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Abstract. We introduce system identification techniques to climate science wherein multiple dy-

namic input-output relationships can be simultaneously characterized in a single simulation. This

method, involving multiple small perturbations (in space and time) of an input field while monitor-

ing output fields to quantify responses, allows for identification of different timescales of climate

response to forcing without substantially pushing the climate far away from a steady state. We use5

this technique to determine the steady state responses of low cloud fraction and latent heat flux to

heating perturbations over 22 regions spanning Earth’s oceans. We show that the response charac-

teristics are similar to those of step-change simulations, but in this new method, the responses for

22 regions can be characterized simultaneously. Furthermore, we can estimate the timescale over

which the steady state response emerges. The proposed methodology could be useful for a wide10

variety of purposes in climate science, including characterization of teleconnections and uncertainty

quantification to identify the effects of climate model tuning parameters.

1 Introduction

Understanding the response of climate models to perturbations is one of the core questions in climate

science. Some of the emergent behaviors in climate model response, particularly on small temporal15

and spatial scales, can be challenging to interpret. This is in part due to issues with low signal-to-

noise ratios (SNRs), climate system nonlinearities, and other far-field effects.

Simulations to understand climate response frequently use abrupt or “step” changes in an exoge-

nous input field (e.g., an abrupt increase in the CO2 concentration) or “ramp” changes (e.g., a 1%

increase in the CO2 concentration each year). However, in climate model simulations, the input sig-20

nal can be chosen based on criteria specific to the intended goal of the simulation. Any input signal
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will result in a portion of the response that is linear and a portion that is nonlinear, and increasing the

magnitude of the input has the potential to amplify nonlinearities. Avoiding this prospect requires

multiple ensemble members or longer simulations to increase SNR, which becomes quite expensive

if one wishes to assess multiple perturbations (e.g., changes in multiple geographical regions). As25

we discuss in the following section, many types of simulations that are commonly employed in cli-

mate science to investigate climate model response suffer from issues associated with this tradeoff.

Moreover, they are not designed to investigate multiple input-output relationships simultaneously,

necessitating larger computational cost to investigate complex systems.

Here we introduce a method of identifying input-output relationships in climate models for mul-30

tiple simultaneous perturbations with relatively low computational expense and without the typical

difficulties in signal detection arising from strong forcing and nonlinearities that are found in other

methods commonly used in climate science. An additional advantage of this method is that it is

dynamic (characterizes a range of timescales) rather than static (only characterizes the steady state

response). This methodology is commonly called system identification in engineering fields (Pin-35

telon and Schoukens, 2012). In subsequent sections, we discuss the process of system identification,

its utility as compared to other commonly used methods of assessing climate system behavior, and

potential implications for understanding far-field effects.

2 System Identification

System identification refers to the process of using input and output time series to understand the40

(possibly dynamic) relationship between them. For example, if one wants to understand the cli-

mate response to a change in the CO2 concentration, one can create a time-varying series of CO2

concentrations, insert it into a climate model, and analyze various output fields (like global mean

temperature or cloud fraction) to understand how those output fields change in response to the in-

puts. Characterizing input-output relationships should be done in a way that depends on the system45

to be characterized and on the objectives of the analysis. One can choose the frequency content of

the input signal that one uses to characterize the system.

Any system will respond differently to input signals at different frequencies (that is, the input-

output relationship is in general dynamic). However, for many real-world systems, there is some

sufficiently low frequency for which the response is approximately the same as the equilibrium or50

steady-state response; this is called the quasi-static regime. A conceptually simple approach to char-

acterizing a single input-output relationship in the quasi-static regime is a step response simulation,

in which the input is abruptly changed. We discuss step response simulations in more detail in Sec-

tion 2.1 below.

If one is interested in estimating the fully dynamic response (i.e., on different timescales over55

which the response varies), then the signal energy needs to be injected over a range of frequencies.
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There are several strategies for accomplishing this (e.g., Kravitz et al., 2016b). A sinusoidal input

puts the maximum possible power into a single frequency. However, characterizing the system at

multiple frequencies requires multiple sinusoids. One could also use a wider band of frequencies

(e.g., band-pass filtered white noise) at the cost of input power.60

If one wishes to characterize multiple input-output relationships simultaneously (i.e., not by con-

ducting one simulation for each input), then the different input signals need to be chosen uncorrelated

from each other; this is clearly not possible with step inputs. As an example, one could choose multi-

ple sinusoids with non-equal frequencies, which is effective if one wishes to characterize quasi-static

behavior for all of the input-output relationships. Careful choice of frequency may be necessary be-65

cause any nonlinearities will excite oscillations in the output that are higher harmonics of the input

(e.g., an input signal of 10 Hz will result in output only at 10 Hz if the system is linear, but also at

20, 30, 40, ... Hz if there are nonlinearities); as such, it is often useful to choose non-commensurate

frequencies to quantify the magnitude of the nonlinear portion of the response. If there are multiple

input variables, and if one is interested in an estimate of the fully dynamic system, the input signals70

all need to contain broad frequency content but must be mutually uncorrelated. This is the case on

which this manuscript focuses; we discuss this in more detail in Section 2.2 below.

