
Interactive comment on “Chemometric analysis of 
aerosol mass spectra: exploratory methods to 
extract and classify anthropogenic aerosol 
chemotypes” by Mikko Äijälä et al. 
 
Anonymous Referee #1 
 
Received and published: 21 September 2016 
 

This paper presents the application of k-means clustering to AMS data recorded at Hyytialla. While techniques like 
PMF are more commonly used as a data reduction tool in the AMS community, clustering presents some interesting 
possibilities, specifically for the purposes of plume classification. The paper uses an interesting technique whereby 
PMF is used to screen out discrete plumes first and then clustering applied to the outputs, so that plumes can be 
grouped and examined free of the influence of background aerosols. 
This work is relevant to ACP and there are a lot of good features in this manuscript, such as a thorough evaluation 
of different distance metrics and determination of the correct number of clusters, two things that are absolutely crucial 
and yet frequently missed from some of the more naïve applications of clustering within atmospheric science. 
However, the paper is not without its weaknesses; it is written in a very rambling, overly conversational and at times 
woolly tone, which made it very difficult for me (as a reviewer) to get at the hard-and-fast science. Certain key details 
regarding the methodology are also not covered in sufficient detail. In short, I would say there is good science in 
here, but it does need more work to turn it into a good paper. 
 
We would like to thank the referee for the comments and especially the constructive suggestions to improve 
manuscript readability. Based on the comments, we  
 

- modified the general text style towards a more compact presentation, and generally revised wordings to 
conform to a more formal writing style. 

- added and/or improved description regarding the methodology-related questions raised by the referee 
 
Please find more detailed responses to the comments and questions in the following: 

  
General: 
 
This paper is very technical in nature and risks being outside of the scope of ACP and more suited to something like 
AMT (especially seeing as the authors seem to imply in a number of places that the technique needs more work). 
In order to remain in scope, I recommend that the abstract and conclusions contain more of an emphasis on the 
new insights to atmospheric science that this work has offered. 
 
Due to the focus of the paper being divided between (1) chemometrics related data analysis and (2) aerosol chemical 
interpretation of results, both of which are necessary to demonstrate the usefulness of our approach, we tried to 
balance between the two viewpoints. However, in accordance with the referee’s suggestions we have shifted the 
focus of the manuscript more towards the discussion of the phenomenon of air pollution plumes. 
 
The beginning of introduction was rewritten and emphasis on the anthropogenic pollution was added. In conclusions 
similar shift of emphasis was done. 
  
The language used in this paper is very conversational and more in the style of a magazine article or opinion piece, 
with the insertion of many words that serve no tangible purpose to the paper (a few are picked out in the technical 
comments). While this would mainly be considered cosmetic and probably not worth making too big a fuss over, the 
authors at times risk crossing the line to using ‘weasel words’, i.e. the insertion of adjectives that convey an opinion-
based or otherwise unsubstantiated point to the reader. Examples of this would include describing the tools as 
“somewhat underused” on page 2 or the use of the CTOF as “advantageous” on page 4. This practice is to be 
discouraged in scientific literature, so I would suggest the authors generally revise the text to a more formal style, 
sticking to the facts as much as possible. 
 
As suggested, we have revised much of the expressions to comply with a more formal register. 
 
Also regarding presentation style, there is a tendency to start sections with a loquacious preamble describing 
previous work or setting out the need for a particular technique to be applied, however in a number of cases (see 
specific comments) this level of detail is completely unnecessary because many of these motivations are so well 
established in the literature they would be considered common knowledge in the community. While this too could be 



considered cosmetic, in places it seems that this writing is done at the expense of necessary technical detail. An 
example (described below) would be the extensive text devoted to comparing the CTOF with HRTOF (which could 
be handled by a decade-old citation) but insufficient detail on the unique features of the specific instrument used 
here. 
 
We attempted to accommodate a larger non-specialist readership, and due to the rather wide array of topics covered, 
the “community” becomes equally broad. We try to cater for readers interested in such data analysis methodology 
in general as well as aerosol chemists focusing on the mass spectral results. 
 
However, we have reviewed these cases and omitted/shortened preambles, as well as rewrote the said CToF vs 
HRToF part. 
 
Finally regarding writing style, the supplement is very rambling in its opening sections. While collating quotes from 
old textbooks would be a good primer for a non-specialist, I would tighten the text up a bit and focus more on what 
is specifically important for this work. I would also try to avoid repeating material that is already covered in the main 
article. 
 
In the supplement we aimed to provide some background information for a non-specialist reader, as we assumed it 
would be beneficial to the fraction of readers less familiar with statistical methods such as PMF or clustering. We 
would prefer to keep it this way, but have added a table of content to the beginning of the SI in order to make it 
easier for a reader to find the specific details they came looking for from the SI.  
 
Contrary to what is frequently implied, this paper does not represent the first use of clustering applied to AMS data; 
people were trying it long before PMF was used, an example of which is the Marcolli et al. (2006) paper cited in both 
the manuscript and supplement (although it is incorrectly presented as an example of factorisation in the 
introduction). As a technique for analysing ambient data, clustering failed to gain traction within the AMS community 
(reflected in the low number of publications) because unlike SPMS, AMS mass spectra do not (generally) represent 
discrete events so therefore interpreting clustering outputs carries with it many inherent problems. While this paper 
addresses many of these limitations, the authors would do well to tone down much of the text (in particular in the 
introduction) that seems to work off the principle that the application of clustering to AMS data is completely new. 
The real novelty of this work is the combination of clustering with discrete PMF analysis to get at data from specific 
plumes, which should be better suited to clustering than the blanket application to all recorded spectra, so I would 
spend more time focusing on this aspect of the work when demonstrating novelty. 
 
We thank the referee for pointing out this chance of misinterpretation, as we did not want to imply that we are the 
first to apply clustering methods to AMS data, and have clarified this part of the introduction and conclusions. What 
we do aspire to affirm within this work is that clustering can succesfully be used for the classification of discrete AMS 
sample spectra, whether deconvolved from ambient observations or laboratory, which has not to our knowledge 
been shown outside the specific niche of single particle applications. 
 
Having Marcolli et al., in the references for early work factor analytical techniques is indeed an error – it is used as 
a dimensionality reductive technique yes, but not “factorisation”. This sentence has now been corrected, and a 
separate mention added on the Marcolli et al. reference. 
 
A general fundamental weakness with clustering as applied to AMS data, even as applied here, is that it is not 
capable of identifying individual components when a measured mass spectrum is composed of an indeterminate 
combination of different components, rather than a single type. While this would not be the case here if individual 
plumes could be attributable to single point sources, it would not be true of plumes from mixed sources, which may 
occur with urban plumes consisting of a mixture of traffic, cooking, etc. However, this very fundamental limitation is 
not really discussed, in particular in section 3.4.2, where the analysis appears to have been approached from the 
perspective that discrete clusters representing these types should be expected. I would argue that good clustering 
for these potentially overlapping sources should not be expected and the fact that these are represented by ‘weak’ 
clusters should come as no surprise. It is also completely overlooked when suggesting that the variability 
withinclusters could inform the a-values used in ME-2. The text should really take this whole issue into account 
better. I would note that the use of a fuzzy clustering algorithm (e.g. c-means) may at least partially overcome this 
issue, but this presents an entirely new avenue of work outside of the scope of this paper. 
 
 
We want to thank the referee for pointing out that discussion on this issue is missing from the manuscript. It has 
been added to Sections 2.3.1 and 3.4. We also modified Sect. 3.6. by adding this additional mention regarding the 
effect on ME-2 variability estimate, although we did already touch upon this issue, stating that the inter-cluster 
variability should be considered an upper limit of the actual variability. 
 
 



We fully agree with fuzzy clustering algorithms being perhaps the most promising way to go in future classification 
of ambient aerosol types. For brevity we omitted this discussion since an earlier version of the manuscript, but will 
restore a short recommendation to the conclusions. 
 
Specific comments: 
 
Title: The title of the paper is very obtuse and says very little about the actual content. Recommend rewording as 
something that includes the words ‘clustering’ and ‘plumes’. The first two paragraphs of the introduction are a little 
superfluous considering how well established mass spectrometry and the need for associated data mining and 
reduction is within atmospheric science. Given that there is a wealth of articles already published in ACP on mass 
spectrometric data reduction, I would remove this text. 
 
Since the main message and much of the discussion in this work is to encourage the use of chemometric, 
machine driven analysis methods as a source of chemical information in general (and in connection with AMS 
especially), and we consider the exact methods/algorithms chosen to be “of secondary interest”, we’d prefer not to 
clutch on to the single technical method (clustering, PMF, mass scaling, dissimilarity metric etc) in the title.  
 
To keep better in line with this thought, but to make the title less obtuse, we reformulated the title to “Resolving 
anthropogenic aerosol pollution chemotypes - deconvolution and exploratory classification of pollution events”. 
 
As suggested, the two first paragraphs of the introduction were omitted and the next paragraph edited accordingly. 
 
Pages 3-4: It is difficult to sell the CTOF as advantageous given that the more diverse variable set provided by the 
HRTOF would almost certainly lead to a better statistical treatment (this is pretty much said later in the manuscript). 
But then the authors shouldn’t have to justify using a CTOF over a HRTOF because the choice of the specific pre-
existing dataset is justified later in the paper and the focus of the paper is on the analysis technique anyway. More 
generally, given how well established both instruments are, it is really not necessary to describe the mass 
spectrometry technology in this much detail; a simple citation of the literature would suffice. 
 
We shortened and reformulated this paragraph according to the referee’s comments.. 
 
Page 4: Regarding the differences between this instrument and a standard CTOF, is this described elsewhere in the 
literature? If so, these should be cited. If not, much more detail should be given here, particular as regards the helium 
bleed system, ideally with a technical schematic. 
 
The modification is described very briefly in several earlier publications (e.g. Corrigan et al., 2013), but not in an 
extensive way that would add to the information given here. We have extended and clarified this description in the 
manuscript. Importantly, we now clearly note that He is simply bled into the ptof chamber to increase the overall 
pressure in this region. We realise that our original text could be interpreted that the He flow was focused specifically 
at the sample beam.  
 
Page 5: A description of the diagnostic that lead the authors to be concerned of the airbeam linearity would be 
appropriate. Was the airbeam affected by the helium feature of the instrument? 
 
The discrepancy is apparent e.g. from observing the Ar/N2/O2 signal ratios seen by the instrument not matching the 
molecular abundances present in the atmosphere. This information was added. The airbeam was decreased due to 
the He added, and the measured composition (O2/N2/Ar) was brought closer to real atmospheric values by the 
Helium feature, but was still considered prone to errors upon changes in detector gain etc. Discussion was added 
to text along with a reference (Hings et al., 2007). 
 
Page 8: The criteria given for plume identification are very qualitative and therefore subjective. Can some quantities 
be assigned to any of the criteria, such as rise rate or duration? These would contribute to the general goal of a truly 
objective system of data reduction, even if it is not achieved here. 
 
The referee is quite right about the subjectivity and qualitative nature of the selection. We did not have exact, 
quantitative thresholds for accepting or rejecting an air pollution event or a data reduction solution. Some quantitative 
limits could be assigned, but to be less subjective they should ideally be based on something, such as some 
statistical parameters of pollution plumes or literature values for typical events etc. Without the benefit of such prior 
information or previous analyses available, we opted for this manual, qualitative approach. 
 
To give the reader and referee some idea on the magnitude of the phenomena described qualitatively, we have tried 
to estimate some values for the uncertainty of our selections, and have added this to Sect. 2.2.2. Unfortunately our 
chemometrics-oriented analysis does not enable us to give any specific guidelines for formulating an objective (or 
automatic) air pollution identification system. We agree such a system would be highly desirable. 



 
 
Page 8: The justification for using k-means seems a little overwrought. To be clear, k-means is not the most simple 
algorithm in existence (hierarchical agglomerative clustering can probably claim that), but it is nevertheless generally 
treated as the ‘default go-to’ algorithm by most people in absence of a reason to use anything else because 
of its simplicity of operation and low computational cost. It’s difficult to see this being any different in this case, so it 
would be better to simply state that you chose k-means for this reason and that a comparison with other algorithms 
could be done as future work. 
 
Since the selection of statistical methods befitting the purpose of AMS spectra classification is an integral part of this 
work, we wanted to emphasise the fact that the selection of clustering algorithm is not a trivial task, but something 
that can and should be given thought and subjected to critique in similar future work. Our going with “the default” 
algorithm and not evaluating the options can therefore be seen as an oversight by some – here we want to 
acknowledge and emphasise the fact that the selection of k-means is only a first try, and is not based on any 
performance evaluation unlike most of the other technical choices made in this study. We have reformulated the 
paragraph to hopefully convey this message better. 
 
