
while approximately preserving the shape of the distribution. Thus, processes like emission timing, chemistry 1065 
transformation, autocorrelation structures, stratospheric intrusion, atmospheric stability are unlikely 1066 
responsible for systematic bias-type error (while they can be source of casual inaccuracy for limited periods). 1067 
On the other hand deposition fluxes, magnitude of emission, input from the lateral boundaries are more 1068 
probable sources of bias error. The effect of meteorology is more complex, as errors in synoptic circulation can 1069 
induce surface wind velocity and direction to be inaccurate, and thus negatively impacting on the long term 1070 
modelled concentrations causing bias error.       1071 

• The meteorological fields of temperature and wind speed are consistently biased low and high, respectively. 1072 
Based on the results of the European models directly driven by the global fields for meteorology (e.g SILAM, 1073 
CHIMERE) the error for wind speed is of ∼0.5-1 ms-1 and of ∼0.4-1.2K for temperature. These errors can be 1074 
considered as the uppermost limit the accuracy of the models can currently achieve. The use of nudging and 1075 
interpolation methods (specific to the configuration of the meteorological model) can add more than 1.5K and 1076 
2ms-1 to the total error. The analysis of the available vertical profiles suggests that the models overestimate the 1077 
wind speed within the PBL and vice versa above the PBL, possibly inducing a net outward flux of pollutants at 1078 
the PBL interface. 1079 

• Modelled CO is affected by high errors, uniformly across models and components, more pronounced in winter 1080 
and predominantly driven by the negative bias of the LT component, followed by variance error of the SY 1081 
component. Modelled NO and NO2 also report negative bias but, in contrast to CO, there is significant model-1082 
to-model difference in error variability, possibly due to the chemistry of NOx. The SY and DU errors of NO are 1083 
comparable in magnitude (3-5 ppb) and mostly due to mMSE error. Preliminary sensitivity investigations for CO 1084 
and NO seem to suggest that at most ∼50% and ∼35% of the total error, respectively, could be due to 1085 
emissions. Finally, based on spatially averaged analysis, the error for NO/NO2 is the same for urban and rural 1086 
stations (i.e. the error is insensitive to the area-type of the stations).  1087 

• The error analysis for ozone shows large model-to-model variability for all errors and spectral components, 1088 
with the exception of the SY component for which the error is similar among models and possibly driven by the 1089 
error in temperature and in the boundary conditions, as modelled vertical ozone profiles near the domain’s 1090 
boundaries are typically underestimated in both continents by all models. The bias is prevalently positive, while 1091 
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the variance error is generally small. While the bias error for ozone is likely driven by error in NOx emissions, 1092 
the error in meteorology may factor in determining the mMSE and variance error. In fact, there are several 1093 
models for which the bias of temperature and the bias of NO2 are strongly associated with the DU error of 1094 
ozone. A simple linear regression between NOx bias and ozone bias (based on the yearly time series) among the 1095 
EU models suggests that the NOx and temperature biases can explain, on average, ∼35% and ∼16% of the 1096 
variability of the ozone bias, respectively. Ongoing analyses are focusing on explaining the origin of the mMSE 1097 
error by investigating the phase shift between the modelled and observed DU and SY components as well as on 1098 
looking at maximum daily values rather than to the full time series.    1099 

• PM analysis (PM10 for Europe and PM2.5 for North America) reveals that, for Europe, the error distribution for 1100 
DU and SY is homogeneous and season independent among the models, despite the large numbers of 1101 
modelling options and parameters characterising the chemistry and physics of particles. A common source of 1102 
model bias (model underestimation, especially in winter) for PM10 likely lies in the emissions (missing sources) 1103 
and in the overestimation of surface wind speed, whereas variance error may stem from PBL dynamics under 1104 
stable conditions and missing processes in the model (SOA formation is a known issue for all models). The 1105 
analysis of PM2.5 (based on two models only) shows an excess of variance and low correlation coefficient in the 1106 
DU component, possibly due to the timing of the PM cycle. Further analyses dealing with the PM components 1107 
are needed. 1108 

