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Thank you for the ideas and suggestions for the review paper. They have greatly helped
us improve the manuscript. Below, we have listed each of the suggestions and the
corresponding revisions that we have made to the manuscript.

• In the introduction there should be some mentioning of INDCs (Intended Na-
tionally Determined Contributions), which were decided during COP 21 in Paris
2015.

This is a great suggestion. We have included INDCs in the revised introduction.
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• P3 L1-2: I suggest reformulating to “frameworks that can synergistically lever-
age the information content of bottom-up datasets and top-down strategies using
atmospheric GHG data”

We have updated this sentence accordingly.

• P3 L7: May be reformulate “to attribute that trend to a specific source sector(s)”
to e.g. “to attribute this trend to trends in specific source sectors”

We have revised the sentence accordingly. The new wording sounds more pre-
cise.

• P4 L27: A reference for EDGAR needs to be included here.

We have added a reference to EDGAR in this line.

• P15 L22: I think a reference to Dils et al., 2014, which systematically validates
CH4 and CO2 products from GOSAT against TCCON data, would be appropri-
ate: Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Parker, R.,
Guerlet, S., Aben, I., Blumenstock, T., Burrows, J. P., Butz, A., Deutscher, N.
M., Frankenberg, C., Hase, F., Hasekamp, O. P., Heymann, J., De Mazière, M.,
Notholt, J., Sussmann, R., Warneke, T., Griffith, D., Sherlock, V. and Wunch, D.:
The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative vali-
dation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and
CH4 retrieval algorithm products with measurements from the TCCON, Atmos.
Meas. Tech., 7(6), 1723–1744, doi:10.5194/amt-7-1723- 2014, 2014.

This is a great suggestion. We have added this reference to the corresponding
line of the revised manuscript.

• P15 L28: Here I think the CarbonSat mission should be mentioned, as it com-
bines high spatial resolution with a large swath, making it useful for emission
detection. Some rel- evant papers are listed here: Buchwitz, M., Reuter, M.,
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Bovensmann, H., Pillai, D., Hey- mann, J., Schneising, O., Rozanov, V., Krings,
T., Burrows, J. P., Boesch, H., Gerbig, C., Meijer, Y. and Löscher, A.: Carbon
Monitoring Satellite (CarbonSat): assessment of atmospheric CO2 and CH4 re-
trieval errors by error parameterization, Atmos. Meas. Tech., 6(12), 3477–3500,
doi:10.5194/amt-6-3477-2013, 2013. Pillai, D., Buchwitz, M., Gerbig, C. and
Koch, T.: Tracking city CO2 emissions from space using a high reso- lution in-
verse modeling approach: A case study for Berlin, Germany, Atmos. Chem.
Phys., doi:10.5194/acp-16-9591-2016, 2016.

CarbonSat was a notable shortfall in the initial manuscript. We have added sev-
eral lines on CarbonSat and GeoCARB to this section (along with the references
above). Thank you for including these suggested references; they are very help-
ful.

• P17 L17: reword “now markets and ethane analyzer” -> “now markets an ethane
analyzer”

Thank you for pointing out this typo. We have fixed it in the revised manuscript.

Interactive comment on Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-643, 2016.
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Thank you for the thorough and highly constructive suggestions on the manuscript. The
suggestions are insightful and thoughtful and have been incredibly helpful for improving
the manuscript.

• The scope of the review should be stated in the introduction. For example, many
studies aimed at understanding CO2 uptake by terrestrial vegetation are evidently
out of scope, even though biological CO2 sequestration may significantly offset
US CO2 emissions.

This is a great suggestion for clarifying the manuscript framing. We have added
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content to the introduction defining the scope as suggested here. The reviewer
makes a great point about biological CO2 sequestration. We felt that this topic
would have expanded the scope of the review beyond what we could feasibly
cover in a single paper. It would be an excellent topic for a future review paper,
though.

• Discussion of the quality of satellite data required for anthropogenic flux
estimation and trend estimation would be helpful. The measurement re-
quirements to detect anthropogenic CO2 plumes are described in the 2010
NRC Report, Verifying Greenhouse Gas Emissions, and in publications de-
scribing the notional CarbonSat mission as well as in the CarbonSat report
(http://esamultimedia.esa.int/docs/EarthObservation/SP1330-1_CarbonSat.pdf).

We have added this information to Sect. 4.1 of the revised manuscript. In addi-
tion, we have also added mention of the newly announced GeoCARB satellite in
this section.

• Also it should be noted that the current generation of satellite sensors are not
designed to provide comprehensive global mapping and are therefore not ideally
suited for urban and point/source estimation. OCO-2 and GOSAT were designed
for global carbon cycle science rather than emissions monitoring. How does the
uncertainty in e.g. the Kort et al. analysis of Los Angeles emissions using GOSAT
compare with the requirements for useful urban trend detection (e.g., something
like a 10

The reviewer makes a great point, and we have added this information to Sect.
4.1. Current satellite data products are unlikely to detect a 10% trend over 10
years; the measurement uncertainties and retrieval biases associated with these
products are likely too large relative to the XCO2 increment. Kort et al. (2012)
estimate that GOSAT could detect a trend as small as 22% from Los Angeles.
However, Los Angeles is arguably an ideal case study, a very large city with a
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small biospheric CO2 signal.

• It would be useful to see more discussion about where existing inventories and/or
inversions agree and where they disagree. For example, how do the Schneising
et al SCIAMACHY fugitive methane emissions estimates for North America com-
pare with those from aircraft campaigns?

We have added text to Sect. 2.4 that highlights where existing estimates agree
and disagree. Different top-down and inventory studies often have very different
spatial scales and cover different time windows. These differences in scale can
make disagreements among the estimates more challenging to identify. We also
highlight this point in the revised version of Sect. 2.4.

• Finally, some more discussion of transport modeling errors would be useful. To
what extent do uncertainties in simulated transport limit top-down flux estimation?
What type of work is needed to address transport uncertainty?

We have added content to the synthesis discussion in Sect. 5. We mention
the importance of reducing transport errors and recent innovations that could
aid in this effort (e.g., monitoring mixed layer height with LIDAR). In sections 3.1
and 3.3, we also highlight studies that discuss the impact of transport errors on
sector-specific attribution. These studies include papers by Shiga et al. (2014)
and Karion et al. (2015).

• page 2, line 20: Are there any regulations targeting CH4 emissions from agricul-
ture? Perhaps worth mentioning here that agriculture is a large source of CH4
even if not regulated yet.

To our knowledge, there are no regulations that mandate CH4 emis-
sions reductions from agriculture in the U.S.. In August of 2014,
the US EPA, USDA, and US DOE released the "Biogas Opportu-
nities Roadmap" targeting voluntary reduction strategies for agriculture

C3

http://www.atmos-chem-phys-discuss.net/
http://www.atmos-chem-phys-discuss.net/acp-2016-643/acp-2016-643-AC3-print.pdf
http://www.atmos-chem-phys-discuss.net/acp-2016-643
http://creativecommons.org/licenses/by/3.0/


ACPD

Interactive
comment

Printer-friendly version

Discussion paper

(https://www3.epa.gov/climatechange/Downloads/Biogas-Roadmap.pdf). We
have updated this line of the manuscript with a brief mention of the roadmap.

• page 3, line 9: “meteorically” sounds sensational
We have replaced this phrase with “began in the past decade.”

• page 3, line 15: Perhaps briefly discuss biological CO2 sinks and potential for
deliberate sequestration, along with concomitant need for verification of such
reservoirs. Also could mention challenges of accounting for emissions from CH4
wetlands, as well as CH4 emissions related to anthropogenic interference in the
hydrological systems (emissions from reservoirs). Something about co-location
of cows and oil and gas perhaps also worth mentioning here.
We have added a sentence to this paragraph mentioning the possibility of bio-
logical or geological sequestration as a public policy tool and the need to verify
those carbon sinks.

• page 4, line 1: I don’t see a reference for EDGAR inventory in this list of refer-
ences for global efforts, though it is frequently used.
We have added the following reference to EDGAR: European Commission, Joint
Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL).
Emission Database for Global Atmospheric Research (EDGAR), release version
4.3.1 http://edgar.jrc.ec.europa.eu/overview.php?v=431, 2016.
This particular publication is one of the preferred references for EDGAR stated
on their web site (http://edgar.jrc.ec.europa.eu/terms_of_use.php).

• page 4, line 10: For the example of coal gasification, how is energy lost in con-
version of coal to gas taken into account? It seems like this should count as
emissions from coal.
We have clarified this line in the manuscript. This line does not refer to energy
lost in the conversion of coal to gas. Rather, the energy converted from coal to
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gas is moved from the “industrial other coal” category in EPA’s accounting to the
“natural gas combustion” category. EPA explains, “The energy in this synthetic
natural gas enters the natural gas distribution stream, and is accounted for in EIA
natural gas combustion statistics. Because this energy of the synthetic natural
gas is already accounted for as natural gas combustion, this amount of energy is
deducted from the industrial coal consumption statistics to avoid double counting”
(EPA 2016c, p. A-31).

• page 4, line 28: First mention of EDGAR, but I don’t see any reference. Perhaps
add a url.

We have added a reference to EDGAR (JRC/PBL 2016, as shown above).

• page 5, first paragraph: Perhaps mention for which years these products are
available and how often they are updated (or not updated).

We have added this information to the paragraph.

• page 5 line 8: instead of “rigorous” consider “detailed”

We have replaced the words as suggested.

• page 5 line 14: repeated use of “EFs” results in confusing long sentence. Con-
sider simplifying e.g., “...much higher EFs that result in higher emissions that are
much more consistent. . .”

We have simplified and shortened this sentence accordingly.

• page 5, various lines: over-use of the word “leverage” in this section

We have reduced the usage of this word throughout this section.

• page 5, line 26: The Andres et al. effort is also government-sponsored
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This statement is technically true since Andres works at Oak Ridge National Lab-
oratory. What we intended to say is that most of these inventories are not con-
structed by regulatory agencies and are not part of an official regulatory agency
inventory product. We have revised this line accordingly.

• page 5, line 31: “these omissions” since threshold plus ag exemption

We have changed “this” to “these” as suggested.

• page 6, line 20: it would be helpful to define what is meant by on-road measure-
ments, i.e. are these all ground-based mobile using public (or private) roads?

All of the studies listed here use ground-based mobile measurements on road-
ways. Not all of these studies list whether the roads were public or private (e.g.,
Mitchell et al., 2015, Subramanian et al., 2015). With that said, many of the stud-
ies listed in the manuscript use public roadways (e.g., Brondfield et al., 2012;
Brantley et al., 2014; Jackson et al., 2014; Lan et al., 2015; Maness et al., 2015;
and Roscioli et al., 2015). Roscioli et al., (2015) also took ground-based mobile
measurements within the perimeter of many sites.

• page 6, line 25: Smokestack measurements of CO2 are not used in the EPA
inventory?

We have edited this passage to make it more precise. EPA uses smokestack
measurements in some contexts. For example, smokestack or facility level
measurements are used in EPA’s Greenhouse Gas Reporting Program (GH-
GRP) (e.g., see Sect. 2.1 in https://www.epa.gov/sites/production/files/2016-
03/documents/stationaryemissions_3_2016.pdf).

• page 7, line 2: Marcellus not Mercellus

We have corrected this spelling accordingly.

• page 7, line 20: Could you also include agricultural CH4 emissions in Figure 1?
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We have added agricultural emissions to the figure.

• page 9, line 10: Mays and Cambaliza both Indianapolis.

This is correct. One study examined CO2 while the other focused on CH4 (and
hence we have listed the studies separately).

• page 9, paragraph beginning on line 31: A limitation is that most of these stud-
ies use data from a single campaign and provide only a snapshot of emissions.
Some of the studies used tracers such as ethane to estimate contribution of land-
fills, etc. I think this is worth mentioning here.

We have added this point to the paragraph in question.

• page 11, line 33. The verbiage “run an atmospheric transport model once per
source sector” is confusing. Zhao et al. and Jeong et al. used STILT-WRF, so
they generated footprints from a single WRF run. Suggest simply eliminating the
phrase “once per source sector”, since details of how the transport model is run
may vary.

We have eliminated this phrase accordingly in the revised manuscript.

• equation 5: x[i] not defined.

The variable x[i] is defined in the lines of text following Eq. 3. We have added a
clarifying note following Eq. 5: “All other variables are as defined earlier.”

• page 12, line 28: Technicality: SCIAMACHY is not a satellite. It is the name of a
sensor on the Envisat satellite.

We have updated this line in the text accordingly.

• page 13, equation 6: A limitation of the GIM as implemented in the cited ref-
erences is that the betas are spatially constant whereas in reality relationships
between activity data and emissions may vary spatially or temporally.
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This is true, and we have added this point to the revised manuscript. The
coefficients could, in theory, be variable. For example, Fang and Micha-
lak (2015, doi:10.1002/2014GB005034) allow the coefficients to vary from one
biome to another (in the context of biospheric fluxes). Gelfand et al. (2003,
doi:10.1198/016214503000170) developed a statistical model that estimates
spatially variable coefficients, albeit not in the context of atmospheric inverse
modeling. Either of these studies could be a starting point for implementing vari-
able coefficients within a GIM.

• page 14, line 10: Radiocarbon measurements show that respired biogenic CO2
is significant even in winter.
This is definitely true. However, the overall magnitude and diurnal variability of
biogenic CO2 fluxes are much lower in the winter than in summer. As a result,
inverse modeling approaches stand a better chance of identifying fossil fuel flux
patterns in winter than in summer (e.g., Shiga et al. 2014).

• page 15, line 15: It should be mentioned that in order for satellite measurements
to be useful for understanding and tracking urban emissions, they must not only
detect the presence of a large urban area but also be sufficiently sensitive to
measure trends.
This is an astute point, and we have added discussion on this point to the cor-
responding lines of the revised manuscript. For example, Hammerling et al.
(2015) examined whether a LIDAR mission like ASCENDS would be able to de-
tect changes in anthropogenic emissions from large regions like Europe or China.

• page 15, line 24: Limitations of the ASCENDS concept should be mentioned. For
example ASCENDS will provide limited spatial coverage, infrequent revisits, and
will low signal to noise for urban signatures.
Good suggestion. We agree that this information is important to mention and
have added it to the corresponding lines of the revised manuscript.
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• page 15, line 30: Revised launch date needed for TROPOMI.
We have revised the launch date. The TROPOMI team currently estimates a
launch date sometime in 2017 (http://www.tropomi.eu/instrument/status-0).

• page 16, line 11: More recently than what?
We have replaced the phrase “more recently” with “Beginning in the 1940s, . . ..”

• page 16, line 22: The description of current radiocarbon sampling could be im-
proved. More specificity is needed, especially regarding the temporal density of
samples in the current network compared to what is recommended by Basu et al.
We have added more specific information on the available radiocarbon observa-
tions at tall tower and aircraft sites in the US.

• page 17, line 2: Impact of disequilibrium fluxes on estimated emissions can be
mitigated if major urban areas have both upwind and downwind sampling.
Good point. We have added this information into the corresponding lines of the
revised manuscript.

• page 17, line 17: Typo “now markets and”.
We have fixed this typo in the revised manuscript.

• page 17, line 18: Detlev Helmig’s lab at INSTAAR has been measuring
ethane in whole air samples from the NOAA global network for many years
(http://www.nature.com/ngeo/journal/v9/n7/abs/ngeo2721.html). There is a also
a new instrument that is now being used to measure ethane from whole air sam-
ples North American tall towers and aircraft.
We have updated these lines of the revised manuscript to reflect this information.

• page 18, lines 15-20: Repeated use of “far more”. Not quantitative.
We have replaced the words “far more” in the corresponding paragraph.
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• page 18, line 25: Perhaps should point out that intensive measurement cam-
paigns provide only a snapshot and, unless repeated, provide no information
about how emissions may vary over time.

This is a great point, and we have added it to the corresponding lines of the
revised manuscript.

• page 19, line 13: I don’t think it is helpful or fair to single out Environment Canada
for criticism (especially since focus of this review is US emissions), though your
general point about data not being readily accessible is valid. CO2 data from
Environment Canada through 2015 is available from the GLOBALVIEWplus_v2.1
ObsPack available here (http://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php).
Hopefully a similar product will be available soon for CH4.

