

1 **Observed trends in ground-level O₃ in Monterrey, Mexico during 1993-2014: Comparison with**
2 **Mexico City and Guadalajara**

4 Iván Y. Hernández Paniagua^{1,2}, Kevin C. Clemitsaw³, and Alberto Mendoza^{1,*}

6 ¹Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Av.
7 Eugenio Garza Sada 2501, Monterrey, N.L., México, 64849.

8 ²Centro de Ciencias de la Atmosfera, Universidad Nacional Autónoma de México, Circuito Exterior de
9 Ciudad Universitaria, Ciudad de México, 04510, México

10 ³Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.

11 *Corresponding author: mendoza.alberto@itesm.mx

13 **Keywords**

14 Air quality, emissions inventory, odd oxygen, time series, wind-sector analysis

16 **Abstract**

17 The largest urban areas in Mexico have experienced historically high ambient O₃ levels. Here, we
18 present an assessment of long-term trends in O₃ and odd oxygen (O₃ + NO₂) at the industrial Monterrey
19 metropolitan area (MMA) in NE Mexico. High-precision and high-frequency UV-photometric
20 measurements of ambient O₃ have been made since 1993 at 5 sites within the MMA. Diurnal amplitudes
21 in O₃ (AV_d) are used as a proxy for net O₃ production, which is influenced by the NO₂ photolysis rate. No
22 significant differences are observed in the AV_d during weekdays when fossil fuel use and combustion
23 process are higher than during weekends, although the largest AV_d are observed at sites downwind of
24 industrial areas. During weekdays, cycle troughs and peaks are typically recorded at 07:00 and 14:00
25 CDT, respectively, and during weekends, at 06:00 and 13:00 CDT, respectively.

26
27 The O₃ annual cycle is driven by changes in meteorology and photochemistry, with maximum O₃ mixing
28 ratios recorded in spring and minimum values in winter. The largest annual variations in O₃ are typically
29 observed downwind of the MMA, with the lowest variations generally recorded in highly populated areas
30 and close to industrial areas. A wind sector analysis shows that, at all sites, the highest O₃ mixing ratios
31 are typically recorded from the E and SE sectors, while the lowest values are recorded in air masses
32 from the W and NW. A wind sector analysis of mixing ratios of O₃ precursors revealed that the dominant
33 sources of emissions are located in the industrial regions within the MMA and the surrounding area.
34 Significant increasing trends in O₃ in spring, summer and autumn are observed depending on site
35 location, with trends in annual averages ranging between 0.19 and 0.33 ppb yr⁻¹. The largest annual
36 increases in O₃ are for the E and SE sectors, 0.50 and 0.66 ppb yr⁻¹, respectively. Overall, during 1993
37 to 2014, within the MMA, O₃ has increased at an average rate of 0.22 ppb yr⁻¹ ($p<0.01$), which is in
38 marked contrast with the decline of 1.15 ppb yr⁻¹ ($p<0.001$) observed in the Mexico City metropolitan

39 area (MCMA) for the same period. No clear trend is observed during 1996 to 2014 within the Guadalajara
40 metropolitan area (GMA).

41

42 1. Introduction

43 O_3 is a secondary air pollutant formed in the troposphere via the photo-oxidation of CO, methane (CH_4)
44 and volatile organic compounds (VOCs) in the presence of NO and NO_2 ($NO + NO_2 = NO_x$) (Jenkin and
45 Clemitshaw, 2000). The system of O_3 production is not linear, and is termed NO_x -limited, when O_3
46 production increases in response to increasing NO_x emissions, and termed VOC-limited when it
47 responds positively to emissions of VOCs (Monks et al., 2015; Pusede et al., 2015). Tropospheric O_3 is
48 of concern to policy makers due to its adverse impacts on human health, agricultural crops and
49 vegetation, and also due to its role as a greenhouse gas despite its relatively short lifetime of around
50 22.3 ± 3.0 days (Stevenson et al., 2006; IPCC, 2013; WHO, 2014; Lelieveld et al., 2015). As the
51 predominant source of OH, tropospheric O_3 controls the lifetime of CH_4 , CO, VOCs, among many other
52 air pollutants (Revell et al., 2015). In polluted regions, increased levels of O_3 are prevalent during
53 seasons with stable high-pressure systems and intense photochemical processing of NO_x and VOCs
54 (Dentener et al., 2005; Xu et al., 2008) with downward transport from the stratosphere of lesser
55 importance (Wang et al., 2012). By contrast, the main removal processes for tropospheric O_3 are
56 photochemical loss and dry deposition (Atkinson, 2000; Jenkin and Clemitshaw, 2000).

57

58 Tropospheric O_3 increased in the Northern Hemisphere (NH) during 1950-1980s due to rapid increases
59 in precursor emissions during the industrialisation and economic growth of Europe and North America
60 (NA) (Staehelin and Schmid, 1991; Guicherit and Roemer, 2000). Since the 1990s, reductions in O_3
61 precursor emissions in economically developed countries have resulted in decreases in tropospheric O_3
62 levels (Schultz and Rast, 2007; Butler et al., 2012; Pusede et al., 2012), however, in some regions,
63 increases in O_3 have also been reported. For instance, from an analysis of O_3 data from 179 urban sites
64 over France during 1999-2012, Sicard et al. (2016) reported an increasing trend in the annual averages
65 of 0.14 ± 0.19 ppb yr^{-1} , and in the medians of 0.13 ± 0.22 ppb yr^{-1} , attributed to long-range transport and
66 reduced O_3 titration by NO due to reductions in local NO_x emissions. However, Sicard et al. (2016) also
67 reported during the same period that at 61 rural sites, O_3 decreased in the annual averages by $0.12 \pm$
68 0.21 ppb yr^{-1} , and in the medians by 0.09 ± 0.22 ppb yr^{-1} .

69

70 In the US and Canada, O_3 levels have decreased substantially at different metrics during the last two
71 decades in response to more stringent emission controls focused on on-road and industrial sources. In
72 the Greater Area of Toronto from 2000 to 2012, O_3 levels decreased at urban sites by approximately 0.4
73 % yr^{-1} , and at sub-urban sites by approximately 1.1 % yr^{-1} , as a consequence of a reduction in the mid-
74 day averages of NO_2 of $5.8 - 6.4$ % yr^{-1} , and in the VOC reactivity of 9.3% yr^{-1} (Pugliese et al., 2014).
75 Emission estimates suggest an overall national scale decrease during 1980-2008 in US NO_x and VOCs
76 emissions of 40 % and 47 %, respectively, with city-to-city variability (EPA, 2009; Xing et al., 2013).

77 Lefohn et al. (2010) reported that for 12 US major metropolitan areas, the O₃ US EPA exposure metrics
78 of the annual 2nd highest 1-h average, and the annual 4th highest daily maximum 8-h average, decreased
79 during 1980-2008 at 87 % and 71 % of the monitoring sites evaluated, respectively. However, Lefohn et
80 al. (2010) observed an increase in the lower- and mid-O₃ mixing ratios in response to decreased titration
81 by NO. More recently, Simon et al. (2015) assessed changes in the 1-h average O₃ mixing ratios at
82 around 1400 sites across the US between 1998-2013, using the 5th, 25th, 50th 75th 95th percentiles, and
83 the maximum daily 8-h average. Overall, Simon et al. (2015) observed increases at the lower end of the
84 O₃ data distribution of 0.1-1 ppb yr⁻¹, mostly in urban and sub-urban areas, whereas O₃ decreased at the
85 upper end of the data distribution between 1-2 ppb yr⁻¹ at less urbanised areas. Such changes were
86 associated with the implementation of control strategies within the US to abate peak O₃ mixing ratios, as
87 the NO_x SIP Call and, tighter point and vehicle emission standards.

88
89 In Mexico, studies of long-term trends in O₃ have focused on the Mexico City Metropolitan Area (MCMA)
90 (Molina and Molina, 2004; Jaimes et al., 2012; Rodriguez et al., 2016), with reports of a decrease in O₃
91 annual averages of ca. 33 % during the last two decades (Parrish et al., 2011; SEDEMA, 2016a). O₃ has
92 received less consideration at other large metropolitan areas, where Mexican air quality standards are
93 frequently exceeded (Table 1). Indeed, since 2000, recorded O₃ mixing ratios have exceeded Mexican
94 official standards for O₃ 1-h average (110 ppb) and 8-h running average (80 ppb) by more than 50 % at
95 the Guadalajara metropolitan area (GMA, the second most populated city) and at the Monterrey
96 metropolitan area (MMA, the third most populated city (INE, 2011; SEMARNAT, 2015). To date, only
97 Benítez-García et al. (2014) have addressed changes in ambient O₃ at the GMA and MMA during 2000-
98 2011, reporting an increase in O₃ annual averages of around 47 % and 42 %, respectively. However, it
99 should be noted that the ordinary linear regression analysis used by Benítez-García et al. (2014) may
100 be biased by extreme values and is therefore not suitable to determine O₃ long-term trends with
101 significant confidence.

102
103 To improve air quality, the Mexican government has introduced several initiatives to reduce primary
104 pollutants emissions, with emission estimates reported in the Mexican National Emissions Inventories
105 (NEI). The NEI suggest that from 1999 to 2008, anthropogenic NO_x emissions decreased at the MCMA
106 by 3.8 % yr⁻¹, but increased at the GMA and the MMA by 1.9 % yr⁻¹, and by 4.0 % yr⁻¹, respectively (Fig.
107 S1) (SEMARNAT, 2006, 2011, 2014). These NEI NO_x emission estimates agree with the decrease for
108 the MCMA of 1.7 % yr⁻¹ in the NO₂ vertical column density during 2005-2014 reported by Duncan et al.
109 (2016), but disagree for the GMA and the MMA where decreases of 2.7 % yr⁻¹ and of 0.3 % yr⁻¹,
110 respectively, are reported. Similarly, Boersma et al. (2008) observed that NO_x emissions over Mexico
111 derived from NO₂ satellite observations were higher by a factor of 1.5 - 2.5 times than bottom-up emission
112 estimates, which were lower by 1.6 - 1.8 times than data reported in the NEI 1999-base year. The NEI
113 anthropogenic VOCs emissions estimates suggest a decrease at the MMA by 0.2 % yr⁻¹, but increases
114 at the MCMA and at the GMA by 2.7 % yr⁻¹ and by 3.2 % yr⁻¹, respectively (Fig. S1) (SEMARNAT, 2006,

115 2011, 2014). However, as for NO_x, NEI trends in VOCs disagree with existing reports for average VOCs
116 decreases within the MCMA (Arriaga-colina et al., 2004; Garzón et al., 2015).

117

118 Local authorities have developed local emission inventories for the MCMA and the MMA, although only
119 for the MCMA the inventories have been compiled with a frequency of two years since 1996 (SEDEMA,
120 1999, 2001, 2003, 2004, 2006, 2008, 2010, 2012, 2014, 2016b; SDS, 2015). The accuracy of the MCMA
121 emission inventories has been also assessed during several field campaigns. For instance, during the
122 MCMA 2002-2003 campaign, Velasco et al. (2007) observed an overestimation in the 1998 inventory for
123 VOCs emissions of alkenes and aromatics, but an underestimation in the contribution of some alkanes.
124 By contrast, for the 2002 MCMA inventory, Lei et al. (2007) reported an underestimation in the VOCs
125 total emissions of around 65 %, based on a simulation of an O₃ episode occurred in 2003 within the
126 MCMA. Therefore, since these emission estimates are used to predict future air quality, and to design
127 clean air policies, it is imperative to examine the results of the policies implemented to control emissions
128 of O₃ precursors.

129

130 To our knowledge, no previous study has address trends in O₃ and odd oxygen in urban areas of Mexico.
131 In this study, we describe trends in ground-level O₃ within the MMA, and its response to changes in
132 precursor emissions during 1993-2014. Long-term and high-frequency measurements of O₃ were
133 recorded at 5 air quality monitoring stations evenly distributed within the MMA. In order to better assess
134 photo-chemical production of O₃, odd oxygen defined as ([O_x] = [O₃] + [NO₂]) was also considered, as
135 O₃ and NO₂ are rapidly interconverted. Diurnal and annual cycles of O₃ and O_x are used to interpret net
136 O₃ production within the MMA. We show that air mass origin influences strongly the O₃ annual growth
137 rates. The trends in O₃, O_x and precursor emissions are compared with those observed within the MCMA
138 and GMA. Finally, we describe that NEI emission estimates for NO_x and VOCs disagree in the trend
139 magnitudes with ground-based NO_x and VOCs measurements made at the urban areas studied here.

140

141 This paper is organised as follows: Section 2 presents the data quality and methodology used to derived
142 the different trends presented. Section 3 describes in detail the O₃ and O_x diurnal and annual cycles,
143 and, annual and seasonally averaged trends. Section 4 discusses the origin of the O₃ and O_x diurnal
144 variations and trends in the light of changes in precursor emissions. Finally, Section 5 provides some
145 conclusions regarding the trends observed at the studied urban areas.

146

147 2. Methodology

148 2.1 Monitoring of O₃ in the Monterrey Metropolitan Area (MMA).

149 The MMA (25°40'N, 100°20'W) is located around 720 km N of Mexico City, some 230 km S of the US
150 border in the State of Nuevo Leon (Fig. 1a). It lies at an average altitude of 500 m above sea level (m
151 asl) and is surrounded by mountains to the S and W, with flat terrain to the NE (Fig. 1b). The MMA is the
152 largest urban area in Northern Mexico at around 4,030 km², and is the third most populous in the country

153 with 4.16 million inhabitants, which in 2010, comprised 88 % of the population of Nuevo Leon State
154 (INEGI, 2010). It is the second most important industrial area in Mexico and has the highest gross
155 domestic product per capita (Fig. 1c). Although the weather changes rapidly on a daily time-scale, the
156 climate is semi-arid with an annual average rainfall of 590 mm, and an annual average temperature of
157 25.0°C with hot summers and mild winters (ProAire-AMM, 2008; SMN, 2016).

158

159 Within the MMA, tropospheric O₃, 6 additional air pollutants (CO, NO, NO₂, SO₂, PM₁₀, and PM_{2.5}) and 7
160 meteorological parameters (wind speed (WS), wind direction (WD), temperature (Temp), rainfall, solar
161 radiation (SR), relative humidity (RH) and pressure) have been monitored continuously, with data
162 summarised as hourly averages, since November 1992 at 5 stations that form part of the Integral
163 Environmental Monitoring System (SIMA) of the Nuevo Leon State Government (Table 2; SDS, 2016).
164 From November 1992 to April 2003, and in accordance with EPA, EQOA-0880-047, Thermo
165 Environmental Inc. (TEI) model 49 UV photometric analysers were used to measure O₃ with stated
166 precision less than ± 2 ppb O₃ and a detection limit of 2 ppb O₃. Similarly, in accordance with RFNA-1289-
167 074, TEI model 42 NO-O₃ chemiluminescence detectors were used to measure NO-NO₂-NO_x with stated
168 precision less than ± 0.5 ppb NO, and a detection limit of 0.5 ppb NO. In May 2003, replacement TEI
169 model 49C O₃ and model 42C NO-NO₂-NO_x analysers were operated as above, with stated precision
170 better than ± 1 ppb O₃ and ± 0.4 ppb NO, respectively, and detection limits of 1 ppb O₃ and 0.4 ppb NO,
171 respectively. To rule out instrumentation influences on the determined air pollutants trends, long-term
172 trends based on annual averages were compared with those derived using 3-yr running averages, in
173 accordance with Parrish et al. (2011) and Akimoto et al. (2015) (Supplementary Information S1.1; Fig.
174 S2). Calibration, maintenance procedures and quality assurance/quality control (QA/QC) followed
175 protocols established in the Mexican standards NOM-036-SEMARNAT-1993 and NOM-156-
176 SEMARNAT-2012. The SIMA dataset has been validated by the Research Division of Air Quality of the
177 Secretariat of Environment and Natural Resources (SEMARNAT). The monitoring of O₃ and other air
178 pollutants at the MCMA and the GMA is detailed in the Supplementary Information S1.2-3.

