
“Evaluation and Error Apportionment of an Ensemble of Atmospheric Chemistry Transport Modelling Systems:  
Multi-variable Temporal and Spatial Breakdown”, by Efisio Solazzo et al, ACP, 2016. 
We are thankful to both reviewers for the positive comments and useful suggestions. We have revised the manuscript in 
many parts to take on board the suggestions and improve the exposure and discussion of the results. All the figures have 
been replaced to accommodate change of scale and grouping of models. A new table has been added, summarising the 
configuration of the WRF model adopted by the modelling groups. The evaluation of model results has been extended to 
include also the wind direction. More than twenty new references have been added to integrate the discussion of the 
results. 
 
Response to reviewer #1. 
 
My rating for this paper is minor revisions; no additional analysis is necessary. At the same time, I have a number of 
comments, questions and suggestions for the authors, which would improve the usefulness and “cite-ability” of the 
paper by the general research community.  
   
Main Points:  
(1) Regarding the limitations of KZ filtering (page 5, lines 190 to 199): The authors state that “a clear-cut separation of 
the components of Equation (8) is not achievable, since the separation is a non-linear function of the parameters m and k 
… and the leakage among the components mixes together in each component different physical processes”. I agree with 
the authors that the choice of m and k values which have been used to date in their and other analyses quoted, along 
with the construction of equation (8) from the differences between KZ low-pass filters of relatively close m,k pairs, 
results in unwanted energy overlap across the spectral components. However, there are other options which could be 
used to minimize the potential for energy overlap. For example, the frequency analysis of the KZ(103,5), KZ(13,5), KZ(3,3) 
pairs carried out by Hogrefe et al (2000) (their Figure 1 on page 2086 of that article) shows the nature of the overlap 
issue – the KZ filter does not have a sharp cut-off in energy as a function of frequency, so that, for example, the low-pass 
KZ(3,3) passes 100% of the 1/week variation, while the KZ(13,5) passes about 13% of the 1/week variation (with the 
result that about 13% of the 1/week energy overlaps between the “SY” and “DU” time series, and differences between 
the two may have interference due to this overlap). The unmodified KZ filter is thus imprecise, though there are 
strategies which could reduce this imprecision. For example, rather than making use of the KZ filter as a band-pass 
through differencing, one could choose m,k values which represent the complete elimination of energy for frequencies 
higher than the given limit. Specifically, the frequency of the KZ filter’s 50% energy pass limit is given by the equation 
below:  
 

 

(1) 

 
From inspection of Hogrefe et al (2000)’s energy diagram, it can be seen that the low frequency cutoff limit (i.e. the 
frequency above which 99% or more of the energy will be removed by the low-pass filter) is about 2.82 times the 50% 
frequency from the formula above.  One can thus choose values of m,k for which most of the energy is removed (e.g. a 
KZ(523,3) will remove 99% of the energy corresponding to periods shorter than 30 days, KZ(95,5) will remove 99% of the 
energy corresponding to periods shorter than 1 week, KZ(17,3) will remove 99% of the energy corresponding to periods 
shorter than 1 day).  Using these KZ(m,k) values (and comparing the analyses for them) will also show the impact of the 
different time scales just as well as the band-pass approach currently in use by the authors - without the issue of energy 
overlap due to attempting to use KZ as a band-pass. This as an alternative to attempting a band-pass by differencing two 
close low-pass filters. Another option is to use the modified KZ filter known as the KZ Fourier Transform (KZFT), wherein 
the original moving average is multiplied by a complex exponential function centered on the desired center wavelength. 
This is a better option for band-pass than the differencing in the references quoted by the authors, though it has the 
disadvantage of being a very narrow band-pass (see Yang and Zurbenko, WIREs Comp Stat, 2, pp 340-351, 2010).      
My point here is not that the authors approach is invalid (it has limitations, and they’ve stated its limitations accurately) 
– but there are other ways to make use of the KZ filter which will be less prone to energy overlap (and thus blurring of 
the impacts of time scale) aside from the strategy used to date.  i.e. while a “clear cut separation of the components of 
equation 8 is not achievable”, one doesn’t necessarily need to use equation (8) to recover the effects of different time 
scales with a KZ filter, and there are other strategies which can get around this problem. A few lines of discussion 