We have removed this reference from the revised manuscript.

Interactive comment on Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-643, 2016.
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Thank your for the suggested references; these are very helpful. We have added them

in to the revised version of the manuscript.
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Constraining sector-specific CO2 and CH4 emissions in the United
States
Scot M. Miller1 and Anna M. Michalak1
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Abstract. This review paper explores recent efforts to estimate state- and national-scale carbon dioxide (CO2) and methane

(CH4) emissions from individual anthropogenic source sectors in the United States. Nearly all state and national climate

change regulations in the US target specific source sectors, and detailed monitoring of individual sectors presents a greater

challenge than monitoring total emissions. We particularly focus on opportunities to synthesize disparate types of information

on emissions, including emissions inventory data and atmospheric greenhouse gas data.5

We find that inventory estimates of sector-specific CO2 emissions are sufficiently accurate for policy evaluation at
:::
the na-

tional scale but that uncertainties increase at state and local levels. CH4 emissions inventories are highly uncertain for all source

sectors at all spatial scales, in part because of the complex, spatially-variable relationships between economic activity and CH4

emissions. In contrast to inventory estimates, top-down estimates use measurements of atmospheric concentrations
::::::
mixing

::::
ratios

:
to infer emissions at the surface;

::::
thus

:::
far, these efforts have had little success identifying

::::
some

::::::
success

::::::::::
identifying

:::::
urban10

CO2 emissions from anthropogenic sources but
:::
and have successfully identified sector-specific CH4 emissions in several op-

portunistic cases. We also describe a number of forward-looking opportunities that would aid efforts to estimate sector-specific

emissions: fully combine existing top-down datasets, expand intensive aircraft measurement campaigns and measurements of

secondary tracers, and improve the economic and demographic data (e.g., activity data) that drive emissions inventories. These

steps would better synthesize inventory and top-down data to support sector-specific emissions reduction policies.15

1



1 Introduction

Government regulations of greenhouse gas (GHG) emissions have evolved rapidly in the past five years, particularly in the

United States. For example
::::
The

:::
US

::::::
pledged

::
to

::::::::
decrease

::
its

:::::
GHG

::::::::
emissions

::
by

::::::
26–28%

::::::
relative

::
to

::::
2005

:::::
levels

:::
by

::::
2025

::
as

::::
part

::
of

::
the

:::::
Paris

:::::::::
Agreement

:::::::::
negotiated

::
at

::::::
COP21

:::::::::
(UNFCC) .

:::
In

::::::
parallel

::::
with

:::
this

:::::::::
agreement, the US Environmental Protection Agency

(EPA) recently announced
::
has

::::::::
finalized CO2 and CH4 emissions regulations for numerous source sectors as part of

:::::
under the5

White House Climate Action Plan (Executive Office of the President, 2013). Several US states have also taken aggressive

action on emissions, including Massachusetts (Massachusetts Executive Office of Energy and Environmental Affairs, 2015)

and California (Air Resources Board, 2014), among others.

These policy actions require that scientists and government agencies quantify regional- and national-scale GHG emissions

from specific source sectors.
::
In

:::
this

::::::
paper,

:::
we

:::::
define

::
a
::::::
source

:::::
sector

:::
as

:::
the

::::
total

:::::::::
emissions

::::
from

:::
an

::::::::
industry,

::::
such

::
as

:::::
CO210

::::
from

:::::
power

::::::
plants,

:::::
CH4 ::::

from
:::
the

:::
oil

:::
and

:::::::
natural

:::
gas

:::::::::
industries,

::
or

::::
CH4:::::::::

emissions
::::
from

::::::::
landfills.

:
This review paper focuses

on existing and evolving capabilities for the United States. The US has far greater resources to estimate emissions relative to

many developing countries. Furthermore, GHG emissions regulations in the US are nascent relative to regulations in Europe

(e.g., Prahl and Hofman, 2014), and the monitoring strategies discussed in this review could be developed in parallel with new

regulations.15

This focus on individual source sectors is important for supporting recent US GHG emissions policies. In this paper, we

define a source sector as the total emissions from an industry, such as CO2 from power plants, CH4 from the oil and natural

gas industries, or CH4 emissions from landfills. Emissions from specific components of these industries are beyond the scope

of this review (e.g., emissions from gas wells versus gas storage systems). Most
::::
Many

:
national emissions regulations in the

US target this sector level. For example, the US Clean Power Plan mandates a 32% decrease in power sector CO2 emissions20

by 2030 relative to 2005 levels (In February, 2016, the Supreme Court stayed implementation pending a final court ruling.

:::
The

::::
new

::::::::::
presidential

::::::::::::
administration

::::
that

::::::::
assumed

:::::
office

::
in
:::::::

January
:::::

2017
::::
has

:::::::::
announced

:::
its

:::::::
intention

:::
to

::::::
discard

:::
the

:::::
plan.)

(US EPA, 2015a). The EPA and National Highway Traffic Safety Administration have also extended and strengthened CO2

emissions standards for cars and light trucks through 2025 (US EPA Office of Transportation and Air Quality, 2012). In

addition to these measures, EPA has set several sector-specific CH4 emissions targets. In August of 2015, EPA proposed
::::
May25

::
of

:::::
2016,

::::
EPA

::::::
issued a rule that would

::::
will decrease CH4 emissions from oil and gas operations by 40–45% relative to 2012

levels (US EPA, 2016a) .
::
by

:::::
2025

:::::::::::::::
(US EPA, 2016c) .

::
In

:::::::
August

::
of

:::::
2014,

:::
the

:::
US

::::
EPA,

:::
US

::::::::::
Department

::
of

::::::::::
Agriculture

::::::::
(USDA),

:::
and

:::
US

::::::::::
Department

:::
of

::::::
Energy

:::::::
(DOE)

:::::::
released

:::
the

::::::
Biogas

::::::::::::
opportunities

::::::::
roadmap

:::::::
targeting

::::::::
voluntary

::::::::
reduction

:::::::::
strategies

::
for

::::::::::
agriculture

::::::::::::::::::
(USDA et al., 2014) . Last but not least, the EPA announced proposed

:::
EPA

::::::::::
announced regulations for CH4

emissions from landfills in August 2015 (US EPA, 2015b) .30

Emissions from these source sectors are important to quantify not only at national scale but also
::::
July

::::
2016

:::::::::::::
(EPA, 2016b) .

:
It
::
is

::::::::
important

:::
to

::::
note

:::
that

::
a

::::::
number

:::
of

::::
these

:::::::
national

:::::::
policies

:::
are

:::::::::::
implemented

:
at the state level. US federal policies like the

Clean Power Plan are implemented through plans devised by each state ; each state
:::
For

::::::::
example,

::::
each

::::
state

:
has a different
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emissions reduction target
::::
under

:::
the

::::::
Clean

:::::
Power

::::
Plan, and each state can decide how to meet and monitor progress toward

that target (US EPA, 2015a).

We examine sector-specific GHG estimates with an eye toward combining or assimilating multiple data streams. This review

article is part of a special issue of the European Geophysical Union (EGU) journals that focuses on data assimilation and the

use of multiple data streams to understand the carbon cycle. In this context, we explore opportunities to creatively synthe-5

size both bottom-up emissions inventories and top-down atmospheric inverse modeling. Most government agencies estimate

emissions using bottom-up inventories: quantify total emissions by estimating the total amount of some activity and the av-

erage emissions per unit of activity. Other efforts utilize top-down atmospheric inverse modeling: measure atmospheric GHG

concentrations
::::::
mixing

:::::
ratios and use those measurements to infer the level and distribution of emissions at the Earth’s surface.

Given current policy needs, no single strategy (i.e., bottom-up or top-down) will likely be sufficient to evaluate GHG emissions10

from specific source sectors. In the future, scientists and government agencies will likely need to combine these approaches to

robustly estimate sector-specific emissions – frameworks that can synergistically leverage the information content of bottom-up

datasets , atmospheric GHG data, and top-down strategies
::::
using

::::::::::
atmospheric

:::::
GHG

::::
data. This review paper focuses on these

opportunities.

Future efforts to synthesize these strategies
:::::
These

:::::::::
frameworks

:
will need to address two key tasks: estimate the total quantity15

of GHG emissions from each source type and detect changes or trends in emissions from that source type. From the standpoint

of inverse modeling, the former problem is more challenging than estimating total emissions and requires separating the space-

time patterns of one emissions source from the patterns of other sources. In the latter case, we not only need to estimate a

trend in total emissions but also need to attribute that trend to a specific source sector(s)
:::
this

:::::
trend

::
to

:::::
trends

::
in

:::::::
specific

::::::
source

::::::
sectors. This challenge is complicated by changes in technology and changes in the spatial or temporal distribution of individual20

source sectors. For example, hydraulic fracturing and horizontal drilling have risen meteorically
::::::
became

::::::
widely

::::
used

:
in the

past decade (US Energy Information Administration, 2015). These operations utilize new equipment and operational practices,

and the spatial distribution of drilling across the United States has changed during that time. These changes can complicate

efforts to estimate trends in CH4 emissions from the oil and gas industries; these emissions are literally a ‘moving target.’

These challenges are further complicated by GHG fluxes from the biosphere, particularly in the case of CO2. In many25

instances, anthropogenic emissions are also co-located with natural GHG fluxes or fluxes caused by human-caused disturbances

to the landscape. These natural and anthropogenic emissions
:::::::::
Biospheric

:::
and

:::::
fossil

::::
fuel

::::::
sources

:
will be important to disaggre-

gate from one another for sound policy evaluation . For example, a natural landscape disturbance and subsequent change

in CO2 fluxes
:::::
These

::::::
sources

::::
are

::::
often

:::::::::
co-located

::::
and

:::::
trends

:::
in

:::
one

:
could be mistaken for a trend in

:::::
trends

::
in

:::
the

:::::
other.

:::
In

:::::::
addition,

:::::
future

:::::::
changes

::
in

:::::::::
biospheric

::::
CO2::::

and
::::
CH4::::::

sources
::::
may

:::
be

::::::
natural

::
or human-caused GHG emissions (or vice versa).30

::::
(e.g.,

::::
land

:::
use

:::::::
change,

::::::::
emissions

:::::::
induced

::
by

:::::::
climate

::::::
change,

:::::::::
biological

:::::
and/or

:::::::::
geological

::::::
carbon

::::::::::::
sequestration).

::::::::::::
Disentangling

::::
these

::::::
natural

:::
and

::::::
human

::::::
causes

:::
will

:::
be

::::::::::
challenging.

::::
Note

::::
that

:::::
GHG

:::::
fluxes

::::
from

:::
the

::::::::
biosphere

::::
and

:::::::::::::::::
biological/geological

::::::
carbon

:::::::::::
sequestration

::
are

:::::::
beyond

:::
the

:::::
scope

::
of

:::
this

:::::::
review.

In this article, we explore these challenges
::
the

:::::::::
challenge

::
of

:::::::::
estimating

::::::::::::
sector-specific

::::::::
emissions

:
from several perspectives.

First, we discuss bottom-up inventory efforts. We then explore top-down strategies to estimate sector-specific emissions and35
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the atmospheric datasets available to make both bottom-up and top-down estimates. Next, we highlight several new or novel

approaches for estimating sector-specific emissions, and lastly, we close the review with a synthesis discussion of forward-

looking opportunities for combining bottom-up and top-down strategies.

2 Bottom-up data

Bottom-up efforts typically use an accounting-type approach to estimate sector-specific emissions. The first step usually in-5

volves collecting activity data: a map or database of economic activity or behavior that leads to emissions. Examples in-

clude the amount of coal burned by power plants, the number of passenger cars and miles travelled, and the number of

cows by location. A second step entails estimating a set of emissions factors (EFs) for each activity. EFs could include

the CO2 emissions per kg of coal burned or the average CO2 emissions per mile travelled by passenger cars. The prod-

uct of these two numbers provides a bottom-up estimate of emissions for a given source sector. State and national govern-10

ments in the US use this strategy to construct official emissions estimates (e.g., California Air Resources Board, 2015; EPA,

2016a). A number of academic and government efforts have produced bottom-up CO2 and CH4 emissions estimates at lo-

cal/regional (e.g., Gately et al., 2013; Jeong et al., 2014; Lyon et al., 2015; California Air Resources Board, 2015), national

(e.g., Petron et al., 2008; Gurney et al., 2009; Gately et al., 2015; US EPA, 2013; Environment and Climate Change Canada, 2016)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Petron et al., 2008; Gurney et al., 2009; Gately et al., 2015; US EPA, 2013; Environment and Climate Change Canada, 2016; Maasakkers et al., 2016) ,

and global scales (e.g., Rayner et al., 2010; Andres et al., 2011; Oda and Maksyutov, 2011; Olivier et al., 2014)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Rayner et al., 2010; Andres et al., 2011; Oda and Maksyutov, 2011; Olivier et al., 2014; European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2016) .15

In this section, we primarily discuss bottom-up data with an eye toward how this information can be combined with top-down

strategies.

2.1 A prototypical example

We describe EPA’s estimate of CO2 emissions from coal-fired power plants as a prototypical example of how government

agencies construct bottom-up inventory estimates. EPA describes the procedure that it uses to estimate CO2 emissions in20

compliance with 2006 IPCC guidelines (US EPA, 2016b): first, the agency estimates activity data – coal use by source sector.

EPA uses retail statistics from the electricity sector to estimate total consumption by each type of end user (e.g., residential,

commercial, etc.). Second, EPA adjusts this activity data to account for non-combustion uses, double-counted emissions, and

fuel exports/imports. For example, a coal gasification plant in North Dakota produces synthetic natural gas; this fuel is added

to natural gas activity data and subtracted from the coal activity data.
::::::::
According

::
to

:::::
EPA,

::::::::
“Because

:::
this

::::::
energy

::
of

:::
the

::::::::
synthetic25

::::::
natural

:::
gas

::
is

:::::::
already

::::::::
accounted

:::
for

:::
as

::::::
natural

:::
gas

:::::::::::
combustion,

::::
this

::::::
amount

:::
of

::::::
energy

::
is

::::::::
deducted

::::
from

:::
the

:::::::::
industrial

::::
coal

::::::::::
consumption

::::::::
statistics

::
to

:::::
avoid

::::::
double

::::::::
counting”

:::::::::::::::::::::::
(US EPA, 2016c, p. A-31) .

:
Third, EPA estimates the carbon content of the

coal. EPA uses Energy Information Administration (EIA) estimates of carbon content by coal rank and state of origin (Hong

and Slatick, 1994). EPA then computes the weighted average carbon content of coal by state of origin and estimates the end use

of coal produced in each state (e.g., electricity, industry, etc.). The agency uses this procedure to estimate the average carbon30

content (and EF) for each end use sector in the United States (US EPA, 2016b).
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IPCC guidelines also require a reference approach: an additional verification or consistency check against fuel production,

imports, and exports (EPA, 2016a). The new draft inventory then goes through expert review undertaken by a panel of technical

experts. EPA revises its inventory estimate based upon this review and distributes the subsequent draft for public comment. At

the conclusion of that process, EPA issues its finalized inventory estimate.

The approach outlined above is prototypical of
::::::
similar

::
to many government inventories. More recently, a number of academic5

efforts have developed very different approaches that leverage novel data streams (e.g., satellite images of night lights
:::::
lights

::
at

::::
night) or that use gridded activity data, and these efforts are described in detail in the next section.