Page 10, line 11: Saying that rotational ambiguity is ‘mostly avoided’ is a strong statement. What evidence can the 
authors present to back this up? 
 
As Paatero and Hopke (2009) write in their introduction, the problem of selecting from among available rotations can 
be reduced if there is additional information available on the system in question: 
 

“For many chemical systems, there is information available as to the nature of the underlying patterns 
in the resolved components. […] There may be known spectral features such as regions of zero 
absorbance that can be used to reduce the rotational space.” 

 
In our case similar, albeit physical, information is provided by the (qualitative) knowledge on the temporal behaviour 
of aerosol mass concentrations in mixing of air pollution plume and the background aerosol. Also, applying the PMF 
analysis to pollution events, with a plume surrounded by background regions, introduces the “control regions” points 
with (near) zero concentrations of the pollutants. Having the many “zero values” considerably reduces and may even 
eliminate rotational ambiguity (Paatero et al., 2014; Anderson, 1984).  
 
We concede this qualitative way of evaluating and selecting the solutions (a posteriori) is far from the ideal, and the 
same should optimally be implemented quantitatively within the PMF model resolving via e.g. pulling/constraining 
the time series in the iterative, solving process itself. However, such functionality would require modification to the 
user interface we had available, as restricting the time series (a priori) in the current framework (SoFi U.I.) would 
require an anchor for F (i.e. reference time series) which we don’t have available beforehand. 
 
Page 12: Why not use the same weighting function as the error model used to weight the PMF residuals? 
 
This is an interesting idea, but one we did not test as an alternative. The approach is philosophically different 
from the justification of testing the mass/intensity weighting, which is to weight based on information value available 
in specific masses (e.g. high vs low m/z, deriving from information loss in fragmentation), whereas the PMF weighting 
model is (mostly) based on experiment-derived estimates for measurement uncertainty. Also, we are unsure if the 
same error model would apply to PMF output as input, as the model has tried to take into account the uncertainty 
already. Perhaps rather some methods should be used where the PMF output uncertainty is estimated specifically?  
 
We agree this approach would warrant investigation in future work, and in case of a positive outcome there is no 
reason why such a weighting model could/should not combine well with the afore mentioned “mass scaling”. 
 
Page 14, line 21: “We hope” is a very odd thing to say. Can the robustness of the method not be tested somehow? 
 
We agree, and rephrased the sentence. However, we lack tools to evaluate how fruitful this approach is. But it’s the 
best we could come up with, to alleviate the concern of outliers overly affecting the centroids. At least it is logical 
and solidly statistics based. We would be happy to be pointed towards a better method, but in the longer run we 
would suggest choosing a clustering algorithm without these inherent weaknesses of hard classification and 
susceptibility to outliers, which would eliminate the need for such posteriori weighting altogether. In absence of 
previous literature or e.g. a synthetic data set to analyse, the effectivity is difficult to evaluate conclusively. We note 
that in the end the effect on the centroids is really small, as per Figure 6 and the correlation of rs

2 of 0.994 between 
the scaled and unscaled spectra. 
 
Page 20: After all the discussion regarding the selection of the correct distance metrics for mass spectra during 
clustering (particularly in the supplement), why use Pearson’s R here? 



 
Because we experimentally found it to also perform best out of the similarity metrics tested. This was clarified in the 
text. 
 
Page 24: Referring to a fundamental limitation of clustering as a technique (see general comments), the authors 
should take account of the fact that some plumes may hypothetically consist of a mixture of individual sources. 
 
We have added the disclaimer also here. Please see answers to the other related comments. It should be noted 
clustering as a technique is not at fault if it is used on a data set which does not comply with underlying assumptions 
(for hard classification data is not discrete, if some objects in fact belong to multiple classes or between them). 
 
Section 3.4.3 seems rather long and tangential considering that it fails to reach a definitive conclusion. Given that 
this is by no means the first time amines have been reported at Hyytialla, I would shorten this section for the sake 
of brevity. 
 
As suggested, we have revised this section, moving the diverging discussion into the supplement. However, as per 
the references we found and cited, amines have not been conclusively “reported” in biogenic background aerosol 
spectra or in Hyytiälä – we would say the mass spectral evidence is circumstantial at best, and we would rank our 
observations among the most direct ones. This is also one of the sections with new, atmospheric chemistry relevant 
findings of the study, and discussion on the possible origins and nature of biogenic amines should is one that we’d 
expect to especially interest ACP readers, (perhaps more than the methodology itself). 
 
Page 29: Again, the authors fail to acknowledge that the within-cluster variability can be caused by the varying 
influences of different sources within mixed plumes. Following from this, the later statements that “. . .the variabilities 
implied by this study can be used as an indicator of what the likely magnitude of the underlying natural variability 
within the observed classes of aerosols. . .” and “. . .the natural variability within an aerosol type may be significantly 
larger than what is often allowed in conjunction with the constrained PMF/ME-2.” should have the caveats added 
that this will only work if the plumes can be absolutely verified as being of a single source. 
 
We agree with that the concern for the mixing phenomenon needs to be mentioned, and have added the disclaimer 
and discussion in this section as well. (Please see earlier comment on possible plume mixing and our answer). 
However, we do think the concern is alleviated by the similarity of within-cluster variabilities for the well-resolved 
clusters and the ones more prone to mixed plumes, as well as the post-processing in place to down-weight such 
effect. 
 
Page 29: A frequently-used tool for quantifying rotational ambiguity is the PFEAK parameter in PMF, yet this is not 
even mentioned. Why was this not used? This would seem particularly appropriate here because when looking at 
2-factor solutions, the limitations of applying a global parameter to explore the solution space are significantly 
reduced. 
 
We omitted the Fpeak discussion from the manuscript as it was considered too much of a minor technical detail to 
be included. A consensus in the AMS PMF community seems to be that liberal use of Fpeak is to be discouraged 
due to the difficulty of producing yet more solutions (of mathematically inferior quality; higher Q value) for the analyst 
to select from, further complicating the solution selection process. The referee is correct that in our specific case is 
a “special application” where it should be better justified, due to the different solution selection/validation criteria.  
 
We did scan non-zero Fpeak values where Fpeak=0 failed to produce an acceptable solution. In 7 cases (included 
in the total of 81 spectra) an acceptable rotation was found this way. The criteria for PMF solution acceptance 
remained the same, and when non-zero Fpeak was applied, extra care was taken not to allow factors with profiles 
that exhibit “unrealistic/unphysical behaviour” such as only containing noise-like spectra or no contribution to m/z 43 
or 44 Th. 
 
We added this information to the supplementary material (Sect. S.1). 
 
Page 31: The comparison with PMF in the conclusions is extremely disingenuous because the authors fail to 
distinguish between the two very different data models employed by the different algorithms and the very different 
way in which they can be used. It also seems strange to compare these like this because the clustering technique 
used here relies on PMF to extract the plumes in the first instance. While clustering is good at analysing discrete 
plumes, its data model cannot handle arbitrary mixtures, which can make up the majority of AMS data in many 
cases. It is wrong to say that clustering eliminates the problem of rotation (there may still be some rotation in the 
plume extraction part – the authors have not discounted this) or that the cluster variabilities can be used to estimate 
source variability (it will only work for pure-component plumes). I recommend reworking this section to focus on what 
scientific insights this offers in addition to PMF, rather than pitching the two against each other. 
 



It was not our intention to make it sound like we are pitching our approach against classical PMF analyses, and have 
rewritten large parts of this section to highlight the added value of our method. We do not state that clustering 
eliminates rotational problems in PMF (which it indeed does not).  
 

Technical corrections: 
 
Page 3, line 21: What is so “regrettable” about a full review of the statistical techniques being out of scope? As a 
reviewer of an atmospheric science paper, I confess I was actually quite relieved it wasn’t in there. 
 
We omitted the word “regrettable”. 
 
Page 4, line 9: The word “specimen” is a very peculiar choice and not necessary. Please remove. 
 
Removed. 
 
Page 4: The need to process AMS data correctly is very well established in the literature, so the opening text of 
section 2.1.2 is unnecessary. 
 
We removed the introducing remarks. 
 
Page 8, line 22: “. . .to thoroughly evaluate events’ satisfaction our selection criteria” makes no sense. Please revise. 
 
Should have been “evaluate events’ satisfaction of our selection criteria”. Was revised to “evaluate which of the 
events satisfy our selection criteria.” 
 
Page 9, line 8: “Achilles heel” is inappropriate language, seeing as it is an inherent feature of the data model applied 
and associated constraints, not PMF specifically. Please remove. 
 
We have revised the expression to “factor analytical models’ inherent weakness of rotational ambiguity, which also 
afflicts PMF (Paatero et al, 2014)” 
 
Page 12, line 1: Remove “unfortunately” 
 
Removed. 
 
Page 13, line 28: Remove “with its own unavoidable weaknesses”. It’s not possible to make this statement without 
an algorithm in mind. 
 
Removed. 
 
Page 14, line 4: Remove the word “Obviously”. It would not be obvious to a reader with no experience of this. 
 
Reformulated. 
 
Page 20, line 6: Remove “on the other hand” but also generally check the wording of the sentence; I’m not 100% 
sure what it is that is being said. 
 
The sentence was revised. 
 
Page 21, line 20: The use of the future tense in “We will call. . .” is again overly conversational in tone. 
 
Changed to “we name”. 
 
Page 22, line 19: Please be specific when referring to “the last hypothesis”. I had to read this several times before I 
thought I understood it. 
 
The paragraph was revised in connection to earlier comment, the reference should be clearer now. 
 
Figure 1: This needs extensive tidying up, specifically to avoid lines overlaying the axis labels of inset graphs. Also, 
I would use legends rather than referring to colours in the text. 
 
Figure 1 graphics were revised. 
 



Supplement: This would be much easier to follow if the figures and tables were presented alongside the associated 
text. 
 
Good suggestion. We changed this. 
 
Page S4, line 15: Should be ‘in practice’ (‘practise’ is the verb form in UK English) 

Thank you. Changed. 
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This manuscript describes an interesting application of cluster analysis for analysis of 
ambient aerosol data obtained with an Aerosol Mass Spectrometer. In this method, 
short pollution time periods are analyzed with positive matrix factorization. The factorization 
yields background and pollution factor mass spectra that are then analyzed with 
cluster analysis to classify the distinct types of pollution factors that are obtained. As 
currently written, this manuscript introduces technical details of an analysis method and 
would seem to be more appropriate for AMT than ACP. It is important for the authors to 
highlight how this technique provides improved or new insight into study of atmospheric 
aerosols so that inclusion in ACP is better justified. I recommend publication in ACP 
after this change and changes suggested below are made: 

 

We thank the referee for his/her valuable comments.  
 
In accordance with similar comments by referee 1, the manuscript title was modified, large parts of 
the abstract, introduction, and conclusions were rewritten, and emphasis on the aerosol chemical 
conclusions was added.  
 
Main Comments 
 
1) In general, the paper is a little longer than it needs to be because it includes a lot 
of detailed background information about some topics while not enough information 
is given about necessary details. For example, page 8, Lines 10-13 only offer no 
quantitative information about how air pollution events are selected. Can some of the 
words such as “temporary”, “distinct rise”, and “unambiguous separation of pollution 
plume from background” be quantified? 
 
We have attempted to implement most of the changes proposed to include all necessary details. 
 
We have added the estimated thresholds used in the manual event selection along with more 
detailed descriptions for our selection criteria in Sect. 2.2.2. However, since the examination was 
only by visual inspection, and not a mathematical one, the limits are approximates. 
 
We agree with the referee on that exact, quantitative criteria for pollution event selection would 
certainly be desirable and preferential to the approximated thresholds we used. This would 
eliminate on of the final sources of subjective judgement of this work. However, in this study, the 
selection was based on the said criteria due to our difficulty of properly evaluating the fulfillment of 
especially criteria 2 and 3 (page 8) on an exact level.  
 
2) In figure 1, pollution events of varying time scales and multiple apparent pollution peaks are 
seen. What exactly is the process used to make these selections?  
 
This is covered in previous comment/answer (#1). The pollution episodes are selected based on 
the  criteria mentioned above. The selection process description is now expanded on in the text. 
 



What controls the length of the time period that is used as a pollution event? 
 
The time of “increased OA concentration”, as verified by a PMF factor emerging and disappearing 
in the spectra extraction analysis. 
 