2.1 Step Response Simulations

Step response simulations, in which a sustained perturbation is applied to the system, are common in

climate science (e.g., Good et al., 2013). An example is the abrupt4xCO2 simulation (illustrated in75

Figure 1a) in which the CO2 concentration is abruptly quadrupled from its preindustrial value, and

the model behavior then evolves over time. The abrupt4xCO2 simulation is a standard experiment

in the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012). These sorts

of simulations are easy to perform, and they often have high SNRs, which makes for relatively

straightforward analysis.80

However, there are several features of such step response simulations which, depending on the

situation, may be detrimental to analysis. As described previously, if one wishes to evaluate the

steady-state or quasi-static behavior, step response simulations are often an excellent tool. How-

ever, they are not well suited for evaluating fully dynamic behavior. This can be seen through the

frequency decomposition of a step function (calculated via Laplace transform):85

H(s) =
1

s
(1)

where s= iω, and ω is (angular) frequency. At high frequencies, the input signal does not contain

much energy, so unless there is sufficient amplification by the system at these frequencies, evaluating

transient or short-term behavior is difficult and may require averaging multiple ensemble members.

Moreover, depending upon the magnitude of the step change and the details of the dynamical90

system, the resulting climate can be pushed relatively far away from the initial climate. This has the
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potential to exacerbate nonlinearities in the climate response. As can be seen in Figure 1b, doubling

the estimated effective radiative forcing (the y-intercept) or the estimated equilibrium temperature

(the x-intercept) for an abrupt doubling of the CO2 concentration does not give the same answer as

for an abrupt4xCO2 response. In Figure 1, differences between these estimated quantities are 4 and95

10%, respectively. In some circumstances, this may be an acceptable margin of error, and it may not

be in others.

The departure from linearity can be seen more clearly when calculating the amount of heat added

to the system from these runs. The total heat accumulated through a given year n can be estimated

by100

∆Qn =

n∑
i=1

∆Ri · 86400 · 365 ·A (2)

where ∆Ri is the net top-of-atmosphere (TOA) radiative flux imbalance in year i that is the result of

the step function perturbation, andA is Earth’s surface area. These quantities are plotted in Figure 1c

for abrupt4xCO2 and two times abrupt2xCO2. Although nonlinearities account for approximately

1% of the difference between these two plotted quantities, the net difference represents a substantial105

amount of heat.

2.2 Generating multiple uncorrelated broadband input signals

Although useful for certain applications, step response simulations are not ideal for characterizing

system behavior at all frequencies, and one cannot attribute the effects of multiple simultaneous step

perturbations unless the responses to different inputs are independent. Simultaneously characterizing110

multiple dynamic input-output relationships requires constructing a set of inputs that have broad

frequency content and are mutually uncorrelated.

The frequency content of the input signals is a choice, depending on the behavior in which one is

interested. For example, if one cares about teleconnections on sub-annual timescales, then one could

choose high-pass filtered white noise with a cutoff frequency corresponding to a timescale of one115

year. Similarly, if one were not interested in the high frequency response (which may also be more

difficult to distinguish from internal variability), one could choose a set of low-pass filtered white

noise signals. If one wishes to avoid the issue of adding substantial amounts of heat to the climate

system (as was described in the previous section), one could ensure that the input signals are chosen

to have zero mean; this condition is automatically satisfied by white noise.120

Once these signals are generated, the next step is to ensure that they are mutually uncorrelated.

