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Abstract. We introduce system identification techniques to climate science wherein multiple dy-

namic input-output relationships can be simultaneously characterized in a single simulation. This

method, involving multiple small perturbations (in space and time) of an input field while monitor-

ing output fields to quantify responses, allows for identification of different timescales of climate

response to forcing without substantially pushing the climate far away from a steady state. We use5

this technique to determine the steady state responses of low cloud fraction and latent heat flux to

heating perturbations over 22 regions spanning Earth’s oceans. We show that the response charac-

teristics are similar to those of step-change simulations, but in this new method, the responses for

22 regions can be characterized simultaneously. Furthermore, we can estimate the timescale over

which the steady state response emerges. The proposed methodology could be useful for a wide10

variety of purposes in climate science, including characterization of teleconnections and uncertainty

quantification to identify the effects of climate model tuning parameters.

1 Introduction

Understanding the response of climate models to perturbations is one of the core questions in climate

science. Some of the emergent behaviors in climate model response, particularly on small temporal15

and spatial scales, can be challenging to interpret. This is in part due to issues with low signal-to-

noise ratios (SNRs), climate system nonlinearities, and other far-field effects.

Simulations to understand climate response frequently use abrupt or “step” changes in an exoge-

nous input field (e.g., an abrupt increase in the CO2 concentration) or “ramp” changes (e.g., a 1%

increase in the CO2 concentration each year). However, in climate model simulations, the input sig-20

nal can be chosen based on criteria specific to the intended goal of the simulation. Any input signal
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will result in a portion of the response that is linear and a portion that is nonlinear, and increasing the

magnitude of the input has the potential to amplify nonlinearities. Avoiding this prospect requires

multiple ensemble members or longer simulations to increase SNR, which becomes quite expensive

if one wishes to assess multiple perturbations (e.g., changes in multiple geographical regions). As25

we discuss in the following section, many types of simulations that are commonly employed in cli-

mate science to investigate climate model response suffer from issues associated with this tradeoff.

Moreover, they are not designed to investigate multiple input-output relationships simultaneously,

necessitating larger computational cost to investigate complex systems.

Here we introduce a method of identifying input-output relationships in climate models for mul-30

tiple simultaneous perturbations with relatively low computational expense and without the typical

difficulties in signal detection arising from strong forcing and nonlinearities that are found in other

methods commonly used in climate science. An additional advantage of this method is that it is

dynamic (characterizes a range of timescales) rather than static (only characterizes the steady state

response). This methodology is commonly called system identification in engineering fields (Pin-35

telon and Schoukens, 2012). In subsequent sections, we discuss the process of system identification,

its utility as compared to other commonly used methods of assessing climate system behavior, and

potential implications for understanding far-field effects.

2 System Identification

System identification refers to the process of using input and output time series to understand the40

(possibly dynamic) relationship between them. For example, if one wants to understand the cli-

mate response to a change in the CO2 concentration, one can create a time-varying series of CO2

concentrations, insert it into a climate model, and analyze various output fields (like global mean

temperature or cloud fraction) to understand how those output fields change in response to the in-

puts. Characterizing input-output relationships should be done in a way that depends on the system45

to be characterized and on the objectives of the analysis. One can choose the frequency content of

the input signal that one uses to characterize the system.

Any system will respond differently to input signals at different frequencies (that is, the input-

output relationship is in general dynamic). However, for many real-world systems, there is some

sufficiently low frequency for which the response is approximately the same as the equilibrium or50

steady-state response; this is called the quasi-static regime. A conceptually simple approach to char-

acterizing a single input-output relationship in the quasi-static regime is a step response simulation,

in which the input is abruptly changed. We discuss step response simulations in more detail in Sec-

tion 2.1 below.