acknowledging these possibilities should be added to the existing discussion.  
Response. Quoting Rao et al (1997): ‘Poor separation leaves together in each component completely different physical 
phenomena’, we recognise that overlapping of frequencies is a serious shortcoming of the applied filter and we 
specifically warn the reader about it. Keeping in mind that the main scope of this work is to attribute error to processes, 
however, we don’t believe that the overlapping among frequencies is the main obstacle for not having succeeded to 
achieve our main goal.   
The analysis we propose in this study is mostly applicative - in the sense that we wish to apply existing methods to 
investigate the error of a suite of models. The kz filtering we adopt is based on solid theory and abundant applications 
that makes it, in the formulation used in manuscript, the most robust available (proposed and adapted to ozone by 
Zurbenko and colleagues over the years). There are several combinations of (m,k) parameters and many other methods 
that could have been used, but we opt for the formulation mostly applied and documented (along with its shortcoming) 
rather than exploiting a new one in this applicative context. In previous publications (Hogrefe et al 2003; Kioutsioukis and 
Galmarini 2014; Galmarini et al 2013; Solazzo et al 2015 and 2016) the authors have described to some length other 
available options and the reason as to why the kz band pass was chosen. About the method proposed by the reviewer, it 
is certainly an option that would require dedicated testing that are beyond the aim of the current study. The following 
text has been added to the revised section 2.2: 
‘Other spectral techniques could be used but either they do not guarantee the absence of signal leakage (e.g. anomaly 
perturbation method) or require special treatment of missing data (e.g. wavelet transform method) (Rao et al., 1997; 
Eskridge et al., 1997), or are more convoluted (e.g. kz-Fourier Transform), or simply have not been applied as frequently 
as the kz filter to air quality data (e.g. Bowdalo et al., 2016). Hogrefe et al. (2003) provided an exhaustive comparison 
among four techniques for separating different time scales in atmospheric variables (kz, kz-Fourier Transform, wavelet 
transform and elliptic filter) and concluded that they all gave qualitatively similar results in terms of the variance 
distribution among components and that no single filter outperformed the others for all applications.’.         
 
(2) The discussion on the emissions inventories (lines 211 to 237) was a bit hard to follow. Lines 211 to 220 read like a 
single inventory was used, while lines 224 to 225 mention two inventories, and which inventories were used for which 
models is not always clear. Some of this seemed to contradict some of the information about the individual modelling 
systems appearing later in the manuscript (where modified emissions are mentioned in some model system 
descriptions), with the result that the reader is not able to determine exactly which emissions inventories were used with 
which model, and the extent to which emissions were invariant between modelling systems. The authors should clarify 
this by including the emissions inventory(/ies) employed in each model in their summary table comparing the models, 
and modify the text accordingly.  

Response. We have clarified in the text and added the adopted emissions in the summary table 1.The following text have 
been added/modified: 
‘The ‘standard’ emission inventories are those developed for the second phase of AQMEII for EU and NA and extensively 

described in Pouliot et al. (2015). For EU, the TNO-MACC-II (Netherlands Organization for Applied Scientific Research, 

Monitoring Atmospheric Composition and Climate) inventory of anthropogenic emissions for the year 2009 was used, 

while biogenic emissions (meteorology-dependent) were specifically calculated for the year of 2010 by several groups. 

Five modelling systems have used the EDGAR-HTAPv2.2 emission inventory (Janssens-Maenhout et al., 2015), which 

complements the standard MACC inventory in regions outside EU (Table 1). The two inventories (MACC and HTAP) are 

approximately the same over the common part of EU (the standard MACC inventory does not cover North Africa, while it 

does cover eastern Europe, including Russia and Turkey.), and only differ for regions outside the EU borders but within the 

domain boundaries, such as North Africa. Some discrepancies might exist among the two inventories (e.g in the emissions 

from ships). For Chimere, the MACC inventory over France and the UK was spatially redistributed considering national 

inventories (having higher spatial resolution), while for the other countries it was redistributed by considering point 

source locations, land-use and population. For processing the HTAP inventory, population was not used as a parameter 

for spatially distributing the emissions. 