2.2 Recent bottom-up efforts

In the past ten years, inventory efforts have moved from coarse estimates that rely heavily on proxy activity data to spatially-

resolved estimates that use specific activity data and EFs that are tailored to the heterogeneities in each emissions source.10

A number of recent CO2 inventory efforts have incorporated more comprehensive activity data or detailed EFs than previ-

ously available. At the regional scale, Gurney et al. (2012) and Gately et al. (2013) developed on-road CO2 emissions estimates

for Indianapolis and Massachusetts, respectively. The latter study reports emissions that
::::::::
Emissions

::
in

:::
the

:::::
latter

::::
study

:
are within

8.5% of Federal Highway Administration fuel consumption statistics but that differ from the commonly-used, global-scale

EDGAR inventory
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Olivier et al., 2014; European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2016) by15

22.8%. The authors explain that many global-scale efforts use road density as a proxy for vehicle emissions but argue that the

relationship between road density and emissions is not constant. Two subsequent studies (McDonald et al., 2014; Gately et al.,

2015) estimate on-road CO2 emissions for the entire United States at spatial resolutions down to 1 km2. McDonald et al. (2014) estimate

emissions that
:::::::::::::::
McDonald et al. ’s

:::::::::::::
2014 emissions

::::::::
estimates differ from EDGAR by 20-80% at the municipal level, though the

two inventories produce nearly identical national totals.20

At
::
the national scale, the VULCAN inventory (Gurney et al., 2009) is the most comprehensive academic effort to date. The

inventory includes CO2 emissions by sector at high spatial and temporal resolutions – 10km ⇥ 10km and sub-daily .
::
for

:::
the

::::
year

:::::
2002. Furthermore, the inventory uses more detailed activity data than government efforts. For example, the inventory identifies

emissions from individual point sources, a contrast to EPA’s estimate which reports only county-level point source totals. At the

global scale, the EDGAR anthropogenic emissions inventory
::::::::
(available

:::
for

::::::::::
1970–2010) has moved from a 1�⇥1� lat/lon resolu-25

tion to 0.1�⇥0.1� (Olivier et al., 2014)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Olivier et al., 2014; European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2016) .

In a separate effort, Andres et al. (2011) estimated CO2 emissions for 80 countries
:::
for

:::
the

::::
years

::::::::::
1950–2006 with a particular

focus on estimating the seasonal cycle of CO2 emissions.

A number of studies have also leveraged more rigorous
::::::::::
incorporated

::::
more

:::::::
detailed

:
activity data and EFs to estimate anthro-

pogenic CH4 emissions .
:
at

::::
both

:::::::
regional

::::
and

::::::
national

::::::
scales.

:::
At

:::
the

:::::::
regional

:::::
scale, Jeong et al. (2014) and Lyon et al. (2015)30

estimate
::::::::
estimated oil and gas CH4 emissions for California

::::
from

:::::::::
California

:::
for

::::
2010

:
and the Barnett Shale region

:::
for

::::
2013,

respectively. Both
::::::
studies find emissions that greatly exceed EPA’s estimates. A relatively small fraction of emitters account

for the majority of oil and gas emissions, and Lyon et al. (2015) argue that rigorous EFs capture this skewed distribution more

effectively than those used by EPA. In addition to these oil and gas inventories, Owen and Silver (2015) compiled field studies
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of CH4 emissions from agriculture (e.g., cows
::::
cattle, sheep, and manure management). The authors explain that current emis-

sions inventories use EFs from lab-based experiments, not field observations. These field observations imply much higher EFs

, EFs that result in higher emissions that are more consistent
::::
larger

:::::::::
emissions

::::
more

::
in
::::
line

:
with existing top-down estimates.

::
At

:::
the

:::::::
national

:::::
scale,

:::::::::::::::::::::::::::
Maasakkers et al. (2016) created

:
a
:::::::
gridded

::::::
version

:::
of

:::::
EPA’s

::::
CH4::::::::

inventory
::::
(0.1

::
⇥

:::
0.1

::::::
lat-lon,

::::::::
monthly

::::::::
resolution

:::
for

:::::
2012).

:::::::::::::::::::::::::
Maasakkers et al. (2016) point

:::
out

::::
that

:::
the

:::::
spatial

::::::::::
distribution

::
of

::::
their

:::::::
estimate

::
is
::::::::
different

::::
from

::::::::
EDGAR,5

:::::::::
particularly

:::
for

:::
the

:::
oil

:::
and

:::
gas

:::::::::
industries.

:::
Oil

:::
and

::::
gas

::::::::
emissions

::
in

:::::::
EDGAR

::::::::
correlate

::::
with

:::::::::
population

::::::
density

:::::
while

:::::::::
emissions

::
in

:::::::::::::::::::::::
Maasakkers et al. (2016) are

::::::::::
concentrated

:::
in

::::::
drilling

::::::
basins.

A number of additional studies also leverage
::::::
employ

:
novel inventory methodology or novel proxy datasets. For example, Oda

and Maksyutov (2011) developed ODIAC (Open source Data Inventory of Anthropogenic CO2 emission), a global, gridded

CO2 inventory constructed using a database of CO2 point sources and remote sensing data of night lights
::::::
satellite

::::::
images

:::
of10

::::
lights

:::
at

::::
night. Rayner et al. (2010) and Asefi-Najafabady et al. (2014) developed a data assimilation framework known as

FFDAS (Fossil Fuel Data Assimilation System). The authors use
::::
used datasets like population densityand economic activity

as inputs into their model, constrain or fit their emissions model using nightlight data, and
:
,
::::::
carbon

:::::::
intensity

:::
of

::::::
energy,

::::
and

::::::
satellite

::::::
images

:::
of

:::::
lights

::
at

:::::
night,

:::
and

::::
they

:
reported national emissions totals. Davis and Caldeira (2010) used a very different

approach from any of the above studies. The authors build
::::
built a CO2 inventory based upon economic imports and exports15

and explore
:::::::
explored

:
the idea of carbon ’leakage’, the carbon emitted by one country to manufacture products that are then

imported by another country. These studies do not provide emissions estimates for each individual source sector, but ODIAC

and FFDAS do leverage
:::::::::
incorporate novel datasets to separate out point sources (e.g., power plants) from non-point emissions.

Overall, most of the above inventory efforts (except EDGAR) are the product of academic, not government, research.

EPA’s GHG Reporting Program (GHGRP) represents an important advancement in government inventory efforts. EPA an-20

nounced the GHGRP in 2009 and emissions reporting began in 2010 (US EPA, 2013). The GHGRP requires all entities that

emit over 25000
:::::
25,000

:
metric tons of CO2 equivalents to report their emissions to a national registry (US EPA, 2013). This

reporting threshold is equivalent to the GHG emissions of 3439 homes or 5263
:::::
3,439

::::::
homes

::
or

:::::
5,263

:
cars (EPA, 2015).

The agricultural sector is excluded from this threshold and is not required to report its emissions. Despite this omission
::::
these

::::::::
omissions, EPA estimates that 85–90% of US GHG emissions are covered under the GHGRP. Other recent studies, however,25

argue that the GHGRP is less complete than estimated by EPA for two reasons (e.g., Kort et al., 2014; Karion et al., 2015; Lan

et al., 2015; Lavoie et al., 2015; Lyon et al., 2015; Mitchell et al., 2015; Subramanian et al., 2015; Zimmerle et al., 2015). First,

the emissions that are excluded from the GHGRP are sometimes larger than estimated by EPA, and second, the EFs used in the

GHGRP are smaller than actual emissions from some source sectors like oil and natural gas.

2.3 Recent, direct measurements that support bottom-up efforts30

Inventory development requires two different types of data: activity data and data that can be used to develop EFs. Activity

data can come from economic, census, and remote sensing datasets, among other possible data sources. These datasets differ

from those used to develop EFs. The IPCC provides a database of EF estimates but encourages countries to take measurements

of emitters or emitting processes to develop tailored, country-specific EFs (Goodwin et al., 2006). A number of observation
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strategies can directly support the development and evaluation of country-specific EFs. We discuss a number of recent efforts

here as well as the advantages and challenges of using these datasets.

One observation strategy is to measure GHG concentrations
::::::
mixing

:::::
ratios

:
near an emitter or a group of emitters. These

observations, by factor of their targeted spatial scale, can be directly used to evaluate a single source type and develop corre-

sponding EFs. For example, a number of studies report on direct GHG measurements from individual facilities. These include5

direct stack measurements of power plant CO2 emissions (e.g., Teichert et al., 2003) and numerous recent studies of CH4

emissions from oil and gas operations: measurements of emissions from pneumatic controllers (Allen et al., 2015), compressor

stations (Subramanian et al., 2015), transmissions and storage systems (Zimmerle et al., 2015), and abandoned wells (Kang

et al., 2014). In addition, several site-level studies target agricultural emissions. Kebreab et al. (2008) and Sejian et al. (2010)

review several measurement strategies, and Owen and Silver (2015) specifically review field studies on
::
of CH4 emissions from10

manure.

On-road measurements provide a picture of emissions that is one spatial scale larger than direct facility observations.
::::
This

::::::
strategy

::::::
usually

::::::
entails

:::::::::
measuring

::::
trace

:::
gas

::::::
mixing

:::::
ratios

::::
from

:
a
::::::::::::
ground-based

::::::
vehicle

:::::
either

::
on

::::::
public

::::
roads

::::::::::::::::::::::::
(e.g., Maness et al., 2015) or

:::::
private

:::::
roads

::
in
::::::::::
partnership

::::
with

:::
the

::::::
facility

::::::
owner

::::::::::::::::::::::
(e.g., Roscioli et al., 2015) .

:
Existing studies often target oil and gas facili-

ties (e.g., Roscioli et al., 2015; Brantley et al., 2014; Jackson et al., 2014; Lan et al., 2015; Mitchell et al., 2015; Subramanian15

et al., 2015) and mobile CO2 emissions (e.g., Brondfield et al., 2012; Maness et al., 2015). In the case of oil and gas emissions,

Brantley et al. (2014) explain that mobile measurements capture an integrated plume that includes all leaks from a given facility

but rarely indicate which components caused those leaks.

The use of facility-level and on-road observations entails a number of challenges. For example, facility-level observations

provide the most insight into detailed emissions processes from specific source sectors but can miss emissions events or20

processes. Observations of oil and gas facilities provide a prime example; scientists may not know about some leaks and

therefore may not measure them, other leaks may be in inaccessible locations (e.g., Subramanian et al., 2015), and the largest

leaks often come from ephemeral equipment failures at a small number of facilities that are difficult to identify (e.g., Brantley

et al., 2014; Allen, 2014; Allen et al., 2015). Cost also limits direct measurements. For example, direct measurements from

smokestacks are expensive, are
:::::::::::
facility-level,

:::::::::
continuous

::::::::
emissions

::::::::::
monitoring;

::
it
::
is typically only used for large point sources25

, and are generally not used in existing inventory estimates
:::
like

::::::
power

:::::
plants

:
(National Research Council, 2010).

These observation strategies also require extrapolation to produce state or national-scale EF estimates. The relationship

between activity data and emissions can be complex or
:::
and spatially variable, making it difficult to extrapolate facility or on-

road measurements. For example, CH4 emissions from oil and gas are likely dominated by a small number of malfunctioning

facilities. As a result, it is difficult to develop robust, national-scale EFs from a modestly-sized sample of facilities (Allen,30

2014). Furthermore, Brantley et al. (2014) explain that these leaks do not correlate with production and can vary greatly in

time. Different oil and gas drilling basins also have different overall leak
:::::::
leakage rates – from 0.3% in Pennsylvania’s Mercellus

::::::::
Marcellus shale region to 8.9% in Utah’s Uintah basin (e.g., Karion et al., 2013; Petron et al., 2014; Karion et al., 2015; Peischl

et al., 2015). These factors make it challenging to create consistent, generalizable EFs that can translate activity data into

emissions.35
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These considerations also apply to other source sectors beyond the oil and gas industries. For example, grazing and manure

management practices differ by region, and manure and landfill CH4 emissions also differ by climate (EPA, 2016a, ch. 5), all

of which make extrapolation more challenging.

2.4 Impact of recent advances

Inventory estimates of sector-specific CO2 emissions from the US are likely relatively accurate at national-scale but have5

substantial uncertainties at the local and state levels. Ackerman and Sundquist (2008), for example, compared smokestack

versus fuel-based CO2 estimates for US power plants and found a mean absolute difference of 16.6% but only a 1.4% total

difference at
::
the

:
national scale. Furthermore, Gately et al. (2015) found biases of 100% or more at the urban scale in CO2

emissions estimates for mobile sources. However, they estimated a US national total that was broadly consistent with other

inventories like VULCAN.10

By contrast, sector-specific CH4 emissions are more challenging to estimate and existing inventories for the US are highly

uncertain at state and national scales. For example, several top-down studies indicate that the California state inventory is likely

too low by a factor of 1.3
::
1.2

:
to 1.9 (Jeong et al., 2013; Wecht et al., 2014b)

:::::::::::::::::::::::::::::::::::::
(Jeong et al., 2013, 2016; Wecht et al., 2014b) ,

and several top-down studies estimate emissions for oil and gas drilling regions of Utah and Colorado that are up to three times

bottom-up estimates (e.g. Karion et al., 2013; Petron et al., 2014). Overall, total US CH4 emissions are likely ⇠50% larger15

than estimated by EDGAR or US EPA (Miller et al., 2013; Wecht et al., 2014a; Turner et al., 2015). Fig. 1 compares several

inventory estimates of sector-specific CO2 and CH4 emissions. Existing CO2 inventory estimates are broadly consistent while

CH4 estimates vary between inventories and among inventory versions.

CH4 inventories are so uncertain, in part, because of the complexity of many anthropogenic CH4 source sectors. For example,

emissions factors for oil and gas operations are difficult to estimate because a small number of emitters often account for a20

large fraction of emissions (e.g., Allen, 2014; Brantley et al., 2014; Allen et al., 2015; Lan et al., 2015; Mitchell et al., 2015)

and because there are so many points along the natural gas production, processing, transmission, and distribution cycle that

leak methane (e.g., Kang et al., 2014; Allen et al., 2015; McKain et al., 2015; Subramanian et al., 2015; Zimmerle et al., 2015).

Much of the uncertainty in CH4 inventories stems from difficulties developing accurate EFs. Brandt et al. (2014) writes,

"... measurements for generating emission factors are expensive, which limits sample sizes and representativeness. Many EPA25

EFs have wide confidence intervals
:::::::::
uncertainty

::::::
bounds. And there are reasons to suspect sampling bias in EFs, as sampling

has occurred at self-selected cooperating facilities." For example, EPA’s EFs for natural gas pipelines are based on a limited

number of samples from a 1996 EPA and Gas Research Institute study; these EFs have a confidence interval
::::::::::
uncertainties

:
of

±65% (Beusse et al., 2014). Beyond the oil and gas industry, Owen and Silver (2015) also argue that
::::
many

:
EFs for agriculture

are insufficient
:::
too

:::
low. These estimates are based upon a small number of pilot or lab experiments that were not explicitly30

designed for GHG inventory development.
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3 Top-down, inverse modeling strategies

In this section, we discuss inverse modeling strategies – strategies that leverage observations of atmospheric GHG concentrations

::::::
mixing

:::::
ratios to infer emissions at the Earth’s surface. We specifically focus on strategies that attempt to parse the contribution

of specific source sectors. The first part of this discussion (Sects. 3.1 – 3.2) focuses on efforts at local, urban, and regional

scales. These studies do not provide direct state- or national-level estimates but could be combined or extrapolated to quantify5

emissions at larger spatial scales. Many studies in this category target source sectors that do not overlap spatially, at least at

the spatial scale of interest. The second part of this discussion (Sects. 3.3 – 3.4) explores inverse modeling efforts that directly

estimate sector-specific emissions at the state and national level
:::::
levels. These efforts use observation networks that are sensitive

to emissions across broad geographic regions, but these
:
.
:::::
These

:
efforts must also devise strategies to disentangle emissions

from multiple, spatially overlapping source sectors.10

3.1 Local-scale inverse modeling

Local-scale inverse modeling can best attribute emissions when the study region has a single, dominant source type. An estimate

of total emissions for the region thus provides insight into the source sector of interest.

Studies that fall within this category often employ one of a few different strategies to estimate emissions. For example, many

efforts use a simple box-modeling approach to estimate emissions (e.g., Turnbull et al., 2011; Karion et al., 2013; Caulton15

et al., 2014; Karion et al., 2015; Schneising et al., 2014; Cambaliza et al., 2015; Peischl et al., 2015) while others use an

atmospheric transport model to relate GHG observations to emissions (e.g., McKain et al., 2012, 2015). Studies that use the

former strategy typically estimate emissions in a few steps: first, make GHG measurements upwind and downwind of the

region of interest. Second, use the difference between these measurements, the rate of flow through the "box" (i.e., wind speed

adjusted by pressure), and the volume of the box (i.e., the area of the box and the mixing height of the atmosphere) to calculate20

total emissions in the box. Most studies that use box modeling estimate a total flux for the region of interest, a number that is

not spatially resolved.