• The analysis of the memory of the ozone signal has revealed a strong model deficit in continental Europe, 1109 
where the seasonal modulation of ozone is overestimated by the majority of the models. The opposite holds 1110 
true in the continental US. 1111 

Although remarkable progress has been made since the first phase of AQMEII, both in terms of model 1112 
performance and also in terms of developing a more versatile and robust evaluation procedure, results of AQ 1113 
model evaluation and inter-comparison remain generic as they fail to associate errors with processes, or at least to 1114 
narrow down the list of processes responsible for model error. AQ models are meant to be applicable to a variety 1115 
of geographic (and topographic) scenarios, under almost any type of weather, season, and emission conditions. For 1116 
such a wide range of conditions the inherent non-linearity among processes are difficult to disentangle and 1117 
specifically designed sensitivity runs seems the only viable alternative. A model evaluation strategy relying solely 1118 
on the comparison of modelled vs. observed time series would never be able to quantify exactly the error induced 1119 
e.g. by biogenic emissions, vertical emission profiles and their dependence on temperature, deposition, vertical 1120 
mixing, chemistry, and the analysis approach presented in this work is no exception. In fact, the methodology 1121 
devised to carry out the evaluation activity in this study has not succeeded in determining the ‘actual’ causes of 1122 
model error, although providing much clearer indications of the processes responsible for the error with respect to 1123 
conventional operational model evaluation.  1124 

The highly non-linear nature of current AQ models requires the study of the relationships among error fields, those 1125 
of the meteorological drivers and those of the precursors. When the seasonal and spectral structures of these 1126 
relationships is analysed together with the error of the input fields (emissions and boundary conditions), then it 1127 
would be possible to diagnose and explain accurately the processes responsible for the error. Future AQ model 1128 
evaluation activities should envision sensitivity simulations and process specific analyses. The ‘theory of 1129 
evaluation’ based on information theory currently being developed by the hydrology modelling community 1130 
(Nearing et al., 2016 and references therein) is a promising way forward and the AQ community should be 1131 
prepared to catch those developments. 1132 

Ongoing work (Solazzo et al., 2017) is being devoted to deepen the investigation of causes of model errors by 1133 
focusing on two models (CMAQ for NA and CHIMERE for EU), for which additional model runs have been carried 1134 
out to frame the effect of fluxes (emissions, boundary conditions and deposition) on modelled ozone.  1135 
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APPENDIX 1. 1136 
Following Hogrefe et al. (2000) and Galmarini et al. (2013) the time windows (m) and the smoothing parameter (k) 1137 
have been selected as follow: 1138 

ID(t) = x(t) – kz3,3(x(t))
DU(t) = kz3,3(x(t)) – kz13,5(x(t)) 
SY(t) = kz13,5(x(t)) – kz103,5(x(t)) 

LT(t) = kz103,5(x(t)) 
x(t)=ID(t)+DU(t)+SY(t)+LT(t) 

 

Eq. S1 

where x(t) is the time series vector. The additive property of the components whose summation returns the 1139 
original time series might be questioned. In the original work by Rao et al. (1997) it is highlighted the importance of 1140 
log-transform the components to stabilize the variance. In the case of log-transformation the original time series is 1141 
obtained by the product of exponential functions whose exponents are the spectral components. For the purposes 1142 
of the error apportionment analysis presented here, the results of using additive time series component of log-1143 
transformed did not produce substantial differences. 1144 

A clear-cut separation of the components of Eq. S1 is not achievable, since the separation is a non-linear function 1145 
of the parameters m and k (Rao et al., 1997). It follows that the components of Eq. S1 are not completely 1146 
orthogonal and that there is some level of overlapping energy (Kang et al., 2013). Galmarini et al. (2013) found that 1147 
the explained variance by the spectral components account for 75 to 80% of the total, the remaining portion being 1148 
on account of the interactions between the components. 1149 

