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Abstract 9 

In a previous, study of Quaas et al., (2008) the radiative forcing by anthropogenic aerosol due 10 

to aerosol-cloud interactions, RFaci, was obtained by a statistical analysis of satellite retrievals 11 

using a multilinear regression. Here we employ a new statistical approach to obtain the six 12 

fitting parameters, determined using a non-linear statistical approach to obtain the six fitting 13 

parameters, for the relationship between planetary albedo and cloud properties and, further, the 14 

relationship of the cloud properties and aerosol optical depth. The statistical approach is 15 

compared to the results from radiative transfer simulations over three different regions and for 16 

different seasons. We find that the results of the new approach agree well with the simulated 17 

results over both land and ocean. The new statistical approach increases the correlation 18 

coefficient of the fitted to the satellite-retrieved albedo by 21%-23% and decreases the error, 19 

compared to the previous approach. 20 

1 Introduction 21 

Aerosols are considered to have a large effect on climate, both through aerosol radiation 22 

interactions, and through aerosol-cloud interactions by serving as cloud condensation nuclei 23 

(CCN), therefore increasing Nd and thus cloud albedo (Twomey, 1974), as well as rapid cloud 24 

adjustments (Boucher et al., 2013). Much work has been done to quantify the radiative forcing 25 

by aerosol-cloud interaction (RFaci), yet it remains highly uncertain. The annual radiative 26 

forcing from aerosol induced changes in cloud albedo were reported as -0.7 Wm-2 with an 27 

uncertainty range -1.8 to -0.3 Wm-2 (Boucher et al., 2013); this effect could offset much of the 28 

warming from greenhouse gases (Huber and Knutti, 2011), emphasizing the need to understand 29 

the effect so that we can better predict the future climate. 30 

In this study, we concentrate on the RFaci, the change in cloud albedo with increasing aerosol. 31 

An increasing aerosol at constant cloud water content is supposed to decrease droplet size, 32 

which in turn increases the cloud albedo due to the increase scattering of the smaller, more 33 

numerous cloud droplets. Feingold et al. (2001, 2003); McComiskey et al., (2009) proposed a 34 

metric to quantify the microphysical component of the cloud albedo effect (𝐴𝐶𝐼 =35 

 − 𝑑 ln 𝑁𝑑 𝑑 ln 𝛼⁄ ), where Nd is the cloud droplet number concentration and α in some proxy 36 

for the aerosol burden. Note that the partial derivatives must be calculated at constant liquid 37 

water path (LWP). A variety of proxies has been used to represent the cloud response to the 38 

change in aerosol, e, g., cloud optical depth (τc), cloud drop number concentration (Nd) and re. 39 

Similarly, various proxies have been used to represent the aerosol particles affecting the cloud, 40 

including aerosol number concentration (Na), aerosol optical depth (τa) and aerosol index (AI). 41 
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An overview about published relationships and their biases due to mismatches between 42 

process- and analysis scales are discussed in McComiskey and Feingold, (2012). Values for 43 

ACI metrics from observations often differ significantly from model-based values (Quaas et 44 

al., 2008, 2009; Bellouin et al., 2008; Penner et al., 2011, 2012). For example, the 45 

observational-based values of RFaci, often in the range of -0.2 to -0.6 Wm-2 (Quaas et al., 2008; 46 

Bellouin et al.,2013), is tend to be weaker than the modeled values in the range of -0.5 to -1.9 47 

Wm-2 (IPCC, 2007). The differences in model and observational-based RFaci have to be 48 

reconciled. Penner et al., (2011) reported that the lower sensitivities of cloud droplet number 49 

concentration, when considering aerosol optical depth (AOD) compared to aerosol index as 50 

aerosol quantity may lead to a significant underestimation in satellite-based RFaci. However, 51 

Quaas et al., (2011) pointed out the weaknesses in the approach used by Penner et al., (2011).  52 