This is accomplished by the Gram-Schmidt process. Let {vi}ni=1 be a set of n generated input signals

with the appropriate frequency content for the problem of interest. Beginning with the first signal,

and for each subsequent signal, one subtracts off any correlation with the previous signals to obtain
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the set {ui}ni=1. Mathematically, this is represented by125

u1

u2

u3

=

=

=

...

v1

v2−proju1
(v2)

v3−proju1
(v3)− proju2

(v3)
(3)

where

proju(v) =
〈v,u〉
〈u,u〉

u (4)

and 〈 , 〉 represents an inner product (straightforward for discrete time; a common representation

of an inner product in continuous time is an integral, as in Equation 6 below). The final stage is130

renormalization, where the final signals to be used {ei}ni=1 are given by

ei =
ui
||ui||

(5)

Each of these signals in the set {ei} is uncorrelated, has a maximum root-mean-square (amplitude

in the `2 norm) of 1 (these can be scaled as needed), and all signals have the same frequency content

as the original signals {vi}.135

We define the signals to be uncorrelated (orthogonal) if

T∫
0

ei(t)ej(t) dt= 0 (6)

for i 6= j, where T is the length of the signals (summation can be used instead of integration for

discrete systems). This criterion will ensure minimal cross-talk between the response patterns ex-

cited by individual signals, but only in the quasi-static regime where there is little dependence upon140

frequency. Ensuring minimal cross-talk on the fully dynamic range of frequencies would require the

criterion

T−τ∫
0

ei(t)ej(t+ τ) dt= 0 (∀τ ≤ t) (7)

for i 6= j. This additional criterion accounts for lag effects (quantified as a phase shift between the

input and output fields) over a range of timescales on which processes operate. As will be discussed145

later, for the variables analyzed here, the quasi-static state is reached relatively early in the simula-

tions, so lag effects are not of substantive concern.

2.3 Climate model simulations

Once the signals are generated, the procedure is straightforward. In a climate model simulation,

one modifies each of the input fields by perturbing them according to their corresponding input150
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signals (here, adding the input signals to the fields; see Sections 3.2 and 3.3 below for more concrete

examples). After the simulation is completed, an estimate of the quasi-static sensitivity of the output

to changes in the input can be obtained by projecting any time series from the resulting simulation

(U ) onto one of the original signals ai via

PU,i =
〈ai,U〉
〈ai,ai〉

(8)155

For example, if ai is a signal describing perturbations to sea surface temperatures in the Pacific Ocean

(K), and if U is a timeseries of maps of total cloud cover (%), then PU,i will be a two-dimensional

field with units % K−1. If the response is truly static (independent of frequency), then this projection

gives the best estimate of the sensitivity. Estimates of the dynamic (frequency-dependent) response

can be obtained by first band-pass filtering both the input and output signal prior to the projection160

in Equation 8. By choosing different filters, one can identify how the input-output relationship de-

pends on frequency, and in particular identify the time scale at which the response is quasi-static

(approximately independent of frequency). This is the procedure followed in Section 3.3. Using an

appropriate low-pass filter to focus on the quasi-static regime gives a better estimate of the input-

output relationship than using Equation 8 directly on the full time series.165

3 Demonstration of the Technique

3.1 Experimental Design

To apply perturbations, we need to decide on what to perturb and what to analyze. Here the pertur-

bations applied are to air temperature near the surface over 22 regions covering the world’s oceans

(Figure 2), as well as the Mediterranean Sea, chosen for its fairly large area and potential climatic170

importance (e.g., Paeth et al., 2016). This choice of input is an idealized representation of a change

in heat flux at the surface that might be due to a change in surface sensible heat flux (through some

perturbation we do not specify here) or through a surface radiative flux change like what might be

produced by marine cloud brightening (Latham et al., 2012). We then analyze the effects of these

multiple simultaneous uncorrelated broadband perturbations on low cloud cover and latent heat flux175

in climate model simulations. All simulations were conducted using the fully coupled Community

Earth System Model (CESM) version 1.2.0 (Hurrell et al., 2013) with 2◦ horizontal atmospheric

resolution and approximately 1◦ resolution in the ocean. All simulations were conducted against a

preindustrial control background.

The first step is to generate the sequences that will be used to guide model perturbations. We180

are a priori uncertain as to the timescales on which the chosen outputs will respond. As such, the

most agnostic choice for the input signals is white noise, which has zero mean and content at all

frequencies. (Note that because this procedure must be discretized, any input signal is effectively

low-pass filtered, where the highest frequency contained in the signal corresponds to the model
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timestep, which is 30 minutes.) For the purposes of this illustration, we choose to low-pass filter the185

white noise signals with a cutoff frequency of one week. This choice of cutoff frequency minimizes

the response excited at diurnal or weekly timescales, which is a plausible choice if one wishes to

characterize climatological response and eschew meteorological response.