For the NA domain, the 2008 National Emission Inventory was used as the basis for the 2010 emissions, providing the 

inputs and datasets for processing with the Sparse Operating Operator Kernel Emissions (SMOKE) processing system 

(Mason et al., 2012). Specific updates for the year of 2010 were made for several sectors, including mobile sources, power 

plants, wildfires, and biogenic emissions.  Details are given in Im at al. (2015a,b) and Pouliot et al. (2015).  

Typically, emission processors use annual emission total, while AQ models require hourly input values. Therefore, proxies 

http://cmascenter.org/smoke


variables and surrogate fields are used to spatially disaggregate the annual total and to allocate them temporally. The 
overall model accuracy heavily depends on the degree of similarity between the disaggregation of total emission and the 
true spatial and temporal distribution (Makar et al., 2014). Furthermore, the emissions for EU, being compiled on a 
country-wise basis, are affected by gaps and inconsistency across borders which require further processing and 
manipulation (Pouliot et al., 2015).’  
 

(3) The text descriptions of the models were uneven in the level of detail – some described all of the individual model 
parameterizations with references, some were much shorter, some overlapped the information in the table, some did 
not, some described processes not described in others. This makes it difficult for the reader to understand the 
differences between the different modelling systems, hence draw inferences for the differences in model results. Rather 
than repeat the table, could the authors use the text in this section to describe only those components of the models 
which are unique from the others, particularly for the case of multiple implementations of the same model (e.g. have 
one WRF-CHEM main description followed by a paragraph describing the variations used in the study, ditto for 
WRF-CMAQ, etc.)? Part of what readers of the article will want to do is determine which key differences between the 
models are responsible for some of the differences in model results – this is difficult to do with the current formatting.  

Response. The section 2.3.1 has been revised significantly. A new table (Table 2) summarises the options used by the 
WRF runs and a new paragraph summarises the features of the CMAQ runs. Features of each modelling systems 
(including Chimere, SILAM, L.-Euros, CCLM) are described individually. There is some overlap between the tables and the 
information provided in the text, but that does no harm. Any further information can be retrieved from the references 
provided.   
 