Clearly, further study is needed to reduce the uncertainties in both observational- and model-53 

based estimates of aerosol RFaci and to reconcile the differences. 54 

Quaas et al., (2008) derived the anthropogenic aerosol RFaci based on satellite retrievals of 55 

aerosol and clouds properties using statistical relationships between cloud properties and 56 

anthropogenic aerosols without the use of radiative transfer model. They developed a statistical 57 

relationship between planetary albedo and cloud properties using a multilinear fit, and further, 58 

the relationships of cloud properties and aerosol optical depth. Quaas et al. (2008) suggested 59 

that uncertainties in the statistical relationship and fitting parameters introduced uncertainty in 60 

the estimate of RFaci. Therefore, it is useful to reassess the estimated RFaci by using a new 61 

statistical fitting approach. The main objective of this study is to explore the uncertainty in the 62 

satellite-based quantification of RFaci. This study differs from previous studies by introducing 63 

new statistical fitting approach to obtain the fitting parameters for the estimates of RFaci, 64 

determined using a nonlinear fit between planetary albedo and cloud properties. To verify the 65 

present approach, the results from both statistical approaches are compared with the results 66 

from a radiative transfer model.  67 

Recent studies suggest that the south Asian region is one of the world’s most populous (~24% 68 

of the world population) region with growing industrial and transport sectors. A large and 69 

increasing power demand, fuel consumption, and equally diverse geographical features make 70 

this region among the global hotspots of aerosols. The complex geography of this region 71 

contributes significant amounts of natural aerosols (desert dust, pollen, sea-salt etc) into the 72 

atmosphere, which mix with anthropogenic ones, making the aerosol environment one of the 73 

most complex in the world (Moorthy et al., 2015). The large spatial heterogeneity of the sources 74 

coupled with the atmospheric dynamics driven by topography and contrasting monsoons, make 75 

South Asia’s aerosol very difficult to characterize and to model their implications on radiative 76 

and climate forcing. While tropospheric perturbations would produce strong regional 77 

signatures, their global impacts still remain marginally above the uncertainty levels (IPCC, 78 

2013). In the recent years, several studies are carried out on the aerosol characterization and its 79 

direct effect over south Asia, but there have been very few studies reported on the aerosol 80 

indirect effect using ground- and satellite-based measurements due to complex aerosol and 81 

cloud environments. Therefore, we discuss the RFaci for both anthropogenic and natural 82 

fraction of aerosol for a period of six-years (2008-2013) for three different regions of south 83 

Asia (Arabian Sea (AS; 63°E-72°E, 7°N-19°N), Bay of Bengal (BOB; 85°E-94°E, 7°N-19°N) 84 

and Central India (CI; 75°E-84°E, 20°N-30°N)), having significantly distinct aerosol 85 

environments as a result of variations in aerosol sources and transport pathways (Cherian et 86 
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al., 2013; Das et al., 2015; Tiwari et al., 2015) Additionally, we also discuss the uncertainties 87 

of the results in the following sections. 88 

2 Data 89 

We combine measurements of aerosol, cloud and radiative properties to derive the top-of-the 90 

atmosphere (TOA) RFaci of both anthropogenic and natural aerosols. Data acquired by sensors 91 

mounted on Aqua (Parkinson, 2003) and Aura (Schoeberl et al., 2006) are used in this study. 92 

We use the broadband shortwave planetary albedo (α) (Wielicki et al., 1996; Loeb, 2004; Loeb 93 

et al., 2007) as retrieved by the Clouds and the Earth’s Radiant Energy System (CERES) in 94 

combination with cloud properties from the MODerate Resolution Imaging Spectroradiometer 95 

(MODIS; Minnis et al., 2003) and AOD (τɑ) and fine mode fraction (FMF) as retrieved by the 96 

MODIS onboard Aqua (Remer et al., 2005). Albedo and cloud properties are from the CERES 97 

Single-Scanner-Footprint (SSF) Level-2 Edition-3A data set at 20×20 km2 horizontal 98 

resolution and aerosol properties (AOD and FMF) at 550nm from the MYD04 level-2 99 

collection-5.1 dataset at 10×10 km2 horizontal resolution are used. We used UV-aerosol index 100 

(UV-AI; Torres et al., 1998) measured by Ozone Monitoring Instrument (OMI; Levelt et al., 101 

2006) onboard Aura from the OMAERUVG level-2 version 003 dataset at 0.25º×0.25º grid, 102 

which is a gridded dataset containing retrievals from the OMAERUV (Torres et al., 2007) 103 

algorithm. The data from CERES and MODIS level-2 products are interpolated to a 104 