Is wind direction data used for selection?  
 
Wind data is not used in selection of pollution events, as there are events that could arise from 
momentary emissions without a change in wind direction (e.g. passing vehicles, cooking, igniting a 
fire at a fireplace). 
 
What is the sensitivity of the PMF pollution event solutions to the exact time period range selected 
around the pollution event? 
 
In our experience the solutions are robust once the time window is kept “short enough”, so that the 
variability exhibited by the plume/episode forms a major part of the total variability in aerosol mass 
during the particular period. In this case the solutions are not sensitive to changes in the exact time 
window selection. 
 
Extending the time window to longer periods, where the variability arising from other reasons 
(biogenic SV-OOA diurnal cycle, other, consecutive or partly overlapping pollution episodes from 
different sources, etc) starts to overly dominate the solution, does degrade the solutions quality. 
Typically this happens when extending the time window to several days (assuming a pollution 
episode of few hours). Ulbrich et al. (2009) estimate this variability “limit of detection” of separating 
a factor to be 5% of total variation in OA mass. We find their estimate agrees with our experience 
with the PMF runs of this work. 
 
Did you consider as an alternative to this manual plume method to run a traditional PMF analysis 
on the entire dataset and identify plumes as time periods where the residuals of the PMF analysis 
are high? 
 
The idea of looking at PMF residuals is an interesting one. We did not test it. However, it is a 
different philosophy in itself, as it pinpoints the mass/variation unexplained by the “standard” PMF 
model solution chosen. Some issues with this approach are:  
As the unexplained mass/variation fundamentally does not equal a separate pollution (or even 
aerosol) type/source, but might equally well have to do with e.g. volatilization/condensation of 
semivolatiles, or, oxidation changing the composition of OA over time, or derive from a technical 
issue such as bad uncertainty estimate.  
The definition of “traditional PMF” varies considerably and the analysis is usually at least as 
subjective as our current methodology, due to similar manual selection of correct solutions, but 
with fewer pointers to what would be the optimum solution.  
Considering the close similarity of e.g. biogenic background SV-OOA and the sawmill SOA 
pollution, the two would likely get combined in one factor in “traditional PMF”, producing only small 
residuals, and thus likely missing this important source. Likewise for the oxidized aerosol types 
(biogenic LV-OOA vs A-LV-OOA).  
Residuals are additionally produced by violations of PMF’s underlying assumptions, mainly the 
idea that factor mass spectral profiles are constant over time (e.g. Ulbrich et al., 2009) – this is 
often unrealistic for atmospheric aerosols, and the issue is exacerbated for long time series, 
presumably exhibiting more chemical processes. 
To combat these effects were key reasons to split the PMF examination to small time windows in 
the first place. Using shorter timeframes model assumptions of constant factor profiles can be 
better assumed to hold, and the separation be more likely driven by actual source based 
separation than reflecting ongoing chemistry. In short, we foresee trying to pinpoint pollution 
episodes/types from the residuals would very likely run aground with even worse demarcation 
issues and subjectivity problems than the current OA mass based selection. 



Discussion on these issues was added also to Sect. 2.3.1. 
 
3) It is not clear to me why the pollution event PMF analysis used in this manuscript necessarily 
provides a more unambiguous separation of “pollution” and “background” than PMF analyses that 
are performed on the whole dataset. In fact, if the pollution event is simply a result of changes in 
wind direction that mixes in a different well mixed airmasses, then the PMF factor that is extracted 
would necessarily be just an average mass spectrum of all the sources present in the polluting 
airmass. No advantage would have been gained by this method to allow separation of individual 
sources and this would seem to be a weakness of this method. This aspect is not discussed in the 
manuscript. 
 
This discussion also links to the earlier question and its answers. 
 
If two sources of pollution are (practically) collocated, unconstrained PMF is unable to differentiate 
between the sources. This is an inherent limitation of the said data reduction method / receptor 
model (whether doing the entire data or an episode). In this case the sources are attributed to the 
same factor (“average mass spectrum”). 
 
However, assuming we are not only relying on one single source of a specific aerosol type, which 
we believe to be the case given e.g. the variable wind direction distributions (supplementary Figure 
S.11.), we would expect not all the emission sources will be similarly collocated (and emissions 
produced in in similar fractions), and thus some sources would produce a more “pure” sample of 
e.g. HOA or COA. This should be especially true for the close-by sources of e.g. passing cars or 
emissions from the forestry station. The collocated sources would then be expected show up 
between the pure samples, which is what we hypothesise to be happening with the weak 
(transported aerosols, A-SV-OOA) clusters. 
 
We agree that this discussion on mixed pollution events is needed and have added it to the 
manuscript, to Sections 2.3.1, 3.4 and the conclusions.  
 
Running PMF over the whole data set would not capture the plumes due to the 5% “limit of 
detection” mentioned earlier. Similarly, it would not provide the separated spectra needed for the 
clustering applied here. Finally, and our approach is also more robust when it comes to selecting 
optimal PMF solutions, as described in sections 2.2.2 and 2.3.1. We fix the rotation using “external” 
information on factor time-series, i.e. what a physically correct (albeit qualitative) description of 
time series behaviour is like. 
 
4) The manuscript refers to ambiguities in PMF analysis as a weakness and implies that this 
analysis somehow solves or provides a better solution to this problem of ambiguity. In fact, the 
manuscript clearly states the difficulty of separating the various primary aerosol sources.  
 
See previous answer. 
 
Regarding the second part, the difficulty of separating primary sources spectra (from each other), 
discussed specifically in Sect. 3.4.2 is not connected to the question of rotational ambiguity of the 
PMF model, but the performance of distance metric used in clustering.  
 
One of the advantages of the traditional method of doing PMF or ME- 2 on the entire dataset in this 
context could be the fact that it can exploit differences in temporal profiles of primary sources (i.e. 
different diurnal cycles) and also exploit the fact that source mass spectra are similar to allow for 
separation of multiple primary sources within a well mixed pollution event (i.e. a event such as that 
mentioned in comment 3 above).  
 
As we can see from the Supplement Fig. S.11 and S.12, the pollution observations are very limited 
in number, and do not amount anywhere close to forming statistically relevant diurnal patterns 



(partly also due to transport times). For a remote station such as SMEAR II, diurnality analysis of 
pollution plumes (whether by PMF or other receptor models), thus seems unfeasible. 
 
Our intention is in no way to discredit PMF or constrained ME-2 itself, but merely to provide a 
robust, experimental basis for e.g. using objective and realistic constraints for an improved 
supervised analysis (e.g. constrained factors). 
 
A comparison between the classification results and a traditional PMF of the entire dataset would 
have been a good way to address this and to highlight similarities and differences in results. The 
manuscript should more clearly state discuss the advantages/disadvantages of using this method 
compared to PMF. 
 
A “traditional” (constrained) ME-2 analysis of two of the data sets (“March 2009” and “September 
2008”) has been published by Crippa et al. (2014), and is referenced in Sect 2.2.1. In their work 
Crippa et al. separated LV and SV OOA components, and additionally constrained BBOA and HOA 
using a reference spectrum (from Paris). In our work we compare our results against these 
reference spectra (described in Crippa et al., 2013), and find the similarities very high (Sect 3.4). A 
traditional PMF has been published by Corrigan et al., 2013, but it only managed to separate a 
BBOA factor besides the general SV and LV components. E.g. Canonaco et al., (2013) and Crippa 
et al., (2014), highlight the difficulties of separating primary sources for a rural background station 
like ours in an unconstrained analysis, undermining the feasibility of extracting a wide range of 
primary OA factors.    
 
As suggested by referee 1, we have modified this section to focus on what scientific insights our 
approach offers in addition to PMF, rather than implying a “competition” between the two 
approaches. 
 
5) The strongest part of this manuscript is the application and interpretation of the various 
clustering metrics to understand similarity and differences between the cluster spectra. It may be 
useful to highlight more strongly how these metrics could be applied to spectra obtained with 
typical PMF/ME-2 analysis. Would use of the cluster analysis metrics to reference spectra and 
PMF solutions provide a means of automating classification in PMF analysis? Also an intriguing 
part of this that could be discussed in more detail is the possibility to use the cluster analysis to 
define a-values and reference spectra for ME-2. 
 
The prospect of automatic classification of PMF results is in our opinion definitely a feasible one, 
and indeed one of the motivations for this type of a study. The application could be, for example, in 
classifying a large set of bootstrapped PMF runs or a large number of PMF “seed” runs or Fpeak 
runs’ results. Similarly, we hope the spectral similarity metric optimization would be useful for a) 
evaluation of PMF result factors’ similarities against each other and b) identification of PMF result 
spectra (against library references, such as the AMS Spectral Database). We discuss the 
application of cluster centroid spectra and within-cluster variation as fitting input for a constrained 
ME-2 analysis (in the Introduction, Sect 3.6 and Conclusions), but have now highlighted this 
further, and added a paragraph in conclusions summarizing these future prospects. We thank the 
referee for these good suggestions, and have added emphasis to them. 
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Abstract. Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. 

Refining and synthesising this “raw” data into chemical information necessitates the use of advanced, statistics-based data 

analytical techniques. In the field of analytical aerosol chemistry, statistical, dimensionality reductive methods have become 15 

widespread in the last decade, yet comparable advanced chemometric techniques for data classification and identification 

remain marginal. Here we present an example of combining data dimensionality reduction (factorisation), with exploratory 

classification (clustering), and show the results can not only reproduce and corroborate earlier findings, but also complement 

and broaden our current perspectives on aerosol chemical classification. We find that applying positive matrix factorisation to 

extract spectral characteristics of the organic component of air pollution plumes together with an unsupervised clustering 20 

algorithm, k-means++, for classification, reproduces classical organic aerosol speciation schemes. Applying appropriately 

chosen metrics for spectral dissimilarity along with optimised data weighting, the source-specific pollution characteristics can 

be statistically resolved even for spectrally very similar aerosol types, such as different combustion-related anthropogenic 

aerosol species and atmospheric aerosols with similar degree of oxidation. In addition to the typical oxidation level and aerosol 

source driven aerosol classification we were also able to classify and characterise outlier groups that would likely be 25 

disregarded in a more conventional analysis. Evaluating solution quality for the classification also provides means to assess 

the performance of mass spectral similarity metrics and optimise weighting for mass spectral variables. . This both 

improvesfacilitates algorithm-based  classificationevaluation of aerosol spectra, which may prove invaluable for future 

development of automatic methods for spectra identification and classification. Robust, statistics-based results and data 

visualisations andalso  provides important clues for a human analyst on the existence and chemical interpretation of data 30 

structuresrelative importance of variables and data structures.. ABy applying these methods to athe test data set of data used 

in this study, aerosol mass spectrometricer data of organic aerosol from a boreal forest site, yielded five to seven10 different 

recurring pollution types from various sources, including traffic, cooking, biomass burning, and a nearby sawmills. 

mailto:mikael.ehn@helsinki.fi
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Additionally,, threeseveral distinct, minor pollution types were discovered, and identified as amine-dominated aerosolfactors 

were also identifieds. 

1 Introduction 

The field of The research field of mass spectrometry, arguably began already with electromagnetic deflection of ion streams 

by Wien (1898) and resulting in first veritable mass spectrometers by J. Thomson (1922) and Aston, (1919a; 1919b). The field, 5 

now at the ripe age of a century, has since emerged as one the indispensable tools of analytical chemistry (Griffiths, 2008). 

Advances such as the quadrupole (Paul and Steinwedel, 1953), time-of-flight mass analysers (Stephens, 1946) and electron 

ionisation (Bleakney, 1929, 1930), developed during the 20th century have since enabled new applications, such as aerosol 

mass spectrometers (AMS; Canagaratna et al., 2007b), measuring the composition of particles of the air, with tiniest of mass, 

online, with high resolving power. The near-universal ionisation method of standardised 70 eV EI allowed the quantitative 10 

measurement of most atmosphere-relevant chemical compounds and their direct comparison with any previous measurements 

with said ionisation. However, the feat of quantitatively measuring an atmospheric mixture of thousands of known and 

unknown compounds simultaneously, on a continual basis, produces data in large quantities, presenting a huge challenge for 

any early adopters of mass spectrometry. 