179

180 2.2 NEI data

181 NEI data for estimated NO_x and VOCs emissions for the 1999-, 2005- and 2008-base years were
182 obtained from the SEMARNAT website (<http://sinea.semarnat.gob.mx>). The data comprised emission
183 sources (mobile, point, area and natural) and air pollutants (NO_x, VOCs, SO_x, CO, PM_{2.5} and PM₁₀), at
184 national, state and municipality scales. The NEI emission estimates are developed in accordance with
185 the Manual for the Emission Inventories Program of Mexico (Radian, 2000), which is based on the US
186 EPA AP-42 emission factors categorisation (EPA, 1995). The emission factors are regionalised for each
187 Mexican state, based upon on-site measurements and survey information. Updates to the emission
188 factors have been conducted for each released NEI, although no changes in the methodology were
189 implemented between the 1999- and 2008-base years. Overall, the mobile emissions were estimated
190 using the MOBILE6-Mexico model (EPA, 2003). The emissions from point sources were derived using

191 the annual operation reports submitted to the Environment Ministry. The emissions from area sources
192 were obtained using the categorisation of Mexican area sources and the regionalised AP-42 emission
193 factors.

194
195 The MCMA emissions inventories have been developed with a 2-year frequency since 1996, and were
196 obtained from the MCMA Environment Secretariat website (<http://www.aire.cdmx.gob.mx/>). The
197 methodology used to construct the MCMA inventories estimates is consistent with that used in the NEI
198 (SEDEMA, 2016a), which is based on the AP-42 EPA emission factors. However, more speciated
199 emission factors have been developed in each released version, considering updates in the local
200 industrial activity, survey information and field measurement campaigns. To date, the only significant
201 change in the methodology is the replacement of the Mobile6-Mexico model with the MOVES model to
202 obtain the 2014-base year mobile emissions (SEDEMA, 2016b). As for the MCMA inventories, more
203 speciated emission factors than those contained in the NEI were developed to produce the MMA
204 emissions inventory 2013-base year (SDS, 2015), although, mobile emissions estimates were obtained
205 with the Mobile6-Mexico model (EPA, 2003).

206
207 **2.3 Analytical methods**

208 SIMA, SIMAT (Atmospheric Monitoring System of the MCMA) and SIMAJ (Atmospheric Monitoring
209 System of the GMA) instrumentation recorded O₃ data every minute, which were then validated and
210 archived as 1-h averages. Total SIMA O₃ data capture by year and site are shown in Fig. S3. Data
211 capture averaged during 1993-2014 ranged from 82.6 % at GPE to 93.3 % at SNB, with data capture
212 <50 % during 1998-2000 at GPE, in 1998 at SNN, and in 1999 at OBI. A threshold of 75% data capture
213 was defined to consider data valid and representative (ProAire-MMA, 2008; Zellweger et al., 2009;
214 Wilson et al., 2012). All data were processed with hourly averages used to determine daily averages,
215 which were used to calculate monthly averages, from which yearly averages were obtained.

216
217 **2.4 Data analysis methods**

218 The SIMA, SIMAT and SIMAJ O₃ data sets were analysed extensively using the *openair* package v. 1.1-
219 4 (Carslaw and Ropkins, 2012) for R software v. 3.1.2 (R Core Team, 2013). In this study, the *openair*
220 functions *windRose*, *timeVariation* and *TheilSen* were used to analyse air pollution data. Briefly, the
221 *windRose* summarises wind speed and wind direction by a given time-scale, with proportional paddles
222 representing the percentage of wind occurrence from a certain angle and speed range. The *timeVariation*
223 function was used to obtain normalised daily cycles by season, and weekly cycles, with the 95 %
224 confidence intervals in the cycles calculated from bootstrap re-sampling, which accounts for better
225 estimations for non-normally distributed data (Carslaw, 2015). Finally, long-term trends of air pollutants
226 at the MCMA, GMA and MMA were computed with the *TheilSen* function, which is based on the non-
227 parametric Theil-Sen method (Carslaw, 2015; and references therein). The Theil-Sen estimate of the
228 slope is the median of all slopes calculated for a given *n* number of x,y pairs, while the regression

229 parameters, confidence intervals and statistical significance are determined through bootstrap re-
230 sampling. It yields accurate confidence intervals despite the data distribution and heteroscedasticity, and
231 is also resistant to outliers.

232

233 The trends computed with *openair* were contrasted with those calculated using the MAKESENS 1.0
234 macro (Salmi et al., 2002) as follows. Firstly, the presence of a monotonic trend was tested with the non-
235 parametric Mann-Kendal test. For the MCMA, GMA and MMA, the available yearly data are $n > 10$, hence
236 positive values in the Z parameter correspond to positive trends and vice-versa for negative values of Z .
237 The significance of the estimated trend was tested at $\alpha = 0.001, 0.01, 0.05$ and 0.1 using a two-tailed test.
238 Secondly, slopes of linear trends were calculated with the non-parametric Sen's method, which assumes
239 linear trends, with a Q slope and a B intercept. To calculate Q , first the slopes of all data values were
240 calculated in pairs, with the Sen's estimator slope as the median of all calculated slopes. Finally, $100(1 -$
241 $\alpha)$ % two-sided confidence intervals about the slope estimate were obtained based on a normal
242 distribution. Comparisons of estimated trends from both approaches are shown in the Supplementary
243 information S1.4 (Fig. S4).

244

245 The O_3 and other air pollutant time-series were decomposed into trend, seasonal and residual
246 components using the Seasonal-Trend Decomposition technique (STL; Cleveland et al., 1990). STL
247 consists of two recursive procedures: an inner loop nested inside an outer loop, assuming measurements
248 of x_i (independent) and y_i (dependent) for $i = 1$ to n . The seasonal and trend components are updated
249 once in each pass through the inner loop; each complete run of the inner loop consists of $n_{(i)}$ such passes.
250 Each pass of the outer loop consists of the inner loop followed by a computation of the robustness
251 weights, which are used in the following run of the inner loop to minimise the influence of transient and
252 aberrant behaviour on the trend and seasonal components. The initial pass of the outer loop is performed
253 with all robustness weights equal to 1, followed by $n_{(0)}$ passes of the outer loop. The Kalman Smoother
254 (KS) was used to provide minimum-variance, unbiased linear estimations of observations and to impute
255 missing data to satisfy the STL (Reinsel, 1997; Durbin et al., 2012; Carslaw, 2015). Overall, statistical
256 seasonal auto-regressive and moving averages with annual seasonal components were employed.
257 Statistical analyses were carried out with SPSS 19.0.

258

259 In order to carry out seasonal analyses of data, seasons were defined according to temperature records
260 in the NH, as described previously (Hernandez-Paniagua et al., 2015): winter (December-February),
261 spring (March-May), summer (June-August) and autumn (September-November). Wind-sector analyses
262 of data were performed by defining 8 wind sectors each of 45° starting from $0^\circ \pm 22.5^\circ$. The lower bound
263 of each sector was established by adding 0.5° to avoid data duplicity. Data were assigned to a calm
264 sector when wind speed was $\leq 0.36 \text{ km h}^{-1}$ (0.1 m s^{-1}). To assess regional transport, air mass back-
265 trajectories (AMBT) were calculated using the HYSPLIT model v.4 (NOAA Air Resources Laboratory
266 (ARL); Stein et al., 2015), with the Global NOAA-NCEP/NCAR reanalysis data files on a latitude-

267 longitude grid of 2.5° , downloaded from the NOAA ARL website
268 (<http://ready.arl.noaa.gov/HYSPLIT.php>). HYSPLIT frequency plots of 96-h AMBT were constructed for
269 every 6 h during the year 2014 with an arrival altitude of 100 m above ground level.
270

271 **3. Results**

272 **3.1 Wind occurrence at the MMA**

273 The MMA is highly influenced by anti-cyclonic easterly air masses that arrive from the Gulf of Mexico,
274 especially during spring and summer (Fig. S5). Figure 2 shows the frequency count of 1-h averages of
275 wind direction by site and season within the MMA during 1993-2014. At all sites, apart from OBI, the
276 predominant wind direction is clearly E, which occurs between 35-58 % of the time depending on season.
277 Easterly air masses are augmented by emissions from the industrial area E of the MMA, which are
278 transported across the urban core and prevented from dispersing by the mountains located S-SW of the
279 MMA. On average, the highest wind speeds are observed during summer at all sites. By contrast, calm
280 winds of $\leq 0.36 \text{ km h}^{-1}$ (0.1 m s^{-1}) occurred less than 2 % of the time at all sites, most frequently in winter,
281 and least frequently in summer.
282

283 **3.2 Time-series in O_3 and O_x recorded within the MMA during 1993-2014**

284 Within the MMA, the highest O_3 mixing ratios (1-h averages) are typically observed between April-
285 September during the photochemical season, whereas the lowest values are usually recorded between
286 December-January (winter) (Fig. S6). Table S1 summarises the minimum, maximum, average (mean)
287 and median hourly O_3 mixing ratios recorded during 1993-2014. The highest O_3 mixing ratios recorded
288 were 186 ppb at GPE in 1997, 146 ppb at SNN in 2004, and 224 ppb at SNB in 2001. At OBI and STA,
289 the highest O_3 mixing ratios were both recorded on June 2, 1993: 182 ppb at 12:00 CDT at OBI, and 183
290 ppb at 13:00 CDT at STA, during the occurrence of E winds. Note that all times below are given in CDT.
291 Annual O_3 averages varied from 14 ± 14 ppb at OBI in 2001 to 32 ± 23 ppb at SNB in 1993, whereas O_3
292 annual medians ranged from 10 ppb at OBI in 2001 to 28 ppb at SNN in 1993.
293

294 Reaction with O_3 rapidly converts NO to NO_2 , and therefore mixing ratios of odd oxygen ($\text{O}_x = \text{O}_3 + \text{NO}_2$)
295 were calculated to account for O_3 stored as NO_2 for each hour during 1993-2014 at the 5 sites within the
296 MMA (Table S2; Fig. S7). Minimum values of O_x ranged from 2 ppb, observed at all sites mostly during
297 1993-2014 to 13 ppb at OBI in 2007. Maximum values of O_x ranged from 99 ppb at SNN in 2002, to 330
298 at OBI in 1993. O_x annual averages varied from 23 ± 17 ppb at SNN in 2002 to 51 ± 27 ppb at OBI and
299 at STA in 2001 and 2006, respectively, whereas O_x annual medians ranged from 21 ppb at SNB and
300 SNN, in 2001 and 2002, respectively, to 46 ppb at OBI and STA in 2001 and 2006, respectively. It is
301 clear that the highest O_3 and O_x mixing ratios were recorded when control of precursor emissions of
302 VOCs and NO_x were less stringent than subsequently.
303
304

305 **3.2 Diurnal variations in O₃ and O_x within the MMA**

306 Diurnal variations in O₃ arise from the balance between its net production and destruction. Here, O₃
307 diurnal variations were used to assess changes in the net O₃ production. Figure 3 shows daily profiles
308 by season of O₃, O_x, NO, NO₂, NO_x, and SR averaged over the 5 sites within the MMA. O₃ generally
309 dips during the morning rush hour due to titration with NO and mirrors the increase in NO₂, which occurs
310 around 07:00 in spring and summer, and around 08:00 in autumn and winter. The 1-h difference in the
311 O₃ dip derives from the change to daylight saving time during spring and summer. O₃ generally peaks
312 during the enhanced photochemical period, around 13:00 in spring, 12:00 in summer (co-incident with
313 SR), and about 14:00 in autumn and winter. Similar profiles are observed for O₃ in all seasons, being
314 negatively correlated with NO₂ ($r=0.93$ (winter) to $r=0.97$ (summer) ($p<0.05$)), due to the rapid photolysis
315 of NO₂. Diurnal cycles of O_x behave as O₃, with lowest values before the morning rush hour and the
316 largest between midday (summer) and 15:00 (winter). During daytime, O_x and O₃ diurnal cycles are
317 strongly correlated in all seasons, ranging from $r=0.97$ in winter to $r=0.99$ in autumn ($p<0.05$), which
318 suggests net O₃ production during daytime.

319

320 O₃ and O_x levels depend strongly on the photochemical processing of NO_x and VOCs emissions. To
321 assess differences in the net O₃ production from site-to-site within the MMA, O₃ and O_x amplitude values
322 (AV_d) derived from normalised daily cycles were used as proxy. The normalised daily cycles were
323 constructed by subtracting daily averages from hourly averages. Figure 4 shows normalised O₃ daily
324 cycles and Fig. S8 normalised O_x daily cycles. The lowest AV_ds both in O_x and O₃ occur in winter
325 consistent with reduced SR and low photolysis rates, while the largest ones are seen in summer. It is
326 clear that during the whole year, the largest AV_ds are recorded at sites downwind of the industrial
327 emission sources, in particular at STA, while the lowest AV_ds are observed at upwind sites. The larger
328 AV_ds at downwind sites indicate higher net O₃ production, derived from photochemical processing of air
329 masses from the E sector. The AV_ds seen at upwind sites indicate that these are less affected by
330 emissions from the largest part of the MMA and from the industrial area.

331

332 **3.3. Annual cycles of O₃ and O_x within the MMA**

333 Annual variations in O₃ and O_x are correlated positively with the seasonality of temperature, RH and SR
334 (Camalier et al., 2007; Zheng et al., 2007). Annual averages cycle for those meteorological variables, O₃
335 and O_x were constructed by averaging monthly averages for the same month during the studied period.
336 Figure 5a shows that O₃ exhibits the maxima during spring and minima in winter, with a downward peak
337 in early autumn, behaviour characteristic of tropospheric O₃ in the NH. O_x peaks in spring and dips in
338 summer, although it is evident that NO_x emissions lead to apparently similar O_x levels in winter and
339 spring despite the decrease in O₃ levels. A correlation analysis among monthly averages for both O₃ and
340 O_x with temperature, rainfall, RH and SR, revealed that the strongest relationship was between O₃ and
341 SR ($r= 0.72$, $p<0.001$; Fig. 5a), with relationship evident with O_x.

342

343 Seasonal amplitude values (AV_s) provide insight into inter-annual variations in the net O_3 production in
344 response to changes in precursor emissions and meteorology. The seasonal cycles in O_3 during 1993-
345 2014 were determined by filtering monthly averages with the STL technique (Cleveland et al., 1990) (Fig.
346 S9). $O_3 AV_s$ s were calculated as the difference peak-to-trough (spring peak). An average $O_3 AV_s$ of 15.1
347 ± 2.97 (1σ) ppb was calculated from 1993 to 2014 within the MMA, with the lowest $O_3 AV_s$ of 10.3 ppb
348 determined in 1998, and the largest $O_3 AV_s$ of 19.0 ppb observed in 2014. Figure 5b shows that $O_3 AV_s$
349 decreased significantly at all sites between 1993 and 1997-1998, at rates from 0.78 ppb $O_3 yr^{-1}$ at GPE
350 to 2.28 ppb $O_3 yr^{-1}$ at SNN (Fig. 5c). $O_3 AV_s$ s increased constantly ($p<0.05$) at all sites since 1998, ranging
351 from 0.90 ppb $O_3 yr^{-1}$ at GPE to 0.75 ppb $O_3 yr^{-1}$ at SNN. $O_x AV_s$ s exhibited no discernible trends at all
352 sites for the whole studied period, although, SNN show a significant ($p<0.05$) decline during 1993-2001
353 (1.5 ppb yr^{-1}) and at STA show an increase during 2004-2010 (1.3 ppb yr^{-1}). The trends in O_x follow those
354 observed for NO_x at SNN and STA during 1993-2014, which indicates that nearby industrial emissions
355 have a significant contribution on the observed O_x levels within the MMA.
356

357 **3.4. Long-term trends in O_3 and O_x within the MMA during 1993-2014**

358 Quantifying the absolute changes in ground-level O_3 in response to trends in its precursor emissions is
359 crucial to evaluate the impacts of air quality control (Parrish et al., 2009; Simon et al., 2015). The growing
360 economy within the MMA has increased O_3 precursor emissions from point and area sources, due to the
361 limited emissions control programs (INEGI, 2015; SDS, 2015). Moreover, predominant E-SE winds
362 throughout the year transports primary pollutants and their oxidised products downwind from the
363 industrial area, which can offset reductions in emissions from other sources. Here, to characterise
364 changes in net O_3 production during 1993-2014 within the MMA in response to changes in its precursor
365 emissions, long-term trends for daytime (06:00-18:00 CDT) O_3 and O_x measurements were derived by
366 averaging data in seasonal periods. Seasonal averaging was used to minimise variability inherent in
367 longer-term averages and the de-seasonalisation process avoids confounding overall trends, especially
368 when seasons exhibit opposite trends. (Parrish et al., 2009).