0.25º×0.25º regular longitude-latitude grid to separate the aerosol and cloud properties for 105 

anthropogenic and natural aerosols using UV-AI. Daily data, taken at roughly 13:30 local time, 106 

cover the 2008-2013 period. 107 

3 Methods 108 

All statistics between aerosol and cloud properties are computed separately for 3 regions and 109 

for each month of data at 0.25º×0.25º grid resolution. To avoid the greater uncertainty that 110 

exists in a clear distinction between aerosols and clouds and accurate retrieval of cloud 111 

properties, only single-layer cloud with liquid water path (LWP) > 20 gm-2 are taken into 112 

account. RFaci for anthropogenic and natural aerosols are calculated using the methods outlined 113 

by Quaas et al., (2008) with the new statistical approach. As a part of this process, the method 114 

by Kim et al., (2007) MODIS-OMI algorithm (MOA) is employed to classify the aerosol types 115 

into one of four types sea-salt, carbonaceous, dust and sulfate using MODIS FMF and OMI 116 

UV-AI data. FMF provides information on the representative size of the aerosol. FMF is close 117 

to 1 for mostly small aerosol particles, which implies an anthropogenic origin and FMF 118 

becomes small for non-anthropogenic aerosol like dust. UV-AI allows to detect the absorption 119 

due to the presence of an aerosol layer by utilizing the sensitivity of absorptive aerosol in UV. 120 

Under most condition, UV-AI is positive for absorbing aerosols and negative for non-absorbing 121 

aerosols. Using these two independent data sets, aerosol can be classified. Details for the 122 

aerosol classification are discussed in Kim et al., (2007). For the purpose of this research, the 123 

combination of dust and sea-salt AOD considered as a natural AOD and an anthropogenic AOD 124 

contains the combination of carbonaceous and sulfate. Further, the RFaci is estimated for both 125 

anthropogenic and natural aerosols. 126 

3.1 Satellite-based estimate of RFaci 127 

RFaci is a function of the relationship between AOD and Nd in a cloud. Nd is not directly 128 

provided by satellite product and must be computed using cloud optical thickness (τc) and 129 
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effective droplet radius (re) for liquid water clouds assuming adiabaticity (Brenguier et al., 130 

2000). 131 

 𝑁𝑑 =  𝛾𝜏𝑐

1
2⁄

𝑟𝑒

−5
2⁄
 (1) 

Where, γ=1.37×10-5 m-0.5 in this study.  132 

Quaas et al., (2008) is adopted the Loeb (2004) approach for the estimate of planetary albedo. 133 

Albedo (α) of a cloud scene can be well described by a sigmoidal fit as 134 

 𝛼 ≈ (1 − 𝑓)[𝑎1 + 𝑎2𝑙𝑛𝜏𝑎] + 𝑓[𝑎3 + 𝑎4(𝑓𝜏𝑐)𝑎5]𝑎6 (2) 

Where, ɑ1- ɑ6 are fitting parameters obtained by a multilinear regression, where ɑ5 is set as 1. 135 

Dependency of τɑ is introduced to include the clear part of the scene in the above equation and 136 

f is the cloud fraction. The satellite-based estimate of RFaci for anthropogenic and natural 137 

aerosols can be expressed as 138 

 ∆𝐹𝑎𝑛𝑡/𝑛𝑎𝑡
𝑅𝐹𝑎𝑐𝑖 = 𝑓𝑙𝑖𝑞 . 𝐴(𝑓, 𝜏𝑐)

1

3
 
𝑑 ln 𝑁𝑑

𝑑 ln 𝜏𝑎
 [ln 𝜏𝑎 − ln (𝜏𝑎 − 𝜏𝑎

𝑎𝑛𝑡/𝑛𝑎𝑡
)] 𝑆 (3) 

𝑤ℎ𝑒𝑟𝑒, 𝐴(𝑓, 𝜏𝑐) = 𝑎4𝑎5𝑎6 [𝑎3 + 𝑎4(𝑓𝜏𝑐)𝑎5]𝑎6−1(𝑓𝜏𝑐)𝑎5 139 

RFaci is calculated separately for the anthropogenic and natural aerosols for all three regions 140 

for each month. A(f, τc) is the empirical function relating albedo to f and τc. 𝜏𝑎
𝑎𝑛𝑡/𝑛𝑎𝑡

 is aerosol 141 

optical depth for anthropogenic and natural aerosol, respectively, S is the daily mean solar 142 

incoming solar radiation. 143 

A goal of the present study is to assess the uncertainty in the satellite-based estimate of the 144 