APPENDIX 2. 1150 
Statistical indicators: 1151 

Root Mean Square Error 1152 

ܧܵܯܴ = ቆ∑ ܯ) − ܱୀଵ )ଶ݊ ቇ.ହ 

Mean Bias (MB) 1153 

ܤܯ = 1݊ ܯ − ܱୀଵ  

Pearson correlation coefficient (r) 1154 

ݎ = 1݊ − 1 ቆܯ ெߪܯ− ቇቆ ܱ − ைߪܱ ቇୀଵ  

Where M and O are the n-element modelled and observed time series, respectively, σ is the standard deviation 1155 
and the overbar indicates temporal averaging.  1156 
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TABLE 1. PARTICIPATING MODELLING SYSTEMS AND KEY FEATURES 1682 

Operated by Modelling 
system Emission Horizontal grid Vertical grid Deposition scheme Global meteo data 

provider 

NOx emission 
share of  NO and 
NO2 

Gaseous 
chemistry 
module 

 EUROPEAN DOMAIN 

Finnish Meteorological 
Institute 

ECMWF- 
SILAM_H, 
SILAM_M 

EDGAR-
HTAP; 
TNO-
MACC 

0.25 x 0.25 deg 
Lat x Lon 

12 uneven layers up to 
13km. First layer ∼30m 

Dry: Kouznetsov and Sofiev 
(2012) 
Wet: Kouznetsov and Sofiev 
(2014) 

ECMWF 
(nudging within the 
PBL) 

90/10 CBM-IV 

Netherlands Organization 
for Applied Scientific 
Research 

ECMWF-L.-
EUROS 

TNO-
MACC 

0.5 x 0.25 deg 
Lat x Lon 
 

Surface layer (∼25m 
depth), mixing layer, 2 
reservoir layers up to 
3.5km.  

Wet: below-cloud scavening 
Dry: Zhang et al. (2001) for 
particles, Depac (Zanten et al., 
2012) for gases 

Direct interpolation 
from ECMWF 97/3 CBM-IV 

INERIS/CIEMAT 
ECMWF-
CHIMERE_H 
CHIMERE_M 

EDGAR-
HTAP; 
TNO-
MACC 

0.25 x 0.25 deg 
Lat x Lon 

9  layers  up to 500hPa. 
First layer ∼20m 

Wet: in-cloud and sub-cloud 
scavenging for gases and 
aerosols (Menut et al. 2013) 
Dry: resistance approach  as 
Emberson (2000a,b) 

Direct interpolation 
from ECMWF 

95% NO 
4.5% NO2 

0.5% HONO 
MELCHIOR2  

University of L’Aquila WRF-
WRF/Chem1 

TNO-
MACC 

270x225 cells,  
23 km 

33 levels up to 50hPa. 12 
layers below 1km. First 
layer ∼12m 

Dry: Wesely (1989) 
Wet: Grell and Freitas (2014) 

ECMWF 
(nudging above the 
PBL) 

95/5 RACM-ESRL 

University of Murcia WRF-
WRF/Chem2 

TNO-
MACC 

270 x 225 cells,t 
23 km x 23 km 

33 levels, from ∼24m to 
50hPa 

Dry: Wesley resistance approach, 
(Wesley, 1989) 
Wet: Grid scale wet deposition 
(Easter et al, 2004) and 
convective wet deposition 

ECMWF (nudging 
above the PBL) 90/10 RADM2 

Ricerca Sistema Energetico WRF-CAMx TNO-
MACC 

265x220 cells,  
23 km x 23 km 

14 layers up to 8km. First 
layer ∼25m. 