369
370 Figure 6 shows seasonal trends in O_3 within the MMA, and Table 3 summarises the parameterisation of
371 the trends. Significant increases ($p<0.1$) in O_3 are observed at all sites, apart from STA, in spring and
372 summer, while in autumn, O_3 increases significantly only at SNN and SNB. The increases in O_3 range
373 from 0.26 ppb yr^{-1} in spring at OBI to 0.47 ppb yr^{-1} in summer at SNN. Overall, the lowest O_3 growth rates
374 are observed at the urban background GPE site, whereas the largest ones are at the industrial SNN site.
375 It is worth noting that only SNN and OBI exhibit significant increases in autumn, despite a decrease in
376 the frequency of high wind speeds (>20 km h^{-1}). The existence of significant trends at all sites during
377 spring-summer, except for OBI, is consistent with the downwind transport of industrial emissions and the
378 high frequency of photochemical processed air masses with NE-S-SE origin, where the industrial area
379 is located (Fig. S10).
380

381 Seasonal trends in O_x are shown in Fig. 7, with the parameters of the trends listed in Table 3. Consistent
382 with the seasonal O_3 trends observed, significant increases ($p<0.1$) in O_x within the MMA are determined
383 in spring at all sites except for STA, and range from 0.02 ppb yr^{-1} at OBI to 0.67 ppb yr^{-1} at SNB. It is
384 worth noting that the industrial SNN and SNB sites show significant increases in O_x in all seasons, with
385 the lowest growth rates in winter and the largest in summer and spring, respectively. Moreover, STA
386 exhibits the only significant decrease in O_x of 0.63 ppb yr^{-1} during winter. As for O_3 , the O_x increasing
387 trends are consistent with the transport of primary emissions during the high occurrence of NE-E-SE air
388 masses at $WS > 10 \text{ km h}^{-1}$, which is highlighted during the photochemical season (April-September).
389 Furthermore, the small shift in wind direction at STA to NW during winter coincides with the only observed
390 decrease in net O_3 production within the MMA, which confirms that O_3 precursors are emitted E of the
391 MMA. This also makes evident that increasing upwind industrial emissions have offset reductions in
392 emissions from on-road sources as revealed by the decline in NO_x evident at OBI.

393

394 **3.5 Comparison of MMA O_3 and O_x weekly profiles with those at MCMA and GMA**

395 O_3 production varies from city-to-city in response to local NO_x and VOCs emissions. Assessment of
396 weekly profiles of O_3 and O_x may provide insights of the geographic response in net O_3 production to
397 diurnal variations in precursor emissions. Hourly O_3 and O_x averages were used to construct weekday
398 and weekend average profiles for the MCMA from 1993 to 2014, and for the GMA from 1996 to 2014.
399 Figure 8 compares weekly O_3 and O_x profiles by season within the MMA with those for the MCMA and
400 GMA. In each case, and consistent with observations in other major urban areas of NA, the lowest O_3
401 mixing ratios occur during the morning rush hour due to O_3 titration with NO emitted from on-road
402 sources, whereas peak values of O_3 are apparent after mid-day during periods of enhanced SR
403 (Stephens et al., 2008; Jaimes-Palomera et al., 2016). It should be noted that the peak value of O_3 for
404 the GMA in winter and spring occurs an hour or so earlier than for the MMA and MCMA, which is
405 consistent with higher VOC/ NO_x emissions ratios at the GMA (Kanda et al., 2016). As might be
406 anticipated, larger AV_d of $76.9 \pm 1.6 \text{ ppb } O_3$ are observed for the MCMA than for the GMA (46.1 ± 1.0
407 ppb O_3) and MMA ($37.6 \pm 0.4 \text{ ppb } O_3$), related to the levels of emissions of the O_3 precursors. The O_x
408 profiles show a trough during the morning rush hour and a peak between 12:00 and 14:00 at all urban
409 areas. Despite large variations between weekday and weekend NO_x mixing ratios at the 3 urban areas
410 as shown in Fig. 8, no significant differences ($p>0.05$) in O_3 and O_x are observed at any of the
411 metropolitan areas between O_3 and O_x weekends and weekdays AV_d s.

412

413 Stephens et al. (2008) suggested that the most plausible explanation for the lack of weekend O_3 effect
414 at MCMA during 1987-2007, is that weekday O_3 production is limited by VOCs and inhibited by NO_x .
415 Therefore, the very similar levels O_3 observed during weekdays and weekends can be explained by
416 simultaneous decreases in NO_x and VOCs emissions and the resulting effects on net O_3 production.
417 Similarly, a VOC-limited O_3 production regime was reported for the MMA by Sierra et al. (2013), whereas
418 Kanda et al. (2016) reported that at the GMA the O_3 production lies in the region between VOC- and

419 NO_x-sensitivity. Therefore, it can be hypothesised that simultaneous decreases in emissions of NO_x and
420 VOCs during weekends at the GMA and MMA explain the similarity in behaviour in O₃ and O_x as at the
421 MCMA. Indeed, Wolff et al. (2013) reported that at several urban areas of the US, similar or even higher
422 ($\pm 5\%$) O₃ levels during weekdays than at weekends were due to lower O₃ precursor emissions over
423 weekends. Furthermore, the number of sites in the US that exhibited a weekend effect decreased from
424 ca. 35 % to less than 5 % from 1997-1999 to 2008-2010, which was attributed to an increase in the
425 VOC/NO_x emission ratio derived from a greater decline in NO_x than in VOCs emissions, mostly driven
426 by reductions from on-road sources. A change to a NO_x-limited O₃ production regime during weekends
427 at the three urban areas seems unlikely, since this would result in lower O₃ levels during weekends,
428 which is not observed at any of the studied urban areas (Torres-Jardon et al., 2009).

429

430 3.6 Long-term trends at MCMA, GMA and MMA from 1993 to 2014

431 The high mixing ratios of O₃ observed typically at the 3 largest urban areas in Mexico have motivated
432 the introduction of control strategies to decrease emissions of the O₃ precursors, NO_x and VOCs. The
433 success of the control strategies implemented can be evaluated by assessing trends in O₃ and O_x. As
434 for the MMA, seasonal trends in O₃ and O_x within the MCMA and GMA were calculated from daytime
435 measurements. Figure 9 shows a comparison of inter-annual trends in O₃ and O_x at the 3 urban areas
436 in Mexico, and Table 4 lists the parameters of the trends. Overall, during 1993-2014, daytime O₃ at the
437 MCMA decreased significantly ($p<0.05$) by 1.15 ppb yr⁻¹ (2.04 % yr⁻¹), and increased at the MMA by 0.22
438 ppb yr⁻¹ (0.84 % yr⁻¹); at the GMA no discernible trend was observed during 1996-2014. For daytime O_x
439 at the MCMA and GMA during the same periods, significant decreases ($p<0.05$) of 1.87 and 1.46 ppb yr⁻¹
440 were determined, respectively, while the MMA does not exhibit a significant change. At the MCMA, the
441 overall trends in O₃ and O_x are strongly driven by their wintertime decreases of 1.62 and 2.47 ppb yr⁻¹,
442 respectively; whereas at the MMA, the annual growth in O₃ is driven by increases in spring and summer
443 of 0.32 and 0.27 ppb yr⁻¹, respectively. Although, at the MMA, an increase in O_x of 0.28 ppb yr⁻¹ is
444 observed only during summer, the overall O_x trend is strongly affected by the non-significant trends in
445 the other seasons. It is worth noting that at the GMA, the overall decrease in O_x of 1.46 ppb yr⁻¹ is
446 similar for all seasons, which range between 1.40 ppb yr⁻¹ (autumn) and 1.89 ppb yr⁻¹ (spring).

447

448 The overall trends in net O₃ production during 1993-2014 at the MCMA and GMA are consistent with the
449 significant ($p<0.05$) annual decreases in NO_x of 1.21 and 1.25 ppb yr⁻¹, respectively (Fig. 10). By contrast,
450 while average NO_x levels have increased annually at the MMA at 0.33 ppb yr⁻¹ ($p<0.05$), the average net
451 O₃ production has remain steady. Either the non-linear response in O_x to the changes in NO_x in an
452 environment of high NO_x mixing ratios (>60 ppb) displace the chemical equilibrium to favour NO as the
453 dominant component of NO_x which does not account for the levels of O_x (Clapp and Jenkin, 2001). Or
454 the O_x trends derived from the combined data set for the MMA do not represent local observed trends,
455 because a compensating effect between O_x reductions and increases.

456

457 **3.7 Compliance with the 1-h and 8-h Mexican Standards for O₃ within the MMA**

458 Between 1993 and 2014, there were two official standards for maximum permitted mixing ratios of O₃ in
459 Mexico: i) a running 8-h average of 80 ppb, not to be exceeded more than 4 times per calendar year,
460 and ii) a 1-h average of 110 ppb (NOM-020-SSA1-1993). Since 19 Oct 2014, the maximum permitted O₃
461 levels were lowered to a running 8-h average of 70 ppb and a 1-h average of 95 ppb, (NOM-020-SSA1-
462 2014). However, because both standards are applicable for whole calendar years, the old permitted O₃
463 levels were used in this study to determine the number of annual exceedances to both O₃ standards.
464 Figure 11 shows that within the MMA, the O₃ 1-h average and the running 8-h standards were frequently
465 exceeded (INE, 2011; SEMARNAT, 2015). The largest number of exceedances occurs at STA, followed
466 by SNB, GPE and OBI, whereas the fewest breaches are observed at SNN markedly since 2004.
467 However, there have been 3 periods of clear decreased exceedances at all sites (except STA in 2014),
468 during 1994-1995, 1999-2000, and 2012-2013, which are consistent with marked changes in the national
469 GDP during economic recessions in Mexico (Fig. S11a). However, although, national GDP exhibits a
470 notable decrease during the 2008-2009 global economic recession, only in 2009 do the O₃ annual
471 exceedances within the MMA seem to follow (Fig. S11b).

472

473 Therefore, if O₃ levels continue to increase within the MMA, as determined in the long-term trend
474 assessment, an increase also in peak O₃ mixing ratios is likely to occur. Hence, to analyse changes in
475 peak O₃, daily maxima 1-h averages from 1993 to 2014 were used to determine seasonal trends in peak
476 levels. Figure 12 shows trends in 1-h daily maxima and Table 5 list the parameters of the trends. Daily
477 maxima O₃ 1-h averages have increased significantly ($p<0.05$) in spring and summer at all sites, except
478 for STA, and also in autumn at the industrial sites SNN and SNB. The largest increases in the daily
479 maxima are seen at SNN, where similar increases between 0.85 and 0.93 ppb yr⁻¹ are determined
480 between spring and autumn. SNB exhibits slightly lower growth rates in spring and summer, but a large
481 difference in autumn. We have shown that predominantly E-SE winds transport photochemically
482 processed air masses to SNN and SNB during spring-summer leading to the observed exceedances.
483 Moreover, the change in the wind occurrence in autumn at SNB leads to a lower growth rate than at
484 SNN, where the calmest winds during the whole year drive the largest increase interpreted to be due to
485 the photochemical processing of precursors emitted locally. The GPE and OBI sites exhibit increases
486 only in spring and summer, with the lowest increases of all sites determined at OBI of 0.48 ppb yr⁻¹ in
487 spring, which contrasts with the largest increase at OBI during the same season. However, such
488 increases are consistent with an increase in the occurrence of NE and E air masses at high speeds (>10
489 km h⁻¹) during spring-summer. STA shows a significant decrease in the maxima daily O₃ 1-h averages
490 of 0.35 ppb yr⁻¹ in winter, which is consistent with an increase in the occurrence of NW air masses at WS
491 < 5 km h⁻¹, loaded with high NO_x mixing ratios (50 ppb) that promote the O₃ titration.

492

493 **4. Discussion**

494 **4.1 Strategies for air quality control in Mexico**

495 The Mexican environmental authorities have focused largely on improving the air quality within the
496 MCMA since 1986, by implementing numerous strategies to control primary emissions, but have paid
497 less attention to other large metropolitan areas in Mexico (PICCA, 1990; ProAire-MCMA, 2011). Control
498 measures have been designed based on NAEI and local emission inventories data, which possess
499 significant uncertainties (Arriaga-Colina et al., 2004; Velasco et al., 2007; Kanda et al., 2016). However,
500 despite these uncertainties, the emission control strategies have helped to reduce O₃ levels within the
501 MCMA since 1991-1992 (ProAire-MCMA, 2001). Here, we describe the most effective measures
502 introduced to control O₃ precursor emissions within the MCMA, and then discuss potential benefits of
503 implementing such measures within the MMA.

504
505 From 1993 to 2014, NO_x levels within the MCMA decreased at a rate of around 1.2 ppb yr⁻¹ (1.6 % yr⁻¹)
506 as determined from ground-based measurements. This decline is remarkably consistent with the
507 decrease during 2005-2014 in the NO₂ column over the MCMA of 1.6 % yr⁻¹ reported by Duncan et al.
508 (2016). The decrease in NO_x has been driven largely by reductions in emissions from on-road sources,
509 in response to the introduction of mandatory 3-way catalytic converters in new vehicles since 1993
510 (NOM-042; SEMARNAT, 1993), and by the introduction of a no driving day and more stringent exhaust
511 emissions inspection programs for private cars since 1989 (NOM-041; SEMARNAT, 1993). The NO_x
512 reduction measures also required public transport vehicles to switch from petrol to LP gas fuelled
513 engines, new road corridors were designed for improving the intracity transport and the public transport
514 fleet was renewed (ProAire-MCMA, 2001). For industrial sources, the switch from fuel oil to LP gas fuel,
515 relocation of highly polluting industries away from the MCMA, and implementation of regular inspections
516 programs of NO_x emission for industrial and area sources were also implemented (ProAire-MCMA,
517 2001).

518
519 While the outlook for NO_x levels within the MCMA is clear, studies of VOCs levels have reported no
520 concluding trends. For instance, Arriaga-Colina et al. (2004) reported a decrease in VOCs of around 10
521 % from 1992 to 2001 over the N MCMA, while Garzón et al. (2015) reported that on average VOCs
522 increased over most of the MCMA between 1992-2002 but decreased by 2.4 ppb yr⁻¹ between 2002-
523 2012. However, the decrease in VOCs from 2002 to 2012 reported by Garzón et al. (2015) is consistent
524 with a reduction in light alkanes and aromatics levels during the morning rush hour reported by Jaimes-
525 Palomera et al. (2016). Continuous measurements of VOCs have been introduced recently by the MCMA
526 government, which precludes an assessment of VOCs long-term trends. The measures implemented to
527 control VOCs emissions from on-road sources have included the reformulation of petrol with the
528 reduction of highly reactive VOCs and addition of oxygenated compounds, and fitting of 3-way catalytic
529 converter in all new vehicles (NOM-042; SEMARNAT, 1993; ProAire-MCMA, 2001). For area sources,
530 control measures include the introduction of vapour emissions control systems at petrol stations and
531 introduction of a LP gas leak detection program for the distribution network (ProAire-MCMA, 2011). As

532 for NO_x, industrial VOCs emission sources have been subject to regular emissions inspections and
533 relocation of the most significant emitters (ProAire-MCMA, 2011).

534

535 Therefore, the moderate success on controlling O₃ levels within the MMA can be interpreted as the
536 implementation of effective controls measures on VOCs and NO_x emissions. Thus, a comparison
537 between VOCs and NO_x trends derived from the NAEI and local emissions inventories with those
538 determined from ground-levels measurements can provide insight into further improvements in
539 decreasing O₃ levels not only within the MCMA but also at other large metropolitan areas in Mexico.
540 Within the MCMA, the NAEI NO_x emissions trends are consistent with the decrease determined from
541 ground-based measurements made by SIMAT, but the MCMA local inventory trends disagree with the
542 SIMAT trends (Fig. S1 and Fig. 10). For VOCs, the NAEI and the MCMA inventories oppose measured
543 trends in VOCs during 1993-2001 (Arriaga-Colina et al., 2004; Garzón et al., 2015). This can be
544 explained by underestimates of VOC emissions within the MCMA of a factor of 2-3 (Arriaga-Colina et al.,
545 2004; Velasco et al., 2007). Such discrepancies suggest that, significant improvements in NO_x and VOCs
546 emissions inventories are still required to better inform O₃ control strategies.