 The management, storage and especially analysis and interpretation of this overabundance of information still challenges any 15 

analyst of aerosol mass spectrometric results, but fortunately the rapid development of computer capacity and mathematical 

analysis tools over the recent decades has today allowed the bridging of the gap between experiments and their scientific 

interpretation, effectively giving rise to the field of cchemometrics, i.e. “using mathematical and statistical methods […] to 

provide maximum chemical information by analysing chemical data” (Kowalski, 1981; Vandeginste, 1982) in the 1970’s.  

serves as an important mediator between complex, multivariate chemical measurements and their interpretation. Since the 20 

1970’s then a variety of chemometric applications have emerged in various fields of mass spectrometry, and are common in 

e.g. biological and medical implementations, food science and chemical engineering (e.g. Belu et al., 2003; Karoui et al., 2010; 

Kell, 2004; Pierce et al., 2012; Sauer and Kliem, 2010; van der Greef et al., 2004; Wishart, 2007).  

 Also aerosol mass spectrometry, although a latecomer among mass spectrometric applications, seems to have been quick in 

adopting and improving on some of the basic chemometric tools found useful elsewhere, as exemplified by the surge in use of 25 

factor analytical techniques for data dimensionality reduction in the recent decade (Canonaco et al., 2013; Lanz et al., 2007b; 

Zhang et al., 2005; Zhang et al., 2011).; Marcolli et al., 2006).  

Yet, there is a considerable amount of work still to be done in the field of aerosol data chemometric analysis – a significant 

part of more advanced AMS data analysis is still done manually and thus inevitably limited by the expertise and capacity of 

the human analyst. Especially the classification and interpretation of the AMS spectra are still largely based on a dozen or so 30 

mass spectral variables, so called “marker signals”, and their ratios (Aiken et al., 2007; Aiken et al., 2008; Cubison et al., 2011; 

Farmer et al., 2010; Mohr et al., 2012). Exploring the logical follow up to the automatic data dimensionality reduction (factor 
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analysis): applying similar mathematical, computer-aided tools also for un/semi supervised classification and identification of 

AMS spectra, has not been performed outside of the specific application of single particle mass spectrometric studies (e.g. 

Freutel et al., 2013; Liu et al., 2013; Murphy et al., 2003; Rebotier and Prather, 2007).. Automatic or machine learning based  

These somewhat underusedclassification  tools would likely prove invaluable for consistent and objective analysis of a much 

wider range of AMS data, lessening the outcomes’ dependence on analyst subjective views or reliant on their years of expertise 5 

in mass spectral interpretation (Ausloos et al., 1999; Ulbrich et al., 2009). Even for an experienced analyst, exploratory data 

analysis has the potential to uncover previously unknown underlying mathematical structures within the data (Tukey, 1977), 

offering invaluable clues for the correct selection of a solutions and their interpretation.  

SometimesCompared to using only individual, classical analysis factor analytical methods are useds at the edge of their 

appropriate domain, for example, factor analysis assuming constant profiles over long timeframes, when chemical processes 10 

actually modify the profiles (Zhang et al., 2011), or, using a hard classification method for data reduction for when observations 

are non-discrete and form a continuum (Marcolli et al., 2006). More robust results may be obtained by sticking closer to the 

core applicability area of each method, where their core assumptions are better expected to hold, and combining multiple 

separate methods instead. these  

mMore diverse, combined techniques can also overcome inherent limitations of data models. They may for example enable 15 

uncovering of the minor, “outlier” aerosol types that often go unnoticed in a long-term factor analysis because of their low 

relative contribution to total aerosol mass (Ulbrich et al., 2009). Such  additional, quantitative information on aerosol 

chemotypes is widely beneficial for many types of studies involving e.g. receptor modelling with and aerosol source 

apportionmentchemical mass balance or constrained factor analysis models (e.g. Belis et al., 2013; Canonaco et al., 2013). 

In this work we explore the possibility of complementing the current techniques for advanced AMS data analysisreduction 20 

with some analytical and processing methods found useful in similar mass spectrometric applications. We apply data 

dimensionality reduction to deconvolve ambient air pollution events, extracting the characteristic pollution spectra, and 

subsequently use and optimise unsupervised classification to resolve the pollution types. Namely we willOur motivation is to 

1) test if a simple unsupervised data clustering method can be used to classify discrete aerosol mass spectral samples without 

a priori information provided by a human analyst, 2) explore the effect of similarity metric selection data pre-processingand 25 

data weighting to yield optimised spectral similarity metrics and data pre-processing (Horai et al., 2010; Kim et al., 2012; Stein 

and Scott, 1994) and thus enhance the structures in dataa, leading to improved classification (Anderberg, 1973; Spath, 1980). 

Finally we will 3) compare which classification measures of spectral similarity best capture the differences between different 

atmospheric “aerosol chemotypes” often referred to by the AMS scientific community, and examine how the observed 

structures in data translate to information on pollution types.. 30 

 

The results on performance of distance metrics along with the variables’ relative importance (optimised weight), for correct 

grouping of mass spectra, can also lead way towards an automated classification of AMS results against relevant library 

spectra, as well as provide ways to evaluate and classify (discrete or de-convolved) spectral results in large numbers, such as 
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those often seen in sensitivity analysis or bootstrapping analyses in factor analytical model verification. Iindirectly, the 

information may also help in any manual classification and identification tasks. Finally we will 3) compare which measures 

of spectral similarity best capture the differences between different atmospheric “aerosol chemotypes” often referred to by the 

AMS scientific community. 

We will exemplify the functionality (and hopefully usefulness) of such a ”machine learning” approach, in an analysis of an 5 

extensive set of AMS ambient air pollution spectra. We propose the methodology offers in this case an improved way to derive 

not only reliable,  local reference spectra for the local, archetypical anthropogenic pollution types, but also quantitative 

estimates for their expected natural variation. This information has immediate and direct use in e.g. a constrained factor 

analytical models that require an input for reference spectra variability (Canonaco et al., 2013).  

From an aerosol chemical viewpoint, solid, quantitative knowledge on local pollution types and their chemical characteristics 10 

can help decipher and understand a variety of physicochemical observations during times when a site experiences pollution 

events. Concentrating on individual pollution events also enables the observation and identification of often overlooked minor 

or rare emission sources, which can provide new information on local or regional atmospheric aerosols. 

2 Methods 

Although the focus of this study is in statistical analysis of aerosol mass spectrometric measurements, any such venture is 15 

inherently affected by the nature and quality of the experimental data, as well as its pre-processing. We will first provide a 

short overview of the main features, advantages and shortcomings of the aerosol mass spectrometer instrument (Sect. 2.1) and 

describe the specific set of data we used (Sect. 2.2) in the testing of the methodology – to serve as a background and put into 

context the choices made when selecting our specific statistical methods and algorithms. 

The statistical methods themselves are described in a brief manner in Sect. 2.3, since their in-depth review or commentary is 20 

regrettably beyond the scope of this article. We encourage the interested reader to follow the references provided for a more 

comprehensive account and additional background information on the specifics and inner workings of these data analytical 

techniques and algorithms. 

2.1 The AMS instrument and data pre-processing 

2.1.1 Compact time of flight mass spectrometer (C-ToF AMS) 25 

The data analysed in this study is acquired with an aerosol mass spectrometer featuring a compact time-of-flight (C-ToF) mass 

analyser. The instrument is developed and manufactured by Aerodyne Research Inc. (Billerica, MA, U.S.). While outclassed 

mass resolution-wise by subsequent high resolution (HR) ToF AMS variants (Canagaratna et al., 2007a; DeCarlo et al., 2006), 

the C-ToF -AMS does feature a mass analyser does superior to many common aerosol mass spectrometers such as the Aerosol 

Chemical Speciation Monitor series (Q-ACSM; Ng et al., 2011b; ToF-ACSM; Fröhlich et al., 2013). Withcomes with the 30 

highest sensitivity, and thus signal-to-noise ratio (SNR)  of any AMS instrument (DeCarlo et al., 2006; Drewnick et al., 2009),. 
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This high precision clearly benefits any statistical analysis and partly offsets the smaller amount of variables available in unit 

mass resolution (UMR) data compared to high resolution.   

the C-ToF-AMS is an advantageous instrument for the purposes of this study: acquiring high precision, unit resolution mass 

spectra at a high time resolution.  

The C-ToF AMS, described in a thorough fashion by Drewnick and co-authors (2005), shares many common characteristics 5 

with most ToF AMS instruments – an aerodynamic lens to concentrate the sample aerosol into a tight beam of particles upon 

entering trough the instruments inlet, a beam chopper to enable particle size measurement based on their flight-time through a 

vacuum chamber, a thermal vaporiser set at 600 degrees Celsius to flash vaporise the sample, 70 eV electron impact ionisation 

of the vaporised sample implemented with a tungsten filament, and finally an orthogonal extraction time-of-flight mass 

analyser to provide the ions’ mass spectra. 10 

In the particular C-ToF AMS specimen we used, the particle time-of-flight (PToF) chamber is considerably shortened (10 cm 

versus the normal 40 cm chamber). The advantage of this modification is an increased sample transmission from the inlet up 

to the vaporization and ionization region, at the cost of an increased signal from aerosols’ carrier gas, due to the reduction in 

time and distance for air molecules to diverge from the beam. To combat the effect of increased number of air molecules 

passing through the system, a helium flow is introduced to the PToF chamber to increase the pressure and thus the diffusion 15 

of  added after the lens to displace air molecules and increase their molecular diffusion from in the beam passing through the 

chamber. With this arrangement the air signal is reduced by a factor of 10 to 100, depending on setting, while only affecting 

the aerosol signal to a much lesser extent.  The hHelium ions are later removed by an additional high pass mass filter located 

before the analyser. Due to their solitary location at the mass-to-charge (m/z) axis, at 4 Th, He molecules and ions are less of 

a problem than nitrogen and oxygen ions.  While not effecting this work, Aan additional negative effect of this geometry is 20 

also the reduced resolution in particle time-of-flight (PToF) sizing, understandably caused by the shortened PToF flight track. 

For the above mentioned reasons size segregated data quality is poor for this particular instrument. Fortunately the PToF mode 

data is nonessential for this specific work, while the excellent signal-to-noise ratio (SNR) available from the standard, non-

size-selective ”MS mode” clearly benefits any statistical analysis of the data. 

2.1.2 Pre-processing of AMS data and derivation of final data matrices 25 

In data mining or indeed any statistical analysis, pre-processing and quality assuring the data is an essential step preceding the 

application of actual analytics algorithms. The AMS data makes no exception. On the contrary — it needs a number of steps 

and corrections to first compute the per ion mass loading from the raw mass analyser signal, and then to estimate and propagate 

the errors arising from several sources along the way to the final results. As the general methodology of AMS standard data 

processing has fortunately been amply described (Allan et al., 2003; Jimenez et al., 2003), as has the derivation of mass spectral 30 

matrices and their error estimates (Ulbrich et al., 2009; Zhang et al., 2005), so we will only summarise the procedure here and 

mostly concentrate on the particulars that deviate from the standard approach in our pre-processing. 
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The AMS data was automatically corrected for changes in m/z axis calibration, using a time-dependent calibration function 

and a set of around a dozen known marker peaks to fit the time-of-flight to m/z calibration individually to each measured 

spectrum. The peak areas of all unit m/z signals were then integrated, with manually checked and modified integration regions 

to yield the background-subtracted signal at each m/z ratio. 

The instrument signal response degrade over time was accounted for by using a time period after instrument calibration as a 5 

reference point and normalizing the measured air induced signal (“airbeam”, AB) to the mean value of the reference time 

(ABref). The normalisation ratio AB/ABref, describing the instrument response to a known mass concentration of air molecules, 

was used as a scaling factor for all the measured signal, as suggested by Allan and others (2003). Due to concerns of non-

linearity of the detector response with very high signals typical of N2 and O2, raised by the off-target molecular ratios for air 

O2/N2/Ar, argon (Ar) signal observed at 40 Th was used as a metric for the airbeam intensity. 10 

Airbeam nonlinearity in the C-ToF AMS is discussed in more detail by Hings and co-workers (2007), who attribute it to single 

ion signal being close to thresholding limit set in the data acquisition, affecting low (<1 ion per MS extraction) ion signals 

differently from air ions with multiple ions detecting in each extraction. Due to single ion signal distribution being cut off at 

the lower end, the issue likely affects any signals generally consisting of single ion observations (per extraction), unless using 

very high detector voltages.  15 

The AMS fragmentation table was slightly modified to accommodate for the issues arising from the modified PToF chamber 

and the increased airbeam. Namely some air related signal ratios used in the fragmentation calculations, such as relative air 

contribution to observed signals at 15, 29 and 30 Th, were re-calculated based on exact molecular ratios obtained from filter 

runs, automatically performed every three hours. After this re-calibration all the minor, artificial, non-air signals originally 

seen during filter runs (e.g. in organics and nitrates) at the aforementioned m/z ratios were effectively assigned to the airbeam, 20 

excluding them from further analysis.  