If one is interested in estimating the fully dynamic response (i.e., on different timescales over55

which the response varies), then the signal energy needs to be injected over a range of frequencies.
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There are several strategies for accomplishing this (e.g., Kravitz et al., 2016). A sinusoidal input

puts the maximum possible power into a single frequency. However, characterizing the system at

multiple frequencies requires multiple sinusoids. One could also use a wider band of frequencies

(e.g., band-pass filtered white noise) at the cost of input power.60

If one wishes to characterize multiple input-output relationships simultaneously (i.e., not by con-

ducting one simulation for each input), then the different input signals need to be chosen uncorrelated

from each other; this is clearly not possible with step inputs. As an example, one could choose multi-

ple sinusoids with non-equal frequencies, which is effective if one wishes to characterize quasi-static

behavior for all of the input-output relationships. Careful choice of frequency may be necessary be-65

cause any nonlinearities will excite oscillations in the output that are higher harmonics of the input

(e.g., an input signal of 10 Hz will result in output only at 10 Hz if the system is linear, but also at

20, 30, 40, ... Hz if there are nonlinearities); as such, it is often useful to choose non-commensurate

frequencies to quantify the magnitude of the nonlinear portion of the response. If there are multiple

input variables, and if one is interested in an estimate of the fully dynamic system, the input signals70

all need to contain broad frequency content but must be mutually uncorrelated. This is the case on

which this manuscript focuses; we discuss this in more detail in Section 2.2 below.

2.1 Step Response Simulations

Step response simulations, in which a sustained perturbation is applied to the system, are common in

climate science (e.g., Good et al., 2013). An example is the abrupt4xCO2 simulation (illustrated in75

Figure 1a) in which the CO2 concentration is abruptly quadrupled from its preindustrial value, and

the model behavior then evolves over time. The abrupt4xCO2 simulation is a standard experiment

in the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). These sorts

of simulations are easy to perform, and they often have high SNRs, which makes for relatively

straightforward analysis.80

However, there are several features of such step response simulations which, depending on the

situation, may be detrimental to analysis. As described previously, if one wishes to evaluate the

steady-state or quasi-static behavior, step response simulations are often an excellent tool. How-

ever, they are not well suited for evaluating fully dynamic behavior. This can be seen through the

frequency decomposition of a step function (calculated via Laplace transform):85

H(s) =
1
s

(1)

where s= iω, and ω is (angular) frequency. At high frequencies, the input signal does not contain

much energy, so unless there is sufficient amplification by the system at these frequencies, evaluating

transient or short-term behavior is difficult and may require averaging multiple ensemble members.

Moreover, depending upon the magnitude of the step change and the details of the dynamical90

system, the resulting climate can be pushed relatively far away from the initial climate. This has the
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potential to exacerbate nonlinearities in the climate response. As can be seen in Figure 1b, doubling

the estimated effective radiative forcing (the y-intercept) or the estimated equilibrium temperature

(the x-intercept) for an abrupt doubling of the CO2 concentration does not give the same answer as

for an abrupt4xCO2 response. In Figure 1, differences between these estimated quantities are 4 and95

10%, respectively. In some circumstances, this may be an acceptable margin of error, and it may not

be in others.

The departure from linearity can be seen more clearly when calculating the amount of heat added

to the system from these runs. The total heat accumulated through a given year n can be estimated

by100

∆Qn =
n∑

i=1

∆Ri · 86400 · 365 ·A (2)

where ∆Ri is the net top-of-atmosphere (TOA) radiative flux imbalance in year i that is the result of

the step function perturbation, andA is Earth’s surface area. These quantities are plotted in Figure 1c

for abrupt4xCO2 and two times abrupt2xCO2. Although nonlinearities account for approximately

1% of the difference between these two plotted quantities, the net difference represents a substantial105

amount of heat.

2.2 Generating multiple uncorrelated broadband input signals

Although useful for certain applications, step response simulations are not ideal for characterizing

system behavior at all frequencies, and one cannot attribute the effects of multiple simultaneous step

perturbations unless the responses to different inputs are independent. Simultaneously characterizing110

multiple dynamic input-output relationships requires constructing a set of inputs that have broad

frequency content and are mutually uncorrelated.