Other studies in this category use a more involved approach: model atmospheric GHG concentrations
::::::
mixing

:::::
ratios using

an emissions inventory and an atmospheric transport model. Subsequently, one can
::::
these

::::::
studies

:
scale the inventory such

that modeled concentrations reproduce measured atmospheric concentrations
::::
using

::
a
:::::
single

:::::::
scaling

:::::
factor

:::
(�)

::
to

:::::
better

::::::
match25

:::::::
modeled

::::::
mixing

:::::
ratios

::::::
against

::::::::
measured

::::::
mixing

:::::
ratios:

yyk
:

= H

ms·mtX

j=1

hj,k

::::::::

(xaxa
j

::
)+ ✏✏k

:
(1)

x

axa
j

::
= �xbxb

j
:

(2)

In these equations, y is an n⇥ 1 vector of atmospheric GHG observations. The function H()
::
yk::

is
::
an

:::::::::::
atmospheric

:::::
GHG

:::::::::
observation

::
at
::
a

:::::
given

::::
time

:::
and

:::::::
location

::
k.

::
It

::
is

:::
one

::
of

::
n
::::
total

:::::::::::
observations

::::::::::
(k = 1...n).

:::
The

:::::::
variable

:::
xj ::::::

denotes
:::
the

:::::::::
emissions30
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::::
from

:
a
::::::
model

::::
grid

:::
box

::
j

::
at

:
a
:::::::
specific

:::::::
location

:::
and

:::::
time,

:::
and

:::
the

:::::::
function

::::::
hj,k() is an atmospheric transport model that relates

the surface emissions (x), ((ms ⇥mt)⇥ 1) to the observations (y)
::::
from

::::
grid

:::
box

::
j
::
to

::::::::::
observation

::
yk. The variable ms denotes

the
:::
total

:
number of model grid boxes in space, and mt denotes the number of time periods. In one study, this emissions estimate

varied both spatial
:::::::
spatially and temporally (McKain et al., 2012), and in another study, the emissions varied spatially but were

constant in time (mt = 1) (McKain et al., 2015). The superscripts a and b denote an emissions inventory and final emissions5

estimate, respectively. In addition, ✏ is an n⇥ 1 vector of errors
:::
the

:::::::
variable

::
✏k:::::::

denotes
:::

the
::::::::::

cumulative
:::::
error

::
in

:::
the

::::::
model

:::
and

:::::::::::
measurement

:
(e.g., errors

::::
error

:
in estimated transport, in the measurements

:::::::::::
measurement, and in the estimated emissions,

among other errors). The objective of this approach is to scale an inventory estimate (xb, using a single scaling factor (�) so

that the modeled GHG concentrations (H(xa)) reproduce observed concentrations (y
:::::::
modeled

:::::::::::
atmospheric

::::::
mixing

:::::
ratios

:::
on

::
the

:::::
right

::::
hand

::::
side

::
of

:::
Eq.

::
1

:::::::::
reproduces

:::
the

::
n

:::::::
observed

:::::::::::
atmospheric

::::::
mixing

:::::
ratios

:::
(yk:::::

where
::::::::
k = 1...n).10

These local-scale efforts can target sources with very large emissions or very uncertain emissions. For example, numerous

::::
many

:
existing studies have targeted emissions from cities. Cities account for 70% of global fossil fuel CO2 emissions, so

insight into urban emissions provides insight into a large fraction of total anthropogenic GHG emissions (Energy Information

Administration (EIA), 2016). Note that studies in this category generally do not discriminate among different urban source

sectors but can provide insight into the contribution of urban CO2 sources versus power plant CO2 sources (which often15

occur well outside city limits). Existing efforts have estimated CO2 emissions for Indianapolis, Indiana (Mays et al., 2009);

Sacramento, California (Turnbull et al., 2011); and Salt Lake City, Utah (McKain et al., 2012) as well as CH4 emissions from

Boston, Massachusetts (McKain et al., 2015) and Indianapolis (Cambaliza et al., 2015). McKain et al. (2012) and McKain

et al. (2015) used the approach in Eq. 1 while the other studies implemented box models.

Other studies in this category target oil and natural gas industry emissions. Existing studies have used aircraft observations to20

estimate CH4 emissions from Utah’s Uintah drilling basin (Karion et al., 2013), from southwest Pennsylvania (Caulton et al.,

2014), from Colorado’s Denver-Julesburg Basin (Petron et al., 2014), from the Barnett Shale in Texas (Karion et al., 2015;

Lavoie et al., 2015), and from the Haynesville, Fayetteville, and Marcellus shale regions (in Texas, Arkansas, and Pennsylvania,

respectively) (Peischl et al., 2015). In addition to these aircraft-based studies, one study used the SCIAMACHY
:::::::::
instrument

::
on

:::
the

::::::
Envisat

:
satellite to estimate CH4 emissions from the Eagle Ford and Bakken shale regions in Texas and North Dakota,25

respectively (Schneising et al., 2014). Several of these studies found leak
:::::::
leakage rates that greatly exceed EPA’s estimated

emissions factors (e.g., Karion et al., 2013; Petron et al., 2014; Schneising et al., 2014) while other studies estimate leak

::::::::
estimated

::::::
leakage

:
rates that are comparable to EPA’s numbers (e.g., Caulton et al., 2014; Peischl et al., 2015). Differences in

drilling technology and practices from one basin to another may account for these contrasting results (e.g., Peischl et al., 2015).

These local-scale inverse modeling studies confer a number of advantages relative to other top-down strategies. These30

strategies capture emissions from all facilities in a given region, including those with anomalously high emissions. In the

past, EPA has had difficulty designing facility-level measurements that adequately sample these anomalous emitters (Sect.

2.4). An additional advantage of these strategies is their ease of implementation relative to those discussed in subsequent

sections (Sects. 3.3 – 3.4). Box modeling requires an estimate of air flow into and out of the box, but this approach does not
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require a full atmospheric transport model. Furthermore, the strategies discussed in this section are not as computationally

intensive as many of the state- and national-scale strategies discussed later in Sect. 3.3.

These strategies also bring a number of challenges. A
:::::
Nearly

:::
all

::
of

:::
the

::
oil

::::
and

:::
gas

::::::
studies

:::::
listed

:::::
above

:::
use

::::
data

::::
from

:
a
::::::
single

:::::::::::
measurement

::::::::
campaign

::::
and

::::::
provide

::
a

:::::::
temporal

::::::::
snapshot

::
of

:::::::::
emissions.

::::::::::
Greenhouse

::::
gas

::::::::
emissions

::::::::
reduction

:::::::
policies

:::::
make

::
it

::::::::
necessary

::
to

:::::::
monitor

::::::
trends,

::
a

::::
goal

:::
that

::::::::
requires

::::::::
sustained

::::::::::
monitoring.

::
In

::::::::
addition,

:
a
:

locality or region must have a single,5

:::
one

:
dominant source sector or have spatially (or temporally) non-overlapping source sectors in order to attribute emissions

using this strategy (e.g., Hutyra et al., 2014; Peischl et al., 2015). For example, Peischl et al. (2015) estimated oil and gas

emissions from drilling regions that also contain livestock, landfills, and wastewater treatment facilities, all of which produce

CH4 emissions. The authors subtracted an inventory estimate of these non-hydrocarbon CH4 sources from their estimated

emissions total, and they attributed the remaining emissions to oil and gas activities. The authors point out that these non oil10

and gas source sectors are small contributors relative to oil and gas operations (8.5 – 19% of the CH4 emissions total in each

region), and uncertainties in these other source sectors would likely have a small impact on their oil and gas emissions estimate.

Complex environmental conditions
:::
and

:::
the

:::::::::
associated

:::::::::::
atmospheric

::::::::
transport

:::::
errors

:
can also pose a challenge for local-

scale inverse modelings strategies, particularly for box models. A simple box modeling setup can be difficult to apply when

atmospheric advection, vertical mixing, or upwind "clean air" measurements are highly heterogeneous across the box; these15

quantities should not contain patterns that are difficult to capture using a small number of parameters. For example, Turnbull

et al. (2011) report that their CO2 budget for Sacramento, estimated using a box model, is uncertain by a factor of two due to

uncertainties in estimated wind speed and upwind "clean air" concentrations
:::::
mixing

::::::
ratios. Furthermore, Karion et al. (2015)

estimated CH4 emissions for the Barnett Shale that varied from 4.4⇥ 104 to 10.9⇥ 104 kg hr�1, depending on the flight.

However, the authors explain that two of the eight flights occurred during non-ideal meteorological conditions, and the range of20

estimates collapses
:::::::
narrowed

:
to 6.1⇥104 to 8.8⇥104 kg hr�1 when those flights are excluded from the analysis. Atmospheric

transport models can simulate more complex atmospheric transport patterns
::::::
relative

::
to

::::
box

::::::
models

:
but still have difficulty

modeling local- or urban-scale phenomena, including small-scale turbulent eddies, air flow through street canyons, and vertical

mixing in a human-built landscape (e.g. Nehrkorn et al., 2013). These modeling challenges also apply to the state- and national-

scale strategies discussed in Sects. 3.3 – 3.4. New innovations in atmospheric monitoring and instrumentation may reduce some25

of these uncertainties. Cambaliza et al. (2014), for example, explain that LIDAR instruments can measure atmospheric mixing

height, and LIDAR deployment could therefore improve certain aspects of atmospheric modeling, particularly at local and

regional scales.
:
In

::::::::
addition,

::::::
several

::::::
studies

::::
have

:::::::::
developed

::::
high

::::::::
resolution

:::::::::::::
meteorological

::::::::::
simulations,

::
in

:::
part

::
to
::::::
better

::::::
resolve

::::::::::
atmospheric

:::::
GHG

:::::::
transport

::
in

:::::
urban

::::::::::::
environments

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., McKain et al., 2012; Nehrkorn et al., 2013; McKain et al., 2015) .

:

3.2 Observations that support local-scale inverse modeling30

Many recent, local-scale observation efforts have focused on urban monitoring and on oil and gas basins. Existing urban, at-

mospheric measurement networks include Salt Lake City, Utah (McKain et al., 2012); Los Angeles, California (Duren, 2016);

Oakland, California (Cohen, 2016), the Bay Area Air Quality Management District (Fairley and Fischer, 2015), and Indi-

anapolis (Mays et al., 2009; Cambaliza et al., 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mays et al., 2009; Cambaliza et al., 2015; Lauvaux et al., 2016) . Recent
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local-scale aircraft campaigns include the INFLUX campaign focused on the Indianapolis metro region (Cambaliza et al.,

2015), the SENEX and SOGNEX campaigns focused on multiple oil and gas drilling basins (Peischl et al., 2015; NOAA

Chemical Sciences Division, 2016), and the Barnett Coordinated Campaign (Smith et al., 2015; Karion et al., 2015) (Fig. 2).

In addition to these urban and oil and gas studies, Lindenmaier et al. (2014) used ground-based, CO2 column observations to

identify emissions from a large coal-fired power plant in the Four Corners region of the western US.5

The observational strategies described above are relatively diverse. These efforts include a combination of aircraft and

stationary sites (e.g., telecommunications towers or building rooftops). Some of these campaigns provide a one or two day

snapshot in time (e.g, most oil and gas studies) while other campaigns involve sustained measurements over a year or more

(e.g., urban observation networks like LA Megacities and the Indianapolis INFLUX project).

3.3 State- and national-scale inverse modeling10

The top-down strategies discussed in this section provide sector-specific GHG emissions estimates across larger regions, re-

gions that typically have several overlapping source sectors. Furthermore, these strategies make updates to the emissions

estimate that are spatially resolved in some way.
::::::
spatially

:::::::
variable

:::::::::::
adjustments

::
to

:::::::
existing

::::::::::
inventories,

:::::
unlike

::::
the

::::::::
strategies

:::::::
outlined

::
in

::::
Sect.

::::
3.1.

:
The three strategies discussed in this section use both GHG observations and inventories to attribute

sector-specific emissions. Each approach, however, use
:::
uses

:
a different mix; the first approach relies most heavily on existing15

inventories while the last relies most on GHG observations.

One strategy used by several studies will scale
:::::::
Overall,

:::::
these

::::::::
strategies

::::
have

:::::
been

::::::::
relatively

::::::::
successful

:::
at

::::::::
attributing

:::::
CH4

::::::::
emissions,

::::
but

:::::::::
promising

::::::::
strategies

:::
for

:::::
CO2 :::

are
:::::::
nascent.

::::::::::
Biospheric

::::
CO2::::::

fluxes
:::
are

:::::
large

:::::::
relative

::
to

::::::::::::
anthropogenic

:::::
CO2

::::::::
emissions

::
at

:::
diel

:::
to

:::::::
monthly

::::
time

::::::
scales,

::::::::::
particularly

:::::
during

:::
the

::::::::
growing

::::::
season,

::::
and

:::
the

::::::::::::
spatiotemporal

::::::::::
distribution

::
of

:::::
these

:::::
fluxes

::
is

:::::
highly

::::::::
uncertain

:::::::::::::::::::::::::
(e.g., Huntzinger et al., 2012) .

::::::
These

:::::
factors

:::::
have

::::::
limited

:::
the

::::::
success

::
of

:::::::::::
CO2-focused

:::::::
efforts.20

:::
The

::::
first

:::::::
strategy

::::::::
discussed

::::
here

:::::
scales

:
the individual source sectors in a bottom-up inventory. This setup is often similar to

a multiple regression:
::::
linear

::::::::::
regression:

x

axa
j

::
=

X
ii=1
::

p�ix�ixi,j
::::

b
i (3)

where i denotes an individual source sector from a bottom-up inventory, and p indicates the total number of source sectors

in the inverse model. The observational constraint (y
::
yk :::::

where
::::::::
k = 1...n) in this approach is the same as in Eq. 1. This setup25

also assumes that each x

b
i ((ms ⇥mt)⇥ 1

:::
the

:::::
initial

:::::::::
emissions

:::::::
estimate

::::
(xb

i,j::::::
where

:::::::
i= 1...p

::::
and

:::::::::::::
j = 1...ms ·mt) is defined

at all spatial locationsand is defined for all time periods
::::
each

:::
of

:::
ms::::::

spatial
::::::::
locations,

:::
at

::::
each

::
of

::::
mt ::::

time
:::::::
periods,

::::
and

:::
for

::::
each

::
of

::
p

:::::
source

::::::
sectors. In one study, each x

b
i :::

this
::::::
initial

::::::::
emissions

:::::::
estimate

:
was spatially but not temporally resolved (e.g.,

mt = 1) (Zhao et al., 2009), while in another study, xb
i :

it
:
was resolved in both space and time (Jeong et al., 2013). The

:
p

unknown scaling factors (�i::
�i :::::

where
::::::::
i= 1...p) adjust the magnitude of different source sectors in the bottom-up inventory;30

these factors are estimated by the inverse model. As a result of this setup, the estimated emissions (xa
::
xa
j ) will always be

a linear combination of source-specific emissions patterns in an existing bottom-up inventory. Studies that use this approach

often estimate the scaling factors (�i::
�i) using Bayesian statistics; these frameworks can weigh uncertainty in the measurements
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(y
::
yk) and in the atmospheric model (H()

:::
hj,k) against uncertainty in the initial or prior guess for the scaling factors (This guess

is typically unity.
:::::::
typically

::::
unity) (e.g., Rayner et al., 2016).

To date, a handful of studies have leveraged this approach to attribute emissions of CH4. For example, Zhao et al. (2009)

and Jeong et al. (2013) used atmospheric measurements from tall towers to estimate emissions from individual source sectors

in California. Both studies found higher CH4 emissions from agriculture relative to the EDGAR emissions inventory.5

This scaling factor approach brings several strengths and weaknesses. An advantage of this approach is that it not only

provides an estimate of total emissions but also the contributions of individual source sectors. The approach can be relatively

easy to implement from a statistical perspective. The statistics are similar to a multiple linear regression. With that said, one

still needs to run an atmospheric transport model once per source sector to create H() and must have an estimate of background

or upwind, clean air concentrations
::::::
mixing

:::::
ratios.10

A notable challenge of this strategy is that it requires accurate knowledge of the spatial distribution of each source sector. The

estimated emissions will always be a linear combination of source-specific emissions patterns from an existing inventory, and

errors in the spatial distribution of these inventories will propagate into errors in sector-specific attribution. Furthermore, the

atmospheric GHG observations (y
::
yk::::::

where
::::::::
k = 1...n) must be sensitive to differences in the space-time patterns among differ-

ent source sectors. Worded differently, the column vectors H(xb
i ) must be distinct from one another

::::
each

::
of

:::
the

:
p
::::::
source

::::::
sectors15

::::
must

::::
have

::::::::
differing

::::::::::::
spatiotemporal

:::::::
patterns, and each column

:::::
sector

:
must explain substantial variability in y

::
the

:::::::::::
observations

:::
(yk). If the former condition does not hold, then the individual source sectors x

b
i are

::::
some

::
of

:::
the

::
p
::::::
source

::::::
sectors

::::
will

:::
be

collinear; colinearity can lead to unphysical scaling factors (�i::
�i::::::

where
:::::::
i= 1...p) and unrealistically large uncertainty esti-

mates (e.g., Zucchini, 2000). If the latter condition does not hold, then the scaling factors may be poorly constrained by the

data, resulting in uncertain or unrealistic sector-specific estimates. To account for these challenges, Jeong et al. (2013) only20

reported source-specific estimates when they obtained scaling factors that were statistically significantly different from zero.