Efficiency of the ionisation process was determined via ammonium nitrate response factor calibration outlined by Jimenez 

(2003) and Allan (2003) and co-authors. Finally, collection efficiency (CE; Huffman et al., 2005) was evaluated in relation to 

mass derived from (twin) differential mobility particle sizer (DMPS; Aalto et al., 2001) after subtraction of black carbon (BC) 

given by an aerosol aethalometer (Hansen et al., 1984). The CE correction proposed by Middlebrook and co-authors (2012) 25 

was only applied to one (“March 2009”) out of the three datasets used in this analysis (see Sect. 2.2), with a small modification 

to the base CE suggested by the DMPS comparison, as applying it was actually found to slightly weaken the correlation 

between DMPS and AMS data instead of improving it. For the other two data sets (“May 2008”, “September 2008”) a constant 

CE was applied based on a linear least squares fit to best match the mass observed by the AMS against that derived from the 

DMPS. 30 

Finally matrices consisting of organic mass spectra and their estimated errors at all measurement points, averaged in data 

acquisition phase to 5 minute intervals, were extracted from the pre-analysis software. The error of the organic signals at each 

time and for each m/z ratio were estimated and propagated to the output matrices using the standard AMS error calculation 
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procedure (Allan et al., 2003; Jimenez et al., 2003) within the AMS ”Sequential Igor data Retrieval” (SQUIRREL; v.1.50) 

analysis software programmed in Igor Pro (Wavemetrics Inc, Lake Oswego, OR, USA).  

The two matrices, one for organic mass spectra and one for the error estimate were additionally pre-processed using the ”PMF 

Evaluation Tool” (PET; Ulbrich et al., 2009). The pre-processing features mainly take into account an additional correction to 

the error matrix from electric noise of the instrument, and allow the down-weighting of certain signals with poor SNR or those 5 

derived directly from m/z 44 (thus the variation in m/z 44 carrying too much weight in subsequent data analysis by default). 

The final mass spectral matrices were then used as an input data for the feature extraction algorithm, explained in Sect. 2.3.1. 

2.2 Site, measurement campaigns and identification of air pollution events  

The experimental data used in this statistical analysis exercise originate from long-term ambient air observations at the SMEAR 

II station in Hyytiälä, Juupajoki, Finland. The particulars of the measurement campaigns, environment and pollution events 10 

are described below. 

2.2.1 SMEAR II field site in Hyytiälä and the EUCAARI measurements 

As the practical example of the study is about applying our exploratory data analytical techniques to resolve the archetypical 

air pollution classes typical of a non-urban field site, we obviously strive for a high quality, variable and comprehensive set of 

data to refine and test the methodology. Our datasets of choice originate from the comprehensively documented and 15 

characterised station of SMEAR II in Hyytiälä, during the well-covered intensive measurement EUCAARI campaigns of 2008 

to 2009 (Kulmala et al., 2009). This already rather familiar data will offer a good testbed for the proposed methodology. Below 

both the station and the intensive measurement campaigns are described. 

Situated in Southern Finland (61°50’40"N 24°17’13"E) amidst subarctic pine forest, the Hyytiälä forestry station and the 

collocated ”Station for Measuring Ecosystem–Atmosphere Relations” (SMEAR II; Hari and Kulmala, 2005) offer an 20 

environment well representative of the vast taiga biome of Northern Eurasia. While not exactly pristine, the surrounding lands 

are rather unbroken homogenous production forests consisting mainly of typical Scandinavian and Russian taiga tree species; 

pines (Pinus Sylvestris) spruce (Picea Abies), and to a lesser extent birch (Betula Pendula, Betula Pubescens) and other 

deciduous broadleaf species (e.g. species from Populus, Alnus and Sorbus genera). Williams and co-authors (2011) estimate 

from land use statistics 94% of the local (5 km radius) and 90% in the nearest 50 km land area consist of forested land (including 25 

forest at seedling or sapling state). The nearest town of Orivesi (pop. 9500) lies 19 km due South of the station and the city of 

Tampere (pop. 213 000) c.a. 48 km to South-West. The surrounding county of Juupajoki is sparsely populated (5–10 

inhabitants per km2) and while it does have some local sources anthropogenic air pollution, such as household heating and 

cooking, they are generally very limited in terms of magnitude and geographical breadth.  

A notable exception to the absence of major anthropogenic pollution sources in the local environment are the two lumber mills 30 

and the wood pellet factory in the small village of Korkeakoski, 7 km East-South-East from Hyytiälä, and the other small 

sawmills further away, which do have a marked influence on the volatile organic compounds (VOC) concentrations and aerosol 
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population of Hyytiälä when the incoming airmass is advected over these mills (Eerdekens et al., 2009; Liao et al., 2011). 

Additionally, although the local aerosol sources such as passing vehicles, cooking emissions at the forestry station, nearby 

cottage, household, or sauna heating are negligible in large scale, they can momentarily affect the local air quality if emitted 

from close enough not to be diluted below the detection limits, and are thus detected by many of the SMEAR II stations more 

sensitive, high time-resolution instruments. 5 

Nevertheless, the preeminent cause of degraded air quality (relative to the background) at the station is the medium-to-long 

range air convection from industrialised areas of Southern Finland and especially the St. Petersburg region in Russia (Kulmala 

et al., 2000; Patokoski et al., 2015; Riuttanen et al., 2013) and even all the way from the industrial heartlands of (mostly 

Eastern) continental Europe (Niemi et al., 2009; Sogacheva et al., 2005). 

Independent of these anthropogenic components, the local atmosphere is always influenced by the ever present biogenic 10 

background aerosol and biogenic volatile organic compounds (BVOC). These exhibit their own seasonal and diurnal 

variations; BVOC’s concentrations are generally high both during afternoon due to emissions maximum and nighttime due 

trapping of emissions in the shallow, unmixed boundary layer (Rinne et al., 2005) and the aerosol biogenic particle mass also 

due to thermally driven condensation of semi-volatile species into existing seed particles. Due to the biological origin of the 

natural aerosol, the biogenic aerosol background is obviously higher in warmer months (e.g. Patokoski et al., 2014).  15 

The relative lack of local anthropogenic sources and their pronounced dependence on airmass origins, manifesting as 

observations of isolated aerosol and gas phase plumes, make Hyytiälä an ideal natural laboratory for studying the effects and 

characteristics of local and transported air pollution on the otherwise clean atmosphere over the expansive subarctic biomes. 

The EUCAARI study, conducted in years 2007 to 2010 aimed at examining the interactions between air pollution and climate 

change (Kulmala et al., 2009). The results have been widely published (see Kulmala et al., 2011, for a summary of findings), 20 

and include discussion on e.g. aerosol source apportionment and chemical ageing (Kulmala et al., 2011; Ng et al., 2010b). The 

intensive observation periods of the project took place in spring 2008, autumn 2008 and late winter 2009. The exact timeframes 

of the AMS measurements are available in Sect. 3.1, Table 1Table 1. 

An especially comprehensive analysis of the EUCAARI intensives’ AMS data is written by Crippa and co-authors (2014), 

providing us a reference point to compare our results with. Their analysis provides plausible estimates of aerosol speciation 25 

using consistent methodology, but due to the obvious limitations induced by the very large number of datasets and the 

somewhat rigid methodology of using general reference spectra from quite different types of environments for all the sites, 

and applying rather strict constraints to their allowed variability, it is possible for the analysis to miss out on some divergent, 

locally relevant phenomena. As an additional motive for this work, we aim to provide considerably enhanced prerequisite 

information for applying such a factor analytical methodology for an individual site, by observing the local anthropogenic 30 

aerosol characteristics and variation, and tailoring the input reference spectra and variation estimates accordingly.  
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2.2.2 Identification and selection of air pollution events 

The term “air pollution event” is in the context of this study defined loosely as a period of significantly increased concentrations 

relative to a stable background aerosol. This implies the pollution episode has a distinct beginning, a point in time when a 

relatively stable background aerosol is first complemented with a specific pollution aerosol, and an end, when the pollution 

vanishes, leaving a background aerosol similar in composition and mass to that observed before the event. During the pollution 5 

episode we assume the observed total aerosol is a two (or in some cases multi) component superposition of background and a 

chemically invariable “pollution plume” aerosols. Although there undoubtedly are aerosol dynamical processes ongoing 

between the two aerosol types, the background and the plume, we assume these to be of minor importance due to the generally 

short timeframes of the events. Some examples of typical pollution event types and durations are given in the results (Fig. 

1Fig. 1). 10 

When basing the pollution event definition on aerosol mass, while we can with confidence pick out the clearest instances of 

pollution, we run into problems when the increase in mass concentration approaches the magnitude of noise in the instrument. 

Also after long pollution events, lasting a better part of a day or longer, it is questionable if the background aerosol has remained 

the same and, if it is even possible to describe the changing pollution unambiguously. To address these issues of demarcation, 

we needed to define further conditions to separate real pollution from on one hand short instrument noise peaks and on the 15 

other, long periods of increased concentrations of gradually changing or evolving pollution aerosol. Hence the qualitative 

requirements of a pollution episode to be accepted for our analysis were set as follows: 

1. Temporary, distinct rise of organic aerosol mass concentration above background level. 

2. Being able to unambiguously separate the pollution plume from the background. 

3. The supposed pollution spectra needs to be physically reasonable. (i.eI.e. not a minor spike of instrument noise). 20 

The above criteria were taken as qualitative, and their fulfilment evaluated visually from the time series and mass spectra. Still, 

some rough guideline values for required plume features are given below, to convey the magnitudes of the thresholds used in 

our manual event screening.  

A rough estimate of 10% rise of plume peak mass versus surrounding background aerosol mass was taken as an approximate 

threshold for criterion 1 selection. The timescales considered ranges from pollution events of minutes (two data points, 25 

equalling ten minutes), to several days (maximum was 5 days, in the case shown in Figure 1 panel d). The first criterion can 

thus be considered lax and likely overly inclusive. Criterion two was a much stricter and in practice required the de-convolved 

pollution time series to exhibit little enough correlation between plume and background aerosols temporal behaviours: in the 

background time series a low level of jitter around mean background mass during the plume was in mild cases accepted, as 

long as it did not contain marked dips (anticorrelation) or hills (correlation) matching or mirroring the plume behaviour. The 30 

approximate limit was that the (anti)correlation should not affect the pollution factor mass by more than ±20% due to the mass 

“mis-apportionment” between plume and background. An example of such minor, but accepted positive correlation is seen in 
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Figure 1.d. Additionally, the pollution was required to vanish (average mass concentration < 10 % of factor peak mass) at the 

background periods before and after the event. The third criterion meant on a practical level, that all the spectra were required 

to not resemble white noise, contain only a single variable signal, or similar abnormal behaviour that would probably arise 

from technical issues or analysis artefacts (i.e. factor splitting). These stricter criteria (2 and 3) disqualified an estimated one 

third of the sample events fulfilling criterion 1. 5 

We note that stricter, fully qualitative, and preferably statistics based limits for event screening would certainly be preferential, 

and might enable automatic event identification. From a more quantitative analysis also the exact uncertainty induced in this 

sample selection process could be derived. Our rough estimate for the magnitude of maximum uncertainty is the 20% deriving 

mainly from the effect of mass mis-apportionment allowed in the correlation examination phase (criterion 2). Unfortunately, 

due to the chemometric focus of this study, a more exhaustive time-series based analysis of the phenomenon of air pollution 10 

plumes was not achieved here. 

It should also be noted, that while the first and third conditions could be examined using a simpler, non-statistical analysis 

method, like background subtraction, there are many pollution episodes where this would not suffice. While we could define 

the “pollution plus background” spectrum from the event period and the “background” spectrum as an average of background 

before and after the event, and subtract the latter from the previous, yielding the characteristic “pollution” spectrum; applicable 15 

e.g. in Fig. 1Fig. 1 (panel a), the second condition is much more problematic if the background varies, not even necessarily in 

a linear way, or several pollution plumes overlap (e.g. the case shown Fig. 1Fig. 1, panel d). This applies especially to events 

with long duration, from several hours to even a couple of days, and to events with multiple consecutive peaks, which still 

represent the same event (case in Fig. 1Fig. 1, panel b). To account for these complications we feel a more advanced data 

reduction method, such as the factor analytical approach presented in Sect. 2.3.1, is indeed required to be able to thoroughly 20 

evaluate which of the events’ satisfactiony our selection criteria.  