The frequency content of the input signals is a choice, depending on the behavior in which one is

interested. For example, if one cares about teleconnections on sub-annual timescales, then one could

choose high-pass filtered white noise with a cutoff frequency corresponding to a timescale of one115

year. Similarly, if one were not interested in the high frequency response (which may also be more

difficult to distinguish from internal variability), one could choose a set of low-pass filtered white

noise signals. If one wishes to avoid the issue of adding substantial amounts of heat to the climate

system (as was described in the previous section), one could ensure that the input signals are chosen

to have zero mean; this condition is automatically satisfied by white noise.120

Once these signals are generated, the next step is to ensure that they are mutually uncorrelated.

This is accomplished by the Gram-Schmidt process. Let {vi}ni=1 be a set of n generated input signals

with the appropriate frequency content for the problem of interest. Beginning with the first signal,

and for each subsequent signal, one subtracts off any correlation with the previous signals to obtain

4
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the set {ui}ni=1. Mathematically, this is represented by125

u1

u2

u3

=

=

=

...

v1

v2−proju1
(v2)

v3−proju1
(v3)− proju2

(v3)
(3)

where

proju(v) =
〈v,u〉
〈u,u〉u (4)

and 〈 , 〉 represents an inner product (straightforward for discrete time; a common representation

of an inner product in continuous time is an integral, as in Equation 6 below). The final stage is130

renormalization, where the final signals to be used {ei}ni=1 are given by

ei =
ui
||ui||

(5)

Each of these signals in the set {ei} is uncorrelated, has a maximum root-mean-square (amplitude

in the `2 norm) of 1 (these can be scaled as needed), and all signals have the same frequency content

as the original signals {vi}.135

We define the signals to be uncorrelated (orthogonal) if

T∫

0

ei(t)ej(t) dt= 0 (6)

for i 6= j, where T is the length of the signals (summation can be used instead of integration for

discrete systems). This criterion will ensure minimal cross-talk between the response patterns ex-

cited by individual signals, but only in the quasi-static regime where there is little dependence upon140

frequency. Ensuring minimal cross-talk on the fully dynamic range of frequencies would require the

criterion

T−τ∫

0

ei(t)ej(t+ τ) dt= 0 (∀τ ≤ t) (7)

for i 6= j. This additional criterion accounts for lag effects (quantified as a phase shift between the

input and output fields) over a range of timescales on which processes operate. As will be discussed145

later, for the variables analyzed here, the quasi-static state is reached relatively early in the simula-

tions, so lag effects are not of substantive concern.

2.3 Climate model simulations

Once the signals are generated, the procedure is straightforward. In a climate model simulation,

one modifies each of the input fields by perturbing them according to their corresponding input150
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signals (here, adding the input signals to the fields; see Sections 3.2 and 3.3 below for more concrete

examples). After the simulation is completed, an estimate of the quasi-static sensitivity of the output

to changes in the input can be obtained by projecting any time series from the resulting simulation

(U ) onto one of the original signals ai via

PU,i =
〈ai,U〉
〈ai,ai〉

(8)155

For example, if ai is a signal describing perturbations to sea surface temperatures in the Pacific Ocean

(K), and if U is a timeseries of maps of total cloud cover (%), then PU,i will be a two-dimensional

field with units % K−1. If the response is truly static (independent of frequency), then this projection

gives the best estimate of the sensitivity. Estimates of the dynamic (frequency-dependent) response

can be obtained by first band-pass filtering both the input and output signal prior to the projection160

in Equation 8. By choosing different filters, one can identify how the input-output relationship de-

pends on frequency, and in particular identify the time scale at which the response is quasi-static

(approximately independent of frequency). This is the procedure followed in Section 3.3. Using an

appropriate low-pass filter to focus on the quasi-static regime gives a better estimate of the input-

output relationship than using Equation 8 directly on the full time series.165

3 Demonstration of the Technique

3.1 Experimental Design

To apply perturbations, we need to decide on what to perturb and what to analyze. Here the pertur-

bations applied are to air temperature near the surface over 22 regions covering the world’s oceans

(Figure 2), as well as the Mediterranean Sea, chosen for its fairly large area and potential climatic170

importance (e.g., Paeth et al., 2016). This choice of input is an idealized representation of a change

in heat flux at the surface that might be due to a change in surface sensible heat flux (through some

perturbation we do not specify here) or through a surface radiative flux change like what might be

produced by marine cloud brightening (Latham et al., 2012). We then analyze the effects of these

multiple simultaneous uncorrelated broadband perturbations on low cloud cover and latent heat flux175

in climate model simulations. All simulations were conducted using the fully coupled Community

Earth System Model (CESM) version 1.2.0 (Hurrell et al., 2013).