A second common inverse modeling strategy will scale
:::::
scales an emissions inventory at the model grid level to better

reproduce the atmospheric observations (y
::
yk::::::

where
::::::::
k = 1...n). All of the strategies discussed previously scale the spatial

patterns in an existing inventory. By contrast, this strategy estimates an emissions level for
:::::
scales

:::
the

:::::::::
emissions

::::
level

:::
at

each location in the model domain, and the resulting estimate
:::
(xa

j ::::::
where

:::::::::::::
j = 1...ms ·mt): can have spatial patterns that25

are different from any inventory . Existing studies in this category have constructed inversions in slightly different ways,

but most have used bottom-up inventory estimates (xb, dimensions (ms ⇥mt)⇥ 1)that are spatially and temporally variable

(e.g., Wecht et al., 2014a, b; Turner et al., 2015) . The scaling factors (�) in these studies, by contrast, were spatially variable

but temporally constant.
::::
(xb

j). These estimates have the following general form:

x

axa
j

::
= (1mt ⌦�)xb�jx

b
j

:::
(4)30

where � is a ms ⇥ 1 vector of scaling factors, 1mt is a mt ⇥ 1 vector of ones,
::::
Note

:::
that

:::
xb
j and ⌦ is a Kronecker product that

repeats the vector of
::
xa
j:::

are
:::
the

::::
total

::::::::
emissions

:::::
from

:::::
model

::::
grid

:::
box

::
j,

:::
not

:::
the

::::::::
emissions

::
by

::::::
sector.

::::::
Hence,

:::
the scaling factors (�)

for each of mt time periods. The observational constraint (y) in this approach is the same as in Eq. 1.
::
�j:::::

where
::::::::::::::
j = 1...ms ·mt)

:::::
adjust

::::
total

:::::::::
emissions,

:::
and

:::
all

::
of

:::
the

:::::::
ms ·mt::::::

factors
:::

are
::::::::

typically
::::::::
estimated

:::::::::::::
simultaneously.

:::::::
Several

::::::
studies

:::::::
estimate

:::::::
scaling

13



:::::
factors

::::
that

::::
vary

:::::::
spatially

:::
but

:::
are

:::
the

::::
same

::
at

::::
each

::::
time

::::
step

::::::::::::::::::::::::::::::::::::::::
(e.g., Wecht et al., 2014a, b; Turner et al., 2015) .

:::
One

:::::
study

::::::
allows

::
the

:::::::
scaling

::::::
factors

::
to

::::
vary

::
in

::::
both

:::::
space

::::
and

::::
time

:::::::::::::::::
(Jeong et al., 2016) . This approach is also Bayesian in nature; the modeler

sets an initial guess for the scaling factors (typically unity) and an uncertainty in that initial guess; this information guides the

estimate for �
:::
the

::::::
scaling

::::::
factors, particularly when the scaling factors (�)

::::
these

::::::
factors are under-constrained by the available

observations (y
::
yk::::::

where
::::::::
k = 1...n) (e.g., Rayner et al., 2016).5

This approach
::::::
strategy does not support source attribution in and of itself; the initial guess (xb) and the scaling factors (�) are

broken down by location but not by source sector (though the inventory underlying x

b may provide sector-specific information).

However,
:
,
::
but

:
several studies have adapted this strategy to support sector-specific

:::::::
approach

:::
for

:::::
source

:
attribution. These studies

attribute the emissions in x

a grid box by grid box using the relative magnitude of each emissions source in the
::::::::
emissions

::
in

::::
each

:::::
model

::::
grid

:::
cell

:::::
using

:::
the

::::::::
attribution

::
in
::
a bottom-up inventory:

::::::::
inventory.

::::
For

:::::::
example,

::::
let’s

:::
say

::::
that

::
an

::::::::
inventory

::::::::
estimates10

:::
that

:::
60%

:
of

:::
the

:::::::::
emissions

::
in

:
a
:::::
given

::::
grid

:::
cell

:::
are

:::::
from

::
oil

::::
and

:::
gas

:::
and

:::
40%

::
are

:::::
from

::::
cattle

::::
and

:::::::
manure.

:::
The

:::::::
inverse

::::::::
modeling

:::::::
estimate

:::
will

:::::::
attribute

:::::::::
emissions

::
in

:::
that

::::
grid

::::
box

::
in

:::
the

::::
same

::::::::::
proportion:

x

a
i x

a
i,j

:::
= (1mt ⌦�)xb

i�jx
b
i,j

:::::
(5)

:::
All

:::::::
variables

::
in

::::
this

:::::::
equation

:::
are

::
as

::::::
defined

::::::
earlier.

:
As a result of this setup, the

::::
total

::::::::
emissions

::
in
::::
any

:::
one

::::::
model

:::
grid

::::
box

::::
may

::::
differ

:::::
from

:::
the

::::::::
inventory.

::::::::
However,

:::
the

:
relative magnitude of the source sectors in any one grid box will be the same as in the15

bottom-up inventory.

Wecht et al. (2014b)
:::
and

::::::::::::::::
Jeong et al. (2016) leveraged this strategy to estimate CH4 emissions for California using measurements

from the CALNEX aircraft campaign
:::::
aircraft

::::
and

::::::::::
tower-based

:::::::::::
observations,

:::::::::::
respectively. Like Zhao et al. (2009) and Jeong

et al. (2013), they also found higher emissions from agriculture relative to EDGAR. Wecht et al. (2014a) and Turner et al. (2015)

further applied this strategy to attribute emissions at continental scales; these studies used the SCIAMACHY and GOSAT20

satellites
::::::::::::::::::
Envisat/SCIAMACHY

::::
and

:::
the

:::::::
GOSAT

::::::
satellite, respectively, to estimate sector-specific CH4 emissions across North

America. Both studies estimated larger emissions from agriculture relative to the EPA and EDGAR inventories. Turner et al.

(2015) estimated oil and gas emissions that are a factor of two larger than EDGAR while Wecht et al. (2014a) found that these

emissions are broadly consistent with EDGAR.

This strategy has a number of advantages and weaknesses relative to other approaches. The strategy can be used to estimate25

emissions at grid scale, and the resulting emissions estimate will not be the a linear combination of existing inventory estimates.

However, it assumes that the inventory has correctly estimated the relative magnitude of each emissions source in each model

grid box. Errors in this relative magnitude will produce errors in the sector-specific attribution.

Third , and finally, a number of studies have leveraged a strategy known as geostatistical inverse modeling (GIM) to esti-

mate GHG fluxes generally (e.g., Michalak et al., 2004; Gourdji et al., 2008, 2012) and anthropogenic emissions specifically30

(Miller et al., 2013, 2016; Shiga et al., 2014; ASCENDS Ad Hoc Science Definition Team, 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Miller et al., 2013, 2016; Shiga et al., 2014; ASCENDS Ad Hoc Science Definition Team, 2015; Yadav et al., 2016) .

This approach will attribute
::::::::
attributes patterns in the emissions to individual anthropogenic source sectors when possible. How-

ever, it will leave emissions as unattributable when those emissions do not match the space-time patterns in any bottom-up
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inventory or when the information content of the atmospheric observations is insufficient for attribution:

x

axa
j

::
=

X
ii=1
::

p��
:
ixxi,j

:::

b
i + ⇠⇠j

:
(6)

The vectors xb
i :::::::

elements
::::
xb
i,j ::::::

(where
:::::::
i= 1...p

:::
and

::::::::::::::
j = 1...ms ·mt) can be individual source sectors from a bottom-up inventory

(similar to Eq. 3). The inverse model will then map the emissions on to
:::
onto

:
those patterns to the extent possible. Additionally,

patterns in the atmospheric observations (y) may not always match patterns in an existing inventory (H(xb
i )). The inverse5

model will further add (or subtract) emissions at the model grid scale to better reproduce the atmospheric observations (y
::
yk

:::::
where

::::::::
k = 1...n). These emissions are denoted by the vector ⇠ ((ms ⇥mt)⇥ 1

:
⇠j::::::

(where
:::::::::::::
j = 1...ms ·mt), and a GIM typically

labels the emissions in ⇠
:
⇠j:as unattributable. Furthermore, existing studies allow x

b
i and ⇠

:::
xb
i,j::::

and
::
⇠j:to vary both spatially

and temporally (Miller et al., 2013; Shiga et al., 2014; ASCENDS Ad Hoc Science Definition Team, 2015)
::::
with

:
j, in contrast

to the studies described earlier in this section.
::::
Note

:::
that

:::::::
existing

::::
GIM

::::::
studies

:::::
have

::::
fixed

:::
the

::::::::::
coefficients

:::
(�i)::

in
::::
both

:::::
space

::::
and10

::::
time.

::
In

::::::
reality,

:::
the

::::::::::
relationship

:::::::
between

::::
xb
i,j :::

and
:::::
GHG

::::::::
emissions

::::
may

::::
vary

:::::::
spatially

::::
and

:::::::::
temporally

::
by

::::
grid

:::
box

::
j.
::::
Two

::::::
recent

::::
GIM

::::::
studies

:::::
have

:::::::::::
experimented

::::
with

::::::::
allowing

:::
the

::::::::::
coefficients

::
to
:::::

vary
::
by

::::::
region

::
or
::::::

biome
::
in
::::

the
::::::
context

:::
of

::::::::::::
anthropogenic

:::::::::::::::::::
(Shiga et al., 2014) and

::::::::
biospheric

::::::::::::::::::::::::::::
(Fang and Michalak, 2015) fluxes.

:

Several studies have leveraged this strategy in the context of both anthropogenic CH4 and CO2 emissions. Miller et al.

(2013) used a GIM and in situ atmospheric measurements to estimate sector-specific CH4 emissions in the US; like Turner15

et al. (2015), they found higher emissions from the agriculture and oil and gas sectors relative to inventory estimates. Miller

et al. (2016) also used this strategy to separate CH4 emissions patterns due to wetlands from anthropogenic emissions and to

evaluate bottom-up estimates of the former emissions category. Two studies (Shiga et al., 2014; ASCENDS Ad Hoc Science

Definition Team, 2015) implemented a GIM-based framework to identify anthropogenic CO2 emission patterns using in situ

and satellite CO2 observations, respectively. They investigated whether the atmospheric signal resulting from anthropogenic20

CO2 emissions could be reliably identified given the confounding signal from biospheric CO2 fluxes. They found that in situ

and remote sensing CO2 networks could only identify anthropogenic emissions in a few regions during a few months of the

year. This identification was hampered by biospheric CO2 fluxes, by atmospheric transport errors, and by the sparsity or quality

of the CO2 observations.

The GIM approach makes more conservative assumptions relative to other source attribution strategies discussed in this25

section. A GIM will only attribute emissions to patterns in a bottom-up inventory when that inventory matches patterns in

the atmospheric GHG observations. In Miller et al. (2013), for example, the GIM mapped 60% of total US CH4 emissions

onto patterns in the EDGAR inventory and found that 40% of the total emissions were unattributable to the patterns in any

bottom-up dataset. By contrast, the other approaches discussed above will attribute 100% of the emissions. In GIM studies

like Miller et al. (2013), the unattributable emissions indicate shortfalls in either the greenhouse gas observation network or30

available bottom-up data. In the former case, existing atmospheric observations do not provide enough information to reliably

estimate sector-specific emissions patterns. For example, the information content of the atmospheric observations in Miller

et al. (2013) was insufficient to uniquely constrain emissions from coal mining, and those emissions were included in ⇠ instead

of
Pp

i �ix
b
i::
⇠j::::::

instead
::
of

:::::::::::

Pp
i=1�ix

b
i,j . In the latter case, the unattributable emissions in ⇠

::
⇠j indicate inaccuracies in the spatial
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distribution of available inventory estimates. Existing inventories do
:::
did

:
not have well-developed activity data for the oil and

gas industry, and the unattributable emissions in Miller et al. (2013) provide information about shortfalls in these activity

datasets.

Overall, existing regional- to national-scale studies have been far more successful at attribution for CH4 than
:::::::::::::::::::::::
Yadav et al. (2016) modified

::
the

:::::::
existing

:::::
GIM

:::::::::
framework

:::
to

:::::
better

::::::
isolate

::::::::::::
anthropogenic CO2 , irrespective of the inverse modeling strategy. Biospheric5

CO2 fluxes are large relative to anthropogenic CO2 emissions at diel to monthly time scales, particularly during the growing

season, and the spatial and temporal distribution of these fluxes is highly uncertain (e.g., Huntzinger et al., 2012) . The inverse

modeling strategies in this section would therefore be difficult to apply to CO2, unless one chose an arid study region or

estimated emissions in winter
::::::::
emissions.

::::
The

::::::
authors

::::::::
exploited

:::::::::
differences

::
in

:::
the

::::::::::::
spatiotemporal

::::::::
properties

:::
of

::::::::
biospheric

::::::
versus

::::
fossil

::::
fuel

:::::
fluxes

::
to
:::

do
::::
this

:::::::::
attribution.

::::::::::
Specifically,

:::
the

:::::::
authors

::::::
argued

:::
that

:::
the

:::::::::
biospheric

::::::
fluxes

::::
have

::::::
smooth

:::::::::::::
spatiotemporal10

:::::::
patterns,

:::
and

:::::
fossil

::::
fuels

:::::::::
emissions

::
do

:::
not

:::::
have

::::::
smooth

:::::::
patterns.

::::
The

::::::
authors

::::
then

:::::::::
partitioned

::
⇠j::::

into
::::
two

::::::::::
components

:::::::
(smooth

:::
and

:::::::::::
non-smooth)

:::
and

::::::::
attributed

::::
these

:::::::::
emissions

::
to

:::
the

::::::::
biosphere

:::
and

:::::
fossil

:::::
fuels,

::::::::::
respectively.

::::
The

::::
study

::::::::
examined

:::::::::
emissions

::
in

::::::
January

:
when biospheric fluxes are small. According to Shiga et al. (2014) , the patterns in x

b
i corresponding to anthropogenic

::::::
smaller

::::
than

::
in

::::
other

:::::::
months.

:

::
In

::::::::
summary,

::::
this

::::::
section

::::::
discuss

:::::::::
statistical

:::::::::
innovations

::::
that

::::
help

::::::
isolate

:::::::::
individual

::::::::
emissions

:::::::
sources.

:::
In

:::::::
addition

::
to

:::::
these15

::::::::::
innovations,

:::::::
accurate

::::::
models

:::
of

::::::::::
atmospheric

::::::::
transport

::::
also

::::
play

:
a
:::::::

crucial
::::
rule.

::
A

:::::::
number

::
of

::::::
studies

:::::::
indicate

:::
the

::::::::::
deleterious

:::::::
influence

:::
of

::::::::
transport

::::::
errors.

:::
For

::::::::
example,

:::::::::::::::::::::
Shiga et al. (2014) argue

::::
that

::::::::::
atmospheric

::::::::
transport

:::::
errors

::::::
hinder

::::
the

::::::::
detection

::
of

:::::
fossil

::::
fuel

::::::::
emissions

::::::::
patterns

:::::
across

::::
the

::::::
United

::::::
States.

::::
The

:::::::
authors

::::
also

:::::
argue

::::
that

:::::::::
biospheric

::::::
fluxes

:::::
mask

:::::
fossil

::::
fuel

::::::
patterns

:::
to

:
a
:::::::
similar

::::::
degree.