2.3 Statistical analysis tools 

As numerous studies have already been conducted on feature extraction and data dimensionality reduction in connection with 

AMS results (Ng et al., 2010a; Zhang et al., 2011), in this work we will focus more on classification and identification 

techniques suitable for AMS data. 25 

Based on a brief review of suitable data analytical methods, we selected the specific methods and algorithms used in this work: 

for pollution feature extraction we selected a model already tried and tested for AMS data, the Positive Matrix Factorisation 

(PMF; applying the ME-2 algorithm; Paatero, 1999) and for feature classification we use the elegantly simple and long-

established k-means clustering algorithm (MacQueen, 1967). While there exist reviews favourable for PMF as a data reducing 

/ receptor model for AMS studies (e.g. Hopke et al., 2016), no similar reviews were found to suggest a preferential clustering 30 

algorithm for AMS data. As k-means is often considered a “default algorithm” for approaching a multitude of classification 

problems, we selected it as such also for this AMS spectra classification exercise. While it will provide a baseline to compare 

future results against, k-means is probablymay not be the optimal algorithm for this purpose, and a comprehensive evaluation 
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of suitability different algorithms would certainly be beneficial in future spectra classification studies. While any selection of 

a method inevitably opens the door for various arguments on using a particular model, algorithm or parameter over another, 

we wish to emphasise the purpose of the study is not to find the ultimate or optimum method or to offer final answers, but 

rather serve as a first approximation, an opener for the development of more refined and better optimised classification 

methodologies and a baseline against which to compare more advanced techniques. 5 

In this work we will use PMF in a non-classical way, to (nearly) unambiguously extract characteristic air pollution spectra 

from air pollution plumesevents, which are often considered to be anomalous data and discarded from long time series analyses. 

As there often exists considerable variation among mathematically equally good PMF solutions, termed ”rotational ambiguity” 

(see supplementary material Sect. S.1), the issue of selecting the correct solution needs to be resolved. We propose that in the 

context of this work, selecting the PMF solution with non-correlating time series of plume and background can be used to 10 

identify the rotation that best separates the characteristic pollution factor, and thus to largely avoid the factor analytical models’ 

inherent weakness PMF’s Achilles heel ofof rotational ambiguity, which also afflicts PMF (Paatero et al, 2014). We will then 

demonstrate classification of the extracted spectra to aerosol types, using k-means clustering, and study the effects of simple 

data pre-processing options and basic metrics for spectral (dis)similarity on these classification solutions. 

2.3.1 Positive matrix factorisation (PMF) and its application to studying air pollution plumes 15 

In the analysis of aerosol mass spectrometric results, data reductive methods are put to good use for reasons explained in the 

introduction. To respond to the challenges and requirements posed by the AMS data, experts in statistics and modelling have 

updated many traditional analysis tools and developed new ones to answer the specific needs of this type of environmental 

data analysis. Perhaps the best known technique developed specifically for feature extraction from environmental, 

multidimensional data is the use of the positive matrix factorisation (PMF) model to de-convolve and interpret the enigmatic 20 

organic aerosol chemistry reflected by the often complex AMS mass spectra. 

The PMF technique developed by Paatero and Tapper (Paatero, 1997; Paatero and Tapper, 1993, 1994) is an iterative, factor 

analytical model to explain observations at a receptor site, i.e. time series (t) of variables (v) (in form of a size t×v matrix “X”), 

using a bilinear combination of temporal behaviour of loadings of factors (f in a t×f  matrix“G”) and the factors’ time-invariant 

profiles (an f×v matrix “F”), describing composition. If then E denotes the unexplained residual, the difference between the 25 

model (G·F) and the observations (X), the PMF model can be formulated   

𝑿(𝒕×𝒗) = 𝑮(𝒕×𝒇) · 𝑭(𝒇×𝒗) + 𝑬(𝒕×𝒗)         (1) 

where the subscripts indicate the sizes of matrices, corresponding to the number of points in time series (t), number of factors 

(f) and number of variables (v). While t and v are decided by the set of data available (and possible pre-processing), f is 

essentially a free parameter selected by the analyst, as is apparent from Eq. (1). Importantly, in PMF all the entries in each of 30 

these matrices are limited to positive values, corresponding to environmentally relevant loadings and profiles being non-
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negative. This considerably reduces the amount and variety of mathematical solutions to the modelling problem, and helps to 

effectively filter out some of the physically unrealistic, negative solutions (Paatero, 1997). 

One of the noteworthy improvements, summarised in detail by Paatero and Tapper (1994), over previous feature extraction 

methods such as principal component analysis (PCA; Hotelling, 1933; Jolliffe, 1986; Pearson, 1901) is, the PMF model does 

not blindly minimise E, but rather the weighted residual. This allows for better measure of the amount of variation not explained 5 

by noise from the experimental measurement, denoted by the standard deviation of variables, (a size t×v matrix “σ”). 

Therefore the objective function to be minimised, “Q”, can be written  

 𝑸𝒕×𝒗 = ∑ ∑  (
𝑬𝒊,𝒋

𝛔𝒊,𝒋
)𝟐𝒗

𝒋=𝟏
𝒕
𝒊=𝟏 ,            (2) 

i.e. the squared residual to be minimised is effectively scaled by the variance of each point in the matrix.  

In this work we utilise PMF in a non-standard way, to resolve the time series and mass spectral profiles explaining “anomalous” 10 

observations often discarded from a PMF analysis, the periods with air pollution spikes and plumes. The PMF analysis is 

performeddone for each air pollution event (defined in Sect. 2.2.2) individually,. altering tThe time window of the analysis 

period is selected  of the PMF analysis around the the event to include both the pollution episode and some background before 

and after the event. The advantage of studying this type of relatively short term phenomena is that we can easily evaluate 

fulfilment of the criteria outlined in Sect. 2.2.2, and we can additionally discriminate between mathematically equal solutions, 15 

mostly evading the issue of rotational ambiguity.  Essentially knowing beforehand what the (qualitative) temporal behaviour 

of a pollution and background factors should be like, (i.e. the time series of the factors should be uncorrelated), we explore the 

number of factors and the solution space to select the solution best fulfilling our criteria for a physically correct solution. 

Adhering to these criteria, we strive to minimise the ambiguity related to our selection of solutions, as well as considerably 

reduce the effect of subjectivity with regard to selection of solutions. 20 

The uncertainties and limitations in PMF are related to measurement errors, uncertainty in data and modelling errors of the 

PMF bilinear model and rotational ambiguity of the PMF results (Paatero et al., 2014). Rotational uncertainty is inherent to all 

linear algebraic, factor analytical models (Henry, 1987), and arises from existence of several model solutions of mathematically 

equal rate of explanation of the observations. Notably rRotational ambiguity was decreased, or even eliminated, as the amount 

of zero values available in the data increases (Anderson, 1984; Paatero and Hopke, 2009), making this type of plume modelling 25 

by PMF propitious (as the background regions contain ample observations close to zero concentrations of plume chemical 

constituents). The topic of rotational ambiguity is discussed in some more detail, and further references available in the 

supporting material (Sect. S.1). The modelling errors in PMF relate to simplifications and unrealistic assumptions (e.g. 

unchanging factor profiles in PMF, translating to neglecting the effect of atmospheric chemistry on mass spectra). Paatero and 

co-authors (2014) note that the effect of measurement (random) errors along with rotational uncertainty decrease (in cases 30 

where there are more zero values available in larger data) with increasing data set size, while the modelling errors are 

exacerbated. 
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Regarding the PMF uncertainties overall, we propose aerosol plume and pollution event modelling of AMS data by PMF 

generally decreases analysis uncertainty compared to analysing the full time series, specifically in our case of high SNR data 

with small random errors. The higher rotational ambiguity induced by having a smaller set of data is on the other hand offset 

by the abundance of zero values in concentrations, while the modelling errors from the neglect of chemistry are decreased due 

to shorter analysis time windows. Additionally, selection of solution and rotation is facilitated by the external, physical criterion 5 

of minimal correlation of factor time series. We propose that using the [modulus of] correlation minimum as a guideline for 

rotation selection resolves the physically correct rotation (source-wise differentiation of factors) from among the ones available 

in the solution space. 

An inherent feature of factor analytical receptor models is also that they are unable to separate components with high degree 

of correlation in profiles (spectra) or loadings (mass concentration) (Henry et al., 1984). This problem of multicollinearity 10 

hinders or even prevents the extraction of spectra from individual sources that are (close to being) collocated. In such a case a 

mixed airmass, as an exampleexample.g. one transported from an urban location with multiple sources (e.g. traffic, cooking 

and biomass combustion) would be resolved as a single factor, the characteristic spectra which would be a linear sum of the 

actual, single sources. A sSimilar effect, profile-wise, occurs upon extensive oxidation of organic aerosol components – the 

spectral similarity of organic aerosol increases upon atmospheric oxidation, leading to difficulties in differentiating between 15 

highly oxidised aerosol types, even if they originate from chemically distinct emissions (Ng et al., 2010b; Zhang et al., 2011). 

Both of these effects are likely to impact negatively on data reduction achieved by PMF and can carry over to clustering, which 

by default assumes discrete or de-convolved samples.  

Nevertheless, we should be warranted in in expecting that not all the sources beingare similarly collocated, and thus some 

extracted samples indeed representing “pure” spectra from single sources (e.g. a passing car or an individual aerosol plume 20 

from a single smokestack close by). This would allow identification and proper handling of the mixed plumes within the 

framework of sample classification and weighting, covered in the next Section (2.3.2 and 2.3.4). We will evaluate and address 

these issues further in light of results in Sections 3.4 and 3.6. 

2.3.2 The k-means algorithm 

K-means clustering is one of the most popular, widely used and well known classification algorithm developed already back 25 

in 1950’s and 60’s (Ball and Hall, 1965; MacQueen, 1967; Steinhaus, 1956). It is a simple, iterative, partitioning clustering 

algorithm that partitions a set of objects in multi-dimensional space into pre-set number (k) of clusters based on a distance (or 

dissimilarity) metric. For each cluster resulting from any partitioning solution we can calculate a quantity measuring the 

cluster’s “cohesion”, a within cluster sum of squared distance between the calculated cluster centre µn (of a cluster cn) and all 

member objects xi assigned to it. In Euclidean space we get: 30 

 𝑱(𝑪𝒏) = ∑ ‖𝒙𝒊 − µ𝒏‖
𝟐

𝒙∈𝑪𝒏 .          (3) 

The k-means algorithm tries to minimise this quantity 𝐽(𝐶𝑛) summed over all clusters k, which we denote J(C): 
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𝑱(𝑪) = ( ∑ 𝑱(𝑪𝒏)).
𝒌
𝒏=𝟏           (4) 

The iterative procedure of k-means is briefly described in supplementary information (Sect. S.2). Upon convergence on a 

solution (i.e. global or local minimum of 𝐽(𝐶𝑛)) the output of the algorithm gives the user the final assignment of points to 

clusters, the cluster centroid locations c as well as distances from each data point to all other points and the cluster centres. 

These distances can be used to evaluate the quality of both the entire clustering solution and the cohesion and variance of 5 

individual clusters. It is important to note k-means converges on any minimum of Eq. (4) found, regardless of if it’s global or 

local. Finding the global minimum is not guaranteed but can be made more probable by performing repetitive clustering with 

different initialisation for starting cluster centres and selecting the result with lowest J(C). 

Further discussion on selection of user parameters for k-means initialisation and cluster numbers is presented in Sect. 3.2 and 

in the supporting material (Sect. S.2). For this analysis we used k-means algorithm applying an  improved initialisation method 10 

(kmeans++; Arthur and Vassilvitskii, 2007), and the number of clusters (k) was kept as a free parameter within a range of k = 

2 to 20. The selection of dissimilarity metric parameter is discussed below. 

2.3.3 How to define (dis)similarity of mass spectra? 

Among the most important questions in clustering is the selection of measure for ”distance” or ”(dis)similarity” between two 

objects, a topic where there are both theoretical (Anderberg, 1973) and experimental (e.g. Stein and Scott, 1994) considerations 15 

to be taken into account. Fortunately for the choice of metric we have plenty of recommendations available for our selection: 

there are several guidelines and recommendations (e.g. Cormack, 1971; Gordon, 1999; Kaufman and Rousseeuw, 2009) 

available of which similarity metric best to apply for various types of problems, including problems related of identification, 

comparison and classification of mass spectra similar to ours. As an experimental basis for the metric comparison we cite the 

informative and thorough study by Stein and Scott (1994) of NIST Mass Spectrometry Data Center, the conclusions of whose 20 

are covered in wider detail further below. Importantly, the distance metric selected needs to be mathematically compatible 

with the type of variable on hand. This point in question is addressed in the supporting material Sect. S.3.  