The next step is to choose the update rate, i.e., how often the perturbation to the climate system is

changed. By the Nyquist limit, the slowest possible update rate is twice the filter cutoff frequency,190

i.e., half a week. The difference between the cutoff frequency and the update rate is analogous to the

problem of aliasing in sampling a sinusoidal curve: the sampling frequency can be different from the

frequency of the actual sine wave, but obtaining an accurate fit of the sinusoid is easier if the curve

is sampled more frequently, and there is a mathematical lower limit as to the minimum number of

points required to obtain that fit. Here we choose the update rate to be every model day, wherein the195

perturbation is maintained for an entire model day. Because of practical limitations, all simulations

in this study are conducted for 20 years. For all analyses of the system identification simulation in

this study, we do not explicitly consider response times longer than one year. Beyond one year, there

are too few points to average to obtain adequate estimates of the signal above the estimated error.

We generate 22 uncorrelated sequences as described earlier and use these sequences to perturb200

temperature in the lowest model layer over each of the 22 regions in Figure 2. The sequences are

normalized so that values range between -1 K and 1 K, with a median magnitude of 0.3 K. Because

the sequences were generated from white noise, they have a mean value of 0 K. Figure 3 shows an

example of one of the 22 sequences for both the time domain and the frequency domain. In the time

domain, the sequence is visually indistinguishable from white noise, but in the frequency domain,205

the frequency content becomes immediately clear.

After the sequences are generated, the next step is to use them to guide perturbations in the model.

Consider region A, one of the regions to be perturbed, and also consider its corresponding sequence

{zAi }7300i=1 , where 7300 is the number of days in the 20-year simulation (CESM has 365 days in all

years). Let TAi be the temperature of the lowest model layer of region A on day i. Then for each210

model day i, TAi is replaced by TAi + zAi at each model timestep in that day. This process is done

simultaneously for all other regions that are being perturbed. We note that because the {zAi } are

uniform across each region, there will be discontinuities at the region boundaries, which could pose

problems, particularly for spectral dynamical cores. Further research will need to be undertaken to

reveal how this can best be handled; one possibility could be scale space smoothing methods (Marvel215

et al., 2013).

Of course, while “adding temperature” to a model layer is straightforward in a climate model,

this procedure is unphysical. In physical terms, this can be thought of as adding a heat source to the

model. If the maximum perturbation is 1 K, then the maximum amount of heat flux (W m−2) added

is220

∆Q=
1.0K · cp · ρ ·h

τ
(9)
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where cp is the specific heat capacity of air (∼ 1000 J kg−1 K−1), ρ is the density of air (∼ 1.2

kg m−3), h is the height of the lowest model layer (∼ 100 m), and τ is the model timestep (1800

s). Because the perturbation is changed on a daily basis, the perturbation is the same for all model

timesteps in a given day. By Equation 9, the maximum heat flux into any one region is approximately225

67 W m−2. This is a rather large perturbation over such an expansive region, but it is important to

remember that the long-term mean of the perturbations over the course of the entire simulation is

zero (Figure 3a), so to first order, there is no long-term net heat added to any one region or the climate

system as a whole. This can be placed in context with a step response simulation in which there is a

sustained 1 K increase in the lowest model layer over one region. This sustained temperature increase230

corresponds to approximately 3.4× 1022 J of added heat per year of simulation. Figure 4 shows a

comparison between the inter-annual standard deviations of the preindustrial control run and the

system identification ensemble. (By inter-annual standard deviation, we mean that the average over

each year of simulation is used as an independent degree of freedom in the calculation.) Although

we expect variability to be different between the two runs (the system identification perturbation235

is adding variability at a variety of frequencies), differences in standard deviations between the

two simulations are negligible. This supports our claim that the perturbations added to the system

identification simulations do not substantially alter the long-term climate.

All system identification simulation results subsequently presented are averages over an ensemble

of five system identification simulations, for which five different sets of sequences were generated.240

Inter-ensemble variability is discussed in Section 3.4.

3.2 Steady State Response

Figure 5 provides an illustration that this method can recover some features the step response. The

system identification panels (middle) were created by projecting (Equation 8) the entire time series

of the output fields (low cloud fraction or latent heat flux) onto the sequence corresponding to a245

region in the Northwest Indian Ocean. The step response panels were calculated from an ensemble

of five simulations in which, beginning from a preindustrial control run, the temperature in the lowest

model layer over that region was instantaneously increased by 0.5 K, and that temperature change

was sustained for 20 years. The maps displayed in the bottom panels of Figure 5 are twice (i.e.,

normalized to a perturbation of 1 K) an average over all 20 years of three ensemble members of250

that simulation minus an average over the preindustrial control simulation. As can be seen from this

figure, the system identification simulation is different from the preindustrial control simulation (top

row of Figure 5) and matches the broad features of the step response simulation quite well. There

are differences between the step response and the system identification simulations, which could be

due to the following:255

1. The step response simulation involves adding approximately 1.7×1022 J of heat to the climate

system per year over 20 years (for a sustained 0.5 K perturbation), potentially exciting nonlin-
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earities in the response (see Section 3.5 below), whereas to first order, the system identification

simulation adds no net heat.