547

548 **4.2 Ground-level O₃ and O_x variations within the MMA**

549 The O₃ and O_x diurnal variations result from the particular chemical environment and meteorological
550 conditions at each monitoring site within the MMA. Thus, the largest O₃ and O_x mixing ratios, except for
551 OBI, are observed typically for air masses from the E and SE wind sectors, whereas at OBI, the largest
552 O₃ and O_x values are recorded during the occurrence of NE and E air masses. It is clear that short-range
553 transport and large upwind emissions of O₃ precursors from the industrial area dominate the MMA
554 (SEMARNAT, 2006, 2011, 2014; SDS, 2015). This is underlined at OBI with the highest values of O_x
555 where the predominant wind direction is NE, consistent with the transport of emissions from the industrial
556 area located NE, and photochemical processing of air masses (Carrillo et al., 2017). The daily cycles of
557 O₃ determined within the MMA are consistent with those reported for Los Angeles (VanCuren, 2015),
558 and Toronto (Pugliese et al., 2014). At Toronto, the O₃ maxima were enhanced by the arrival of
559 photochemical processed air masses transported from polluted wind sectors, and decreased during clear
560 air masses. This behaviour is similar to that observed within the MCMA with enhanced O₃ maxima during
561 the occurrence of E-SE (polluted) and decreased levels when SW-W (relatively clean) air masses
562 occurred.

563

564 **4.3. Origin of the O₃ annual cycles within the MMA**

565 The O₃ annual cycles within the MCMA are consistent with the spring maxima and winter minima
566 characteristic of the US southeast regions (Strode et al., 2015), and follow the O₃ cyclic pattern at NH
567 mid-latitudes (Monks 2000; Vingarzan, 2004). However, they are different to O₃ annual cycles reported
568 for the US west coast regions, particularly in California, where the maxima in the cycle occurs between
569 June-August, driven the local influence of precursor emissions upon O₃ production and photochemical

570 conditions (Vingarzan, 2004; Strode et al., 2015). The recurrent downward spikes in the O₃ annual cycles
571 within the MMA between July-August result from high wind speeds (>10 km h⁻¹ on average) that disperse
572 O₃ precursors and increase the boundary layer height (ProAire-MMA, 2008). The peak in O₃ observed
573 in September is characteristic of humid regions, and can be ascribed to an increase in OH radicals
574 derived from the increment in RH during the rainy season (Lee et al., 2014). A marked increase in RH
575 within the MMA during September is consistent with the increase in O₃ observed as reported by Lee et
576 al. (2014). Over the mid-western and eastern US regions, that O₃ peak has become less noticeable since
577 2000 (Zheng et al., 2007).

578

579 The annual variability in O₃ within the MMA is strongly coupled to the economic conditions (GDP) in
580 Mexico. For instance, the economic crisis of 1994-1996 caused a marked reduction in industrial
581 emissions of VOCs and NO_x, which is confirmed by the significantly decrease in O₃ annual variations at
582 all sites within the MMA (Tiwari et al., 2014; INEGI, 2016). During the global economic recession of 2008-
583 2009, Castellanos and Boersma (2012) reported a reduction of 10-30 % in tropospheric NO₂ over large
584 European urban areas, which is consistent with a faster decline of 8 ± 5 % yr⁻¹ in the NO₂ column density
585 during the same period for US urban regions (Russell et al., 2012). Increases in the NO₂ column density
586 over the MMA as reported by Duncan et al. (2016) are explained by the gradual recovery of the economy
587 since 1997 in Mexico. Moreover, increases in O₃ precursor emissions and in annual variability observed
588 within the MMA are consistent with such economic growth. This explains clearly the opposite trends in
589 O₃ annual variations before and after the economic crisis within the MMA, with the lowest changes seen
590 at the urban GPE site and the greatest ones detected for the SNN industrial site.

591

592 **4.4 Increasing O₃ and O_x levels within the MMA**

593 Ground-based measurements made during 1993-2014 reveal significant ($p<0.05$) increases in NO_x
594 within the MMA at all sites, apart from OBI, which exhibits a significant decrease (Fig. 13). Overall, the
595 NO_x increase within the MMA of 1.24 % yr⁻¹ (0.33 ppb yr⁻¹) during 1993-2014 is larger than the increase
596 in the NO₂ column density over the MMA of around 0.78 % yr⁻¹ during 2005-2014 reported by Duncan et
597 al. (2016), although both indicate a significant increase in the NO_x levels at least since 2005. The largest
598 increases in NO_x correspond to industrial sites, SNN (0.51 ppb yr⁻¹) and SNB (0.74 ppb yr⁻¹), which is
599 interpreted as a response to growing industrial activity, in combination with flexible emission regulations
600 within the MMA (INEGI, 2016). The influence of industrial emissions upon O₃ at the MMA becomes
601 evident by the lowest NO_x growth rate observed at GPE of 0.19 ppb yr⁻¹, since OBI has few occurrences
602 of air masses transporting pollutants from the largely industrialised areas throughout the year (Fig. 2).
603 By contrast, the NO_x decrease at OBI of -0.40 ppb yr⁻¹ arises from decreases in emissions from on-road
604 sources (SDS, 2015). The large growth rates in O₃ and NO_x at SNN and SNB are explained by increasing
605 emissions of O₃ precursors from a growing number of industries and the urban development E of the
606 MMA. The most likely explanation for the O₃ increase at OBI is a reduced titration effect by decreasing

607 NO_x levels in combination with the non-linear response in O₃ production to decreasing NO_x emissions
608 under the VOC-sensitive MMA airshed (Sierra et al., 2013; Menchaca-Torre et al. 2015).

609
610 The O₃ increasing trends within the MMA are opposite to those reported by Sather and Cavender (2016)
611 at 4 South Central US urban areas, where NO_x and VOCs decreased by 31-70 % and 43-72 % during
612 1983-2015, respectively, resulting in a reduction between 18-37 ppb O₃ in the 8-h averages. The O₃
613 response to NO_x decreases at OBI is similar to that observed in central London during 1996-2008 (Bigi
614 and Harrison, (2010), and at four urban areas in Japan during 1990-2010, explained by the decrease of
615 the NO titration effect (Akimoto et al., 2015). This suggests that controlling VOCs emissions may lead to
616 a decrease in the net O₃ production, whereas decreases in NO_x may not have significant effects on O₃
617 production or even increase the O₃ levels due existence of a VOC-limited environment within the MMA
618 (Sierra et al., 2013, Carrillo et al., 2017).

619
620 The O_x long-term trends during 1993-2014 within the MMA were consistent with those for O₃ at all sites.
621 Decreases in NO_x and O₃ observed between 1994-1996 were the response to the economic crisis during
622 the same period in Mexico, when the DGP decreased by 5.9 % providing additional evidence of the
623 dominant role of industries within the MMA. Consistent with economic indicators, annual averaged petrol
624 sales in the Nuevo Leon state in 1995 decreased by 2.4 % in relation to 1994, but increased linearly from
625 1996 to 2008 at an approximate rate of 98,800 m³ petrol yr⁻¹ ($r = 0.90$) (Fig. S12) (SENER, 2015). As for
626 petrol sales, registered vehicles in Nuevo Leon show significant variations between 1993-1996, but
627 increase linearly since 1997 at a rate of around 100,000 vehicles yr⁻¹ ($r=0.99$). This confirms that despite
628 the annual growth in the vehicular fleet, the fitting of 3-way catalyst technology and reformulation of petrol
629 introduced in 1997 has controlled on-road primary emissions (ProAire-MCMA, 2001) The decreases in
630 NO_x observed at OBI and at all sites during the occurrence of SW-W-NW air masses reflect that if
631 applied, stricter emissions controls such as those for on-road sources can lead to a significant abatement
632 in primary emissions. It is clear that the industrial sources must be subject to similar emission control
633 measures as those implemented within the MMA for effectively reducing the O₃ levels.

634
635 **4.5 The opposite O₃ trends at Mexican urban areas**
636 The comparison of O₃ and O_x trends at MMA, GMA and MCMA reveals different emission trends at each
637 of the studied cities. The trends in O₃ reported in this study for the MCMA, agree with the reduction of
638 20 ppb O₃ during 1991-2011 for the MCMA (Jaimes et al., 2012), and with the reduction of 8 ppb O₃
639 during 2000-2011 for the MMA (Benítez-García et al., 2014). At the GMA, the no trend status in O₃
640 determined here is in contrast with the increase of 12 ppb O₃ during 2000-2011 (Benítez-García et al.,
641 2014), which is due to the different periods assessed in the latter. Decreases in O₃ in US urban areas
642 arise from effective control of O₃ precursor emissions (Strode et al., 2015), which has occurred at the
643 MCMA. By contrast, O₃ levels increased in urban areas of Japan by 0.22-0.37 ppb yr⁻¹ (Akimoto et al.,
644 2015), and in the Greater London by 0.5 ppb yr⁻¹ (Bigi and Harrison, 2010), due to faster declines in NO_x

645 than in VOCs and are slightly similar that observed in O_3 averages for the MMA (0.20 ppb yr^{-1}), where
646 average NO_x levels have increased and also likely VOCs.

647

648 Trends in net O_3 production can be interpreted as the response to trends in its precursors, which also
649 respond to implemented policies to control their emissions and to economic factors. Figure 10 shows
650 that NO_x decreased significantly within the MCMA (1.57 % yr^{-1}) and the GMA (1.83 % yr^{-1}) during 1993-
651 2014 and 1996-2014, respectively, but increased within the MMA (1.83 % yr^{-1}) during 1993-2014. Such
652 NO_x trends are within the range of the trends in the NO_2 column density reported by Duncan et al. (2016)
653 in Table S9, which reveals an increase of 0.78 ± 1.12 % yr^{-1} for the MMA, but decreases of 1.82 ± 0.84
654 % yr^{-1} for the GMA and of 0.10 ± 1.67 % yr^{-1} for the MCMA, all during 2005-2014. To date, long-term
655 trends in VOCs have only been reported only the MCMA with an average decrease of ca. 2.4 ppb yr^{-1}
656 since 2002, mostly in propane, ethanol and acetone (Garzón et al., 2016), while there are no studies of
657 long-term trends in VOCs within the MMA and the GMA.

658

659 It is clear that O_3 and O_x decreases within the MCMA have been driven by reductions in NO_x and VOCs
660 emissions, and that the implemented strategies described in Sect. 4.1 have proved to be effective in
661 controlling primary emissions. By contrast, growing industrial emissions within the MMA must be subject
662 to stringent controls to abate O_3 levels. In the GMA, where the industrial activity is lower than at the
663 MCMA and MMA (Kanda et al., 2016), the policies introduced at national scale for controlling on-road
664 sources emissions have resulted in the decrease of NO_x emissions and in the stabilisation of O_3 levels.
665 Finally, the results presented here demonstrate the merits of the assessment and analysis of long-term
666 O_3 levels, which can be used by environmental authorities to revise and to redesign programs and
667 policies to improve air quality. Continuing with ground-based O_3 and NO_x monitoring is strongly
668 recommended to better understand the response further changes in local and regional O_3 levels to
669 changes in primary emissions. Monitoring of VOCs at the GMA and MMA is also recommended to as
670 the VOCs emissions data reported in the NAEI possess significant uncertainties.

671

672 **5. Conclusions**

673 Diurnal and annual cycles, and long-term trends in O_3 and O_x within the MMA, are interpreted as
674 response to changes in NO_x and VOCs emissions, photochemistry and meteorology. Continuous high-
675 frequency and high-precision O_3 and NO_x data recorded during 1993-2014 at 5 sites within the MMA
676 and at 29 sites within the MCMA, and during 1996-2014 at 10 sites within the GMA, were used to
677 calculate long-term trends. Within the MMA, the greatest mixing ratios in O_3 were recorded during E and
678 SE winds, at sites downwind of significant precursors from industrial sources. By contrast, the lowest O_3
679 mixing ratios were recorded at SNN, and for all sites were observed for the W and SW sectors, where
680 air masses travel from central Mexico over 100-300 km of semi-arid region sparsely populated. Maximum
681 daily 1-h values of O_3 and O_x increased significantly at GPE, SNN and SNB, owing to increasing

682 emissions of precursors, while at OBI increasing O₃ and decreasing O_x trends arise from the non-linear
683 response to decreasing NO_x emissions from on-road sources.

684

685 Annual cycles in O₃ at all sites peak in spring and through in winter, with a downward spike during
686 summer caused by high winds that disperse O₃, and increase the boundary layer height. Decreases in
687 O₃ precursor emissions during the economic crisis experienced in Mexico between 1994-1996, caused
688 significant decline trends O₃ annual variations from 1993 to 1997 or 1998, depending on site, followed
689 by significant increases derived from the recovery of the economy. The dominant role of industrial
690 sources on O₃ precursor levels within the MMA was evident at the industrial site SNN during the 1994-
691 1996 economic crisis.

692

693 At all metropolitan areas studied, O₃ and O_x levels showed no significant differences between weekdays
694 and weekend, although an earlier occurrence of the O₃ peak at the GMA was detected, ascribed to larger
695 VOCs/NO_x emission ratio. The lack of the weekend effect was attributed to weekday O₃ production being
696 limited by VOCs, whereas increases in the VOC/NO_x ratio during weekends in response to reduced
697 emissions from mobile sources resulted in similar O₃ mixing ratios that during weekdays. Larger AV_{ds}
698 during weekdays and weekends were seen at MCMA than at GMA and MMA related to the relative
699 emissions of the O₃ precursors.

700

701 Significant seasonal trends in O₃ and O_x during spring were observed at all sites, apart from STA,
702 whereas industrial sites exhibited significant increases for O_x in all seasons. The largest increases in O₃
703 and O_x were observed during the occurrence of NE-E-SE air masses. The only significant decrease in
704 O_x at STA was related to the NW wind occurrence during winter. NO_x mixing ratios increased significantly
705 at all sites, except at OBI, due to the dominant role of industrial sources on NO_x levels. The overall
706 significant increasing trend of 0.22 ppb O₃ yr⁻¹ within the MMA contrasts within a significant decreasing
707 trend of 1.15 ppb O₃ yr⁻¹ within the MCMA during 1993-2014, whereas a non-significant trend is evident
708 within the GMA during 1996-2014. At the MCMA and GMA, the overall O_x trends reflect the trends in O₃
709 precursors. According to the long-term trends in O₃ for the MMA, the number of exceedances of the air
710 quality standards will very likely increase as result of increasing precursor emissions. The moderate
711 mitigation of O₃ levels within the MCMA, derived from measures implemented to control emissions from
712 on-road, industrial and area sources, emphasises the need for more stringent control of emissions mostly
713 from industrial sources within the MMA in order to improve air quality. Finally, comparison between
714 emission inventories estimates of NO_x and VOCs with ground-based measurements, indicate that
715 significant reductions in uncertainties are required to better inform air quality policies.

716

717 **6. Acknowledgments**

718 This research was supported by Tecnológico de Monterrey through the Research Group for Energy and
719 Climate Change (Grant 0824A0104 and 002EICIR01). Grateful acknowledgements are made to the

720 Secretariat for Sustainable Development of the Nuevo Leon State, the Secretariat for the Environment
721 of Mexico City and the Secretariat for the Environment and Territorial Development of the Jalisco State
722 for the public domain records. We gratefully thank the NOAA Air Resources Laboratory (ARL) for access
723 to the HYSPLIT model and READY website (<http://www.ready.noaa.gov>), and Dr. Sigfrido Iglesias for
724 providing the imputed O₃ and NO_x data for the MMA time-series. We are also grateful to Professor Paul
725 Monks and Professor Richard Derwent for encouraging comments on an earlier version of the
726 manuscript.

727

728 **7. References**

729 Akimoto, H., Mori, Y., Sasaki, K., Nakanishi, H., Ohizumi, T., and Itano, Y.: Analysis of monitoring data
730 of ground-level ozone in Japan for long-term trend during 1990-2010: Causes of temporal and spatial
731 variation, *Atmos. Environ.*, 102, 302-310, doi:10.1016/j.atmosenv.2014.12.001, 2015.

732 Arriaga-Colina, J. L., West, J. J., Sosa, G., Escalona, S. S., Ordunez, R. M., and Cervantes, A. D. M.
733 Measurements of VOCs in Mexico City (1992–2001) and evaluation of VOCs and CO in the emissions
734 inventory, *Atmos. Environ.*, 38, 2523-2533, doi:10.1016/j.atmosenv.2004.01.033, 2004.

735 Atkinson, R.: Atmospheric chemistry of VOCs and NOx. *Atmos. Environ.*, 34, 2063-2101,
736 doi:10.1016/S1352-2310(99)00460-4, 2000.

737 Benítez-García, S. E., Kanda, I., Wakamatsu, S., Okazaki, Y., and Kawano, M.: Analysis of criteria air
738 pollutant trends in three Mexican metropolitan areas, *Atmosphere*, 5, 806-829,
739 doi:10.3390/atmos5040806, 2014.