The first step is to generate the sequences that will be used to guide model perturbations. We

are a priori uncertain as to the timescales on which the chosen outputs will respond. As such, the

most agnostic choice for the input signals is white noise, which has zero mean and content at all180

frequencies. (Note that because this procedure must be discretized, any input signal is effectively

low-pass filtered, where the highest frequency contained in the signal corresponds to the model

timestep, which is 30 minutes.) For the purposes of this illustration, we choose to low-pass filter the

white noise signals with a cutoff frequency of one week. This choice of cutoff frequency minimizes
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the response excited at diurnal or weekly timescales, which is a plausible choice if one wishes to185

characterize climatological response and eschew meteorological response.

The next step is to choose the update rate, i.e., how often the perturbation to the climate system is

changed. By the Nyquist limit, the slowest possible update rate is twice the filter cutoff frequency,

i.e., half a week. The difference between the cutoff frequency and the update rate is analogous to the

problem of aliasing in sampling a sinusoidal curve: the sampling frequency can be different from the190

frequency of the actual sine wave, but obtaining an accurate fit of the sinusoid is easier if the curve

is sampled more frequently, and there is a mathematical lower limit as to the minimum number of

points required to obtain that fit. Here we choose the update rate to be every model day, wherein the

perturbation is maintained for an entire model day. Because of practical limitations, all simulations

in this study are conducted for 20 years. For all analyses of the system identification simulation in195

this study, we do not explicitly consider response times longer than one year. Beyond one year, there

are too few points to average to obtain adequate estimates of the signal above the estimated error.

We generate 22 uncorrelated sequences as described earlier and use these sequences to perturb

temperature in the lowest model layer over each of the 22 regions in Figure 2. The sequences are

normalized so that values range between -1 K and 1 K, with a median magnitude of 0.3 K. Because200

the sequences were generated from white noise, they have a mean value of 0 K. Figure 3 shows an

example of one of the 22 sequences for both the time domain and the frequency domain. In the time

domain, the sequence is visually indistinguishable from white noise, but in the frequency domain,

the frequency content becomes immediately clear.

After the sequences are generated, the next step is to use them to guide perturbations in the model.205

Consider region A, one of the regions to be perturbed, and also consider its corresponding sequence

{zAi }7300i=1 , where 7300 is the number of days in the 20-year simulation (CESM has 365 days in all

years). Let TAi be the temperature of the lowest model layer of region A on day i. Then for each

model day i, TAi is replaced by TAi + zAi at each model timestep in that day. This process is done

simultaneously for all other regions that are being perturbed.210

Of course, while “adding temperature” to a model layer is straightforward in a climate model,

this procedure is unphysical. In physical terms, this can be thought of as adding a heat source to the

model. If the maximum perturbation is 1 K, then the maximum amount of heat flux (W m−2) added

is

∆Q=
1.0K · cp · ρ ·h

τ
(9)215

where cp is the specific heat capacity of air (∼ 1000 J kg−1 K−1), ρ is the density of air (∼ 1.2

kg m−3), h is the height of the lowest model layer (∼ 100 m), and τ is the model timestep (1800

s). Because the perturbation is changed on a daily basis, the perturbation is the same for all model

timesteps in a given day. By Equation 9, the maximum heat flux into any one region is approximately

67 W m−2. This is a rather large perturbation over such an expansive region, but it is important to220

remember that the long-term mean of the perturbations over the course of the entire simulation is
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zero (Figure 3a), so to first order, there is no long-term net heat added to any one region or the climate

system as a whole. This can be placed in context with a step response simulation in which there is a

sustained 1 K increase in the lowest model layer over one region. This sustained temperature increase

corresponds to approximately 3.4× 1022 J of added heat per year of simulation.225

All system identification simulation results subsequently presented are averages over an ensemble

of three system identification simulations, for which three different sets of sequences were generated.