2. The step change (Equation 1) and the system identification inputs have different frequency260

contents and hence excite different responses on the timescales being analyzed in Figure 5.

More specifically, the step response simulation is injecting a lot more energy at low frequen-

cies than the system identification simulation, so the step response is in effect the low fre-

quency response. Conversely, the system identification simulation injects a similar amount of

energy over a wide range of frequencies, so the resulting plot in Figure 5 is on average rep-265

resentative of the response at higher frequencies. As such, perfect agreement would not be

expected.

3.3 Frequency-Dependent Response

As was stated previously, one of the advantages of this method (in addition to giving estimates for

all 22 regions simultaneously) is that it can characterize the input-output response dynamically (on270

many timescales) instead of only revealing the quasi-static response. Different relationships (e.g.,

local climate response or teleconnections) have different timescales on which different responses

occur; by selectively band-pass filtering the signals when performing projections, one can isolate the

climate response on specific timescales (as was discussed in Section 2.2).

As an example, Figure 6 shows the sensitivity of low cloud fraction to a 1 K temperature perturba-275

tion over the Northwest Indian ocean (the same region previously analyzed), calculated for different

bands spanning approximately one-month timescales. The input-output relationships in Figure 6 ap-

pear to show the strongest signal on shorter timescales (although the shortest timescale that can be

evaluated here is two weeks), with a peak response on the order of 1–2 months. The SNR declines

considerably as longer timescales are analyzed, and after a few months, there is no discernible signal280

beyond the noise. Figure 7 shows a similar picture for latent heat flux. This difficulty with ascer-

taining the signal from bands representing successively longer timescales is that the signal remains

relatively constant with lower frequencies, whereas the “noise” (climate variability) increases with

lower frequencies (not shown).

The results for sensitivities for band-pass filtering with a timescale of 1–2 months look quite285

similar to the steady-state response patterns in Figure 5. Figure 8 shows that including these early

timescales as well as successively longer timescales does not affect how well the steady state re-

sponse is recovered. (Figure 5 shows inclusion of the longest timescales that appear in the simula-

tions.) This indicates that for the two variables evaluated here, the quasi-static response is reached

quite early in the simulations. This is consistent with the known rapidity of cloud and latent heat290

flux adjustments (examples of fast responses) to change (Cao et al., 2012). Such information is in

principle evident in the step response simulations, although the signal only emerges above the noise

when averaging the step response over a few years.
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3.4 Statistical Significance

We performed two tests of statistical significance on our results. The first is to assess whether the295

results of the system identification simulations are distinguishable from noise, and the second is to

assess inter-ensemble robustness of the results.

First, we generated 1000 sequences with the same characteristics as those described in Section 3.1

but are not mutually uncorrelated. We then projected (using all 7300 points in each sequence) the

preindustrial control simulation onto each sequence, forming a 1000-member ensemble of sensitivity300

maps. We then calculated the standard deviation across that ensemble to get an estimate of the

range of values that might be expected from an unperturbed simulation, i.e., how large the impact

of natural variability is on the system identification estimates. The responses estimated from system

identification are more than two times larger than the standard deviation expected due to natural

variability.305

For the second test, Figure 9 shows the standard deviation of the ensemble sensitivity (projections

use all 7300 points in each sequence), where in calculating standard deviations, each of the five

input sequences/ensemble members is considered an independent degree of freedom. Results show

that there is somewhat more variability in the system identification ensemble than in the preindustrial

control simulation. Figure 10 shows the ensemble mean sensitivity values (repeated from the middle310

row of Figure 5) and those same fields but masked out where values are not statistically significant at

the 95% confidence level according to a two-sample unpaired Student’s t test calculated on the inter-

ensemble standard deviation (Figure 9). The results directly in the areas that are being perturbed are

statistically significant, as are some far-field features in the midlatitudes.

3.5 Nonlinearity315

As was mentioned previously, one of the potential sources of differences between the system identi-

fication and step response simulations is due to nonlinearities excited by the step response. To further

explore these nonlinearities, we conducted two additional step response simulations involving per-

turbations over the Northwest Indian Ocean of +0.2K and −0.5K. The sensitivity maps (Figures 11

and 12) take the results of these simulations and divide by the perturbations to yield sensitivity maps320

that are comparable to those presented previously.