740 Bigi, A., and Harrison, R. M.: Analysis of the air pollution climate at a central urban background site,
741 *Atmos. Environ.*, 44, 2004-2012, doi:10.1016/j.atmosenv.2010.02.028, 2010.

742 Boersma, K. F., Jacob, D. J., Bucsela, E. J., Perring, A. E., Dirksen, R., van der A, R. J., Yantosca, R.
743 M., Park, R. J., Wenig, M. O., Bertram, T. H., and Cohen, R. C.: Validation of OMI tropospheric NO₂
744 observations during INTEX-B and application to constrain NOx emissions over the eastern United States
745 and Mexico, *Atmos. Environ.*, 42, 4480-4497. doi:10.1016/j.atmosenv.2008.02.004, 2008.

746 Butler, T. M., Stock, Z. S., Russo, M. R., Denier Van Der Gon, H. A. C., and Lawrence, M. G.: Megacity
747 ozone air quality under four alternative future scenarios, *Atmos. Chem. Phys.*, 12, 4413-4428,
748 doi:10.5194/acp-12-4413-2012, 2012

749 Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone in urban areas and their
750 use in assessing ozone trends, *Atmos. Environ.*, 41, 7127-7137, doi: 10.1016/j.atmosenv.2007.04.061,
751 2007.

752 Carrillo-Torres, E. R., Hernández-Paniagua, I. Y., and Mendoza, A.: Use of Combined Observational-
753 and Model-Derived Photochemical Indicators to Assess the O₃-NO_x-VOC System Sensitivity in Urban
754 Areas. *Atmosphere*, 8, 22, doi:10.3390/atmos8020022, 2017.

755 Carslaw, D. C., and Ropkins, K.: openair - An R package for air quality data analysis, *Environ. Model.*
756 *Soft.*, 27-28, 52-61, doi:10.1016/j.envsoft.2011.09.008, 2012.

757 Carslaw, D. C.: The openair manual - open-source tools for analysing air pollution data, Manual for
758 version 1.1-4, King's College London, 2015.

759 Castellanos, P. and Boersma, K. F.: Reductions in nitrogen oxides over Europe driven by environmental
760 policy and economic recession, *Sci. Rep.*, 2, doi:10.1038/srep00265, 2012.

761 Clapp, L. J., and Jenkin, M. E.: Analysis of the relationship between ambient levels of O₃, NO₂ and NO
762 as a function of NO_x in the UK. *Atmospheric Environment*, 35, 6391-6405, doi: 10.1016/S1352-
763 2310(01)00378-8, 2001.

764 Cleveland, R. B., Cleveland, W. S., McRae, J., and Terpenning, I.: STL: A seasonal-trend decomposition
765 procedure based on Loess, *J. Off. Stats.*, 6, 3-33, 1990.

766 Dentener, F., Stevenson, D., Cofala, J., Mechler, R., Amann, M., Bergamaschi, P., Raes, F., and
767 Derwent, R.: The impact of air pollutant and methane emission controls on tropospheric ozone and
768 radiative forcing: CTM calculations for the period 1990-2030, *Atmos. Chem. Phys.*, 5, 1731-1755,
769 doi:10.5194/acp-5-1731-2005, 2005.

770 Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., Hurwitz, M. M., and
771 Pickering, K. E.: A space-based, high-resolution view of notable changes in urban NO_x pollution around
772 the world (2005–2014), *J. Geophys. Res.*, 121, 976–996, doi:10.1002/2015JD024121, 2016.

773 Durbin, J., and Koopman, S. J.: *Time Series Analysis by State Space Methods*, Oxford University Press,
774 Oxford UK, 2nd Edition, 2012.

775 EPA (Environmental Protection Agency US): Compilation of Air Pollution Emission Factors (AP-42),
776 Volume I: Stationary Point and Area Sources, available at: <https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emission-factors>, last access: 14 Jan 2017, 1995.

777 EPA (Environmental Protection Agency US): User's Guide to MOBILE6.1 and MOBILE6.2: Mobile
778 Source Emission Factor Model, available at: <https://www3.epa.gov/otaq/models/mobile6/420r03010.pdf>, last access: 16 Jan 2017, 2003.

781 EPA (Environmental Protection Agency US): Air quality trends, available at: <https://www.epa.gov/air-trends>, last access: 15 Jan 2017, 2009.

783 Garzón, J. P., Huertas, J. I., Magaña, M., Huertas, M. E., Cárdenas, B., Watanabe, T., Maeda, T.,
784 Wakamatsu, S., and Blanco, S.: Volatile organic compounds in the atmosphere of Mexico City, *Atmos.*
785 *Environ.*, 119, 415-429, doi:10.1016/j.atmosenv.2015.08.014, 2015.

786 Guicherit, R., and Roemer, M.: Tropospheric ozone trends, *Chemosphere*, 2, 167-183,
787 doi:10.1016/S1465-9972(00)00008-8, 2000.

788 Hernández-Paniagua, I. Y., Lowry, D., Clemitchaw, K. C., Fisher, R. E., France, J. L., Lanoisellé, M.,
789 Ramonet, M., and Nisbet, E. G.: Diurnal, seasonal, and annual trends in atmospheric CO₂ at southwest
790 London during 2000-2012: Wind sector analysis and comparison with Mace Head, Ireland, *Atmos.*
791 *Environ.*, 105, 138-147, doi: 10.1016/j.atmosenv.2015.01.02, 2015.

792 INE (Instituto Nacional de Ecología): Cuarto almanaque de datos y tendencias de la calidad del aire en
793 20 ciudades Mexicanas 2000-2009, INE-SEMARNAT, México, D.F., 405 pp., 2011.

794 INEGI (National Institute of Statistics and Geography): XIII Censo General de Población y Vivienda 2010,
795 México, available at: <http://www.censo2010.org.mx/>, last Access: 22 May 2016, 2010.

796 INEGI (National Institute of Statistics and Geography): México en Cifras, México, available at:
797 <http://www3.inegi.org.mx/sistemas/mexicocifras/default.aspx?e=19>, last access: 22 May 2016, 2015.

798 INEGI (National Institute of Statistics and Geography): Producto Interno Bruto (GDP)-Trimestral 2016,
799 available at: <http://www.inegi.org.mx/est/contenidos/proyectos/cn/pibt/>, last access: 11 Jan 2017, 2016.

800 IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
801 Assessment Report of the Intergovernmental Panel on Climate Change, 2013. [Stocker, T.F., D. Qin, G.-
802 K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
803 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.

804 Jaimes, P. M., Bravo, A. H., Sosa, E. R., Cureño, G. I., Retama, H. A., Granados, G. G., and Becerra,
805 A. E.: Surface ozone concentration trends in Mexico City Metropolitan Area, in: Proceedings of the Air
806 and Waste Management Association's Annual Conference and Exhibition AWMA, San Antonio, Texas,
807 19-22 June 2012, 3, 2273-2284, 2012.

808 Jaimes-Palomera, M., Retama, A., Elias-Castro, G., Neria-Hernández, A., Rivera-Hernández, O., and
809 Velasco, E.: Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-
810 season campaign, *Atmos. Environ.*, 132, 258-275, doi:10.1016/j.atmosenv.2016.02.047, 2016.

811 Jenkin, M. E., and Clemitshaw, K. C.: Ozone and other secondary photochemical pollutants: chemical
812 processes governing their formation in the planetary boundary layer, *Atmos. Environ.*, 34(16), 2499-
813 2527, doi:10.1016/S1352-2310(99)00478-1, 2000.

814 Kanda, I., Basaldud, R., Magaña, M., Retama, A., Kubo, R., and Wakamatsu, S.: Comparison of Ozone
815 Production Regimes between Two Mexican Cities: Guadalajara and Mexico City, *Atmosphere*, 7, 91,
816 doi:10.3390/atmos7070091, 2016.

817 Lee, Y. C., Shindell, D. T., Faluvegi, G., Wenig, M., Lam, Y. F., Ning, Z., Hao, S., and Lai, C. S.: Increase
818 of ozone concentrations, its temperature sensitivity and the precursor factor in South China, *Tellus B.*
819 *Chem. Phys. Meteorol.*, 66, doi:10.3402/tellusb.v66.23455, 2014.

820 Lefohn, A. S., Shadwick, D., and Oltmans, S. J.: Characterizing changes in surface ozone levels in
821 metropolitan and rural areas in the United States for 1980-2008 and 1994-2008, *Atmos. Environ.*, 44,
822 5199-5210, doi: 10.1016/j.atmosenv.2010.08.049, 2010.

823 Lei, W., de Foy, B., Zavala, M., Volkamer, R., and Molina, L. T.: Characterizing ozone production in the
824 Mexico City Metropolitan Area: a case study using a chemical transport model, *Atmos. Chem. Phys.*, 7,
825 1347-1366, doi:10.5194/acp-7-1347-2007, 2007.

826 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air
827 pollution sources to premature mortality on a global scale, *Nature Letts.*, 15371,
828 doi:10.1038/nature15371, 2015.

829 Menchaca-Torre, H. L., Mercado-Hernández, R., and Mendoza-Domínguez, A.: Diurnal and seasonal
830 variation of volatile organic compounds in the atmosphere of Monterrey, Mexico, *Atmos. Poll. Res.*, 6,
831 1073-1081, doi:10.1016/j.apr.2015.06.004, 2015.

832 Molina, M. J., and Molina, L. T.: Megacities and atmospheric pollution, *J. Air Waste Manage.*, 54, 644-
833 680, doi:10.1080/10473289.2004.10470936, 2004.

834 Monks, P. S.: A review of the observations and origins of the spring ozone maximum, *Atmos. Environ.*,
835 34, 3545-3561, doi:10.1016/S1352-2310(00)00129-1, 2000.

836 Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C.,
837 Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E.,
838 Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to
839 the global scale from air quality to short-lived climate forcer, *Atmos. Chem. Phys.*, 15, 8889-8973,
840 doi:10.5194/acp-15-8889-2015, 2015.

841 Parrish, D. D., Millet, D. B., and Goldstein, A. H.: Increasing ozone in marine boundary layer inflow at
842 the west coasts of North America and Europe, *Atmos. Chem. Phys.*, 9, 1303-1323, doi:10.5194/acp-9-
843 1303-2009, 2009.

844 Parrish, D. D., Singh, H. B., Molina, L., and Madronich, S.: Air quality progress in North American
845 megacities: A review, *Atmos. Environ.*, 45, 7015-7025, doi:10.1016/j.atmosenv.2011.09.039, 2011.

846 PICCA (Programa integral contra la contaminación atmosférica de la zona metropolitana de la Ciudad
847 de México), Mexico City Local Government, available at: http://centro.paot.org.mx/documentos/variros/prog_inte_atmosferica.pdf, last Access: 28 April 2017, 1990

849 ProAire-MMA (Programa de Gestión para Mejorar la Calidad del Aire del Área Metropolitana de
850 Monterrey 2008-2012), SEMARNAT, Gobierno del estado de Nuevo León, available at:
851 <http://www.semarnat.gob.mx/archivosanteriores/temas/gestionambiental/calidaddelaire/>
852 Documents/Calidad%20del%20aire/Proaires/ProAires_Vigentes/6_ProAire%20AMM%202008-
853 2012.pdf, last access: 22 May 2016, 2008.

854 ProAire-MCMA (Programa para Mejorar la Calidad del Aire de la Zona Metropolitana del Valle de México
855 2002-2010), Mexico City Local Government-State of Mexico Government, available at:
856 http://www.gob.mx/cms/uploads/attachment/file/69312/11_ProAire_ZMVM_2002-2010.pdf, last access:
857 28 April, 2017, 2001.

858 ProAire-MCMA (Programa para Mejorar la Calidad del Aire de la Zona Metropolitana del Valle de México
859 2002-2010), Mexico City Local Government-State of Mexico Government, available at:
860 <http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/proaire2011-2020/#p=1>, last
861 access: 28 April 2017, 2011

862 Pugliese, S. C., Murphy, J. G., Geddes, J. A., and Wang, J. M.: The impacts of precursor reduction and
863 meteorology on ground-level ozone in the Greater Toronto Area, *Atmos. Chem. Phys.*, 14, 8197-8207,
864 doi:10.5194/acp-14-8197-2014, 2014.

865 Pusede, S. E., and Cohen, R. C. On the observed response of ozone to NO_x and VOC reactivity
866 reductions in San Joaquin Valley California 1995–present, *Atmos. Chem. Phys.*, 12, 8323-8339,
867 doi:10.5194/acp-12-8323-2012, 2012.

868 Pusede, S. E., Steiner, A. L., and Cohen, R.C.: Temperature and recent trends in the chemistry of
869 continental surface ozone, *Chem. Rev.*, 115, 3898-3918, doi: 10.1021/cr5006815, 2015.

870 R Core Team: R: a Language and Environment for Statistical Computing, R Foundation for Statistical
871 Computing, Vienna, Austria, ISBN 3-900051-07-0, 2013, available at: www.R-project.org, last access:
872 23 May 2016, 2013.

873 Radian (International): Mexico Emissions Inventory Program Manuals (Vol. II-VI), available at:
874 https://www3.epa.gov/ttnccatc1/cica/other3_s.html, last access: 15 Jan 2017, 2000.

875 Reinsel, G. C.: Elements of Multivariate Time Series Analysis. Springer-Verlag, New York, USA, 2nd
876 Edition, 1997.

877 Revell, L. E., Tummon, F., Stenke, A., Sukhodolov, T., Coulon, A., Rozanov, E., Garny, H., Grewe, V.
878 and Peter, T.: Drivers of the tropospheric ozone budget throughout the 21st century under the medium-
879 high climate scenario RCP 6.0, *Atmos. Chem. Phys.*, 15, 5887-5902, doi:10.5194/acp-15-5887-2015,
880 2015.

881 Rodríguez, S., Huerta, G., and Reyes, H.: A study of trends for Mexico City ozone extremes: 2001-2014,
882 *Atmosfera*, 29, 107-120, doi:10.20937/ATM.2016.29.02.01, 2016.

883 Russell, A. R., Valin, L. C., and Cohen, R. C.: Trends in OMI NO₂ observations over the United States:
884 effects of emission control technology and the economic recession, *Atmos. Chem. Phys.*, 12, 12197-
885 12209, doi:10.5194/acp-12-12197-2012, 2012.

886 Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T. and Amnell, T.: Detecting trends of annual values of
887 atmospheric pollutants by the Mann-Kendall test and Sen's slope estimates – the Excel template
888 application MAKESENS, Publications on Air Quality Report code FMI-AQ-31, Helsinki, Finland, 31, 1-
889 35, 2002.

890 Sather, M.E. and Cavender, K.: Trends analyses of 30 years of ambient 8 hour ozone and precursor
891 monitoring data in the South Central US: progress and challenges, *Environ. Sci. Proc. Imp.*, 18, 819-
892 831. 2016.

893 Schultz, M., and Rast, S.: REanalysis of the TROpospheric chemical composition over the past 40 years,
894 Emission Data Sets and Methodologies for Estimating Emissions, Work Package 1, Deliverable D1-6,

895 available at: http://retro-archive.iek.fz-juelich.de/data/documents/reports/D1-6_final.pdf, last access: 14
896 Jul 2016, 2007.

897 SDS (Secretaria de Desarrollo Sustentable), Inventario de emisiones del Área Metropolitana de
898 Monterrey 2013, personal communication, Monterrey, N.L. México, 4 Sep 2015.

899 SDS (Secretaria de Desarrollo Sustentable): Sistema Integral de Monitoreo Ambiental, available at:
900 <http://aire.nl.gob.mx/>, last access: 21 May 2016, 2016.

901 SEDEMA (Secretaria del Medio Ambiente): INVENTARIO de Emisiones a la Atmosfera en la ZMVM
902 1996, available at: <http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-1996/#p=1>, last
903 access: 20 May 2016, 1999.

904 SEDEMA (Secretaria del Medio Ambiente): Inventario de Emisiones Zona Metropolitana del Valle de
905 Mexico 1998, available at: <http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-906-zmvm1998/#p=75>, last access: 20 May 2016, 2001.

907 SEDEMA (Secretaria del Medio Ambiente): Inventario de emisiones a la Atmosfera Zona Metropolitana
908 del Valle de Mexico 2000, available at: [http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm2000/](http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-909-zmvm2000/), last access: 20 May 2016, 2003.

910 SEDEMA (Secretaria del Medio Ambiente): Inventario de emisiones de la Zona Metropolitana del Valle
911 de Mexico 2002, available at: [http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-criterio2004/#p=1](http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-912-criterio2004/#p=1), last access: 20 May 2016, 2004.