This was initially conducted to ascertain the robustness of model response (e.g., if one does this

procedure with two different sequences, does one get completely different answers?), but results

were found to be fairly robust for the timescales analyzed here. As such, ensemble averaging was230

performed to further reduce noise.

3.2 Steady State Response

Figure 4 provides an illustration that this method can, to a large degree, recover the step response.

The system identification panels (middle) were created by projecting (Equation 8) the entire time

series of the output fields (low cloud fraction or latent heat flux) onto the sequence corresponding to235

a region in the Northwest Indian Ocean. The step response panels were calculated from simulations

in which, beginning from a preindustrial control run, the temperature in the lowest model layer

over that region was instantaneously increased by 0.5 K, and that temperature change was sustained

for 20 years. The maps displayed in the bottom panels of Figure 4 are twice (i.e., normalized to a

perturbation of 1 K) an average over all 20 years of three ensemble members of that simulation minus240

an average over the preindustrial control simulation. As can be seen from this figure, the system

identification simulation is different from the preindustrial control simulation (top row of Figure

4) and matches the broad features of the step response simulation quite well. There are differences

between the step response and the system identification simulations, which could be due to the

following:245

1. The step response simulation involves adding approximately 1.7× 1022 J of heat to the cli-

mate system per year over 20 years (for a sustained 0.5 K perturbation), potentially exciting

nonlinearities in the response, whereas to first order, the system identification simulation adds

no net heat.

2. The step change (Equation 1) and the system identification inputs have different frequency250

contents and hence excite different responses on the timescales being analyzed in Figure 4.

More specifically, the step response simulation is injecting a lot more energy at low frequen-

cies than the system identification simulation, so the step response is in effect the low fre-

quency response. Conversely, the system identification simulation injects a similar amount of

energy over a wide range of frequencies, so the resulting plot in Figure 4 is on average rep-255
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resentative of the response at higher frequencies. As such, perfect agreement would not be

expected.

3.3 Frequency-Dependent Response

As was stated previously, one of the advantages of this method (in addition to giving estimates for

all 22 regions simultaneously) is that it can characterize the input-output response dynamically (on260

many timescales) instead of only revealing the quasi-static response. Different relationships (e.g.,

local climate response or teleconnections) have different timescales on which different responses

occur; by selectively band-pass filtering the signals when performing projections, one can isolate the

climate response on specific timescales (as was discussed in Section 2.2.

As an example, Figure 5 shows the sensitivity of low cloud fraction to a 1 K temperature perturba-265

tion over the Northwest Indian ocean (the same region previously analyzed), calculated for different

bands spanning approximately one-month timescales. The input-output relationships in Figure 5 ap-

pear to show the strongest signal on shorter timescales (although the shortest timescale that can be

evaluated here is two weeks), with a peak response on the order of 1–2 months. The SNR declines

considerably as longer timescales are analyzed, and after a few months, there is no discernible signal270

beyond the noise. Figure 6 shows a similar picture for latent heat flux. This difficulty with ascer-

taining the signal from bands representing successively longer timescales is that the signal remains

relatively constant with lower frequencies, whereas the “noise” (climate variability) increases with

lower frequencies (not shown).

The results for sensitivities for band-pass filtering with a timescale of 1–2 months look quite275

similar to the steady-state response patterns in Figure 4. Figure 7 shows that including these early

timescales as well as successively longer timescales does not affect how well the steady state re-

sponse is recovered. (Figure 4 shows inclusion of the longest timescales that appear in the simula-

tions.) This indicates that for the two variables evaluated here, the quasi-static response is reached

quite early in the simulations. This is consistent with the known rapidity of cloud and latent heat280

flux adjustments (examples of fast responses) to change (Cao et al., 2012). Such information is in

principle evident in the step response simulations, although the signal only emerges above the noise

when averaging the step response over a few years.