The results verify that the step response simulations do indeed introduce nonlinearities into the

climate system. In the 0.2K simulation, there are many noisy features of climate response due to the

lower signal-to-noise ratio inherent in that simulation as compared to the original 0.5K simulations.

We also note that the results presented for the 0.2K simulation will inherently be noisier than for325

the 0.5K simulations due to the difference in the number of ensemble members incorporated in the

averages. The −0.5K simulation indicates substantial nonlinearities in the response in the form of
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asymmetries. The 0.5K response appears to be stronger than the−0.5K response, although there are

few locations that show prominent responses in one simulation but not the other.

These results suggest the need for a “gold standard” of the linear response to perturbations. Then330

the step response and system identification responses can be compared with that standard to ascertain

the degree to which each simulation introduces nonlinearities. Such endeavors are beyond the scope

of this paper, in particular because it would require an exploration to determine the methodology

that is most appropriate for extracting the linear response. We discuss some potential methods in the

following section.335

4 Discussion and Conclusions

Here we have illustrated a method of characterizing dynamic climate system behavior in a compu-

tationally efficient way that does not strongly excite nonlinearities. All of the results presented were

an average of three 20-year simulations in which 22 regions are perturbed simultaneously. If these

relationships were discovered using step response simulations, the computational expense would340

be quite a bit greater, as computing the step response for n regions requires n simulations. How-

ever, there may still be reasons why the more computationally expensive approach of step change

simulations might be conducted, particularly if one wishes to characterize nonlinear behavior.

Section 2.2 presented one method of generating sequences for the perturbations. Instead, one

could design sequences that alternate pseudo-randomly between positive and negative perturbations345

of a fixed magnitude. These so-called spread spectrum techniques (Simon et al., 1994) are useful in

situations where the inputs can only meaningfully accept binary values (e.g., the presence or absence

of sea ice or snow cover).

The results in Section 3.3 revealed the importance of physical understanding in both choosing

input signals and interpreting the results. The results indicated that low cloud fraction and latent350

heat flux respond to change rather rapidly; such information clearly would have been useful if the

response time of these fields was not known. In retrospect, the energy input on timescales longer

than a few months is wasted for the purpose of understanding these two variables. However, other

variables operate on longer timescales, so input over such a wide band may still prove useful for

analyses of other variables. If one knew a priori that they were interested in processes that occur355

over a specific range of timescales (e.g., the effects of Pacific sea surface temperature perturbations

from El Niño on California rainfall), one could simply input white noise that is band-pass filtered in

correspondence with those times. Our purpose here is to demonstrate this technique, which is widely

applicable to a variety of input-output relationships, depending on the interests of the practitioner.

For example, in Figure 5, one can see synoptic scale sensitivity in latent heat flux in the midlati-360

tude storm tracks. Based on this figure alone, and in the absence of a physical mechanism to cause

such changes, it is difficult to say whether there are discernible responses to the input perturbation
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or simply noise. However, the advantage of system identification is that it immediately provides one

with tools to further investigate the potential for a response. Figure 7 further shows that the magni-

tude and even the sign of these features varies depending on the timescale in which one is interested.365

Analyzing the response to a different perturbed region (not shown) can help ascertain whether that

response is particular to perturbations in a single region or whether this is the result of excitation of

a natural mode of variability; in the latter case, information about the timescale of response can aid

in identifying which mode of variability is being excited. In addition, one could isolate particular

spatial areas that one wishes to analyze (for example, by spatial averaging over the midlatitudes)370

and compute the transfer function (MacMartin and Tziperman, 2014) to ascertain magnitude, phase,

and spectral coherence of the relationship between that feature and the input signal. Through these

explorations, one has a much greater chance of teasing out a physical mechanism that can explain the

teleconnection seen in the results. Many of these possibilities are lost in step response simulations.

The results in Section 3.3 also revealed that a step response is not necessarily an ideal simulation375

to reveal the quasi-static response of these variables. The response is quasi-static at low frequencies,

but noise increases with lower frequencies, meaning that as long as one is in the quasi-static regime,