913 SEDEMA (Secretaria del Medio Ambiente): Inventario de Emisiones Zona Metropolitana del Valle de
914 Mexico 2004, available at: [http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-criterio2004/#p=1](http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-915-criterio2004/#p=1), last access: 20 May 2016, 2006.

916 SEDEMA (Secretaria del Medio Ambiente): Inventario de Emisiones de Contaminantes Criterio 2006,
917 available at: <http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-criterio2006/#p=1>, last
918 access: 20 May 2016, 2008.

919 SEDEMA (Secretaria del Medio Ambiente): Inventario de emisiones de contaminantes criterio de la
920 ZMVM 2008, available at: [http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-criterio2008/#p=1](http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-921-criterio2008/#p=1), last access: 20 May 2016, 2010.

922 SEDEMA (Secretaria del Medio Ambiente): Inventario de emisiones de la Zona Metroplitana del Valle
923 de Mexico contaminantes criterio 2010, available at: <http://www.sedema.df.gob.mx/flippingbook/inventario-emisiones-zmvm-criterio-2010/#p=6>, last
924 access: 20 May 2016, 2012.

926 SEDEMA (Secretaria del Medio Ambiente): Inventario de Emisiones Contaminantes y de efecto
927 invernadero, available at: <http://www.sedema.df.gob.mx/flippingbook/inventario-emisioneszmvm2012/>, last
928 access: 20 May 2016, 2014.

929 SEDEMA (Secretaria del Medio Ambiente de la Ciudad de Mexico): Sistema de Monitoreo Atmosférico,
930 available at: <http://www.aire.df.gob.mx/default.php>, last access: 21 May 2016, 2016a.

931 SEDEMA (Secretaria del Medio Ambiente de la Ciudad de Mexico): Inventario de Emisiones de la CDMX
932 2014 Contaminantes Criterio Tóxicos y de Efecto Invernadero, available at:
933 <http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/inventario-emisiones-cdmx2014-2/>,
934 last Access: 10 Jan 2017, 2016b.

935 SEMARNAT (Secretaria del Medio Ambiente y Recursos Naturales): NOM-041 (NORMA OFICIAL
936 MEXICANA, QUE ESTABLECE LOS LIMITES MAXIMOS PERMISIBLES DE EMISION DE GASES
937 CONTAMINANTES PROVENIENTES DEL ESCAPE DE LOS VEHICULOS AUTOMOTORES EN
938 CIRCULACION QUE USAN GASOLINA COMO COMBUSTIBLE), Diario Oficial de la Federación, 1993.

939 SEMARNAT (Secretaria del Medio Ambiente y Recursos Naturales): NOM-042 (NORMA OFICIAL
940 MEXICANA QUE ESTABLECE LOS LIMITES MAXIMOS PERMISIBLES DE EMISION DE
941 HIDROCARBUROS TOTALES O NO METANO, MONOXIDO DE CARBONO, OXIDOS DE
942 NITROGENO Y PARTICULAS PROVENIENTES DEL ESCAPE DE LOS VEHICULOS
943 AUTOMOTORES NUEVOS CUYO PESO BRUTO VEHICULAR NO EXCEDA LOS 3,857
944 KILOGRAMOS, QUE USAN GASOLINA, GAS LICUADO DE PETROLEO, GAS NATURAL Y DIESEL,
945 ASI COMO DE LAS EMISIONES DE HIDROCARBUROS EVAPORATIVOS PROVENIENTES DEL
946 SISTEMA DE COMBUSTIBLE DE DICHOS VEHICULOS), Diario Oficial de la Federación, 1993.

947 SEMARNAT (Secretaria del Medio Ambiente y Recursos Naturales): Inventario Nacional de Emisiones
948 1999, México, D.F., available at: <http://www.inecc.gob.mx/dica/548-calaire-inem-1999>, last access: 20
949 May 2016, 2006.

950 SEMARNAT (Secretaria del Medio Ambiente y Recursos Naturales): Inventario Nacional de Emisiones
951 2005, México, D.F., available at: <http://sinea.semarnat.gob.mx/sinae.php?process=UkVQT1JURUFET1I=&categ=1>, last access: 22 May 2016, 2011.

953 SEMARNAT (Secretaria del Medio Ambiente y Recursos Naturales): Inventario Nacional de Emisiones
954 2008, México, D.F., available at: <http://sinea.semarnat.gob.mx/sinae.php?process=UkVQT1JURUFET1I=&categ=14>, last access: 22 May 2016, 2014.

956 SEMARNAT (Secretaria del Medio Ambiente y Recursos Naturales): Informe Nacional de calidad del
957 aire 2014, México, D.F., available at: http://inecc.gob.mx/descargas/calaire/2015_Informe_nacional_calidad_aire_2014_Final.pdf, last access: 15 Dec 2016, 2015.

959 SENER (Secretaria de Energia): Estadísticas Energéticas Nacionales, México, available at:
960 <http://sie.energia.gob.mx/bdiController.do?action=temas>, last access: 4 November 2015, 2015.

961 Sicard, P., Serra, R., and Rossello, P.: Spatiotemporal trends in ground-level ozone concentrations and
962 metrics in France over the time period 1999-2012, Environ. Res., 149, 122-144,
963 doi:10.1016/j.envres.2016.05.014, 2016

964 Sierra, A., Vanoye, A. Y., and Mendoza, A.: Ozone sensitivity to its precursor emissions in northeastern
965 Mexico for a summer air pollution episode, J. Air Waste Manage., 63, 1221-1233,
966 doi:10.1080/10962247.2013.813875, 2013.

967 Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across the United States over a
968 period of decreasing NO_x and VOC emissions, Environ. Sci. Tech., 49, 186-195. doi:10.1021/es504514z,
969 2015.

970 SMN (Servicio Meteorológico Nacional), available at: <http://smn.cna.gob.mx/es/>, last access: 21 May
971 2016.

972 Staehelin, J., and Schmid, W.: Trend analysis of tropospheric ozone concentrations utilizing the 20-year
973 data set of ozone balloon soundings over Payerne (Switzerland), Atmos. Environ., 25, 1739-1749,
974 doi:10.1016/0960-1686(91)90258-9, 1991.

975 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA'S HYSPLIT
976 atmospheric transport and dispersion modelling system. Am. Meteorol. Soc., 96, 2059-2077,
977 doi:10.1175/BAMS-D-14-00110.1, 2015.

978 Stephens, S., Madronich, S., Wu, F., Olson, J. B., Ramos, R., Retama, A., and Muñoz, R.: Weekly
979 patterns of México City's surface concentrations of CO, NO_x, PM₁₀ and O₃ during 1986-2007, Atmos.
980 Chem. Phys., 8, 5313-5325, doi:10.5194/acp-8-5313-2008, 2008.

981 Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P. C., Wild, O., Zeng, G.,
982 Amann, M., Atherton, C. S., Belli, N., Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J.,
983 Derwent, R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A.,
984 Horowitz, L. W., Isaksen, I. S. A., Krol, M. C., Lamarque, J.-., Lawrence, M. G., Montanaro, V., Müller,
985 J.-., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G., Savage, N. H.,

986 Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S.: Multimodel ensemble simulations of present-
987 day and near-future tropospheric ozone. *J. Geophys. Res.*, D08301, doi: 10.1029/2005JD006338, 2006.

988 Strode, S. A., Rodriguez, J. M., Logan, J. A., Cooper, O. R., Witte, J. C., Lamsal, L. N., Damon, M., Van
989 Aartsen, B., Steenrod, S. D., and Strahan, S. E.: Trends and variability in surface ozone over the United
990 States. *J. Geophys. Res.*, 120, 9020-9042, doi:10.1002/2014JD022784, 2015.

991 Tiwari, A. K., Suresh, K. G., Arouri, M., and Teulon, F.: Causality between consumer price and producer
992 price: Evidence from Mexico, *Econ. Model.*, 36, 432-440, doi:10.1016/j.econmod.2013.09.050, 2014.

993 Torres-Jardon, R., García-Reynoso, J. A., Jazcilevich, A., Ruiz-Suárez, L. G., and Keener, T. C.:
994 Assessment of the ozone-nitrogen oxide-volatile organic compound sensitivity of Mexico City through an
995 indicator-based approach: measurements and numerical simulations comparison, *J. Air Waste Manag.
996 Assoc.*, 59, 1155-1172, doi:10.3155/1047-3289.59.10.1155, 2009.

997 VanCuren, R.: Transport aloft drives peak ozone in the Mojave Desert, *Atmos. Environ.*, 109, 331-341,
998 doi: 10.1016/j.atmosenv.2014.09.057, 2015.

999 Vingarzan, R.: A review of surface ozone background levels and trends, *Atmos. Environ.*, 38, 3431-3442,
1000 doi:10.1016/j.atmosenv.2004.03.030, 2004.

1001 Velasco, E., Lamb, B., Westberg, H., Allwine, E., Sosa, G., Arriaga-Colina, J. L., Jobson, B. T.,
1002 Alexander, M. L., Prazeller, P., Knighton, W. B., Rogers, T. M., Grutter, M., Herndon, S. C., Kolb, C. E.,
1003 Zavala, M., de Foy, B., Volkamer, R., Molina, L. T., and Molina, M. J.: Distribution, magnitudes,
1004 reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the
1005 MCMA 2002 & 2003 field campaigns, *Atmos. Chem. Phys.*, 7, 329-353, doi:10.5194/acp-7-329-2007,
1006 2007.

1007 Wang, Y., Konopka, P., Liu, Y., Chen, H., Müller, R., Plöger, F., Riese, M., Cai, Z., and Lü, D.:
1008 Tropospheric ozone trend over Beijing from 2002-2010: Ozonesonde measurements and modeling
1009 analysis, *Atmos. Chem. Phys.*, 12, 8389-8399, doi:10.5194/acp-12-8389-2012, 2012.

1010 Wilson, R. C., Fleming, Z. L., Monks, P. S., Clain, G., Henne, S., Konovalov, I. B., Szopa, S., and Menut,
1011 L.: Have primary emission reduction measures reduced ozone across Europe? An analysis of European
1012 rural background ozone trends 1996-2005, *Atmos. Chem. Phys.*, 12, 437-454, doi:10.5194/acp-12-437-
1013 2012, 2012.

1014 Wolff, G. T., Kahlbaum, D. F., and Heuss, J. M.: The vanishing ozone weekday/weekend effect, *J. Air
1015 Waste Manage.*, 63, 292-299, doi:10.1080/10962247.2012.749312, 2013.

1016 World Health Organization: Ambient (outdoor) air quality and health, 2014 update,
1017 <http://www.who.int/mediacentre/factsheets/fs313/en/>, last access: 21 May 2016.

1018 Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C.-M., and Wei, C.: Historical gaseous and
1019 primary aerosol emissions in the United States from 1990 to 2010, *Atmos. Chem. Phys.*, 13, 7531-7549,
1020 doi:10.5194/acp-13-7531-2013, 2013.

1021 Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., and Wang, Y.: Long-term trend of surface ozone
1022 at a regional background station in eastern China 1991-2006: Enhanced variability, *Atmos. Chem. Phys.*,
1023 8, 2595-2607, doi:10.5194/acp-8-2595-2008, 2008.

1024 Zellweger, C., Hüglin, C., Klausen, J., Steinbacher, M., Vollmer, M., and Buchmann, B.: Inter-comparison
1025 of four different carbon monoxide measurement techniques and evaluation of the long-term carbon
1026 monoxide time series of Jungfraujoch, *Atmos. Chem. Phys.*, 9, 3491-3503, doi:10.5194/acp-9-3491-
1027 2009, 2009.

1028 Zheng, J., Swall, J. L., Cox, W. M., and Davis, J. M. Interannual variation in meteorologically adjusted
1029 ozone levels in the eastern United States: A comparison of two approaches, *Atmos. Environ.*, 41, 705-
1030 716, doi:10.1016/j.atmosenv.2006.09.010, 2007.

1031

Table 1. Air quality limit values stated in Mexican legislation.

Pollutant	Mexican Official Standard	Limit value*
O ₃ (ppb)	NOM-020-SSA1-1993	110 (1-h), 80 (8-h) ^{a,b}
	NOM-020-SSA1-2014	95 (1-h) , 70 (8-h) ^{a,b}
PM ₁₀ (µg m ⁻³)	NOM-025-SSA1-1993	75 (24-h), 40 (1-yr)
	NOM-025-SSA1-2014	50 (24h), 35 (1-yr)
PM _{2.5} (µg m ⁻³)	NOM-025-SSA1-1993	45 (24-h), 12 (1-yr)
	NOM-025-SSA1-2014	30 (24-h), 10 (1-yr)
CO (ppm)	NOM-02-SSA1-1993	11 (8-h) ^b
NO ₂ (ppm)	NOM-023-SSA1 -1993	0.21 (1-h)

1032 *Average period.

1033 ^aNot to be exceeded more than 4 times in a calendar year.1034 ^bRunning average.

1035

1036

Table 2. Site description, location and instrumentation used during 1993 to 2014 within the MMA.

Site	Code	Location	Elevation (m a.s.l.)	Site description
Guadalupe	GPE	25° 40.110' N, 100° 14.907' W	492	Urban background site in the La Pastora park, surrounded by a highly populated area, 450 m from Pablo Rivas Rd.
San Nicolas	SNN	25° 44.727' N, 100° 15.301' W	476	Urban site surrounded by a large number of industries and residential areas, 450 m from Juan Diego Diaz de Beriagna Rd.
Obispado	OBI	25° 40.561' N, 100° 20.314' W	560	Urban site near the city centre of MMA, 250 m from Jose Eleuterio González Rd. and 250 m from Antonio L. Rodríguez Rd.
San Bernabe	SNB	25° 45.415' N, 100° 21.949' W	571	Urban site in a residential area downwind of an industrial area with high traffic volume, 140 m from Aztlan Rd.
Santa Catarina	STA	25° 40.542' N, 100° 27.901' W	679	Urban site downwind of industrial sources, 200 m from Manuel Ordoñez Rd.

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

Table 3. Results for O_3 and O_x long-term trends expressed in ppb yr^{-1} for 1993-2014 at the 5 sites within the MMA by season.

Site	Period	Ozone (O_3)			Odd oxygen ($O_x = O_3 + NO_2$)		
		ppb yr^{-1}	% yr^{-1}	Significance	ppb yr^{-1}	% yr^{-1}	Significance
GPE	Annual	0.21	0.78	*	0.31	0.80	**
	Spring	0.24	0.73	*	0.32	0.69	*
	Summer	0.30	1.16	*	0.38	1.18	*
	Autumn	0.14	0.53		0.25	0.62	
	Winter	0.12	0.53		0.14	0.33	*
SNN	Annual	0.33	1.40	***	0.45	1.25	*
	Spring	0.39	1.38	*	0.49	1.22	*
	Summer	0.47	2.24	*	0.58	1.87	***
	Autumn	0.41	1.96	*	0.65	1.94	*
	Winter	0.14	0.68		0.23	0.58	+
OBI	Annual	0.30	1.29	*	-0.17	-0.35	
	Spring	0.43	1.56	*	0.02	0.03	*
	Summer	0.26	0.98	*	-0.04	-0.09	
	Autumn	0.29	1.33	+	-0.66	-1.15	
	Winter	0.25	1.46		-0.28	-0.53	
SNB	Annual	0.19	0.65	+	0.61	1.66	**
	Spring	0.37	1.07	+	0.67	1.65	+
	Summer	0.31	1.06	***	0.66	2.17	***
	Autumn	0.19	0.64		0.60	1.61	+
	Winter	0.02	0.07		0.47	1.12	+
STA	Annual	0.01	0.01		-0.15	-0.28	
	Spring	-0.04	-0.11		-0.01	-0.02	
	Summer	0.09	0.28		0.13	0.27	
	Autumn	0.00	0.00		-0.22	-0.41	
	Winter	-0.09	-0.43		-0.63	-1.15	*

1058 *Level of significance $p < 0.1$.1059 **Level of significance $p < 0.05$.1060 ***Level of significance $p < 0.001$.1061 ****Level of significance $p < 0.001$.

1069 **Table 4.** Results for O₃ and O_x long-term trends by season expressed in ppb yr⁻¹ during 1993-2014 for
 1070 the MCMA and MMA, and during 1996-2014 for the GMA.