RFaci. For that purpose, we adopted the new statistical nonlinear fitting approach to obtain the 145 

six fitting parameters in Eq. (2). Instead of considering ɑ5=1 in the multiple regression, as in 146 

Quaas et al. (2008), we obtained the values of all six fitting parameters using a nonlinear fitting 147 

approach for each month and region. To get an impression of the performance of our statistical 148 

approach, we correlate α and RFaci at TOA obtained from both statistical fitting methods 149 

(multilinear and nonlinear) vs. α and RFaci simulated by radiative transfer model for all three 150 

regions. The following section describes the detail information about the simulation of α and 151 

RFaci using the radiative transfer model. 152 

3.2 Simulation of planetary albedo (α) and RFaci 153 

In order to verify both the statistical approaches, we performed a radiative transfer simulation 154 

to obtain α and RFaci for all three regions. Radiative transfer calculations are performed with 155 

the SBDART [Santa Barbara DISORT Atmospheric Radiative Transfer; Ricchiazzi et al., 156 

1998] that is a plane-parallel radiative transfer code based on the DISORT algorithm for 157 

discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media 158 

(Stamnes et al., 1988). The discrete ordinate method provides a numerically stable algorithm 159 

to solve the equations of plane-parallel radiative transfer in a vertically inhomogeneous 160 

atmosphere. Simulations are carried out for the solar spectrum (0.2-4.0µm) for all three regions. 161 

In the present study, simulations are carried out to simulate first α and later RFaci for the given 162 

inputs. Here α is evaluated as the ratio of broadband outgoing (or upwelling) shortwave flux to 163 

the incoming (or downwelling) solar flux. Inputs to the model include profiles of temperature 164 

and water vapor which are resolved into 32 layers extending from 1000 to 1 mbar and come 165 

from European Centre for Medium-range Weather Forecast (ECMWF) reanalysis data. Total 166 

columnar amount of atmospheric ozone is provided from OMI-AURA. Surface albedo is set to 167 
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0.15 to represent a typical land cover value for CI and, predefined option of the ocean surface 168 

is used for the oceanic regions (AS and BOB). In the SBDART model, the cloud parameter 169 

inputs are effective droplet radius (re), liquid water path (LWP) and the cloud fraction, all of 170 

which are taken from MODIS retrievals reported in the CERES-SSF product. The geometrical 171 

thickness of cloud (CGT) is computed as a difference between cloud top and bottom heights. 172 

Cloud top height is taken from CERES-SSF product and cloud base height is evaluated using 173 

the geopotential height profile from ECMWF data. Only liquid water clouds are considered in 174 

the estimation of RFaci. The upwelling and downwelling fluxes are computed individually 175 

computed for all three regions at satellite (MODIS-Aqua as a reference) overpass time. 176 

The local radiative forcing associated with the RFaci is estimated as the difference between the 177 

perturbed and unperturbed radiative fluxes caused by perturbation in Nd due to the addition of 178 

aerosols while keeping the same meteorology. RFaci is diagnosed by making two calls to the 179 

radiative transfer code: the first call used the unperturbed satellite-derived Nd and the second 180 

used perturbed Nd due to anthropogenic and natural aerosols. The numerical evaluation of 181 

radiative flux for the perturbed case starts by determining the finite perturbation of cloud 182 

droplet number concentration (ΔNd), calculated as follows: 183 

 ∆𝑁𝑑
𝑎𝑛𝑡/𝑛𝑎𝑡

=  
𝑑 ln 𝑁𝑑

𝑑 ln 𝜏𝑎
 [ln 𝜏𝑎 − ln (𝜏𝑎 − 𝜏𝑎

𝑎𝑛𝑡/𝑛𝑎𝑡
)]  (4) 

The finite perturbation in Nd are evaluated separately for anthropogenic and natural aerosol to 184 

estimate the radiative flux for the perturbed case. The perturbed value of Ńd (Nd + ΔNd) is used 185 

to obtain a perturbed value of re using Eq. (5) for constant liquid water content because re is 186 

used as an input to the radiative transfer code. 187 

 Ń𝑑 = 𝑞𝑙 (
4

3
⁄ 𝜋𝑟𝑒

3𝜌𝑤) (5) 