Dry: Resistance model for gases 
(Zhang et al., 2003) and aerosols 
(Zhang et al., 2001) 
Wet: Scavenging model for gases 
and aerosols (Seinfeld and 
Pandis, 1998) 

ECMWF 
(nudging within the 
PBL) 

95/5 CB05 

University of Aarhus WRF-DEHM EDGAR-
HTAP 

16.7 km x 16.7 
km 29 layers up to 100hPa Wet and dry as in  

Simpson et al. (2003) 

ECMWF
(no nudging within 
the PBL) 

90/10 Brandt et al. 
(2012) 

Istanbul Technical 
University  WRF-CMAQ1 TNO-

MACC 
184 x 156 cells, 
30 km x 30 km 24 layers up to 10hPa  Wet and Dry as in Foley et al. 

(2010) 
NCEP (nudging 
within PBL) 95/5 CB05 

Kings College WRF-CMAQ4 TNO-
MACC 15 km x  15 km 

23 layers up to 100hPa, 7 
layer below 1km. First layer 
∼14m 

Wet: Taken from the RADM 
(Chang et al., 1987) 
Dry: Electrical resistance analog 
model 

NCEP (Nudging 
within the PBL) 90/10 CB05 

Ricardo E&E WRF-CMAQ2 TNO-
MACC 30 km x 30 km 

23 layers up to 100hPa, 7 
layers below 1km. First 
layer ∼15m 

Wet: Byun and Schere (2006) 
Dry: Pleim and Ran (2011) 

NCEP 
(nudging above the 
PBL) 

Road transport: 
86/14; non-road: 
95/5 

CB05-TUCL 
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Helmholtz-Zentrum 
Geesthacht CCLM-CMAQ EDGAR-

HTAP 24 km x 24 km 
30 vertical layers from 
∼40m to 50hPa 

Wet: Byun and Schere (2006) 
Dry: Pleim and Ran (2011) 

NCEP 
(spectral nudging 
above free 
troposhere) 

90/10 CB05-TUCL 

University of Hertfordshire WRF-CMAQ3 TNO-
MACC 18 km x 18 km 

35 vertical layers from 
∼20m to ∼16km  

Dry: resistance analogy model 
(Wesley, 1989). 
Wet: Asymmetric Convective 
model algorithm in CMAQ cloud 
module  

ECMWF 
(nudging   above 
PBL) 

90/10 CB05-TUCL 

 NORTH AMERICAN DOMAIN

Helmholtz-Zentrum 
Geesthacht CCLM-CMAQ SMOKE 24 km x 24 km 

30 vertical layers from 
∼40m to 50hPa.  

Wet: Byun and Schere (2006) 
Dry: Pleim and Ran (2011) 

NCEP
(spectral nudging 
above free 
troposhere) 

90/10 CB05-TUCL 

U.S. Environmental 
Protection Agency WRF-CMAQ SMOKE 459x299 cells 

12 km x 12 km  
35 layers, up to 50hPa. First 
layer ∼19m 

Wet: Byun and Schere (2006) 
Dry: Pleim and Ran (2011) 

NCEP (nudging above 
the PBL) 

90/10
Calculated by 
MOVES for 
transport  

CB05-TUCL 

RAMBOLL Environ  WRF-CAMx SMOKE 459x299 cells, 
12 Km x 12 km  26 layers up to 97.5hPa 

Dry: Resistance model for gases 
(Zhang et al., 2003)  
Wet: Scavenging model for gases 
and aerosols (Seinfeld and 
Pandis, 1998) 

NCEP (nudging above 
the PBL) 90/10 CB05 

University of Aarhus WRF-DEHM EDGAR-
HTAP 

16.7 km x 16.7 
km 29 layers up to 100hPa Wet and dry as in  

Simpson et al. (2003) 

ECMWF
(no nudging within 
the PBL) 

90/10 Brandt et al. 
(2012) 