Urban area	Period	Ozone (O ₃)			Odd oxygen (O ₃ + NO ₂)		
		ppb yr ⁻¹	% yr ⁻¹	Significance	ppb yr ⁻¹	% yr ⁻¹	Significance
MCMA	Annual	-1.15	-2.04	***	-1.87	-1.94	***
	Spring	-0.97	-1.53	***	-1.77	-1.71	***
	Summer	-0.97	-1.88	***	-1.44	-1.67	***
	Autumn	-1.12	-2.20	***	-1.89	-2.15	***
	Winter	-1.62	-2.64	***	-2.47	-2.27	***
GMA	Annual	-0.29	-0.81		-1.46	-1.85	+
	Spring	-0.26	-0.57		-1.89	-2.07	*
	Summer	-0.10	-0.32		-1.43	-1.89	*
	Autumn	-0.09	0.33		-1.40	-1.97	*
	Winter	-0.34	-1.01		-1.74	-2.08	***
MMA	Annual	0.22	0.84	**	0.13	0.30	
	Spring	0.32	1.04	**	0.29	0.63	
	Summer	0.27	0.99	***	0.28	0.72	***
	Autumn	0.25	1.03		0.13	0.31	
	Winter	0.10	0.45		0.01	-0.01	

1071 ⁺Level of significance $p < 0.1$.

1072 ^{*}Level of significance $p < 0.05$.

1073 ^{**}Level of significance $p < 0.001$.

1074 ^{***}Level of significance $p < 0.001$.

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

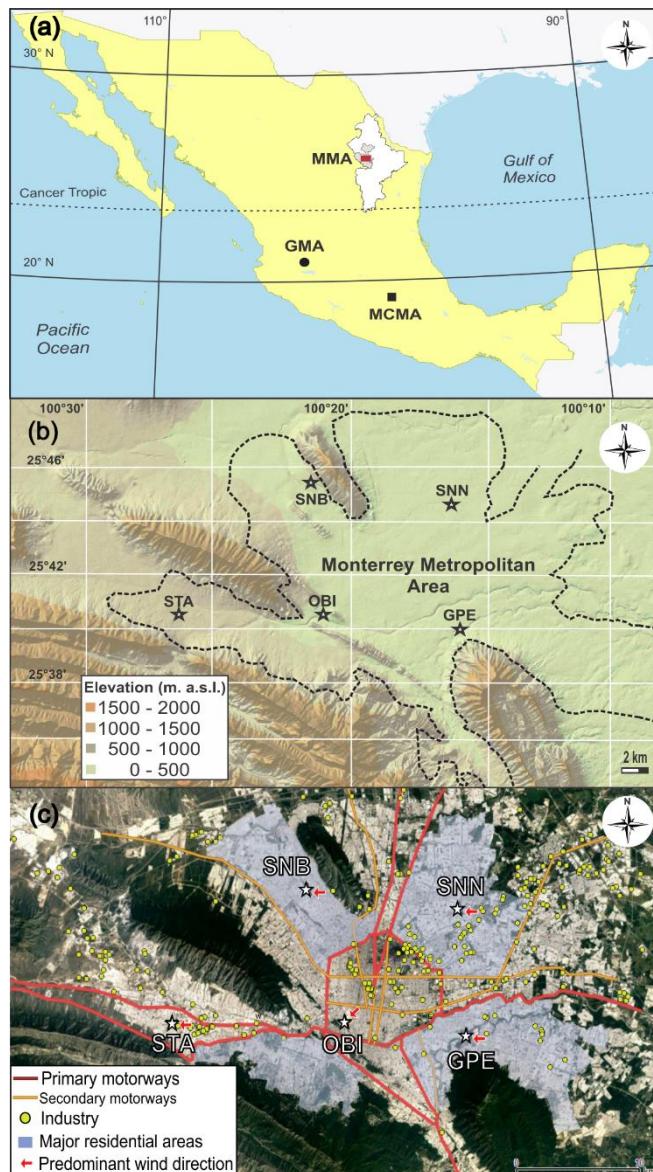
1088

1089

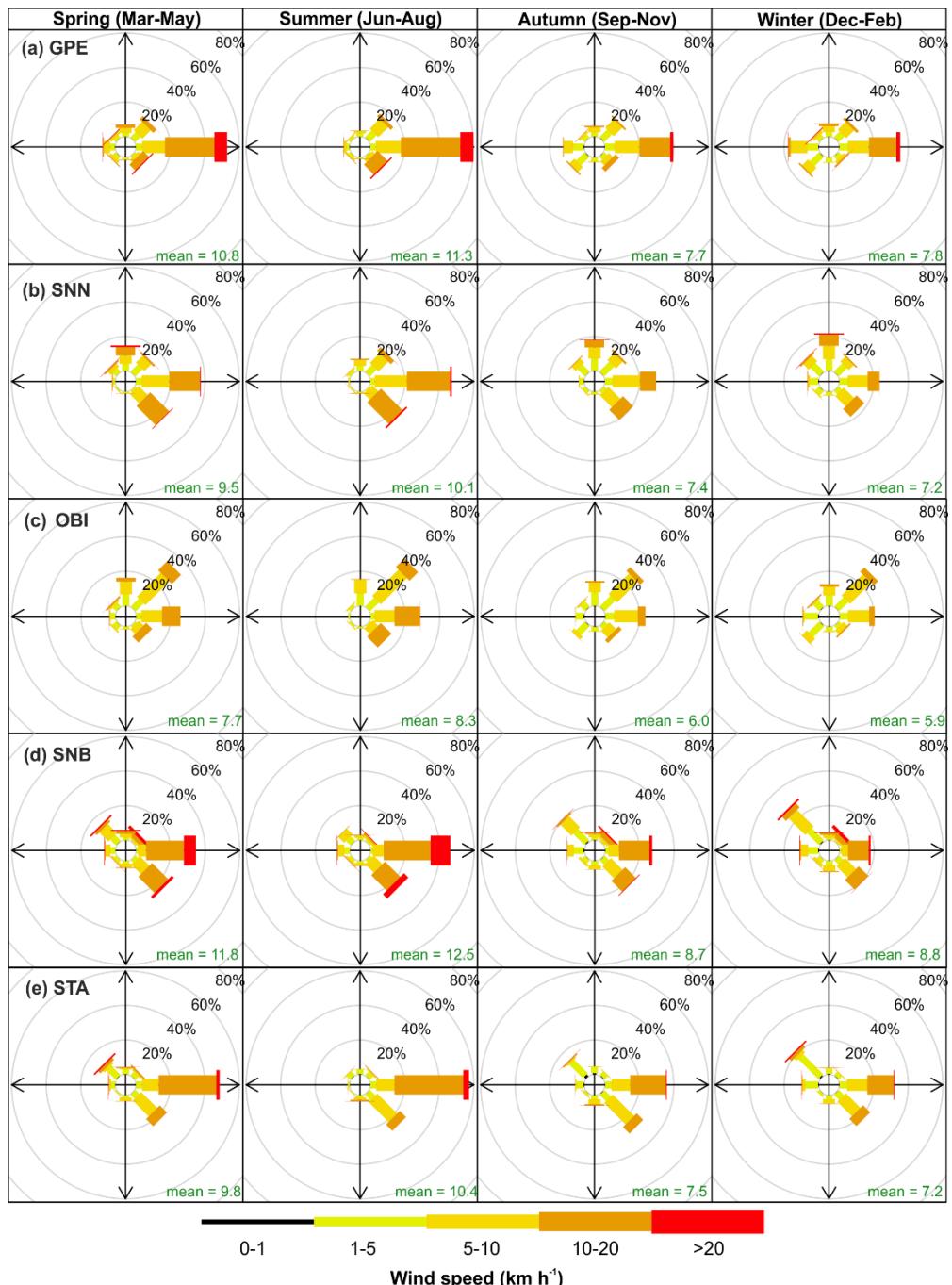
1090 **Table 5.** Results for O₃ daily maxima long-term trends by season in ppb yr⁻¹ during 1993-2014 at the 5
 1091 sites within the MMA.

Site	Period	Ozone (O ₃)		
		ppb yr ⁻¹	% yr ⁻¹	Significance
GPE	Annual	0.45	1.02	**
	Spring	0.48	0.94	**
	Summer	0.64	1.50	*
	Autumn	0.35	0.74	
	Winter	0.26	0.63	
SNN	Annual	0.79	2.13	***
	Spring	0.87	2.01	***
	Summer	0.85	2.42	***
	Autumn	0.93	2.73	*
	Winter	0.44	1.29	
OBI	Annual	0.65	1.51	*
	Spring	0.78	1.62	**
	Summer	0.53	1.10	*
	Autumn	0.75	1.77	
	Winter	0.21	0.55	
SNB	Annual	0.40	0.80	***
	Spring	0.85	1.58	***
	Summer	0.67	1.36	***
	Autumn	0.52	1.05	*
	Winter	0.05	0.10	
STA	Annual	0.01	-0.01	
	Spring	-0.05	-0.09	
	Summer	0.22	0.35	
	Autumn	-0.07	-0.12	
	Winter	-0.35	-0.75	+

1092 ⁺Level of significance $p < 0.1$.


1093 ^{*}Level of significance $p < 0.05$.

1094 ^{**}Level of significance $p < 0.001$.


1095 ^{***}Level of significance $p < 0.001$.

1096

1097

1098
1099 **Fig. 1(a).** The MMA, MCMA and GMA in the national context. **(b).** Topography of the MMA and
1100 distribution of the 5 monitoring sites over the area. **(c).** The 5 monitoring sites in relation to primary and
1101 secondary motorways, industries and major residential areas. The red arrows show the predominant
1102 wind direction at each site during 1993 to 2014.

1106
1107 **Fig. 2.** Frequency of counts of measured wind direction occurrence by season and site within the MMA
1108 during 1993-2014.
1109

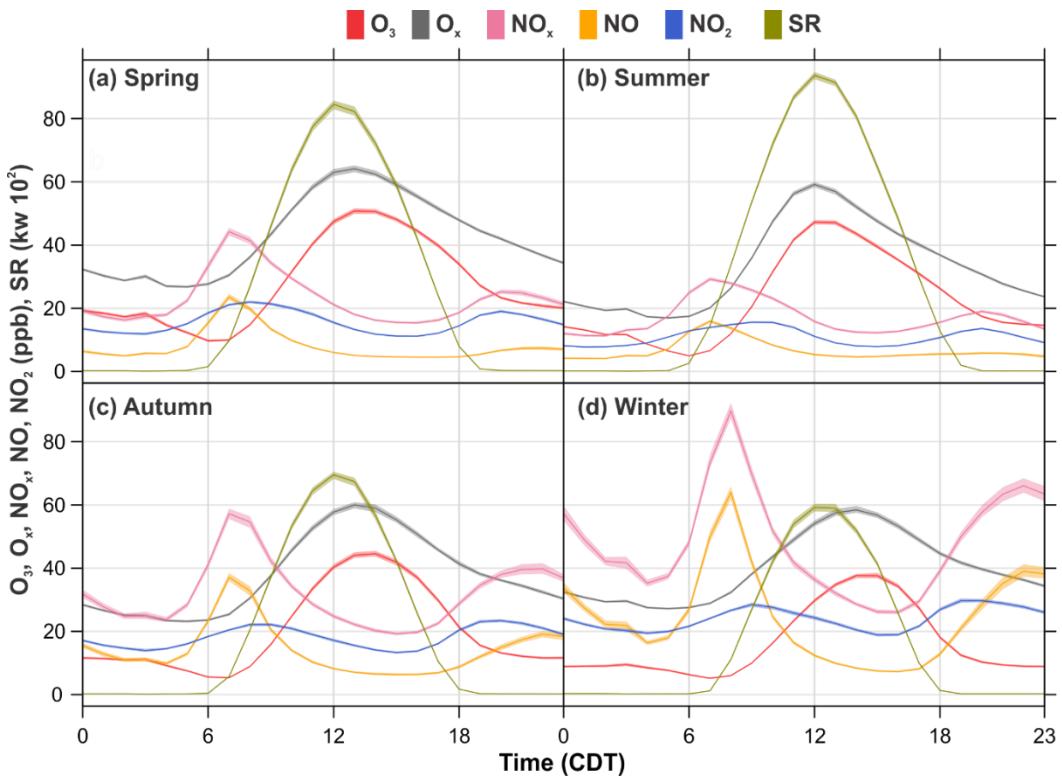
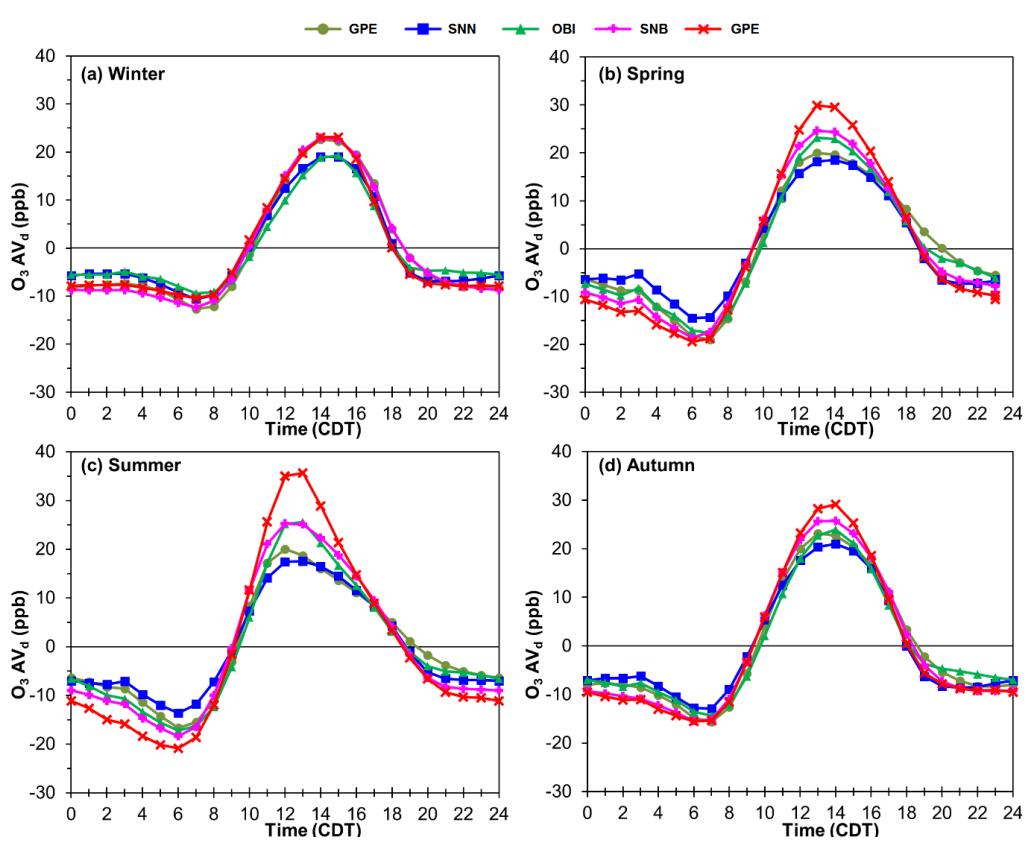
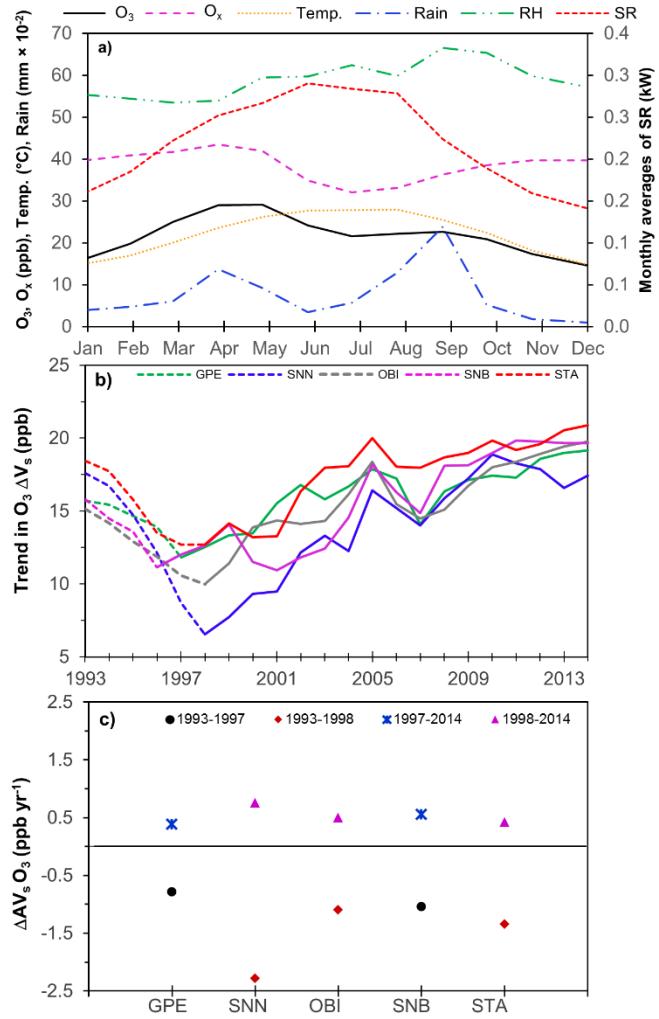
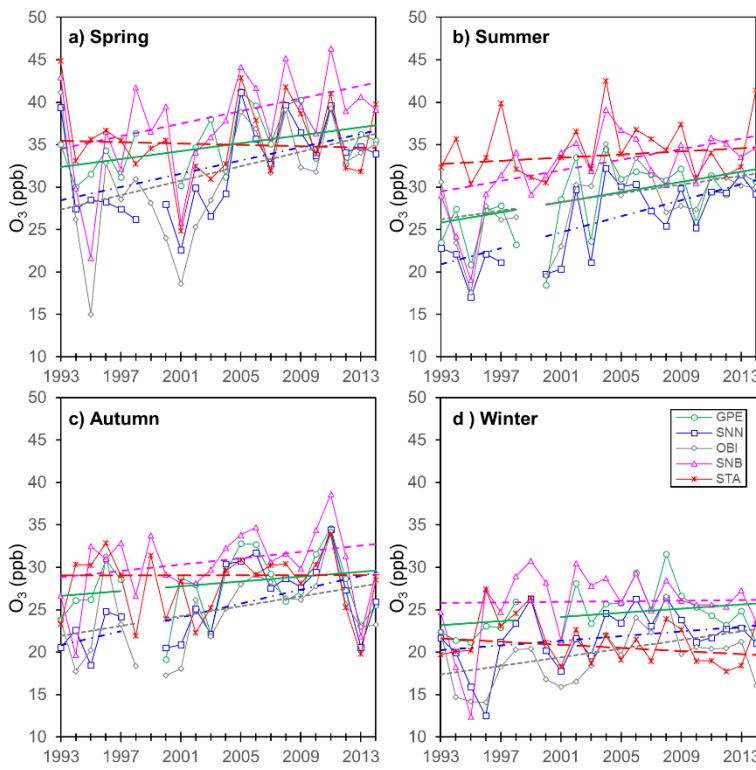