Where, ρw is the liquid water density, ql the liquid water content (ql=liquid water path / 188 

geometrical thickness). RFaci is diagnosed as RFunperturbed - RFperturbed radiative fluxes at the top 189 

of the atmosphere, because increased concentrations of aerosol reduce the effective radius of 190 

cloud particles and smaller cloud particles reflect more radiation back to space. The following 191 

section describes the details of regression analysis of α and RFaci performed between values 192 

from statistical-approaches and simulated values. 193 

4 Results 194 

4.1 Regression analysis  195 

As stated in section 3.1, the satellite-based estimates of RFaci are dependent on the fitting 196 

parameters ɑ1-ɑ6, obtained here from the two different statistical fitting approaches (multilinear 197 

and nonlinear). The parameters obtained from these two approaches are listed in Table-S1 for 198 

all three regions investigated in this study. These parameters vary with months since we 199 

conducted both the fitting approaches for each month, but only the mean seasonal parameters 200 

are shown here. The main differences in fitting parameters from both methods are found in the 201 

values of ɑ4, ɑ5 and ɑ6. The weight given to ɑ4 and ɑ6 in the nonlinear fit is larger than for the 202 

multilinear regression fitting, which may reduce the weight of ɑ5. 203 

To accomplish the objective of this study, we correlate α and RFaci at TOA obtained from both 204 

statistical fitting approaches (multilinear and nonlinear) with estimates obtained from radiative 205 

transfer model for all three regions. Fig. 1 shows scatter density plots of comparison between 206 

model-simulated albedo and the one computed from satellite measurements at 0.25º×0.25º grid 207 
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resolution using both statistical methods for all three regions. This regression analysis suggests 208 

that the albedo fitted by the new statistical approach (nonlinear fit) agrees well with the model-209 

simulated albedo over both land and ocean. The scatter of the results from the nonlinear fit 210 

around the 1:1 line is much smaller compared to multilinear fit, which is also reflected in the 211 

coefficients of determination (R2) ranging from 0.74 to 0.79. However, a reduction in over and 212 

underestimation at very large and very small albedos, respectively, is found in the nonlinear fit 213 

compared to the multilinear statistical approach. This is also clearly reflected in the values for 214 

the root mean square error (RMSE), which reduces from 0.042-0.065 to 0.010-0.017, 215 

supporting the expectation that the new statistical method is more reliable. Additionally, a 216 

comparison between the planetary albedo computed using both statistical fits and the CERES 217 

retrieved albedo is shown in Fig. S3 for all three regions. Similar to the results discussed above, 218 

the analysis shows a good agreement between the CERES derived albedo and the one 219 

calculated using the nonlinear fit. 220 

In addition, we performed a comparison of RFaci obtained from satellite measurements using 221 

both statistical approaches with the one simulated by SBDART for each season and for each 222 

region. Fig. 2 illustrates the linear regression of RFaci from the two statistical approaches plotted 223 

against the one obtained from the radiative transfer model for both anthropogenic and natural 224 

aerosols for all seasons and all three regions. The analysis showed satisfactory results with 225 

Pearson’s correlation coefficient r=0.82 and 0.75 and RMSE=0.037 Wm-2 and 0.042 Wm-2 for 226 

anthropogenic and natural fraction of aerosols, respectively. An examination of Fig. 2 reveals 227 

that the nonlinear fitting approach reduces the scatter seen for the multilinear fit and the 228 

improvement in correlation with the simulated forcing. Using the nonlinear fit increases the 229 

correlation coefficient by 21%-23% and decreases the RMSE by from 0.007 Wm-2to 0.011 230 

Wm-2
 compared to multilinear approach.  231 

4.2 RFaci and Uncertainties 232 

Aerosol and clouds vary substantially as a function of time in all regions; thus, it is interesting 233 

to analyze aerosol-cloud interactions as a function of season. Fig. 3 shows the seasonal 234 

variability of six-year averaged radiative forcing by aerosol-cloud interaction for the three 235 

regions as defined above. The maximum anthropogenic RFaci is found over oceanic regions 236 

(AS: -0.15Wm-2, BOB: -0.16Wm-2), instead of regions over land (CI: -0.12 Wm-2) with high 237 

anthropogenic emissions. This is because maritime clouds are more susceptible to changes in 238 

concentration of anthropogenic aerosols (Quaas et al., 2008). In contrast, the natural RFaci is 239 

generally stronger over land (-0.15 Wm-2) than over oceanic regions (AS: -0.098 Wm-2, BOB: 240 