Some common approaches available for and often used as distance (d) metrics include:  

1) The squared Euclidian “distance”: 

𝒅(𝒖, 𝒗) = ∑ ‖𝒖 − 𝒗𝒏‖
𝟐𝒏

𝒊=𝟏           (5) 25 

2) The cityblock distance (or “Manhattan distance”; Johnson and Wall, 1969; Carmichael and Sneath, 1969)  

𝒅(𝒖, 𝒗) = ∑ ‖𝒖 − 𝒗𝒏‖
𝒏
𝒊=𝟏           (6) 

3) Cosine “distance” (Sokal and Sneath, 1963): 

𝒅(𝒖, 𝒗) =  𝟏 −
𝒖∙𝒗

‖𝒖‖‖𝒗‖
          (7) 

4) Correlation “distance” (Fortier and Solomon, 1966; McQuitty, 1966; Sokal, 1958) 30 

 𝒅(𝒖, 𝒗) = 𝟏 − 
∑ (𝒖𝒊−�̅�)(𝒗𝒊−�̅�)
𝒏
𝒊=𝟏

√(∑ (𝒖𝒊−�̅�)
𝟐𝒏

𝒊=𝟏 √(∑ (𝒗𝒊−�̅�)
𝟐𝒏

𝒊=𝟏

,        (8) 



15 

 

where u and v are n dimensional vectors corresponding to objects (with the subscript n here corresponding to the m/z variables), 

and �̅� and �̅� respectively the mean of variables in u and v. Although often called “distances”, the squared Euclidean, cosine 

and correlation measures are strictly speaking not ”distance metrics”, as they violate the triangle equality required of a proper 

distance metric, and should be considered instead a measures (metrics) of dissimilarity between a pair of objects (Anderberg, 

1973; Spath, 1980). Other metrics obviously exist as well, but as a comprehensive review is unfortunately out of the scope of 5 

this work, we limited our comparison to these common metrics available in our analysis software (Matlab 2015a, MathWorks 

Inc., Natick, MA) standard functionality. 

Additionally to experimentally evaluating the metrics, Stein and Scott (1994) recommend data weighting methods such as 

signal intensity scaling and mass scaling to be examined. They find modest improvement of a couple of percent in accuracy in 

the dot product (cosine) and Euclidean based matching, when scaling the signal intensities by their square root to emphasise 10 

smaller signals, or when scaling all the signals by a power of their “mass” (i.e. m/z ratio), placing more weight on the higher 

m/z signals as a pre-processing measure. For intensity scaling the weight given to a variable (signal at m/z) can be expressed 

as 

  𝐰𝐞𝐢𝐠𝐡𝐭𝐢𝐧𝐭𝐞𝐧𝐬𝐢𝐭𝐲 = √𝐬𝐢𝐠𝐧𝐚𝐥
𝐬𝐢  ,        (9) 

where si is a (root function) intensity scaling factor. For mass scaling the variable weights are given by 15 

weightmass =  (
𝐦

𝐳
)
𝐬𝐦

,         (10) 

where sm ( > 1) is a mass scaling factor for the variable locations (m/z). We also test these in connection to our data and report 

the results in Sect.3.2.3.  

Although the theory and literature seem to favour the cosine (dis)similarity as a measure of mass spectral objects’ association 

to each other, we ran several comparisons using different parameters for k-means++, and present the results in Sect. 3.2. To 20 

objectively evaluate and interpret the classification results, we additionally pursued a metric, other than “expert opinion”, for 

measuring the “quality of a solution”. Some alternative evaluation options are discussed and our method of choice, the 

silhouette examination, is presented below. 

2.3.4 Silhouettes in evaluation and interpretation of clustering solutions 

To evaluate, and to an extent validate, the clustering analysis we need an objective, diagnostic metric for comparison of 25 

different results. There are several alternatives available, four of which we tested in relation to this work. We considered the 

four evaluation criteria available in the Matlab software statistics toolbox (R2015a), namely the “silhouette”. (Rousseeuw, 

1987), ”Calinski–Harabasz” (Caliński and Harabasz, 1974), ”Davies–Bouldin” (Davies and Bouldin, 1979) and ”gap” 

(Tibshirani et al., 2001) criteria, the quick evaluation results of which are presented in supporting information S.4, Fig. S.2 to 

S.4). 30 

The downside of the three latter methods tested is that they do not (at least unmodified) accept all non-distance dissimilarity 

metrics such as the cosine (dis)similarity. For squared Euclidean distance, which was compatible with the evaluation functions, 
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the methods yield mixed results. Upon examining the k-means solutions as described below in the results section, as well as 

based on theoretical considerations (Sect. 2.3.3, S.3) we feel the use of non-Euclidean metric may indeed be recommendable, 

and that the silhouette criterion does manage to convincingly identify the number of “natural“, physically reasonable aerosol 

types (clusters) – therefore we will opt for using the silhouette value criteria detailed by Rousseeuw (1987) in our evaluation 

of the clustering results of this work. 5 

Rousseeuw (1987) defines for each object i, belonging to cluster A and having B as the nearest neighbouring cluster, a 

silhouette value of s(i): 

𝒔(𝒊) =  

{
 
 

 
 𝟏 −

𝒂(𝒊)

𝒃(𝒊)
;  𝒇𝒐𝒓 𝒂(𝒊) < 𝒃(𝒊)

𝟎;  𝒇𝒐𝒓 𝒂(𝒊) = 𝒃(𝒊)
𝒃(𝒊)

𝒂(𝒊)
− 𝟏 𝒇𝒐𝒓 𝒂(𝒊) > 𝒃(𝒊)

 ,         (11) 

where a(i) is the average distance to all other objects of the same cluster (A), and b(i) is the average distance to all objects of 

the closest neighbouring cluster (B). For a singleton cluster, containing only one object, a(i) is not well defined. Rousseeuw 10 

puts s(i) to zero in this case,  but other conventions exist that use a silhouette of one for singletons. 

The silhouette value has some convenient properties for interpreting the quality of the clustering assignments that can be 

applied on single point, cluster and total solution levels. When s(i) is close to unity, the within cluster dissimilarity a(i) is much 

smaller than the between cluster dissimilarity b(i), indicating the point is very likely correctly grouped, and conversely, 

classifying the point the next nearest cluster would be a much poorer choice. On the other hand if s(i) is close to -1, it signifies 15 

the next best clustering choice would actually be a much better one than the current assignment, i.e. the point is on average 

more similar to the points in the neighbouring cluster than to the points in its assigned cluster. This implies the point is likely 

misclassified. If s(i) is close to zero, the point is situated between clusters, and it is not at all clear to which it belongs to – its 

dissimilarity to both of the groups is about equal (a(i) ≈ b(i)). 

The average s(i) of points in a cluster, average silhouette width, expresses if a cluster is clear cut or weak: the higher the 20 

average cluster silhouette width, the more pronounced the cluster is. A graphical representation displayed in supplementary 

information (Fig. S.5). The overall silhouette width is the average s(i) of all the objects, and can be used a parameter to judge 

the overall quality of the clustering solution. Maximising overall silhouette value can be used to evaluate the ”natural” number 

of clusters in the data (Rousseeuw, 1987), an approach we will also utilise in this work. Some further notes on silhouette values 

can be found in supplementary material (Sect. S.5). 25 

2.3.5 Posterior processing – weighting of cluster centres and deriving within cluster variation 

The k means algorithm yields a list of assignations of all objects to clusters, and also provides the cluster centres defined as 

the arithmetic mean of the objects within the cluster. These artificially constructed centres can be used to denote the average 

object within that cluster. However, this approach is subject one of the main weaknesses of k-means, the susceptibility to 

outliers, borderline cases and outright mis-classifications also affecting the cluster centre location equally as the objects that 30 
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would be considered very appropriately clustered. These derive directly from the simplistic functionality of the k-means 

algorithm (Sect.2.3.2), and therefore there is little to be done to alleviate the issues outside of selecting another algorithm (with 

its own unavoidable weaknesses).. 

Nevertheless, we do have additional, diagnostic information available to us outside of the simple list returned by the k-means 

algorithm; in form of the silhouette value information calculated from the assignation listing combined with the dissimilarity 5 

matrix. In this work we aim to utilise the statistical information available to us to the fullest, and in the spirit of this goal we 

apply a simple post-processing step to derive weighted centroid objects to represent the groups of objects in a more robust, 

classification error resistant way.  

Obviously tAssuming the he objects nearer the cluster centre are a better representation of the class than the ones on the edges, 

or indeed the ones likely misclassified,; ergo they should carry more weight when a typical representative of the class is 10 

selected or constructed. In this work we construct ”characteristic” centroid objects, i.e. spectra, by taking a weighted arithmetic 

mean of the cluster members instead of the original, unweighted sample mean. As weight we use the silhouette values 

indicating the confidence we have on the “representability” of the object. Any likely misclassified objects with negative 

silhouette values have their weight set to zero. The weighted cluster centroid Cw can be expressed as 

𝐶𝑤 = 
∑ 𝑢𝑖𝑤𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

;   𝑤𝑖 = max(0, s(i)),        15 

 (12) 

where ui are the cluster member objects and wi the respective weights, i.e. the non-negative silhouette values s(i) obtained from 

Eq. (11). Similarly we obtain a weighted standard deviation σw for a measure of the within-cluster variation. With Bessel 

correction (Gauss, 1823) for small samples’ variance we can write for the weighted standard deviation:  

 𝝈𝒘 = √
∑ 𝒘𝒊(𝒖𝒊−𝑪𝒘)
𝒏
𝒊=𝟏

∑ 𝒘𝒊
𝒏
𝒊=𝟏 −

∑ 𝒘𝒊
𝟐𝒏

𝒊=𝟏
∑ 𝒘𝒊
𝒏
𝒊=𝟏

.          (13) 20 

The change in mass spectrum induced by the weighting was determined to be extremely low, as can be seen comparing the 

unweighted and weighted spectra, exemplified in supporting material, Fig. S.6. For the final spectral solution presented in this 

work, the similarity (rs
2, [Pearson] coefficient of determination for mass-scaled spectra) between the scaled and unscaled 

centroids was found to range from 0.994 to 1.000), confirming that weighting by silhouette does not markedly alter the resulting 

spectra.  25 

Overall the variabilities represented by the weighted standard deviations are generally smaller than the unweighted ones, due 

to the down-weighting of outlier objects’ influence. The aim ofBy this post-processing we hopeis to derive more representative 

”characteristic mass spectra” for the pollution types, and to decrease the error from the ambiguity of the classification. This 

should, we hope, allows us to instead derive plausible estimates for the actual natural variation within a specific aerosol type. 
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3 Results & Discussion 

In the following chapter, we present some examples of pollution spectrum extraction (Sect.3.1), and evaluate the similarity 

and weighting parameters used for their subsequent grouping (Sect. 3.2). We then offer an aerosol chemical interpretation for 

the different aerosol types (clusters) for the grouping we consider most realistic (Sect. 3.3 and 3.4) and further try to understand 

and interpret the meta-structure of clustering solutions, i.e. how the solutions relate to each other, what drives them, and how 5 

they are related to divisions in chemical characteristics (Sect. 3.5). Finally some basic estimates of natural variability within 

the pollution types are given in Sect. 3.6. 

3.1 Extraction of pollution spectra 

Although time consuming, applying the pollution feature extraction approach (described in Sect. 2.3.1) to the identified 

pollution events (Sect. 2.2.2) allowed us to extract the pollution factors’ spectral profiles. Applying our simplistic selection 10 

criteria to find the physically most correct rotation among the solutions, we hope to have minimised the rotational ambiguity, 

as well as the need for subjective choices by the analyst. Following the procedure described in Methods, we managed to extract 

a total of 81 characteristic mass spectra, corresponding to as many unique pollution plumes. Some supporting information, 

namely the local time and above canopy wind direction taken at the time of peak mass concentration was recorded for all 

plumes. The background spectra were not further considered in this analysis. The per-campaign distribution of the successfully 15 

extracted pollution events as are presented in Table 1Table 1. 

Some examples of factor time series of various types of accepted extractions are given in Fig. 1Fig. 1, illustrating the 

considerable (temporal) variability among the types and conditions of pollution events, e.g. from a single plume with stable 

background, (Panel 1a); to very complex event with multiple overlapping plumes (Panels 1d and 1e). 