TABLE 2. CONFIGURATION OF THE WRF MODEL BY MODELLING GROUP 

Operated by 
Input 
data 

Number 
of 

Vertical 
levels 

1th 
Layer 

Height 

PBL 
model 

Surface 
Layer 

Land 
Surface 

Cloud 
Microphysics 

Cumulus 
Convection 

SW/LW 
Radiation 

Data 
Assimilation 

University of 
L’Aquila 

ECMWF 33 10m MYNN 
MM5 

Similarity 
NOAH Morrison Grell-Freitas RRTMG 

Grid analysis 
nudging 
nudging 

above PBL 

University of 
Murcia 

ECMWF 33 21m YSU 
Eta 

Similarity 
NOAH Lin 

Kain- Fritsch 
2 

RRTMG 

Grid analysis 
nudging 
nudging 

above PBL 

Ricerca 
Sistema 

Energetico 
ECMWF 33 25m YSU 

Eta 
Similarity 

NOAH Morrison Grell-Freitas RRTMG 

Grid 
Analysis 

nudging also 
within the 

PBL 

University of 
Aarhus 

ECMWF 29 20m MYJ 
Eta 

Similarity 
NOAH WSM5 

Kain- 
Fritsch2 

CAM 

Grid analysis 
nudging 
nudging 

above PBL 

Istanbul 
Technical 
University 

NCEP 
FNL 

30 10m YSU 
Eta 

Similarity 
NOAH WSM3 

Kain- 
Fritsch2 

Dudhia/RRTM 

Grid 
Analysis 

nudging also 
within the 

PBL 

Kings College 
NCEP 
GFS 

23  14m ACM2 Pleim-Xiu RUC WSM6 
Kain-Fritsch 

2 
Dudhia/RRTM 

Grid 
Analysis 

nudging also 
within the 

PBL 

Ricardo E&E 
NCEP 
GFS 

23 15m ACM2 Pleim-Xiu RUC WSM6 
Kain-Fritsch 

2 
Dudhia/RRTM 

Grid analysis 
nudging 
nudging 

above PBL 

University of 
Hertfordshire 

ECMWF 36 25m ACM2 Pleim-Xiu 
5-layer 
thermal 
diffusion 

Morrison Kain-Fritsch2 RRTMG 

Grid analysis 
nudging 
nudging 

above PBL 

U.S. 
Environmental 

NCEP 
NAM 

35 20m ACM2 Pleim-Xiu Pleim-Xiu Morrison Kain-Fritsch2 RRTMG 
Grid analysis 

nudging 



Protection 
Agency 

analysis above PBL; 

RAMBOLL 
Environ 

NCEP 
NAM 

analysis 
35 20m ACM2 Pleim-Xiu Pleim-Xiu Morrison Kain-Fritsch2 RRTMG 

Grid analysis 
nudging 

above PBL 

  
 

(4) Data analysis methodology, lines 441 – 443 and 449 – 451: the means of hole-filling for data gaps in the temporal 
records for the accepted stations should be described (e.g. local interpolation for smaller gaps? Average over all values 
for all gaps?).   
Response. No imputation on missing values has been performed, in the sense that the missing data have been treated as 
missing during the analysis. The kz filter can handle missing data and the score statistics has been calculated only on 
complete pair of model-observations, as it was done for the previous AMQEII-related analyses.  
 
Lines 449 to 451 are a bit unclear: why was spatial averaging carried out and what were the domains?  
Response. Spatial averaging has been carried out on the selected sub-regions shown in figure 1. The reason for spatially 
averaging is to ease the display of the results. The purpose of the clustering the observed signal is indeed to identify a 
pool of receptors where the signal is homogeneous up to a given similarity threshold (set to 0.65). The spatial average 
carried out on that pool of stations returns a smoothed signal that is representative of the cluster.   
 
I think this may need a line or two at this point in the text to the effect of “hierarchical clustering was used to determine 
sub-regions with similar characteristics – spatial averaging within these sub-regions was carried out due to the similarity 
of the observation data within these regions implying they will experience common chemistry”… or words to that effect.  
Response. Done as suggested 
 
(5) For the analysis itself (sections 3 and 4): the analysis tended to focus on how the models performed, as opposed to 
why differences in performance took place. The former is a valuable service in describing the state of the science, which 
has now appeared in all three phases of AQMEII – but the latter is of interest for those wishing to use the comparisons to 
further improve model performance. I’m hoping that the authors could take the time (I’m thinking a few days of 
discussion followed by an additional page of text in the manuscript) to delve a little bit deeper in their evaluation to 
suggest/speculate why certain models had poor performance for some predicted variables while others had better 
performance, in order to provide guidance to the community on how to move the science behind these simulations 
forward.  
 