4 Discussion and Conclusions

Here we have illustrated a method of characterizing dynamic climate system behavior in a compu-285

tationally efficient way that does not strongly excite nonlinearities. All of the results presented were

an average of three 20-year simulations in which 22 regions are perturbed simultaneously. If these

relationships were discovered using step response simulations, the computational expense would

be quite a bit greater, as computing the step response for n regions requires n simulations. How-
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ever, there may still be reasons why the more computationally expensive approach of step change290

simulations might be conducted, particularly if one wishes to characterize nonlinear behavior.

Section 2.2 presented one method of generating sequences for the perturbations. Instead, one

could design sequences that alternate pseudo-randomly between positive and negative perturbations

of a fixed magnitude. These so-called spread spectrum techniques (Simon et al., 1994) are useful in

situations where the inputs can only meaningfully accept binary values (e.g., the presence or absence295

of sea ice or snow cover).

The results in Section 3.3 revealed the importance of physical understanding in both choosing

input signals and interpreting the results. The results indicated that low cloud fraction and latent

heat flux respond to change rather rapidly; such information clearly would have been useful if the

response time of these fields was not known. In retrospect, the energy input on timescales longer300

than a few months is wasted for the purpose of understanding these two variables. However, other

variables operate on longer timescales, so input over such a wide band may still prove useful for

analyses of other variables. If one knew a priori that they were interested in processes that occur

over a specific range of timescales (e.g., the effects of Pacific sea surface temperature perturbations

from El Niño on California rainfall), one could simply input white noise that is band-pass filtered in305

correspondence with those times. Our purpose here is to demonstrate this technique, which is widely

applicable to a variety of input-output relationships, depending on the interests of the practitioner.

The results in Section 3.3 also revealed that a step response is not necessarily an ideal simulation

to reveal the quasi-static response of these variables. The response is quasi-static at low frequencies,

but noise increases with lower frequencies, meaning that as long as one is in the quasi-static regime,310

SNR is higher for higher frequencies. As such, the system identification simulation that is band-pass

filtered over high frequencies can provide a “better” (less noisy) estimate of the sensitivity than the

step response, which represents low frequencies. More specifically, due to contamination of the step

response by nonlinearity and due to a lower signal-to-noise ratio, the system identification panels in

Figure ?? better represent the steady state response than the step-change simulation. Note that this315

line of reasoning only works in this case because the steady state response establishes early in the

simulation; other input-output relationships may require greater care in ascertaining the steady state

response.

The present study is intended to introduce system identification to climate science through an

example and has barely begun to reveal the potentials and limitations of system identification. The320

methodology appears to be effective (for certain variables) when 22 regions were perturbed with a

fairly low amplitude input signal, but it likely would not work for 1000 regions, as the SNR would

be too low (due to forcing over such a small area) to allow for meaningful detection of signals, and

cross-talk between the regions would interfere too heavily with ascertaining quantitatively robust

results. At the heart of this latter concern is nonlinearity. This method is based on linear theories and325

will not produce useful results for systems that are highly nonlinear (although the same is true of
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most methods, including step response simulations). The choice of boundaries between the regions

may also have divided regions that potentially have physical connections. For example, in Figure 2,

the Atlantic Ocean is covered by four regions, and no region spans the equator. This artificial intro-

duction of an equatorial boundary would prevent identification of behavior in the Atlantic equatorial330

region. In principle, after separately identifying input-output relationships for the North and South

Atlantic, we could add the two results to identify the response of the entire Atlantic basin, but this

might wash out more regional signals. Moreover, if the response to one input is positive and to an-

other is negative, then the sum of these two responses may be small, masking sensitivities of smaller

regions. These caveats are not indicative of potential failings in the approach, but in our application335

of it.