 1683 

TABLE 2. CONFIGURATION OF THE WRF MODEL BY MODELLING GROUP 1684 

Operated by Input data Number of 
Vertical levels 

1th Layer 
Height 

PBL 
model 

Surface 
Layer Land Surface Cloud 

Microphysics 
Cumulus 

Convection 
SW/LW 

Radiation Data Assimilation 

University of L’Aquila ECMWF 33 10m MYNN MM5 
Similarity NOAH Morrison Grell-Freitas RRTMG Grid analysis nudging 

nudging above PBL 

University of Murcia ECMWF 33 21m YSU Eta 
Similarity NOAH Lin Kain- Fritsch 2 RRTMG Grid analysis nudging 

nudging above PBL 
Ricerca Sistema 

Energetico ECMWF 33 25m YSU Eta 
Similarity NOAH Morrison Grell-Freitas RRTMG Grid Analysis nudging also 

within the PBL 

University of Aarhus ECMWF 29 20m MYJ Eta 
Similarity NOAH WSM5 Kain- Fritsch2 CAM Grid analysis nudging 

nudging above PBL 
Istanbul Technical 

University NCEP FNL 30 10m YSU Eta 
Similarity NOAH WSM3 Kain- Fritsch2 Dudhia/RRTM Grid Analysis nudging also 

within the PBL 

Kings College NCEP GFS 23  14m ACM2 Pleim-Xiu RUC WSM6 Kain-Fritsch 2 Dudhia/RRTM Grid Analysis nudging also 
within the PBL 
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Ricardo E&E NCEP GFS 23 15m ACM2 Pleim-Xiu RUC WSM6 Kain-Fritsch 2 Dudhia/RRTM Grid analysis nudging 
nudging above PBL 

University of 
Hertfordshire ECMWF 36 25m ACM2 Pleim-Xiu 5-layer thermal 

diffusion Morrison Kain-Fritsch2 RRTMG Grid analysis nudging 
nudging above PBL 

U.S. Environmental 
Protection Agency 

NCEP NAM 
analysis 35 20m ACM2 Pleim-Xiu Pleim-Xiu Morrison Kain-Fritsch2 RRTMG Grid analysis nudging 

above PBL; 

RAMBOLL Environ NCEP NAM 
analysis 35 20m ACM2 Pleim-Xiu Pleim-Xiu Morrison Kain-Fritsch2 RRTMG Grid analysis nudging 

above PBL 
RRTMG: Rapid Radiative Transfer Method for Global for solar and infrared radiation (Iacono et al. 2008); 1685 
RRTM: Rapid Radiative Transfer Method for infrared radiation (Mlawer et al., 1997) 1686 
Dudhia shortwave radiation scheme (Dudhia, 1989)  1687 
YNN: Mellor-Yamada Nakanishi-Niino (PBL) scheme (Nakanishi-Niino, 2006) 1688 
MYJ: Mellor-Yamada-Janjic (Janjic, 1994) 1689 
YSU: Yonsei University PBL scheme (Hong and Lim, 2006) 1690 
Grell-Freitas scheme for cumulus clouds (Grell and Freitas, 2014) 1691 
Eta similarity surface layer (Janjic, 2002) 1692 
KF2: Kain-Fritsch (Kain, 2004) scheme for cumulus parameterisation  1693 
CAM scheme for long and short radiation (Collins et al., 2004) 1694 
Morrison microphysics from Morrison et al. (2009) 1695 
WSM3 microphysics scheme (Hong et al., 2004) 1696 
WSM5: Double Moment 5–class Scheme (Lim and Hong, 2010) 1697 
WSM6: Double Moment 6–class Scheme (Lim and Hong, 2010) 1698 
MM5 Similairity surface layer scheme (Zhang and Anthes, 1982) 1699 
NCEP (National Centers for Environmental Prediction) FNL Operational Model Global Tropospheric Analyses 1700 
GFS: Global Forecasting System 1701 
FNL: Final (same as GFS but FNLs are prepared about an hour or so after the GFS is initialized so that more observational data can be used) 1702 
NAM: North American Model 1703 
RUC (Rapid Update Cycle, Smirnova et al., 2000) 1704 
NOAH land-surface model (Tewari et al., 2004)) 1705 
ACM2: Asymmetric Convective Model with non-local upward mixing and local downward mixing (Pleim, 2007) 1706 
5-layer thermal diffusion (Dudhia, 1996) 1707 
Pleim-Xiu: Plein and Xiu (2003) 1708 
 1709 