Response. Our study offers an outlook of where state-of-the-science regional AQ models currently stand, for a variety of 
species and meteorological fields at the surface and in the troposphere, with a time scale analysis enlarged to several of 
the most well-known and applied models worldwide. In this respect the work presented here is unprecedented. 
After three phases of AQMEII and a number of related publications, we have noticed that advancements in model 
performance are rather limited or absent, and that the discussion based on ‘speculation’ and ‘conjectures’ about 
possible causes of model error was not helping towards enhancing the modelling experience, and risking to become 
sterile. Indeed, avoiding ‘speculation’ and ‘conjectures’ about possible causes of model error was the driving motivation 
of the error apportionment method we have devised. So far, the method has proven helpful in framing the time-scale of 
the error. The time scale information is passed to modellers who, based on the feedback received, try i) to detect the 
process responsible for the error at that time scale and/or ii) together with the AQMEII community to explore methods 
for a deeper investigation before applying changes to the model. With this work, we currently are at the beginning of the 
implementation, i.e. at the information step. There is an intrinsic limit in any diagnostic methodology that can be 
overcome only by exercising the model, in all its features and possibilities, which cannot be done by a large community. 
Although there is an added value in evaluating more models than one at a time, the results presented in this study are 
meant to guide the individual groups to target the direction they want to move.  
The literature is rich with possible motivations behind the inaccuracy of the models for many years now, with (excluding 
a limited number of modelling teams) little tangible advancement. We try not to add any more hypotheses as to why the 
errors occur, and the reason is that in most of the cases the modellers simply don’t know. AQ models have grown in 
complexity and nonlinearity beyond our capacity to control each process in isolation, to the extent that we are actually 
questioning the fruitfulness of future evaluation studies that do not envision specific sensitivity analysis (sensitivity to 
processes and conditions). Furthermore, there is another type of non-commensurable error (almost) never considered, 
that is the error produced by the modellers/users in manipulating, extracting, transforming, and submitting the results 
for analysis. Our experience with AQMEII indeed suggests that, for any given variable, about one in 13-14 models 



provided ‘bugged’ data. Sometimes these errors are easily spotted and corrected/removed, some other times they are 
subtle and elusive to an averaged model inter-comparison such as the one presented here.      
That said, it is well recognised that even small, subtle changes in model configuration strongly influence the air quality 
calculations and that air quality model scores vary by time of the day, season, region, emission regime, etc. The exercise 
to synthetize the enormous amount of information provided by AQMEII3 has brought up some interesting commonalities 
among model deficiencies, but any attempt to link those to processes has not been fruitful because of the high 
non-linearity of the interactions among different components of the models. We have clearly stated in the conclusions 
that we have failed our main objective. A second manuscript (a sort of follow up or Part II), is in preparation for this same 
ACP special issue where we focus on two models only (CMAQ and Chimere), making use of additional sensitivity runs 
where we explore at some depth the causes of model error for ozone.    
In the revised manuscript we have expanded the discussion at least for the poorest model performance and revised the 
description of modelling configurations, but by looking at different or similar configuration of the models little can be 
gained. An example above all is the new wind direction comparison for EU3, where WRF models using the same settings 
behave very differently.        
  
Some examples:  
a. Lines 518-522:  This subset of models had the worst performance for wind speed – what makes them different from 
the other models in this regard? A particular variation of the met driver? Different surface characteristics?    

Response. The modellers cannot explain the causes of the models error, and no robust explanations could be found 
depending on the models configuration, which are also common to other models (see new Table 2 where the settings of 
WRF are summarised) 

 

b. Lines 548-550:  This is an important result – a common problem across many models. For those models which 
seemed to be the least affected by this problem – what makes them different from the other models?   

Response. If the reviewer is referring to the overestimation of vertical WS profile by WRF-WRF/Chem1 model, while all 
the other models seems to under-predict the WS, we have clarified that the only consistent difference between 
WRF/Chem1 and all the other models is the difference in nudging. WRF/Chem1 adopts nudging of WS only during 
spin-up preceding the 72-hour run, while the other models keep the nudging active during the entire run.     
 

c. Dry deposition discussion (section 3.2): WRF-DEHM was different from the other models – why?  What is different 
about that model’s deposition setup which might give rise to this result?  

Response. We have removed the discussion about dry deposition to avoid confusion  
 

d. Lines 573 – 576: There is a factor of 7 difference between the different model’s PM2.5 deposition for the EU – what 
are the main differences in model PM2.5 processes between the models which could contribute to these differences?  

Response. We have removed the discussion about dry deposition to avoid confusion  
 

e. Section 3.3.1 – most of the error seems to reside in the LT component as bias – but not all models are the same; can 
the authors suggest to what components of the models the differences might be attributed?  