-0.07Wm-2). It is seen that the anthropogenic RFaci is strongest during winter over AS and BOB, 241 

with values near -0.19 Wm-2 and -0.22Wm-2, whereas it is strong (-0.2 Wm-2) during pre-242 

monsoon over CI (land). The dominance of natural aerosols in pre-monsoon results a large 243 

natural RFaci both over land (-0.15 Wm-2) and ocean (-0.098 Wm-2 and -0.07 Wm-2). 244 

It is useful to compute the associated uncertainties in the above results due to various 245 

parameters. Uncertainty involves the ones due to satellite retrievals of AOD which can be 246 

highly biased in the vicinity of cloud due to swelling (Koren et al., 2007), and also due to 3D 247 

effects (Wen et al., 2007). Since both biases may be particularly high for thick clouds, our 248 

estimate of the RFaci could be still be overestimated. The uncertainty in MODIS retrievals of 249 

AOD from validation studies (Levy et al., 2007) was quantified at 0.03+0.05τa over ocean and 250 

0.05+0.15τa over land. However, since we use the MODIS-OMI algorithm (Kim et al., 2007) 251 

to estimate the anthropogenic and natural fraction of AOD, uncertainty in this is given as 1σ 252 

standard deviations as per Table-S2. From satellite intercomparison, the uncertainty in radiative 253 
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flux retrievals by CERES is estimated at 5% (Loeb, 2004), and uncertainty in cloud optical 254 

depth is 21% (Minnis et al., 2004). The computed RFaci in this study is closely associated with 255 

the statistical fitting approach as described in section 3. As mentioned earlier, two different 256 

statistical fitting methods are used to obtain the regression coefficients for the estimates of 257 

RFaci. The study showed that the new nonlinear fitting approach reduces by ~20%-25% the 258 

uncertainty from the statistical relationship and fitting parameters. The propagation of error 259 

yields an influence of these relative uncertainties in the input quantities on the computed RFaci 260 

of ~±0.08Wm-2. It should be noted that we refer here to the published quantifiable uncertainties 261 

in the satellite retrievals. Limitation involves in this approach or in the satellite measurements 262 

contribute to the overall uncertainty but cannot be quantified.  263 

5 Conclusion 264 

In this study, we employed a new nonlinear statistical fitting approach to develop the statistical 265 

relationship. A satellite-based algorithm is used to quantify the anthropogenic and natural 266 

fraction of aerosol optical depth for the computation of RFaci from satellite retrievals. In order 267 

to verify, α and RFaci estimates using the new statistical approach (nonlinear) along with the 268 

previous statistical approach (multilinear fit), these are compared with the results obtained from 269 

radiative transfer simulations. The results show a better agreement between model-based 270 

estimates and the one estimated using the nonlinear approach compared to the multilinear 271 

approach. The nonlinear approach relatively increases by 21%-23% the correlation coefficient 272 

and decreases by 0.007Wm-2 to 0.011 Wm-2 the RMSE compared to multilinear approach. The 273 

RFaci is found to be consistent with the value found by statistical relationship between aerosol 274 

and cloud properties from MODIS and CERES, respectively, and radiative transfer 275 

calculations. Further studies using the data retrieved from active remote sensing instruments 276 

(lidar and radar) may be useful to test the assumption made in the present study concerning the 277 

proxy of aerosol column, the overestimation of AOD over land and deal with the multi-layer 278 

clouds. 279 
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 418 

 419 

Figure 1. Scatter density plots of model-simulated albedo and the one computed using both 420 

statistical fitting method (nonlinear and multilinear fit) using satellite measurements for 421 

all three regions. 422 
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 423 

 424 

 425 

 426 

 427 

Figure 2. Comparison between satellite-based RFaci using both statistical fits and the one 428 

simulated by the SBDART model for all three regions and for all seasons. The different 429 

color indicates the regions, whereas the different symbols indicates the different seasons.  430 

Note that the fit is separately performed for each season and each region. 431 
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 437 

Figure 3. Seasonal variability of six-year averaged RFaci obtained using the nonlinear fit for all 438 

three regions for both anthropogenic and natural aerosols along with mean values. 439 

 440 

 441 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-680, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.