:::::::::
Numerous

:::::::::
additional

::::::
studies

::::::::
examine

:::
the

::::::
effects

::
of

::::::::
transport

::::::
errors

::
on

:
CO2 emissions rarely

explain substantial variability in atmospheric CO2 observations.
::::::::
modeling,

:::::::
though

:::
not

::
in

:::
the

::::::
context

:::
of

:::::
fossil

:::
fuel

:::::::::
emissions20

:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Stephens et al., 2007; Liu et al., 2012; Miller et al., 2015) .

::::::
Several

::::::
efforts

:::::
could

:::::
reduce

:::::
these

::::::::
transport

::::::::
modeling

:::::
errors.

::::
Like

::::::::::
urban-scale

::::::
studies

:::::
(Sect.

:::::
3.1),

::::::
national

:::::::
inverse

::::::::
modeling

::::::
studies

::::
have

::::
also

:::::
begun

:::::::
moving

::::::
toward

::::
high

:::::::::
resolution

:::::::::::
meteorology

::::::::::
simulations.

::::::
These

::::::
studies

:::::::
simulate

:::::::::::
atmospheric

:::::
GHG

:::::::
transport

::
at

::::
high

:::::::::
resolution

::::
over

:::
the

:::
US

:::
and

:::::::
Canada

:::
and

::::::
utilize

::::::
coarser

::::::::::
resolutions

::::::::
elsewhere

::
to

::::
save

:::
on

::::::::::::
computational

:::::
costs.

:::
For

::::::::
example,

::::::::::::
national-scale

::::::
studies

:::::
using

:::
the

::::::::
Weather

::::::::
Research

::::
and

::::::::::
Forecasting

::::::
(WRF)

:::::
have

:::::::
modeled

::::::
GHG

:::::::
transport

:::
at25

:::::::::
resolutions

::
up

::
to

:::::::
8–10km

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Nehrkorn et al., 2010; Gourdji et al., 2012; Miller et al., 2013) ,

::::
and

::::::
studies

:::::
using

:::
the

:::::::::::
GEOS-Chem

:::::
model

::::
have

::::::::
simulated

:::::
CH4 :::::::

transport
::
at

:::::::::
resolutions

:::
up

::
to

:::::::
⇠50km

:::::::::::::::::::::::::::::::::::::
(e.g., Wecht et al., 2014a; Turner et al., 2015) .

:::
In

:::::::
addition

::
to

::::
these

::::::
efforts,

:::::::
NASA’s

:::::::::::
Atmospheric

:::::::
Carbon

:::
and

::::::::
Transport

::
–

:::::::
America

::::::::
campaign

::::::::::::::
(ACT–America,

:::
Fig.

:::
2a)

:::::
aims

::
to

:::::::
diagnose

::::
and

:::::
reduce

:::::::::::
atmospheric

:::::::
transport

::::::
errors

::::::::
(NASA) .

::::
The

::::::::
campaign

:::::::
includes

::::
new

:::::
tower

::::
sites

::::
and

:::
five

:::::
years

::
of

:::::::
aircraft

:::::
flights

::::::
across

::
the

:::::::
eastern

:::
US.

:::::
Many

::::::
flights

::::
will

:::::
travel

::::::
through

::::::
frontal

:::::::
systems

::::
and

::::::::::
extratropical

::::::::
cyclones

::
to

:::::
better

::::::::::
characterize

::::
and

:::::::
evaluate30

::::::::::
atmospheric

:::::::
transport

::::::
errors.

:

3.4 Observations that have been used to attribute emissions at state and national scales

The observations discussed in this section do not provide a direct constraint on an individual source sector but have been

used by existing regional- and national-scale inverse modeling studies (Sect. 3.3) to support sector-specific attribution. These

16



observations are typically distributed across a broad geographic region. They are therefore sensitive to emissions over a large

area and can constrain larger regions, albeit with less detail than the local approaches discussed in Sect. 3.2.

Observations in this category include air samples collected atop telecommunications towers and from aircraft: the NOAA

tall tower observation network (Andrews et al., 2014), regular NOAA aircraft monitoring (Sweeney et al., 2015), the Environ-

ment and Climate Change Canada tower monitoring network (Environment and Climate Change Canada, 2011), the California5

Greenhouse Gas Research Monitoring Network (e.g., Zhao et al., 2009; Jeong et al., 2012, 2013)
:::::::::::::::::::::::::::::::::::::::::::::
(e.g., Zhao et al., 2009; Jeong et al., 2012, 2013, 2016) ,

and a privately-funded tower network operated by Earth Networks (Fig. 2). Most of the inverse modeling studies discussed in

the previous section (Sect. 3.3) used these in situ observation networks to estimate sector-specific emissions (Zhao et al., 2009; Jeong et al., 2013; Miller et al., 2013; Shiga et al., 2014; ASCENDS Ad Hoc Science Definition Team, 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhao et al., 2009; Jeong et al., 2013; Miller et al., 2013; Shiga et al., 2014; ASCENDS Ad Hoc Science Definition Team, 2015; Jeong et al., 2016) .

Several satellites make total column observations of GHG concentrations: observations of CO2 :::
The

::::::
current

:::::
tower

:::::::
network

::
is

:::::::
sensitive

::
to

::::::::
emissions

:::::
from

:::::
some

:::::
source

::::::
sectors

:::
but

:::
not

:::
to

:::::
others.

::::::
Many

::
of

:::
the

::::::
NOAA

:::
tall

::::::
towers

:::
and

::::::
regular

:::::::
aircraft

::::
sites

:::
are10

::
in

::
or

::::
near

:::
the

:::::
Great

::::::
Plains.

:::
As

:
a
::::::
result,

:::
the

:::::::
network

:::
has

:::::::::
sensitivity

::
to

::::::::::
agricultural

::::::::
emissions

::::
and

::
to

::::::
several

::
oil

::::
and

:::
gas

::::::
basins

:::
but

:::
has

::::
little

::::::::
sensitivity

::
to
:::::::::
emissions

::::
from

::::
east

::::
coast

:::::::::
population

:::::::
centers.

:::::
Earth

:::::::::
Networks,

::
by

:::::::
contrast,

::::
has

::::::
focused

:::
its

:::::
efforts

:::
on

::
the

::::
East

::::::
Coast

:::::::
proximal

::
to
:::::

large
:::::::::
population

:::::::
centers.

:::
The

:::::
state

::
of

:::::::::
California

:::
has

:
a
:::::
dense

:::::::
network

:::
of

::::::::::::::
publicly-operated

:::::::
towers.

::
By

:::::::
contrast

::
to

:::::
these

:::::::
regions,

:::
the

:::::::
network

::
is

:::::
sparse

::::::
across

::
the

:::::::
western

:::
US

:::::::
outside

::
of

::::::::
California

::::
and

:::::::
northern

::::::::
Colorado.

:::
On

::::
one

::::
hand,

:::
the

::::::::::
population

::
in

:::
the

:::::::
regions

::
is

:::::
sparse

::::
and

:::::
some

::::::::
emissions

::::::
sectors

::::
are

:::::
likely

::
to

::
be

:::::
small

:
(e.g., AIRS, SCIAMACHY,15

GOSAT, and OCO-2)
:::::
vehicle

::::::::::
emissions).

:::
On

:::
the

:::::
other

:::::
hand,

:::::
large

:::::::
resource

:::::::::
extraction

::::::
regions

::::
are

::::::
beyond

:::::
reach

::
of

:::
the

:::::
long

::::
term

:::::::::
monitoring

::::::::
network,

::::::
regions

:::
like

:::
the

:::::::
Powder

:::::
River

:::::
Basin

:::
coal

::::::
mining

::::::
region

::
of

::::::::
Wyoming

:::
or

::
the

:::::::
Bakken

:::
oil

:::
and

:::
gas

:::::
basin

::
in

:::::::
Montana

::::
and

:::::
North

::::::
Dakota.

:

:::::::
NOAA’s

::::::
regular

::::::
aircraft

::::::::::
monitoring

:::::::
network

:::::::::::
complements

:::::
these

::::::::::
tower-based

::::
sites.

::::
The

::::::
flights

:::::::
measure

:::::
GHG

::::::
mixing

:::::
ratios

:::::
across

:
a
:::::::

vertical
::::::::::
atmospheric

:::::::
profile.

:::::
These

:::::::
datasets

:::
can

::::
help

::::::::
evaluate

::::::
vertical

::::::
mixing

::::
and

::::::::
transport

::
in

::::::::::
atmospheric

::::::::
transport20

::::::
models,

::::
and

::::::::::
observations

::::
from

:::
the

::::::
middle

:::
and

:::::
upper

::::::::::
troposphere

:::
can

:::
be

::::
used

::
to

:::::::
quantify

:::::::::
background

::::::
"clean

:::
air"

:::::::::::::
concentrations,

:
a
::::::::
necessity

:::
for

:::
the

::::::
inverse

:::::::::
modeling

::::::
studies

::::::::
described

::
in

:::::
Sect.

::::
3.3.

::
A

::::::::
downside

::
is

::::
that

:::::::
NOAA’s

:::::::
aircraft

::::::
profiles

:::
are

:::::::
usually

::::::
limited

::
in

:::::::::
frequency

::
to

:::
one

:::
or

:::
two

:::::
times

::::
per

::::::
month,

::::::
unlike

::::::
towers

:::::
which

:::::
often

::::
have

::::::::::
continuous

:::::::::::
observations.

:::::::::
Scientists

::
at

::::::
NOAA

::::
have

::::
also

:::::::
invented

:
a
::::::::::
technology

::::::
known

::
as

:::::::
AirCore

:::
that

:::
can

:::::::
observe

:::::::
vertical

::::::::::
atmospheric

:::::
GHG

::::::
profiles

:::::
from

:
a
:::::::
weather

::::::
balloon

::::::::::::::::::
(Karion et al., 2010) .

::::
This

::::::::::
technology

:::::
could

:::::::
become

:
a
::::

key
:::::::::
component

:::
of

:::
the

::::
long

:::::
term

:::::::::
monitoring

:::::::
network

:::
in

:::
the25

:::::
future.

:

:
A
:::::::

number
:::

of
::::::::
intensive

::::::
aircraft

:::::::::
campaigns

:::::::
provide

:::::::::::
observations

::::::
across

:::::
entire

::::
state

:::
or

:::::::::
multi-state

:::::::
regions

::::
(Fig.

:::
2).

::::::
These

::::::
include

:::
the

::::
2010

:::::::
CalNex

::::::::
campaign

::::::::::::::::::
(Ryerson et al., 2013) ,

:::
the

:::::
2013

::::::::
SEAC4RS

:::::::::
campaign

::::::::::::::::
(Toon et al., 2016) ,

:::
and

:::
the

::::::::::::
ACT-America

::::::::
campaign

:::::::::::
(2015–2019)

::::::::
(NASA) .

::::
Few

:::::::
studies

::::
have

::::
used

:::::
these

:::::::::::
observations

::
to

:::::::
attribute

:::::::::
state-wide

:::::::::
emissions.

::::
For

::::::::
example,

::::::::::::::::::::
Wecht et al. (2014b) used

:::::::
CalNex

::::
data

::
to

:::::::
attribute

:::::::::
state-wide

::::
CH4::::::::

emissions
:::::
from

:::::::::
California.30

::::::
Several

:::::::
satellites

:::::
make

::::
total

:::::::
column

::::::::::
observations

::
of

::::
CO2:and of CH4 (e.g., SCIAMACHY, AIRS, TES, IASI, GOSAT) (Fig.

2). Streets et al. (2013) describe each
::::::::::::::::::
Envisat/SCIAMACHY,

::::::::
GOSAT,

:::::::
OCO-2,

:::
and

:::::::::
GHGSat).

:::::::::::::::::::::::
Streets et al. (2013) describe

::
a

::::::
number

:
of these satellites and the respective measurement characteristics in detail

:
in

::::::
detail,

:::
and

::::::::::::::::::::::
Jacob et al. (2016) provide

::
a

:::::::
thorough

::::::::
overview

::
of

:::::::::::::
CH4-observing

::::::::
satellites.

::::
Four

::
of

::::
these

::::::::
satellites

:::::::::::::::::::
(Envisat/SCIAMACHY,

::::::::
GOSAT,

::::::
OCO-2,

::::
and

::::::::
GHGSat)

::::::
observe

::
in

:::
the

:::::::::
shortwave

:::::::
infrared.

:::::::
Relative

::
to
:::::
other

::::::::
satellites,

:::::
these

::::
four

:::
are

::::
more

::::::::
sensitive

::
to

:::::
GHG

::::::
mixing

:::::
ratios

::
in

:::
the

:::::
lower35
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:::::::::
troposphere

::::
and,

::::::
hence,

::
to

::::::::
emissions

::
at

:::
the

::::::
surface

::::::::::::::::::::::::::::::::::::::::
(e.g., Chevallier et al., 2005; Wecht et al., 2012) . Only a handful of studies

have used these datasets to attribute sector-specific emissions in the US, and these existing studies focus on CH4, not CO2

(e.g., Wecht et al., 2014a, b; Turner et al., 2015) . Furthermore, some remote sensing datasets are more sensitive to surface

emissions and have smaller errors/biases relative to other datasets. TES and SCIAMACHY show limited ability to constrain

surface emissions (Wecht et al., 2014a; Alexe et al., 2015) .
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Schneising et al., 2014; Wecht et al., 2014a, b; Alexe et al., 2015; Turner et al., 2015) .5

For example, Wecht et al. (2012) could not reproduce patterns in North American CH4 emissions using synthetic, simulated

observations from TES. GOSAT, by contrast, provides more promising results. Turner et al. (2015) used GOSAT observations

to estimate sector-specific CH4 emissions in North America and found results that were broadly consistent with emissions

estimates derived from the US tall tower and aircraft monitoring network (Miller et al., 2013).
:::::::::::::::::
Wecht et al. (2014b) ,

::::::::
however,

:::::::
explains

:::
that

:::::::
GOSAT

::::::::::
observations

:::
are

:::
too

::::::
sparse

::
to

:::::::
constrain

:::::
CH4 ::::::::

emissions
::::
from

:::::::::
California

::::::
outside

::
of

:::
the

:::
Los

:::::::
Angeles

::::::
Basin.10

4 Novel strategies that could be used for estimating sector-specific emissions

This section discusses two observational strategies to
:::
that support top-down modeling efforts, strategies that show promise for

estimating sector-specific emissions. First, we discuss the potential of upcoming and proposed satellite-based GHG observa-

tions. Next, we discuss the utility of ‘secondary tracers.’ These gases or isotopologues are co-emitted with GHGs and aid in15

sector-specific attribution.

4.1 New satellite-based GHG observations

An increasing number of satellites collect observations of total column CO2 and CH4, and several more missions are planned

for future years (e.g., TROPOMI and ASCENDS). However, the potential of existing and upcoming space-based observations

for constraining anthropogenic emissions is not yet clear.20

Existing studies are mixed on whether current and proposed satellites can identify patterns from anthropogenic CO2 emissions.

These studies generally examine the detectability of total fossil fuel CO2 emissions, a less ambitious goal than monitoring

specific source sectors. Several provide a positive outlook.
::::::
Existing

::::::::
satellites

:::::
could

::::
hold

:::::::::
enormous

::::::::
potential

:::
for

:::::::::
estimating

::::
fossil

::::
fuel

:::::::::
emissions. For example, Schneising et al. (2008) report a detectable, 1.5ppm CO2 column measured by SCIAMACHY

over an industrial region of Germany. Kort et al. (2012) and Schneising et al. (2013) argue that GOSAT and SCIAMACHY,25

respectively, can detect fossil fuel
::::::
several

::::::
studies

:::::::
indicate

:::
that

:::::::::::::::::::
Envisat/SCIAMACHY

::::
and

:::::::
GOSAT

::::::
should

::
be

::::
able

::
to

::::::::
constrain

CO2 emissions from large urban regions, using several global cities as case studies. In addition, the National Research Council (2010) predicts

that the OCO-2 satellite will be sufficient to constrain emissions from very large coal power plants .
::::
cities

::
or

:::::
large

::::::::
industrial

::::::
regions

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Schneising et al., 2008; Kort et al., 2012; Schneising et al., 2013) .