Response. Given the homogeneity of the CO error, we believe that the error stems from a common cause, quite likely 
emissions. Based on known results from relevant literature we have also listed a range of other possible causes: PBL 
stability (same as PM10), lack of temperature dependent emissions, wind speed overestimation, poor representation of 
the diurnal variation of the emissions.  
 

f. Lines 720-724: The common model EU negative bias of the mean NO2 is an important result – noting that the winter 
bias is usually positive, this implies that the summer bias may be quite negative.  What possible causes might contribute 
to this bias, based on the different models’ performance?  Common positive bias of the PBL height (except in winter) 
perhaps?  Photolysis rates too high?  Shading effects missing, forest canopy or urban canopy?  Emissions estimates 
for residential combustion low? – Line 751 suggests emissions as the key feature – but there is variation across the 
models which might give some insights into other factors.  

Response. The bias for NO2 is negative in winter and summer (table S7 and figure 15). We have added some discussion in 
the revised manuscript, pointing to possible causes of NO2 bias, including PBL error and unknown processes (systematic 
error), such as shading. The following text has been added: 



‘The bias is probably caused by a combination of factors, including emissions estimate (e.g. underestimation of residential 
combustion), PBL height and vertical mixing at night (when wood combustion emissions tend to be maximum, e.g. Denier 
Van Der Gon et al., 2015), and missing processes acting as systematic errors, such as  shading effects of forested 
canopies (e.g. Makar et al., 2016).’   
 

g. Lines 869-878:  Most SO2 emissions are due to large stack sources. How are SO2 emissions distributed in the vertical 
in the different models? Are they all using the same plume rise algorithm? Is there any correlation between model 
vertical resolution and SO2 performance (LT bias)?  The ECMWF-L-EUROS, WRF-WRF/Chem2, and ECMWF-chimere 
models had a large negative bias – are there any commonalities between these models that might account for this 
common negative bias?  For that matter, what are the main differences between WRF-WRF/Chem1 and 
WRF-WRF/Chem2 which might account for the substantial difference in SO2 bias between these two relatively similar 
models?  Meanwhile WRF-CMAQ3 has a large positive bias – what makes it different from the other implementations?  
Response. We have complemented the discussion of SO2 with more information. Again, attempting to group the 
performance by features does not lead to consistent conclusions. Models like CMAQ2, CMAQ3, CMAQ4 use the same 
PBL module and similar vertical structure (CMAQ3 has more layers) but the bias error they produce is different (that of 
CMAQ3 is much higher). The following text has been added: 
‘The majority of models employed the prescribed vertical distribution by EMEP (Vestreng and Støren, 2000), while CMAQ4 
in EU and WRF-CMAQ in NA adopted the Briggs plume rise algorithm (Briggs, 1971; 1972) accounting for the effects of 
modelled meteorology, and SILAM and CCLM-CMAQ adopted the sector dependent vertical emission profiles as in Bieser 
et al. (2011b).’  
and 
‘By contrast, WRF/Chem2, Chimere and L.-Euros show significant low bias (the latter two models have the smallest 
number of vertical layers). Overall, though, the bias error does not group consistently by PBL scheme and/or vertical 
resolution. For example, CMAQ2, CMAQ3, CMAQ4 employ the same PBL scheme based on ACM2 and have comparable 
number of vertical levels (CMAQ3 has even more), but the bias of CMAQ3 is much larger than that of CMAQ4 and CMAQ2 
which, in turn, have comparable bias but opposite in sign. The two instances of WRF/Chem show significantly different 
biases, which might be due to the different PBL and cloud schemes, influencing the SO2 oxidation (Table 2).’    
 
h. Section 3.3.6:  the SY correlation for PM2.5 is poor for three specific models (WRF-CAMx, WRF-Chem1, and 
WRF-Chem2) – why?  What do these models have in common and/or are different from the other models?  