 1710 

 1711 
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TABLE 3. EXTENSION OF THE SUB-REGIONS AND NUMBER OF RECEPTORS USED IN THE ANALYSIS 1712 

 

EU1/NA1 
42−57.2N; -9−1.3W  

/  40−49.5; -83− -
66W 

EU2/NA2 
47.5−56N; 1.3−18W /

30−38N; -91−-75W 

EU3/NA3 
43.5−46N; 7−14W / 

33.5−43; -124−-118.5W 

EU/NA 
30−65N; -10−33W / 
26−51N; -125−-55W 

Ozone 134/165 352/63 120/93 972/667
CO 32/29 91/8 70/12 418/103

NO (EU) 27 367 161 836 
NO2 149/97 529/21 176/54 1390/340
SO2 96/69 296/3 55/3 865/141

PM10 (EU) 
PM2.5 (NA) 

47 
89 

347
9 

2
22 

619 
226 

WS 168/229 305/245 5/59 827/1721
Temp 168/232 305/243 5/46 830/1546

 1713 

TABLE 4. SUMMARY OF OZONDESONDES DATA FOR OZONE 1714 

EU
Station O3 Records Period Local time
316 52 Year(4-5 launches per month) 11-12
308 52 Year(4-5 launches per month) 10-11

318 37 Year(3-4 launches per month, 
mostly winter and autumn) 11-12 

242 46 January-April(10-12 launches per month) 11-12
156 144 Year(12 launches per month) 10-12
099 66 Year(5-6 launches per month) Mostly early morning 4-6 
053 149 Year(11-13 launches per month) 11-12
043 51 Year(4-5 launches per month) 11-12

NA
021 44 Year(3-4 launches per month) 11-12
107 54 Year(4-5 launches per month) 16-20

338 50 Year(2-4 per month; 17 in July; 
none in September) 

14-15 July-August
17-18 other months 

456 57 2-5 per month; 25 in July 17-18
457 75 Year(2-5 per month; 18-20 in May-June) 23-00
458 71 Year(3-8 per month; 20 in July) 23-00
 1715 

 1716 
 1717 
 1718 
 1719 
 1720 
 1721 
 1722 
 1723 
 1724 
 1725 
 1726 
 1727 
 1728 
 1729 
 1730 
 1731 
 1732 
 1733 
 1734 
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FIGURES 1735 

Figure 1. Sub-regions of the two continental domains ( a) EU; b) NA ). Overlaid are the ozone monitoring stations classified 1736 
based on the network 1737 

Figure 2. RMSE for a) Temp and b) WS in Europe  1738 

FIGURE 3 RMSE for a) Temp and b) WS in North America 1739 

Figure 4. Mean Bias (mod – obs) for the vertical profiles of Wind Speed measured by ozonesondes launched from the 1740 
European locations indicated on the inset map of each panel. The number of hourly profiles available for each site is 1741 
reported in the parenthesis at the top of each panel 1742 

Figure 5. Mean Bias (mod – obs) for the vertical profiles of Temperature measured by ozonesondes launched from the 1743 
European locations indicated on the inset map of each panel. The number of hourly profiles available for each site is 1744 
reported in the parenthesis at the top of each panel 1745 

Figure 6. Mean Bias (mod – obs) for the vertical profiles of Wind Speed measured by ozonesondes launched from the North 1746 
American locations indicated on the inset map of each panel. The number of hourly profiles available for each site is 1747 
reported in the parenthesis at the top of each panel 1748 

Figure 7. Mean Bias (mod – obs) for the vertical profiles of Temperature measured by ozonesondes launched from the 1749 
North American locations indicated on the inset map of each panel. The number of hourly profiles available for each site is 1750 
reported in the parenthesis at the top of each panel 1751 