::::::::::::::::::::
Kort et al. (2012) further

::::::
argues

::::
that

:::::::
GOSAT

::::
could

::::::
detect

:
a
::::
trend

::
as
:::::
small

::
as

:::
22%

::::
from

:::
Los

:::::::
Angeles.

:::::::
OCO-2

:::
and

:::::::
GHGSat

::::::
should

::
be

::::
even

:::::
more

:::::::
capable.

::::::
OCO-2

:::::::::::
observations30

::::
have

:
a
:::::::
smaller

:::::::
footprint

:::
and

::::::::
precision

:::::::
relative

::
to

:::::::
GOSAT.

:::
As

:
a
::::::
result,

:::
the

:::::::
satellite

:::::
should

:::
be

::::
able

::
to

::::::::
constrain

::::
CO2::::

from
:::::
large

:::::
power

:::::
plants

::::::::::::::::::::::::::::::
(National Research Council, 2010) .

::::
The

::::::::::::::
privately-funded

::::::::
GHGSat

::::::
makes

:::::::
targeted

:::::::::::
observations

::::
over

:::::::
specific
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::::
point

::::::
sources

::::
with

::
a
::::::
smaller

:::::::
footprint

::::
than

::::::
OCO-2

::::
and

:::::::
therefore

::::::
should

::
be

:::::
ideal

::
for

:::::::::::
constraining

::::
large

::::
point

:::::::
sources

::::::::::::::
(Kramer, 2017) .

Other existing studies offer a more skeptical perspective on the utility of satellite-based CO2 observations. This utility is

limited by measurement noise, measurement biases, the spatial and temporal sparsity of observations, and the limited sensitivity

of some observations to the near-surface atmosphere.
::::::
current

:::::::
satellite

::::::::::
capabilities.

:
Keppel-Aleks et al. (2013) argue that vari-5

ations in total column CO2 :::
due

:::
to

:::::
fossil

::::
fuel

::::::::
emissions

:
are largely obscured by biospheric fluxesand that remote sensing

observations would therefore have limited ability to constrain fossil fuel emissions. Furthermore, Gavrilov and Timofeev

(2015) found large biases (4.7 ± 2.6 ppm) in GOSAT observations
:::::::
retrievals

:
of CO2at a spectrometer site in Russia. Future

improvements in retrieval algorithms, however, could decrease these biases .
:::::
Future

:::::::
retrieval

::::::::::::
improvements

::::::
could

::::::
reduce

::::
these

::::::
biases

::::::::::::::::::::::::::::::::::::::
(e.g., Dils et al., 2014; Buchwitz et al., 2015) .

:::
An

::::::::
additional

:::::::::
challenge

::
is

::::
that

::::::
current

::::::::
satellites

:::
do

:::
not

:::::::
provide10

::::::::::::
comprehensive

::::::
global

:::::::
mapping

::::
and

::::::::
therefore

:::
are

:::
not

::::::::::
well-suited

:::
for

:::::::::
monitoring

:::
all

:::::
urban

:::::
areas

::::
and

:::::
point

::::::
sources

:::::
(Fig.

:::
2);

::::::::::::::::::::
Miller et al. (2007) point

:::
out

:::
that

:::::::
OCO-2

::::::
covers

::::
only

::::
7–12%

::
of

::::::
Earth’s

::::
land

:::::::
surface.

:::::
Trend

::::::::
detection

:::
can

::::
also

::
be

:::::::::::
challenging.

::::::::
Individual

::::::::
satellites

::::
have

::::::
limited

::::::::
lifetimes,

::::
and

:::::::
different

:::::::
satellite

:::::::
datasets

::::
with

::::::
unique

:::::
error

::::::::::::
characteristics

:::
and

::::::
biases

:::
can

:::
be

::::::
difficult

::
to

::::::::
compare.

:

Planned, future satellite observations may be even more capable at supporting efforts to estimate fossil fuel CO2 and15

CH4 emissions. Observations from ASCENDS, a future LIDAR-based satellite mission, would likely support evaluation of

:::::
Future

::::::::
satellites,

::::
both

:::::::
selected

::::
and

::::::::
proposed,

::::
offer

::
a

::::::
number

::
of

::::::::::::
improvements

::::
over

:::::::
existing

::::::::::
capabilities.

::::::
Some,

:::
like

:::::::::
GOSAT-2

::::::::
(selected),

:::::
have

:::::
better

::::::::
precision

:::::::
relative

::
to

:::
the

:::::::
existing

::::::::::
generation

::
of

::::::::
satellites

:::::::::::::::::::::::::
(Matsunaga and et. al., 2016) .

:::::
Other

::::::
future

:::::::
satellites

::::
have

::
a

::::
wide

:::::
swath

::::::::::
(CarbonSat,

:::::::::
proposed)

::
or

:::
are

::::::::::::
geostationary

::::::::::
(GeoCARB

:::
and

:::::::::::
GEO-CAPE;

:::::::
selected

:::
and

:::::::::
proposed,

:::::::::::
respectively).

::::
They

::::::
would

:::::::
generate

:::::
higher

::::::
density

:::::::::::
observations

:::::
across

:::
the

:::
US

::::::
relative

::
to

::::::
OCO-2

::::
and

:::::::
GOSAT

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fishman et al., 2012; Polonsky et al., 2014; Bovensmann et al., 2015; Buchwitz et al., 2013; Bousserez et al., 2016; Pillai et al., 2016) .20

:::::::::::
LIDAR-based

::::::::
missions

:::::
(e.g.,

:::::::::
MERLIN

:::
and

:::::::::::
ASCENDS;

:::::::
selected

::::
and

:::::::::
proposed,

:::::::::::
respectively)

:::::::
measure

:::
in

:::
the

:::::::
absence

:::
of

::::::
sunlight

::::
and

:::::::
through

::::
thin

::
or

::::::::
scattered

::::::
clouds

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kiemle et al., 2011; ASCENDS Ad Hoc Science Definition Team, 2015) .

:::
As

:
a
:::::
result,

:::::
these

:::::::
satellites

::::::
would

::::
also

:::::::
generate

:::::
dense

:::::::::::
observations

::::::
relative

::
to

::::::
current

::::::::
satellites,

::::::::::
particularly

::
at

::::
high

::::::::
latitudes.

:::::
These

:::::
future

::::::::
satellites

::::::
should

::::
have

::::::::
sufficient

::::::::
precision

:::
and

:::::
small

::::::::
footprints

::
to
::::::::
constrain

:::::
CO2 ::::::::

emissions
::::
from

::::::
power

::::::
plants.

::::
They

::::::
should

:::
also

::::
have

:::::
better

::::::
spatial

::::::::
coverage

:
to
:::::::
monitor

:
a
::::::
greater

:::::::
number

::
of

:::::::
emitters.

:::
For

::::::::
example,

:::::::::::::::::::::::::::
(Bovensmann et al., 2010) report25

:::
that

:::
the

::::::::
proposed

::::::::::
CarbonSat

:::::::
satellite

::::::
should

::
be

::::
able

:::
to

::::::::
constrain

::::
CO2:::::::::

emissions
:::::
from

:
a
:::::::::

mid-sized
::::::
power

:::::
plant

::
to

::::::
within

:::::
12–36%.

:::::
Other

:::::::
studies,

::
by

:::::::
contrast,

:::::::
indicate

:::
that

:::::
future

::::::::
missions

:::
like

::::::::::
ASCENDS

:::::
would

::::
have

::::::::
difficulty

::::::::::
constraining

::::::::::::
regional-scale

fossil fuel CO2 emissions from the US East Coast (ASCENDS Ad Hoc Science Definition Team, 2015) and could detect large

::::::::::::::::::::::::::::::::::::::::::::::
(ASCENDS Ad Hoc Science Definition Team, 2015) and

::::::
would

::::
have

:::::::
limited

::::::
ability

::
to

::::::
detect

::::::::::::::
continental-scale

:
changes in

emissions from broad regions like Europe or China (Hammerling et al., 2015) . Furthermore, a proposed, future geostationary30

satellite mission could potentially constrain emissions from large urban regions like Shanghai, China (Rayner et al., 2014) .

New remote sensing observations of
:::::::::::::::::::::
(Hammerling et al., 2015) .

:::
In

:::::::
addition

::
to

:::::
CO2,

::::::
future CH4 ::::::::::

observations
:
also show

promise. The forthcoming TROPOMI satellite is a project of the European Space Agency and is currently scheduled for launch

in late 2016 (Veefkind et al., 2012) . Wecht et al. (2014a) argue that observations from TROPOMI may have the same ability to

constrain California
::
For

::::::::
example,

:::
the

:::::::::::
TROMPOMI

::::::
sensor

::
is

:::::::
schedule

:::
to

:::::
launch

::
in
:::::

2017
:::
and

::::::
should

:::
be

::::::::
sufficient

::
to

::::::::
constrain35
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::
the

::::::
largest

::
1%

:
of

::::
grid

::::
cells

:::
in

:::::
EPA’s

:::::::
gridded

:
CH4 emissions as the recent, intensive CALNEX aircraft campaign

::::::::
inventory

:::::::::::::::::::::
(Maasakkers et al., 2016) ,

:::::::::
equivalent

::
to

:::
30%

:
of

::::
total

:::::::
national

:::::::::
emissions

::::::::::::::::
(Jacob et al., 2016) .

4.2 Secondary tracers

Secondary tracers are co-emitted with GHGs and are often emitted from only a small number of source sectors. These tracers

make it possible to isolate and factor out at least a portion of natural fluxes or factor out emissions from source sectors that are5

not of primary interest. The top-down approaches discussed previously either require a limited geographic scope or accurate

activity data to effectively estimate sector-specific emissions. Secondary tracers could identify sector-specific emissions without

these limitations (though secondary tracers present challenges of their own). Examples of secondary tracers include radiocarbon

::::
(14C), ethane, 13CO2, 13CH4, and carbon monoxide (CO). We focus on radiocarbon and ethane because they hold particular

promise.10

4.2.1 Radiocarbon

Radiocarbon (14C) is produced by cosmic rays in the upper atmosphere and has a lifetime of approximately 5,730 y
::::
years

before decaying back to 12C (Bowman, 1990). More recently
::::
Since

:::
the

:::::
1940s, nuclear bomb testing has elevated 14C within the

atmosphere. CO2 fluxes from the biosphere will mirror the isotopic composition of the atmosphere at the time that carbon was

incorporated into the plant. CO2 emissions from fossil fuels, by contrast, contain no 14C because fossil fuel reservoirs are far15

older than the decay lifetime of 14C, and these reservoirs have not interacted with atmospheric carbon during the intervening

time period.

Several exploratory studies used radiocarbon to separate the atmospheric CO2 signal from biogenic versus anthropogenic

emissions. One study used radiocarbon measurements from the US East Coast to estimate the relative contribution of fossil

fuel versus biogenic emissions (Miller et al., 2012). Another study reported on radiocarbon measurements in California (Riley20

et al., 2008). Graven et al. (2011) and LaFranchi et al. (2013) used radiocarbon observations from an aircraft and a tall tower,

respectively, to estimate the contribution of anthropogenic and biogenic CO2 emissions in Colorado. Beyond these studies,

radiocarbon measurements are not widely used in regional- or continental-scale inversions.

These measurements have
::::::::::
Radiocarbon

::::
has not been widely used, in part, because only a handful of atmospheric moni-

toring sites in the US report radiocarbon concentrations
:::::::::::
measurements. An expanded observation network shows enormous25

potential. A handful of tall tower monitoring sites
::::::
NOAA

::::
and

::
its

:::::::
partners

::::::::
currently

:::::::
measure

::::::::::
radiocarbon

::
in
:::

air
:::::::
samples

:::::
from

::::
eight

:::
tall

:::::
tower

:::::
sites,

:::::
three

:::::::::::
mountaintop

:::::
sites,

:::
and

::::
four

:::::::
aircraft

::::
sites

:
in the USreport radiocarbon and only two regular US

aircraft monitoring sitesdo (Basu et al., 2016) . The
:
.
::::::
NOAA

:::::::
collects

::::
these

:::::::
samples

:::
up

::
to

::::
three

:::::
times

:::
per

::::
week

::
at
:::
tall

:::::
tower

::::
and

::::::::::
mountaintop

::::
sites

:::
and

:::::::
collects

:::
up

::
to

:::
two

::
to

::::
three

:::::::
samples

:::::
every

::::
two

:::::
weeks

::
at

::::::
aircraft

:::::
sites.

:::::::::::::::::::::
Basu et al. (2016) explain

:::
that

:::::
there

::::
were

::::
1639

::::
total

::::::::::
radiocarbon

::::::::::::
measurements

:::::::
between

::::
July

:::::
2009

:::
and

:::::
April

::::
2011

:::
(21

::::
total

::::::::
months).

:::
By

:::::::
contrast,

:::
the National Re-30

search Council (2010) recommended that the US invest $15–20 million annually to build 10 radiocarbon monitoring stations

across the US
:::::
collect

:::::::::::
5000-10000

::::::::::
radiocarbon

::::::::::
observations

:::
per

::::
year, but that goal has not yet come to fruition. A recent paper
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by Basu et al. (2016) argued that this level of investment would allow scientists to constrain US fossil fuel CO2 emissions to

within 1% per year and to within 5% per month.

Despite this promise, the use of atmospheric radiocarbon measurements also presents several challenges. One primary chal-

lenge is accounting for the disequilibrium effect (Bowman, 1990). Atmospheric concentrations
:::
The

:::::::::::
atmospheric

:::::::::
abundance of

14C have
::
has

:
changed in the past 75 years due to nuclear bomb testing. CO2 from decomposing organic matter (heterotrophic5

respiration) will reflect 14C levels during the time that carbon was incorporated into plant tissue, not current atmospheric levels

of 14C. Furthermore, the lifetime of dissolved gases in the ocean is much longer than 75 years, so the isotopic signature of

air-sea gas exchange will also lag the recent rise in atmospheric 14C. One must account for this mismatch or ‘disequilibrium’

when using radiocarbon measurements to partition between fossil fuel CO2 and biospheric CO2; biospheric (and ocean) fluxes

will not necessarily match current atmospheric 14C levels but rather reflect the levels of a past date.
:::::::::::
Atmospheric

::::::::
sampling10

::::::
upwind

::
of

::::::::::::
anthropogenic

:::::::
sources

:::::
could

::
be

::::
used

::
to

::::::::::
characterize

:::
the

:::::::::
biospheric

::::
14C

:::::::
signature

::::
and

:::::
would

:::::::
mitigate

::::
this

:::::::
concern.

:

4.2.2 Ethane

Methane is the primary component of natural gas, but natural gas also contains small quantitates of other alkanes, includ-

ing ethane. These trace constituents are collectively referred to as natural gas liquids. Enhancements in atmospheric ethane

concentrations
::::::
mixing

:::::
ratios

:
indicate leaks from natural gas and oil infrastructure because these operations are a primary15

source of ethane to the atmosphere (e.g., Rudolph, 1995). Other CH4 emitters, including agriculture, landfills, and wetlands

do not emit higher order alkanes in substantial amounts. For example, Peischl et al. (2013) estimated that natural gas leaks

account for 90% of all ethane emissions in the Los Angeles metro region. If one has an estimate of ethane emissions and an

estimate of the ethane content of natural gas, then one can estimate CH4 emissions from oil and gas infrastructure. McKain

et al. (2015), for example, measured CH4 and ethane at several sites in Boston, and they used CH4-ethane ratios reported from20

natural gas pipeline operators to estimate the portion of Boston’s CH4 emissions that are due to natural gas leaks. Several other

studies have similarly used ethane measurements to explore oil and gas industry emissions from Los Angeles (Wennberg et al.,

2012), Dallas, Texas (Yacovitch et al., 2014), the Barnett shale region (Smith et al., 2015; Townsend-Small et al., 2015), and

from global oil and gas operations (e.g., Simpson et al., 2012; Schwietzke et al., 2014).

The use of ethane for CH4 source attribution brings several challenges. Until recently, ethane has been difficult to measure25

in the atmosphere. However,
::::::::::
atmospheric

:::::::::::
observations

::
of

::::::
ethane

::::
were

::::::
sparse.