Response. We do not have an explanation for this as we cannot find any robust link between the commonality of the 
error to that of the models configuration. We have added the following text in support of the performance of the 
WRF/Chem1 model:  
‘possibly due to the low nitrate concentration and high sulphate concentration during winter months, resulting from the 
GOCART parameterization of the aqueous cloud chemistry.’  
 

i. Section 4 – the models’ performance for this covariance analysis seemed to show the most variation across northern 
Germany and the Benelux countries; compare WRF-CAMx and ECMWF-L-EUROS to WRF-CMAQ3, CCLM-CMAQ-N.  The 
ECMWF based models seemed to get positive numbers there, WRF based models negative.  The implication is a 
meteorological driver bias leading to a difference in O3 memory.  What met factors might be having this effect?  Is 
there a corresponding regional temperature bias, for example?  WRF-Chem1 and WRF-Chem2 had different 
performance – what’s different between these implementations which might lead to these differences.  
Response. We actually found similarity with the bias of ozone, rather than with met drivers, but not consistently, in the 
sense that for some models (CMAQ1 for example) the similarity fails. The rate by which the memory decays with time is 
modulated by the large scale circulation and the met driver surely plays a fundamental role (more in terms of 
geopotential height), as well as the fluxes at the boundaries (emission, deposition and boundary conditions). Again, we 
could speculate about possible causes of model differences but we could not detect any robust pattern explainable in 
terms of differences in model configuration.    
 
These above are a few examples I noticed from the work – which shows in detail the extent to which the models 
differed, and at different time scales, but doesn’t discuss why they might be different to any great extent. I recommend 
the authors include a paragraph or three in the conclusions suggesting possible causes for these differences, and 
recommendations for their investigation.  
Response. We have added some further considerations in the conclusions, not mainly related to ‘possible’ causes of 
model errors but rather to way to proceed in the evaluation to allow diagnosing more precisely the causes of errors. The 



following textx has been added: 

‘The bias is, by far, the primary source of error and the most important from a model evaluation/development point of 

view. Because it is essentially a shift of the mean concentration, the causes of it need to be sought in processes and 
conditions at the boundaries that have a systematic effect of displacing the concentration values while approximately 
preserving the shape of the distribution. Thus, processes like emission timing, chemistry transformation, autocorrelation 
structures, stratospheric intrusion, atmospheric stability are unlikely responsible for systematic bias-type error (while they 
can be source of casual inaccuracy for limited periods). On the other hand deposition fluxes, magnitude of emission, input 
from the lateral boundaries are more probable sources of bias error. The effect of meteorology is more complex, as errors  
in synoptic circulation can induce surface wind velocity and direction to be inaccurate, and thus negatively impacting on 
the long term modelled concentrations causing bias error.’    
And 
‘Future AQ model evaluation activities should envision sensitivity simulations and process specific analyses. The ‘theory of 

evaluation’ based on information theory currently being developed by the hydrology modelling community (Nearing et al., 

2016 and references therein) is a promising way forward and the AQ community should be prepared to catch those 

developments. Ongoing work (Solazzo et al., 2017) is being devoted to deepen the investigation of causes of model errors 

by focusing on two models (CMAQ for NA and CHIMERE for EU), for which additional model runs have been carried out to 

frame the effect of fluxes (emissions, boundary conditions and deposition) on modelled ozone.’ 

(6) Several times in the discussion, the authors attribute common poor diurnal (DU timescale) performance on poor 
meteorological performance, since the latter has a significant diurnal variation.  I agree that this may be one possible 
cause of the problem – another might be poor quality of the diurnal portion of the temporal variation in the driving 
emissions (c.f. Makar, P.A., Nissen, R., Teakles, A., Zhang, J., Zheng, Q., Moran, M.D., Yau, H., diCenzo, C., Turbulent 
transport, emissions and the role of compensating errors in chemical transport models, Geosci. Model Dev., 7, 
1001-1024, 2014), where we showed some examples of the impact of poor temporal splitting of specific source types on 
model performance).  How well does the temporal variation in the input CO emissions in the EU (see lines 607-616) 
correspond to observed near-source variations?  Also, DU and smaller time-scale performance may correspond to 
errors in the wind direction taking the modelled plumes from sources in a different direction from reality.  In that 
respect, a wind direction comparison in addition to wind speed would be very useful (is this do-able with the submitted 
data)?  
Response. We have included the reference to the paper as suggested as a possibility of the error in CO, but have no 
means to investigate its validity. We have added the discussion about the wind direction (section 3.2 and Figure 8).    
 