SNR is higher for higher frequencies. As such, the system identification simulation that is band-pass

filtered over high frequencies can provide a “better” (less noisy) estimate of the sensitivity than the

step response, which represents low frequencies. More specifically, due to contamination of the step380

response by nonlinearity and due to a lower signal-to-noise ratio, the system identification panels

in Figure 5 better represent the steady state response than the step-change simulation. Note that this

line of reasoning only works in this case because the steady state response establishes early in the

simulation; other input-output relationships may require greater care in ascertaining the steady state

response.385

The present study is intended to introduce system identification to climate science through an

example and has barely begun to reveal the potentials and limitations of system identification. The

methodology appears to be effective (for certain variables) when 22 regions were perturbed with a

fairly low amplitude input signal, but it likely would not work for 1000 regions, as the SNR would

be too low (due to forcing over such a small area) to allow for meaningful detection of signals, and390

cross-talk between the regions would interfere too heavily with ascertaining quantitatively robust

results. At the heart of this latter concern is nonlinearity. This method is based on linear theories and

will not produce useful results for systems that are highly nonlinear (although the same is true of

most methods, including step response simulations). The choice of boundaries between the regions

may also have divided regions that potentially have physical connections. For example, in Figure 2,395

the Atlantic Ocean is covered by four regions, and no region spans the equator. This artificial intro-

duction of an equatorial boundary would prevent identification of behavior in the Atlantic equatorial

region. In principle, after separately identifying input-output relationships for the North and South

Atlantic, we could add the two results to identify the response of the entire Atlantic basin, but this
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might wash out more regional signals. Moreover, if the response to one input is positive and to an-400

other is negative, then the sum of these two responses may be small, masking sensitivities of smaller

regions. These caveats are not indicative of potential failings in the approach, but in our application

of it.

A point worth mentioning is the choice of input signal magnitude and how that may introduce

concerns related to nonlinearities and the signal-to-noise ratio. In the present manuscript, we chose405

a maximum amplitude of the input signal to be 1K. This choice was somewhat arbitrary. Larger

input signals will improve the detectability of the response but are also more likely to introduce

nonlinearities. Smaller signals are less likely to introduce nonlinearities but will also have lower

signal-to-noise ratios, making the response harder to determine. In addition, the spectra of responses

will likely differ for different regions, so some regions may ultimately require different input signal410

magnitudes to achieve the same response confidence. An important future endeavor in establishing

this system identification methodology will be to rigorously define and quantify both the signal-to-

noise ratio and the degree of nonlinearity in the response. This will aid in determining the “optimal”

magnitude of input signals.

Although system identification requires the assumption of linearity, the linear part of the response415

represents a substantial portion of the total response in a wide range of situations. Linear, time-

invariant emulators, of which pattern scaling is a special case, show good fidelity to general circu-

lation model simulations for a wide range of variables and forcings (e.g. Barnes and Barnes, 2015;

Kravitz et al., 2016a; MacMartin and Kravitz, 2016; Santer et al., 1990). Other methods, such as

Green’s Function approaches (Hassanzadeh and Kuang, 2016) or application of the Fluctuation Dis-420

sipation Theorem (Leith, 1975; Gritsun and Branstator, 2007; Ring and Plumb, 2008; Cooper and

Haynes, 2011; Fuchs et al., 2015) are other linear methods that have shown skill in recovering com-

plex climate model behavior. Each of these methods has advantages and disadvantages; there is a

great deal of promise in utilizing multiple complementary approaches to understand (linearized)

input-output relationships in climate models. Also, as was briefly mentioned in Section 3.5, it is cru-425

cial to understand which situations are dominated by linear behavior versus which situations have a

substantial nonlinear component to both understand the applicability of linear methods and to better

quantify climate system nonlinearities.

The potential applications of this technique are numerous. Here we have briefly mentioned tele-

connections; some specific examples include El Niño Southern Oscillation (ENSO) effects (e.g.,430

Alexander et al., 2002) or propagation of the Madden-Julian Oscillation (e.g., Matthews, 2000; Gill,

1980). In particular, ENSO explorations (wherein the inputs could be changes in tropical Pacific sea

surface temperatures) will be a useful future test of this method, as the ENSO cycle can be as long

as 7 years, but responses can happen on the order of weeks to months (Alexander et al., 2002). How-

ever, exploring ENSO teleconnections would likely require inputs with different frequency content435
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than is used here. Our choice of white noise is the most agnostic choice, but as described previously,

it is clearly not optimal if one has prior information about the dynamics of the system.

The method could also be used to explore the effects of marine cloud brightening to ascertain the

optimal location to induce a perturbation (Latham et al., 2012), keeping in mind that model behavior

is likely different from real-world behavior or even behavior in other models. Parkes (2012) showed440

preliminary results indicating that, with careful application, this method could be used to identify an

“everywhere-to-everywhere transfer function” (S. Salter, personal communication) that fully charac-

terizes the climate system response to marine cloud brightening in different regions. It could also be

used to explore source-receptor relationships, which yield clearer and more quantitatively precise re-

sults but at the expense of computational cost. Moreover, these relationships are often uncovered via445

step response simulations. System identification could additionally be used in uncertainty quantifi-

cation (UQ) studies to understand the climate response to perturbations in model tuning parameters.