Fig. 3. Seasonal average daily profiles for O₃, O_x, NO_x, NO, NO₂ and SR within the MMA during 1993-2014. The shading shows the 95 % confidence intervals of the average.

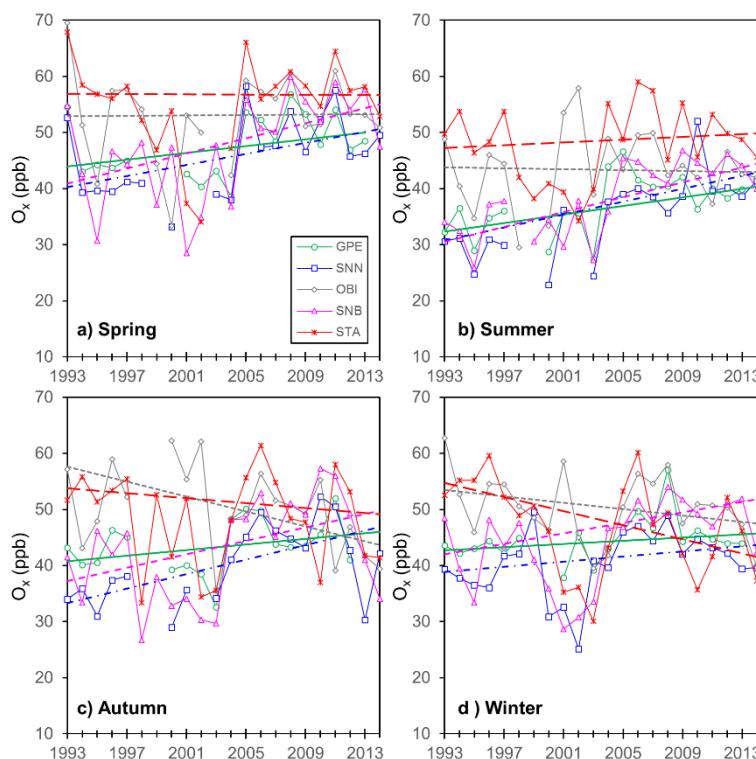

Fig. 4. Seasonal O₃ de-trended daily profiles within the MMA during 1993-2014. De-trended O₃ daily cycles were constructed by subtracting daily averages from hourly averages to remove the impact of long-term trends.

Fig. 5a). Annual cycles of O_3 , temperature, rainfall, RH and SR constructed by averaging records from 1993 to 2014 for a 1-year period. **b).** Trends in AV_s of O_3 recorded at the 5 monitoring sites within the MMA from 1993 to 2014. The decline in AV_s observed is due to the economic crisis experienced in Mexico during 1994-1996, followed by persistent increases in AV_s since 1998. **c).** Annual rates of change in $O_3 AV_s$ by site, before and after the 1994-1996 economic crisis.

1126
 1127 **Fig. 6.** Seasonal trends of O_3 within the MMA during 1993-2014. Each data point represents the average
 1128 of the 3-month period that defines the season. The continuous lines show the Sen trend.
 1129

1130
 1131 **Fig. 7.** Seasonal trends of O_X within the MMA during 1993-2014. Each data point represents the average
 1132 of the 3-month period that defines the season. The continuous lines show the Sen trend.
 1133

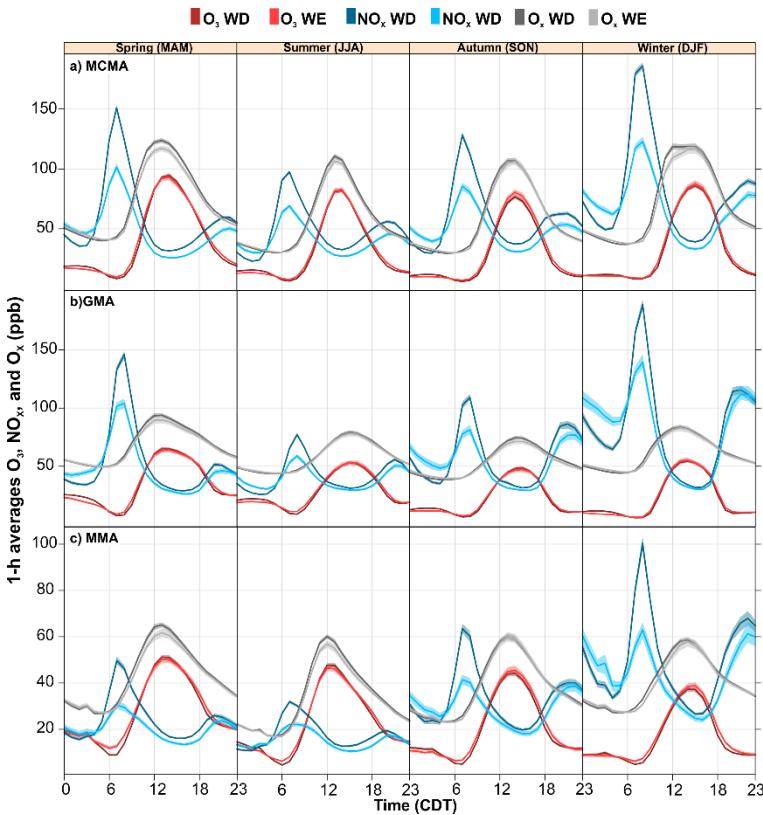
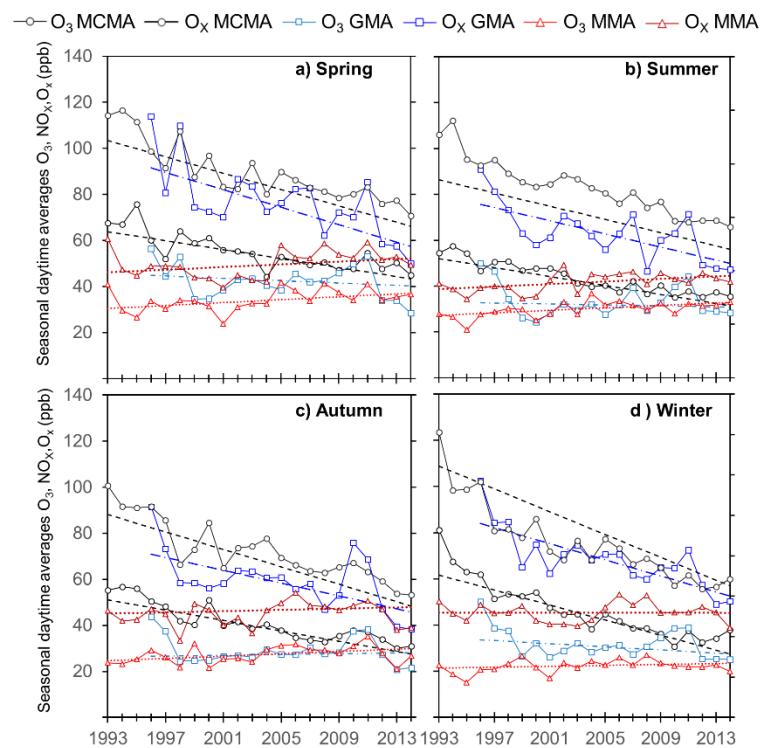
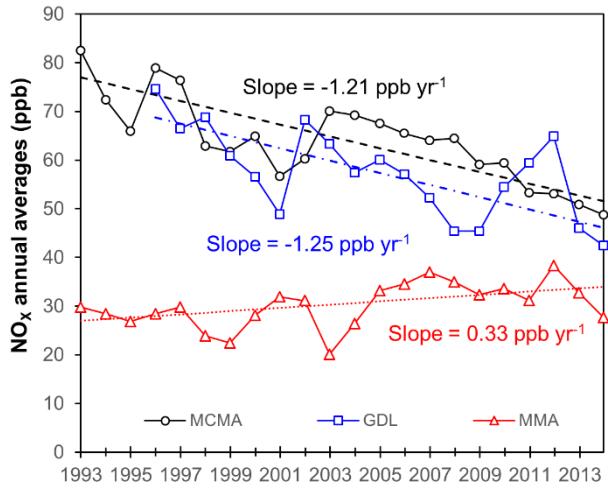
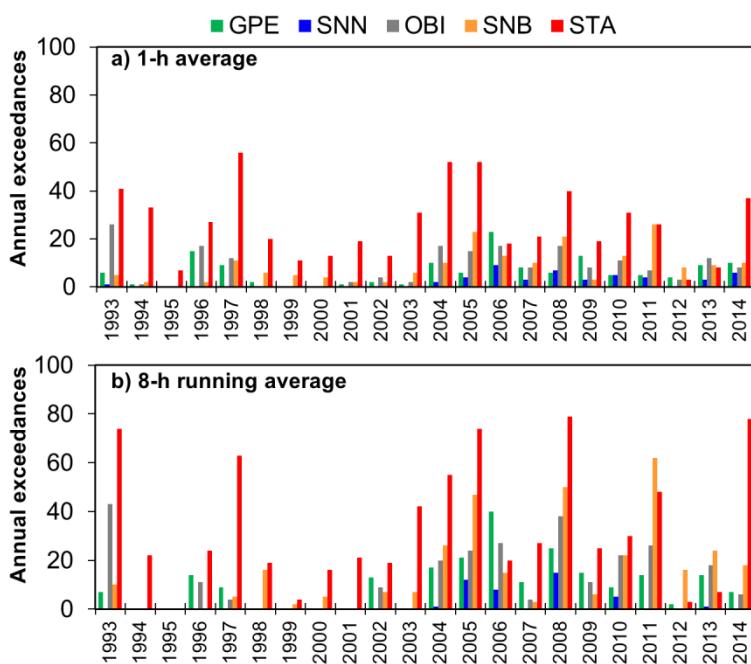
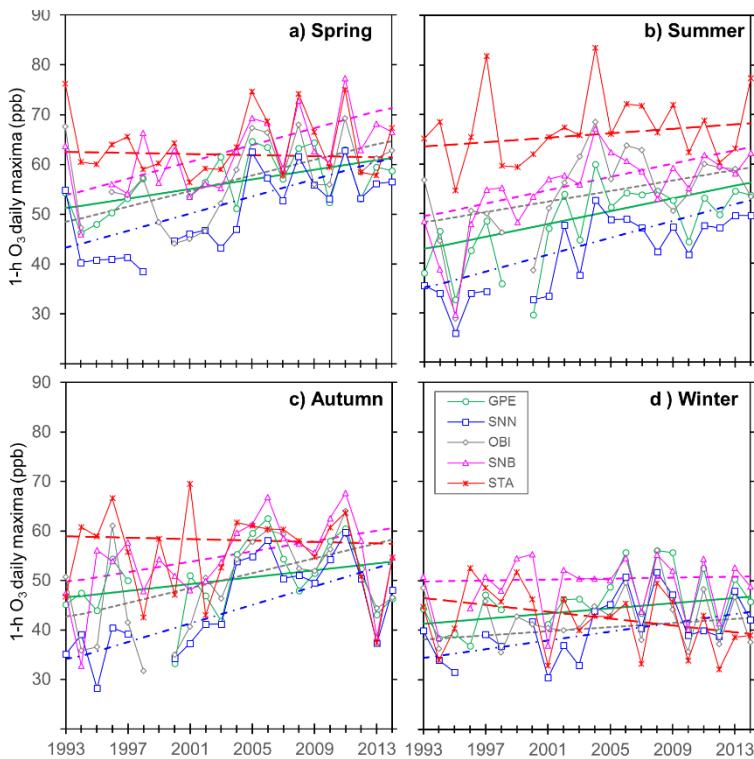
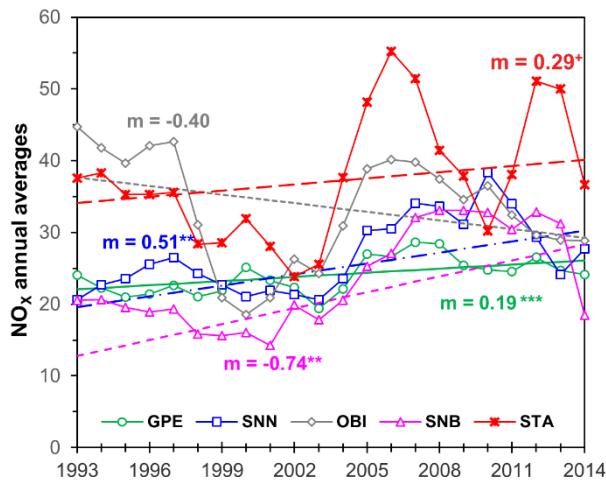


Fig. 8. Seasonal average diurnal cycles of O_3 , O_x and NO_x during 1993-2014 for the MCMA and the MMA, and between 1996-2014 for the GMA. The shading shows the 95% confidence intervals of the average, calculated through bootstrap resampling (Carslaw, 2015).


Fig. 9. Seasonal trends in O_3 and O_x for the MCMA and MMA during 1993-2014, and for the GMA during 1996-2014. Each data point represents the average of the 3-month period that defines the season. The dashed lines show the Sen trend.

1145
1146 **Fig. 10.** Trends for NO_x at the MCMA and MMA during 1993-2014, and at the GMA during 1996-2014.
1147 The dashed lines represent the Sen slopes. All trends are statistically significant at $p<0.05$.
1148



1149
1150 **Fig. 11.** Annual exceedances of the O₃ NOM for 1-h averages (110 ppb) and 8-h running averages (80
1151 ppb) at the 5 monitoring sites within the MMA from 1993 to 2014.
1152

1153
1154 **Fig. 12.** Seasonal trends in 1-h O₃ daily maxima at the MMA during 1993-2014. Each data point
1155 represents the average of the 3-month period that defines the season. The dashed lines show the Sen
1156 trend.

1157
1158
1159

1160
1161 **Fig. 13.** Long-term trends for NO_x at the 5 monitoring sites within the MMA during 1993-2014. The
1162 dashed lines represent the Sen slopes. Annual NO_x rates of change are described as m for slope and
1163 expressed in units of ppb yr⁻¹. Levels of confidence are represented as ⁺ = $p < 0.1$, ^{*} = $p < 0.05$, ^{**} = $p < 0.001$,
1164 ^{***} = $p < 0.001$.

1165
1166