Minor issues:  
Line 397:  HZG has not been defined.   
Response. Done 
 
Line 441:  the means of hole filling for data gaps should be outlined – were averages of the entire period used for all 
gaps, or were smaller gaps filled by local interpolation, for example?  
Response. No gap filling was used. See reply to major comment 4 
 
The inset map figures are I think supposed to show the station locations for the vertical profiles – these locations are very 
difficult to make out. I don’t see why the inset maps need to show any sort of concentration field (impossible to read 
that for their size anyway) – please replace with a white background with a large symbol showing the station location.  
Response. The inset maps do not show the concentration field, but just the default background Matlab uses for that type 
of plots. We have replaced the figures. 
 
Lines 560 to 565:  Not really clear to the reader how the deposition figures were generated; please clarify.  A total 
accumulation in deposition would be a single number for each model, while these are distributions.  The different 
models had different horizontal resolutions – were the deposition outputs from the models accumulated to a common 
grid prior to calculating the distributions shown?  Otherwise this may be an pples to oranges comparison; a model with 
a higher resolution would tend to have a greater variability than a lower resolution model due to less spatial averaging of 
surface characteristics. 
Response. We have removed the plots and discussion about deposition from the main text to avoid confusion and 
misinterpretation.  
 



Line 711-712: This lack of dependence on the NO2/NOx emissions ratio should not be a great surprise given the fast 
chemistry between NO2 and NO.    
Response. We have clarified in the text.  
  
Lines 781-784, lines 830-834:  the SY component low precision is interesting – is there a seasonality that might be linked 
to downslope winds in mountainous areas? EU3 being surrounded by mountains – this made me wonder about 
tropopause fold events.  These can sometimes have a big impact on ozone downwind, if a mechanism (such as 
convection or foehn wind circulation) exists to transfer the ozone further towards the surface from the middle 
troposphere – cf Makar, P.A., Gong, W., Mooney, C., Zhang, J., Davignon, D., Samaali, M., Moran, M.D., He, H., Tarasick, 
D.W., Sills, D., and Chen, J., Dynamic adjustment of climatological ozone boundary conditions for Air-Quality Forecasts, 
Atmos. Chem. Phys. 10 (6),  8997-9015. Do the different met models have a mechanism to parameterize 
troposphere/stratosphere exchange events? What was the upper boundary condition employed by the models for ozone 
(and other species)?  Those with a higher top and a more detailed meteorology might capture fold events better than 
those with a lower top and/or less detailed meteorology.  
Response. That is a possibility and we have acknowledged in the revised text with reference to the work suggested by 
the reviewer. The SY error being larger in EU3 is in line with that hypothesis.  
 
Lines 805 – 808:  my own work suggests that the bias error may be due to the absence of forest shading in most 
air-quality models (EGU presentation and ITM conference proceedings so far, paper under review) – this would also be 
consistent with the NO2 underprediction showing up in the EU results. 
Response. We added the hypothesis suggested by the reviewer in the revised manuscript.   
    
Text on Figure 21 is too small to read.  
Response. Corrected 
 
Section 3.3.4: This makes sense in terms of the chemistry, but the driving causes for those chemical changes are less 
clear. Temperature gradient or PBL height might be worth checking – is the bias due to too stable / low PBL in winter (too 
high in summer)?  
Response. We have added some considerations about the mixing in the revised section 3.3.4. 
 
Line 1081:  probably should be “conclusions” rather than “considerations” in this sentence.    
Response. Rephrased 
 
 
 
 
  