The potential applications of this technique are numerous. Here we have briefly mentioned tele-

connections; some specific examples include El Niño Southern Oscillation (ENSO) effects (e.g.,

Alexander et al., 2002) or propagation of the Madden-Julian Oscillation (e.g., Matthews, 2000; Gill,

1980). In particular, ENSO explorations (wherein the inputs could be changes in tropical Pacific sea340

surface temperatures) will be a useful future test of this method, as the ENSO cycle can be as long

as 7 years, but responses can happen on the order of weeks to months (Alexander et al., 2002). How-

ever, exploring ENSO teleconnections would likely require inputs with different frequency content

than is used here. Our choice of white noise is the most agnostic choice, but as described previously,

it is clearly not optimal if one has prior information about the dynamics of the system.345

The method could also be used to explore the effects of marine cloud brightening to ascertain the

optimal location to induce a perturbation (Latham et al., 2012), keeping in mind that model behavior

is likely different from real-world behavior or even behavior in other models. Parkes (2012) showed

preliminary results indicating that, with careful application, this method could be used to identify an

“everywhere-to-everywhere transfer function” (S. Salter, personal communication) that fully charac-350

terizes the climate system response to marine cloud brightening in different regions. It could also be

used to explore source-receptor relationships, which yield clearer and more quantitatively precise re-

sults but at the expense of computational cost. Moreover, these relationships are often uncovered via

step response simulations. System identification could additionally be used in uncertainty quantifi-

cation (UQ) studies to understand the climate response to perturbations in model tuning parameters.355

Current methods of UQ are quite expensive and involve step changes in tuning parameters, so the

results of most UQ studies do not capture the full dynamic range of climate model response. This is

not meant to be an exhaustive list, but merely an illustration of the sorts of problems where system

identification may be useful.
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Figure 1. An illustration of nonlinearities in the climate system induced by step response simulations that, al-

though not dominating climate system behavior, are potentially non-negligible. All simulations were conducted

with the fully coupled general circulation model HadCM3L (Jones, 2003). Top panel shows timeseries of the

change in global mean temperature in abrupt2xCO2 (green) and abrupt4xCO2 (red) simulations; approximate

steady state values are indicated by dashed lines. Middle panel shows annual mean temperature change and

top-of-atmosphere (TOA) net radiative flux differences (∆R) from a preindustrial control (circles) for the first

50 years of twice the abrupt2xCO2 simulation (blue) and the abrupt4xCO2 simulation (red); lines are ordinary

least squares regression through the respective circles. Bottom panel shows approximate global heat uptake for

twice the abrupt2xCO2 simulation (blue) and the abrupt4xCO2 simulation (red) calculated as in Equation 2;

black line shows the difference between the blue and red lines.
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Figure 2. The 22 regions that were perturbed (see Section 3.1) in this study. Regions are approximately equal

in area, and no region spans multiple ocean basins.
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Figure 3. Time domain (left) and frequency domain (right) representations of one of the 22 sequences used in

this study to perturb temperature (see Section 3.1). The sequences are low-pass filtered white noise with a cutoff

frequency corresponding to a timescale of one week.
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Figure 4. Steady state response of low cloud fraction (left column) and latent heat flux (right column) for a

1 K perturbation to the lowest model layer over the Northwest Indian ocean. Top row shows projections of

the unperturbed preindustrial control simulation onto the input sequences; no response beyond climate system

noise is expected. Middle row shows projections of the system identification (perturbed) simulations onto the

input sequences (all 20 years of simulation). For comparison, the bottom row shows step response simulations

in which the highlighted region has a sustained temperature increase over the 20 year simulation (values shown

are averages over the entire 20-year period). Although somewhat noisy, the system identification simulations

are capable of recovering the broad features of the step response.
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Figure 5. Sensitivity of low cloud fraction to a 1 K temperature perturbation to the Northwest Indian Ocean

(see Figure 2). Different panels were calculated from projections on band-pass filtered timeseries (see Section

3.3).
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Figure 6. As in Figure 5 but for the sensitivity of latent heat flux changes to a 1 K temperature perturbation to

the Northwest Indian Ocean.
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Figure 7. As in Figures 5 and 6 but for bands including wider ranges of frequencies.
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