::::::::
Research

::::::
groups

::
at

:::::::::
UC-Irvine

:::
and

::::::
NOAA

:::::
have

::::::::
measured

:::::
ethane

::
in

:::
air

:::::::
samples

::::
from

:::::
global

::::::::::
background

::::
sites

::::
since

:::::
1984

:::
and

:::::
2004,

::::::::::
respectively

:::::::::::::::::::::::::::::::::::
(Simpson et al., 2012; Helmig et al., 2016) .

::::
Each

:::::
group

:::::::
collects

::::::::
samples

::
at

::::::
40–45

::::
sites

::
at
:::::::

weekly
::
to

::::::::
seasonal

::::::::::
frequencies.

:::::::::
Recently,

::::::
NOAA

::::
has

::::::::
expanded

:::
its

::::::
ethane

:::::::::::
measurements

::
to
:::
its

:::
US

:::
tall

:::::
tower

:::
and

::::::
aircraft

::::::::
network.

:::::::::::::
Instrumentation

:::
has

:::
also

:::::::
become

:::::
more

:::::
widely

::::::::
available

::::
with Aerodyne,

Inc.now markets and
:
’s
:
ethane analyzer (Yacovitch et al., 2014), and NOAA has developed a new instrument for its monitoring30

network that includes ethane in the analysis. In addition, the .
:

:::
The

:
ethane content of natural gas can

:::
also

:
vary by region and will change if natural gas liquids are removed at processing

facilities (Fig. 3). These variations complicate the task of inferring CH4 emissions using ethane measurements. Smith et al.
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(2015), for example, found three distinct ethane signatures in different areas of the Barnett shale region. Townsend-Small et al.

(2015) report that emissions operations in the Barnett ranged from 6% ethane at natural gas wells to 13% ethane at oil wells.

In summary, secondary tracers like ethane and radiocarbon allow scientists to leverage measurements networks with broad

spatial coverage (like those in Sect. 3.4) to estimate specific source sectors. These measurements bypass, to some degree, the

need to rely on the spatial and temporal patterns in an inventory for source attribution and the need to have accurate activity5

data to support inverse modeling. With that said, only some CO2 and CH4 source sectors have obvious secondary tracers, and

the associated atmospheric observations are primarily collected by in situ networks, not by satellites. Furthermore, progress in

this area has been limited because of measurement availability, but this limitation could change in the future with more funding

(i.e., in the case of radiocarbon) or deployment of new instrument technology (i.e., in the case of ethane).

5 Synthesis discussion10

In this section, we synthesize progress to date on estimating sector-specific CO2 and CH4 emissions at state and national scale.

We also discuss forward-looking opportunities to improve sector-specific GHG emissions estimates, with a particular focus on

opportunities to integrate bottom-up and top-down strategies.

Recent innovations in both bottom-up and top-down efforts have advanced scientists’ abilities to identify emissions from

specific source sectors. Several efforts have produced high resolution, sector-specific inventory products that are based on15

more accurate, detailed activity data and EFs. These products have largely been driven by research in academia and by the

Joint Research Centre in Europe, not by US state or national governments. New inverse modeling strategies can incorporate

these inventory estimates in more rigorous ways that are not limited to the spatial patterns in the inventory. In addition, more

extensive observations are available to support these inverse modeling efforts, observations that span a number of spatial scales.

For example, numerous intensive measurement campaigns in the past five years have focused on large GHG-emitting regions,20

particularly cities and oil and gas production basins. The national US in situ network and remote sensing GHG observations

have also expanded in the last decade, though the US in situ network expansion is smaller than the level required for robust

evaluation of a wide array of GHG source sectors.

Despite these advances in bottom-up inventories, top-down strategies, and measurement density, the scientific community

has only been able to use inverse modeling and atmospheric data to improve sector-specific emissions estimates in a relatively25

small number of cases. To date, the community has had far more success integrating top-down and bottom-up estimates for CH4

than for CO2; the atmospheric signal from biospheric CO2 fluxes often obscures the signal from fossil fuel emissions, except

in some urban environments.
:::::::
National

:
CH4 emissions inventories are far more uncertain than

::::::::
inventory

::::::::
estimates

:::
are

:::::
often

:::::::
uncertain

:::
by

:
a
:::::
factor

:::
of

:::
2–3

::
at

:::
the

:::::
sector

:::::
level

::::
while

:
CO2 inventories , and

:::::::
typically

:::::
agree

::
to

:::::
within

::
5%

::::
(Fig.

::
1).

:::::::::
Arguably, the

community has been able to use top-down inverse modeling to improve these inventories when they arguably stood to benefit30

most.

Specifically, the community has been most successful with top-down, sector-specific attribution in two types of scenarios:

intensive measurement campaigns paired with local-scale inverse modeling and opportunistic cases. In the former case, the
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community has put substantial resources into intensive, local-scale measurement campaigns for a few specific source sectors.

Measurements from each affected locality or region provide a puzzle piece, and the community has begun to assemble a

cohesive, national-scale picture by amalgamating these individual pieces. The community has employed this strategy in the

case of CH4 emissions from oil and gas operations (e.g., the SENEX, SONGNEX, Barnett Coordinated Campaign, etc.) and,

to a lesser degree, in the case of urban CO2 emissions (including recent measurement efforts in Los Angeles, Salt Lake City,5

Boston, and Oakland).
:::::
These

:::::::::
campaigns

:::::::
typically

:::::::
provide

:
a
::::::::

snapshot
::
of

:::::::
current

::::::::
emissions

::::
and

:::::
would

:::::
need

::
to

::
be

::::::::
repeated

::
in

::
the

::::::
future

::
to

:::::::
estimate

::::
how

::::::::
emissions

::::
vary

::::
over

:::::
time.

Other cases of successful source attribution have been largely opportunistic. In certain cases, the community had the right

atmospheric measurements and spatially-distinct source sectors to attribute emissions at large spatial scales. For example,

Miller et al. (2013) found large CH4 emissions in Texas and Oklahoma that did not fit the spatial distribution of cows, and CH410

measurements in that region correlated with measurements of higher order alkanes. The authors concluded that a large fraction

of those emissions were likely due to oil and gas operations. A more recent study using satellite observations from GOSAT

reached similar conclusions (Turner et al., 2015).

Numerous future opportunities would improve scientists’ ability to merge bottom-up inventories, inverse modeling, and

GHG concentration
::::::::::
atmospheric

:::::
GHG data for better GHG source attribution:15

1. Combine the strengths of existing datasets

The majority of inverse modeling studies to date have used only in situ or satellite GHG data to estimate emissions. Methane

::::
CH4 inverse modeling studies for North America provide a good example. Miller et al. (2013) used in situ observations from

long term monitoring stations, Wecht et al. (2014a) used remote sensing observations from
::::::
Envisat/SCIAMACHY, and Turner

et al. (2015) used remote sensing observations from GOSAT. Future studies may be able to attribute emissions more effectively20

by leveraging the strengths of all available in situ and remote sensing datasets. Different datasets often bring complementary

strengths for this attribution: remote sensing datasets have broad spatial coverage and in situ datasets have complete temporal

coverage and greater sensitivity to surface emissions, among other strengths. A number of challenges may have prevented

the synthesis of multiple datasets in past studies: large datasets entail a number of computational challenges, the data are not

always accessible(e.g., data from Environment Canada are not publicly available), ,
:
and the observations can have different25

information content or error characteristics that are challenging to balance in a single framework. Future efforts that can

combine these disparate datasets likely stand the best chance of attributing emissions to specific source sectors.

2. Expand several existing measurement strategies

Expanded GHG measurements would also advance efforts to attribute emissions to specific source sectors. As discussed

earlier, some of the most successful top-down efforts to attribute emissions have been intensive aircraft campaigns. These30

campaigns are more flexible than the long term monitoring network and can easily target source sectors of interest by flying

in specific regions, in flight patterns that encapsulate the source of interest, and by flying at certain times of year that have

fewer competing biogenic sources. An expansion of these campaigns would enable scientists to target specific source sectors,

including CO2 emissions from large power plants, CH4 from agriculture, and CH4 from coal mines, among other source

sectors. These aircraft campaigns could then be used to estimate regional-scale EFs. Existing aircraft campaigns, for example,35
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have have estimated CH4 leak
::::::
leakage rates for a range of different oil and gas drilling basins (see Sects. 3.1 – 3.2). The long

term in situ atmospheric network and GHG monitoring satellites could be used to intelligently extrapolate and gap-fill these

regional EFs at larger spatial scales and to identify broad trends over time.

In addition, successful cases of sector-specific attribution have usually involved observations that span multiple spatial and

temporal scales. This strategy allows scientists to bridge between the regional scale that atmospheric observations are best able5

to constrain and the facility-level scale where inventories are strongest. For example, atmospheric observations can be used to

identify regional differences between top-down and bottom-up estimates. Subsequent facility-level and on-road measurements

can indicate why those regional differences occurred and how to improve EFs in a way that will bring inventories into agreement

with top-down estimates. This measurement strategy can be expensive and requires extensive coordination, but it has been used

successfully in the case of oil and gas CH4 emissions (e.g., Allen, 2014; Brandt et al., 2014; Peischl et al., 2015). Bottom-up10

and top-down estimates of these emissions disagree at regional and national spatial scales (e.g., Miller et al., 2013; Turner et al.,

2015). Subsequent facility and on-road measurements revealed that a small number of facilities account for a large percentage

of emissions; EFs that account for this skewed distribution are more consistent with regional top-down estimates (e.g., Brantley

et al., 2014; Lavoie et al., 2015; Subramanian et al., 2015).

Effective source attribution will also likely require the use of secondary tracers. Measurements of some secondary tracers,15

like ethane, have expanded markedly in the past several years with advances in instrumentation. With that said, measurements

of tracers like radiocarbon are only available for some of the long term US monitoring sites.

3. Improve inverse modeling strategies with an eye toward secondary tracers

The inverse modeling community has yet to develop inverse modeling strategies that can fully leverage observations of sec-

ondary tracers. This task is not straightforward and would likely require the development of new strategies. These strategies20

would need to quantify heterogeneities in the ethane content of natural gas or the disequilibrium effect in the case of radio-

carbon. Furthermore, these strategies would need to relate the primary and secondary tracers in a single statistical framework

and would need to account for uncertainties in that relationship. Observations of these secondary tracers have historically been

very sparse, so few studies have focused on designing statistical inverse modeling frameworks to fully exploit these tracers.

4. Develop detailed activity data as part of bottom-up efforts25

Top-down efforts, like those outlined above, can help in developing regional-scale EFs for different source sectors. These

studies can be particularly helpful when EFs are challenging to determine at facility scale. For example, direct measurements

of oil and gas facilities are difficult to design because a small number of leaks account for the majority of emissions, and these

large emitters may be difficult to find and/or representatively sample (see Sect. 2.3).

In contrast to EFs, activity data can only come from bottom-up inventory efforts. In fact, top-down efforts depend upon30

reliable activity data for attributing emissions (Sects. 3.1 and 3.3). Efforts to improve these activity datasets would markedly

improve source attribution. In many cases, these activity data exist but are not publicly available or are not available in gridded

form. Gurney et al. (2007) cite local fuel sales or electric utility bills as examples. CH4 emissions from oil and gas provide an

additional example. Oil and gas wells generally report production figures to state regulatory agencies, but this reporting varies

by state, does not have a consistent format, and can be difficult to find (e.g., http://pmc.ucsc.edu/~brodsky/wellindex.html).35
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The inaccessibility of accurate activity data for oil and gas operations has been a barrier to source attribution in recent national-

scale CH4 inverse modeling studies (Miller et al., 2013; Turner et al., 2015).
:::::
Recent

:::::
work

::
by

:::::::::::::::::::::::::::
Maasakkers et al. (2016) created

::::::
gridded

:::::::
versions

:::
of

:::::
EPA’s

:::::::
activity

::::
data

:::
and

:::::::::
represents

:::
an

::::::::
important

::::
step

:::::::
forward.

:
These activity data are key to connecting

inverse modeling results with bottom-up estimates of specific source sectors. Future bottom-up efforts should particularly

focus on the development and public release of gridded activity data.5

In synthesis, future improvements in bottom-up inventories and top-down strategies would likely complement one another

and translate into more reliable, sector-specific emissions estimates; scientists will likely need to combine both strategies to

robustly estimate GHG emissions from individual sources. Improved activity data would lead to gridded inventory estimates

with more accurate spatial and temporal patterns. Top-down frameworks could then harness these patterns, along with more

extensive, future GHG observations, to estimate regional-scale EFs for specific source sectors. National-scale observations of10

secondary tracers like radiocarbon and ethane would further strengthen these top-down efforts for applicable source sectors.

This coordinated, combined approach offers the most promising opportunity to evaluate state and national GHG emissions

reduction policies in the US.
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Figure 1. This figure displays several
::::::
EDGAR

::::
and

::::
EPA

:
inventory emissions estimates for different US fossil fuel source sectors (Olivier

et al., 2014; EPA, 2016a). The figure includes both the EDGAR and EPA inventories as well as
:
,
:::::::
including several versions of each inventory.

:::
CO2:::::::

estimates
:::

are
::::::::
consistent

::::::
between

::::
EPA

:::
and

:::::::
EDGAR

:::
and

:::::
among

:::::::
inventory

:::::::
versions.

::::
CH4::::::::

estimates,
:::::::
however,

:::
vary

::::::
widely,

::
an

::::::::
indication

:
of
:::::::::

uncertainty
::
in

::::
CH4 ::::::::

emissions. All of the estimates are for 2005 except for EDGAR FT2000 which is for 2000. CO2 emissions estimates

are consistent from one inventory version to another and between EPA and EDGAR. Note that EDGAR includes CO2 from heating in its

electricity estimate while EPA does not. As a result, the EDGAR CO2 estimate is higher than EPA’s estimate.CH4 estimates, however, vary

widely between EPA and EDGAR and among inventory versions. These variations indicate how uncertain CH4 inventory estimates are

relative to CO2 estimates.

37



a) In situ atmospheric network

b) Intensive aircraft campaigns (2010 - )

c) GOSAT obs. (Oct. 10-19, 2015)

d) OCO-2 obs. (Oct. 10-19, 2015)
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Figure 2. This figure displays existing
:::::::
highlights

:::::::
different CO2 observations available from

::::::::
observation

:::::::
networks

::::
and

:::
how

:::
the

::::::
spatial

::::::
coverage

::
of
:::::
those

:::::::
networks

::::
differ.

:::::
These

:::::::
networks

::::::
include tower and regular aircraft sampling sites (a); from several recent, intensive aircraft

campaigns (b); from the GOSAT satellite (c); and from the OCO-2 satellite (d). Note that the dots on each panel are not equivalent; an in situ

monitoring site
:::
sites

:
in panel a

::::
often provides far more information than an individual CO2 total column observation from GOSAT

::::::::
continuous

or OCO-2 (
::::
daily

:::
data

:::::
while

::::
each

::
dot

::
in

:
panels c

:::::::
(GOSAT) and d , respectively

::::::
(OCO-2)

:::::::
indicates

::
the

:::::::
location

:
of
::
a
::::
single

:::::::::
observation. Public

towers and public aircraft sites are operated by NOAA, DOE, Environment Canada, and partners.
:
,
:::
and

::
the

::::
sites

:::::
shown

:::
are

::::::
current

::::::
through

::::
2016.

:
Private towers are operated by Earth Networks. ,

:::
and

:::
the

:::::::
locations

::::
here

::
are

::::::
current

::::::
through

:::::
2012. Most tower and aircraft sites also

include CH4 observations.
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Figure 3. Ethane
::::
This

:::::
figure

:::::
shows

:::
the

::::::::
variability

::
in

:::::
ethane

:
content of natural gas samples from

::
for

::::
two

:::::
major

::::::
drilling

::::::
regions

::
of

:
the

USGS Geochemistry Laboratory Database (USGS Energy Resources Program, 2015)
:::::
United

::::
States. Ethane content is a key parameter when

estimating oil and gas CH4 emissions using atmospheric ethane measurements. The samples show substantial heterogeneity in some regions

(e.g., Oklahoma) and exhibit clear spatial patterns in other regions (e.g., Texas and West Virginia)
:
.
::
All

::::
data

::
in

:::
this

::::
figure

:::
are

::::
from

:::
the

:::::
USGS

::::::::::
Geochemistry

:::::::::
Laboratory

:::::::
Database

:::::::::::::::::::::::::::::::
(USGS Energy Resources Program, 2015) .39