Current methods of UQ are quite expensive and involve step changes in tuning parameters, so the

results of most UQ studies do not capture the full dynamic range of climate model response. This is

not meant to be an exhaustive list, but merely an illustration of the sorts of problems where system450

identification may be useful.

5 Code and/or Data Availability

All model output and analysis code will be available upon request. Please contact the lead author to

obtain this information.
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Figure 1. An illustration of nonlinearities in the climate system induced by step response simulations that, al-

though not dominating climate system behavior, are potentially non-negligible. All simulations were conducted

with the fully coupled general circulation model HadCM3L (Jones, 2003). Top panel shows timeseries of the

change in global mean temperature in abrupt2xCO2 (green) and abrupt4xCO2 (red) simulations; approximate

steady state values are indicated by dashed lines. Middle panel shows annual mean temperature change and

top-of-atmosphere (TOA) net radiative flux differences (∆R) from a preindustrial control (circles) for the first

50 years of twice the abrupt2xCO2 simulation (blue) and the abrupt4xCO2 simulation (red); lines are ordinary

least squares regression through the respective circles. Bottom panel shows approximate global heat uptake for

twice the abrupt2xCO2 simulation (blue) and the abrupt4xCO2 simulation (red) calculated as in Equation 2;

black line shows the difference between the blue and red lines.
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Figure 2. The 22 regions that were perturbed (see Section 3.1) in this study. Regions are approximately equal

in area, and no region spans multiple ocean basins.
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Figure 3. Time domain (left) and frequency domain (right) representations of one of the 22 sequences used in

this study to perturb temperature (see Section 3.1). The sequences are low-pass filtered white noise with a cutoff

frequency corresponding to a timescale of one week.
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Figure 4. Inter-annual standard deviation for the simulations considered here. Values are calculated using the

annual mean maps as independent degrees of freedom. The preindustrial control values are calculated using a

single 40-year simulation (39 degrees of freedom). The system identification values are calculated using a five-

member ensemble of 20-year simulations (95 degrees of freedom). Differences are the middle panels minus the

top panels.
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Figure 5. Steady state response of low cloud fraction (left column) and latent heat flux (right column) for a

1 K perturbation to the lowest model layer over the Northwest Indian ocean. Top row shows projections of

the unperturbed preindustrial control simulation onto the input sequences; no response beyond climate system

noise is expected. Middle row shows projections of the system identification (perturbed) simulations onto the

input sequences (all 20 years of simulation). For comparison, the bottom row shows step response simulations

in which the highlighted region has a sustained temperature increase over the 20 year simulation (values shown

are averages over the entire 20-year period). Although somewhat noisy, the system identification simulations

are capable of recovering the broad features of the step response.
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Figure 6. Sensitivity of low cloud fraction to a 1 K temperature perturbation to the Northwest Indian Ocean

(see Figure 2). Different panels were calculated from projections on band-pass filtered timeseries (see Section

3.3).
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Figure 7. As in Figure 6 but for the sensitivity of latent heat flux changes to a 1 K temperature perturbation to

the Northwest Indian Ocean.
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Figure 8. As in Figures 6 and 7 but for bands including wider ranges of frequencies.
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Figure 9. Inter-ensemble standard deviations of the sensitivities of low cloud fraction and latent heat flux.

Sensitivities are calculated via projection onto the full sequences that are 7300 days in length. For the control

simulation, ensemble members were generated by projecting the control run onto each of the five sequences

considered here. Differences are the system identification inter-ensemble standard deviation (middle panels)

minus the control inter-ensemble standard deviation (top panels).
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Figure 10. Top row shows sensitivities calculated by projection over the entire 7300 day simulation (repeated

from the middle panels of Figure 5. Bottom panels show the same values but masked out (grey) where they

are not statistically significant at the 95% confidence level (two-sample unpaired Student’s t test) as calculated

from the standard deviation values presented in Figure 9.
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Figure 11. Sensitivity (left column) and differences in sensitivity (right column) of low cloud fraction to dif-

ferent magnitudes of step change. All values are in units of K−1. Top left shows the sensitivity to a sustained

increase in lower atmospheric temperature by 0.5K (as in previous figures). Middle left and bottom left show

sensitivity to sustained lower atmospheric temperature changes of 0.2K and −0.5K, respectively. These are

calculated by conducting simulations in which heat is added or subtracted accordingly, and then the results are

normalized by the perturbation. The 0.5K simulation results are for an average of five ensemble members; other

simulation results are for single ensemble members.
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Figure 12. As in Figure 11 but for latent heat flux sensitivity (W m−2 K−1).
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