Figure 8. Spatial and temporal variability of the wind direction for a) EU and b) NA for the full year 2010. The boxes extend 1752 
between the 25th and 75th percentile of the total distribution. The whiskers extend from the minimum to the maxium 1753 
values. 1754 

Figure 9. RMSE (ppb) for CO by spectral component and season (panel a for Europe and b for North America).  FT is the full 1755 
(un-filtered) time series, LT, SY, DU, are the Long Term, Synoptic and diurnal components, respectively.  1756 

Figure 10. MSE (ppb2) breakdown into bias squared, variance and mMSE for the spectral components of the spatial average 1757 
time series of CO during the months of December, January, and February (DJF), based on EQ.6. The bias is entirely 1758 
accounted for by the LT component. The signs within the bias and variance portion of the bars indicate model 1759 
overestimation (+) or underestimation (-) of the bias and variance. The colour of the mMSE share of the error is coded 1760 
based on the values of r, the correlation coefficient, according to the colour scale at the bottom of each plot. Top panel: 1761 
EU; lower panel: NA. Similar plots for the other two sub-regions are reported in the supplementary material.  1762 

Figure 11. RMSE variation between the ‘s20%’ scenario (anthropogenic emission and boundary condition reduced by 20%) 1763 
and  the base case for CO in EU2 1764 

Figure 12. Top panel: as in Figure 9 for NO (EU only). Lower panel: as in Figure 10 for NO (EU only) 1765 

Figure 13. RMSE variation between the ‘s20%’ scenario (anthropogenic emission and boundary condition reduced by 20%) 1766 
and  the base case for anthropogenic NO (aNO) in eu2 1767 

Figure 14. As in Figure 9 for NO2.  1768 

Figure 15. As in Figure 10 for NO2 in EU2. Upper panel: Urban sites only (223 stations); lower panel: Rural sites only (159 1769 
stations)  1770 

Figure 16. As in Figure 10 for NO2 in NA1. Upper panel: Urban sites only (39 stations); Lower panel: Rural sites only (10 1771 
stations). 1772 

Figure 17. As in Figure 9 for ozone 1773 

Figure 18. As in Figure 10 for ozone during the months from May to September 1774 
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Figure 19. Ozone mixing-ratio profiles measured by ozonesondes launched from the European location indicated on the 1775 
inset map (lower-right corner) of each panel. The profiles are time-averaged over the number of hourly records reported in 1776 
the parenthesis at the top of each panel. Legend as in the first panel. 1777 

Figure 20. As in Figure 19 for North America 1778 

Figure 21. Ozone vs NO modelled mean bias for the EU2 sub-region, color-coded by temperature bias and symbols 1779 
according to the NOx emission fraction of NO and NO2. Each point represents a model. a) winter months and b) summer 1780 
months. 1781 

Figure 22. As in Figure 9 for SO2  1782 

Figure 23. As in Figure 10 for SO2 1783 

Figure 24. As in Figure 9 for PM10 in Europe (error units in µg/m3) 1784 

Figure 25. As in Figure 9 for PM2.5 in North America (error units in µg/m3) 1785 

Figure 26. As in Figure 10 for PM10 in Europe (error units in µg/m3) 1786 

Figure 27. As in Figure 10 for PM2.5 in North America (error units in µg/m3) 1787 

Figure 28. Spatial map of the ozone monitoring stations coloured based on the ‘delta hour’ values, i.e. the difference in 1788 
hours between the zero of the autocorrelation function (acf) for the modelled ozone minus the zero of the acf of the 1789 
observed one. The acf is calculated on the long term component for the months of May to September. Negative values 1790 
indicate too short memory and excess of removal (vice-versa for positive values). The box on the right summarises the 1791 
delta hour percentile distribution. 1792 

Figure 29. As in Figure 28 for North America. 1793 
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