3.2 Evaluation of clustering parameters and pre-processing options 20 

As discussed in Sect. 2.3.2, there are several options for the standard k-means clustering, particularly in terms of data pre-

processing, selecting the number of clusters and the distance metric, but also in specifying the number of repetitions, type of 

clustering initialisation and treatment of “empty clusters’ during the iteration process. In the course of data analysis, we 

explored the effects of these parameters and pre-processing options on the quality of our clustering solutions and their general 

structures.  25 

3.2.1 General clustering parameters 

We note that using a low repetitions number (< 10) does not reliably return the exact same, optimal solution, so there seem to 

be several similar, but non-identical, local minima different from the global one, for k-means to convergence on. A hundred 

or a thousand repetitions already seem to offer consistent and reproducible results. In evaluating the effects of pre-processing, 
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a thousand repetitions were used and in calculation of the results selected for detailed chemical evaluation (Sect. 3.4), the 

algorithm was run ten thousand times.  

Clustering initialisation method was not found to notably affect our results in any way, at least with generally high number of 

repetitions used. Due to literature recommendation based on comparison (Shindler, 2008) the ”k-means++” initialisation by 

Arthur and Vassilvitskii (2007) was thus selected for use. 5 

We set the ”empty cluster action” additional option, i.e. what happened if an empty cluster is created in the course of the 

iterative process, as ”singleton”, meaning the point with highest distance score to its cluster centre was assigned as its own 

cluster. This forces the solution to always conform to the original cluster number. Generally, an empty cluster was produced 

in much less than 1% of all the total iterative processes, so we do not consider this to have affected the overall result, especially 

since k dependence of solution quality was in any case also studied. 10 

The selection of cluster number k is unquestionably of high importance, as is the selection of dissimilarity metric (Anderberg, 

1973; Spath, 1980; Hastie et al., 2005), so they were more thoroughly and quantitatively investigated. Since the above 

mentioned parameters were generally found to have a major effect on the clustering outcomes, they were not fixed, but kept 

as free parameters throughout the rest of the testing phase. This allowed us to observe if the pre-processing procedures’ effects 

would be k or dissimilarity metric dependent. The results of applying the commonly used pre-processing options, namely the 15 

intensity and mass scaling procedures recommended by among others Stein and Scott (1994), Horai and co-workers (2010), 

are presented below.  

3.2.2 Solution quality without pre-processing 

Having no definitive preconception on the number of clusters, we evaluated clustering results for a range of k’s. (k = 2…20) 

for all the metrics studied (squared Euclidean [“sqEucl” or “Euclidean”], cityblock / Manhattan [“city”], cosine [“cos”], 20 

correlation [“corr”]). Using total solution silhouette value as a solution quality indicator, we search for the maxima (or clear 

elbows) in the silhouette results (Fig. 2Fig. 2), implying particularly favourable solutions. 

Based on the silhouette value comparison for the unscaled data (Fig. 2Fig. 2) we conclude the following: the cityblock distance 

metric seems to perform poorly compared to the other three alternatives. The squared Euclidean, correlation and cosine 

methods are more or less equal in their silhouette quality, making the selection based on this test alone a difficult task. We also 25 

find the silhouette values for the latter methods between values of 0.25 and 0.50, suggested by Kaufman and Rousseeuw (1989) 

as a region of ”weak structure” in the set of data, and calling for use of additional methods to probe if the implied structure is 

real or artificial. We additionally note there is clear variation in silhouette values as a function of k, indicating lower range (k 

< 11) solutions are more likely to correspond to natural divisions in the data than the high range (k > 11). In the following tests 

we therefore decided to include the range of k = 2 to k = 12. 30 

For additional visualisation, similar diagnostics for when (not metric specifically optimised) mass scaling is applied are also 

presented in Fig. 2Fig. 2. The example mass scaling factor sm of 1.36, selected for the briefly illustrating the effect from scaling, 

was selected based on a more comprehensive review presented below. 
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3.2.3 Solution quality with mass and intensity scaling 

As pre-processing options we also tested the two methods recommended by Stein and Scott (1994), namely intensity and mass 

scaling of the data variables, as explained in Sect. 2.3.3, Eq. (10). Similar to Stein & Scott, we also explore values for si ranging 

from 1…2 and sm = 0…3, with a step of 0.01 to pinpoint any maxima and evaluate the stability of the results with regard to 

minor changes in scaling values. The resulting 2-d field of solution silhouette values is shown in Fig. 3Fig. 3, and can be 5 

thought of as an extension to Fig. 2Fig. 2, which corresponds to the situation for scaling factors sm = 0 and si = 1. Generally, 

the mass scaling processing was found to enhance the cluster-like structuring of the data, enabling improved differentiation 

between groups. It seems also there is no single value of sm that would maximise the structure, but the optimum scaling factor 

value depends on number of clusters (k). Even so, sm values between 1 and 2 seem to produce the highest silhouette values for 

all metrics. If opting for the use of a single sm value for similar AMS data, we therefore suggest based on sm distribution of  10 

solutions shown in Table 2Table 2, an sm of 1.36 ± 0.24 (mean ± stdev) to be examined as a starting point. When comparing 

the scaled result silhouettes from non-pre-processed data, the improvement is non-homogeneous, and seems to specifically 

enhance some solutions over others, as illustrated in supporting material Fig. S.7.  

Similarly, intensity scaling was charted for k = 2…12 and si = 0…3. However, unlike mass scaling, intensity scaling only 

seems to deteriorate solution quality for our AMS set of data, for the entire range of si values tested (0 to 1). Effect of intensity 15 

scaling is illustrated in supporting material Fig. S.8 and S.9.  Based on this result, we would not recommend intensity scaling 

for a data set of this type without further results to the contrary. 

Finally, we tested the combination of mass and intensity scaling, but found the results worse than for mass scaling alone. We 

additionally tested two methods with similar aims, namely omitting the low end mass spectrum < 45 Th and down-weighting 

m/z 44 related signals, similarly to the standard procedure in PMF matrices pre-processing explained in Sect. 2.1.2. While 20 

omission of low masses seems to generally improve classification considerably (supplementary information Sect. S.3. and Fig. 

S.1), we find the method too arbitrary to recommend, and find mass scaling can be used to produce similar results with better 

founded, more elegant methodology. The tests on m/z 44 down-weighting were inconclusive at best, and would require further 

testing to be validated as a procedure with positive effects on clustering structure. 

In conclusion of the pre-processing methods, we find mass scaling is the only method to consistently (but non-homogeneously) 25 

enhance the data cluster structure. Whether the other procedures mentioned above might under certain circumstances or 

specific combinations also prove beneficial, is a question left for a further, more detailed study. In the following, we will 

overview the silhouette maxima obtained using variable mass scaling, as presented in Fig. 3Fig. 3, and the information it 

reveals on the general structures within our set of data. 

3.3 Overview of the clustering results 30 

Utilising the optimised parameters and pre-processing methods, set based on the test results, we are yet left with a number of 

plausible solutions of mathematically almost equal quality. These solutions, shown as the bright silhouette maxima in Fig. 
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3Fig. 3, are connected to various structures in our set of pollution data. In the following we will try and interpret these data 

structures both from mathematical and physicochemical viewpoints. 

Beginning with an overview of the favourable solutions of highest mathematical quality, we located and tabulated the 

maximum silhouette values obtainable for each dissimilarity metric and each number of clusters k. Examining the 

corresponding silhouette value distributions (supplementary material, Fig. S.10), we set 0.45 as the prerequisite value for a 5 

solution to be included in this comparison. This translated to 12 solutions (i.e. maxima for the solution regions with silhouette 

> 0.45) being selected for a detailed, manual examination and interpretation. The top solutions’ silhouettes and k are presented 

in Table 2Table 2. 

A brief overview of the k values associated with highest silhouette solutions k (Fig. 3Fig. 3) suggest our set of objects would 

best be divided either in  10 

a) two distinct classes, emerging from the original data without any mass scaling, or,  

b) a more complex classification leading to 6 to 10 separable classes when optimised mass scaling is applied. 

We hypothesise these alternative classifications correspond to different types of structures present in the data – a two cluster 

structure would imply separation based on a dominant, binary-type variable, or a two-part division along a single axis (i.e. 

dimension, property), whereas six to ten clusters likely imply divisions along more than one dimension. In the following we 15 

first investigate and interpret the binary (two cluster) structure (Sect. 3.3.1), and subsequently aim to explain the finer, multi-

dimensional structures and classifications reflected by the six to ten cluster solutions (Sect. 3.3.2). 

3.3.1 The two cluster solution — separation by oxidation state  

The two cluster (sm = 0) solutions, obtained with both ”cosine” and ”correlation” metrics, produce the exact same bi-cluster 

division of objects. To understand the reasoning of this separation, we need to examine the aerosol chemical differences 20 

between the two classes implied by the division.  Constructing the mass spectra from weighted cluster centres (Fig. 4Fig. 4) 

we interpret the main chemical difference between the groups is the age (i.e. oxidation level) of the aerosol. Approximated 

oxygen-to-carbon, “O:C”, ratios can be calculated using the Aiken “ambient” parameterisation (Aiken et al., 2008) of 

𝑶:𝑪 (𝒇𝟒𝟒) = 𝟑. 𝟖𝟐 ∗ 𝒇𝟒𝟒 + 𝟎. 𝟎𝟕𝟗𝟒,         (14) 

where f44 is the fraction of total signal observed at 44 Th. This would yield for cluster A an O:C of 0.51, branding it 25 

intermediately aged and semi-volatile (Canagaratna et al., 2015; Ng et al., 2010b), whereas cluster B’s O:C of 0.16 would 

imply it consists of fresh, hydrocarbon dominated aerosol pollution cases situate it oxidation-wise somewhere between HOA 

and SV-OOA (Aiken et al., 2008; Jimenez et al., 2009; Ng et al., 2010b).  

It should be noted that without mass scaling this separation is thus the most natural one (with silhouette maximum at k = 2; 

Fig. 2Fig. 2). The result is rather unsurprising considering the several low m/z (< 45 Th) oxidation-related signals (16 to 18, 30 

29, 44 Th) usually dominating the signal fractions’ distributions. However, as the result holds also for when down-weighting 

m/z 44 Th derived signals, as mentioned in Sect. 3.2.3, we believe the two-factor solution is an actual, true structure in the 
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data, as opposed to an artefact from the AMS fragmentation table calculations. We therefore conclude the two-cluster structure 

represents aerosol classification into very fresh (cluster B) and relatively more aged (cluster A) groups. 

3.3.2 Interpreting the underlying structures of higher order (k = 6…10) solutions  

As the number of plausible solutions with similar magnitude (0.45 to 0.49) silhouettes for the pre-processed set of data is larger 

than just a few, we will not thoroughly describe all the solutions here or at this point claim one is superior to the others, but 5 

instead try to formulate a synthesis of the results, and identify the common features exhibited by the solutions. 

Upon looking at all highest total silhouette value the solutions, excluding the two cluster solutions covered above and 

inspecting the mass spectra derived from the cluster centroids, we can find several analogous characteristics shared by 

essentially all the solutions. Presenting an overview of the k = 6…10 solutions in a tabular format (Table 2Table 2), we can 

begin to understand the underlying structures in common: firstly, there seem to be two ever-present, clear-cut clusters 10 

(silhouettes > 0.5) with high within-cluster silhouettes of 0.55…0.66 and 0.47…0.57, denoted here ”strong” clusters (S-I, S-

II), with minor variation in cluster population size or the resulting centroid spectra.  

Secondly, there seems to always be a group of two to three ”outlier” clusters (O-I to O-III), each with very unique individual 

mass spectra. Here we brand them outlier groups due to their small cluster populations (n = 1…6) and the striking dissimilarity 

to other observed groups (additionally quantified in Table S.1). Examining the changes in within-cluster silhouettes, we find 15 

the inclusion of the third, singleton outlier (O-III) as its own class is a marked improvement to the solution in terms of cluster 

cohesion – a change also reflected in enhanced total solution quality when O-III is included. 

The remaining clusters are much less pronounced (within-silhouettes typically < 0.4), and much less stable as k is increased – 

they clearly present the most challenge for this type of an analysis. For the purposes of easy reference we term them the ”weak” 

clusters (W-I to W-III) 20 

Observing the weak clusters’ composition, they seem to form a structure independent of that of the clear-cut and outlier groups; 

the sum of population over the weak clusters is rather invariable (n =  32…35), and only in very few cases is there disagreement 

among the solutions in assigning an object into strong versus weak clusters. This potentially suggests the weak structure forms 

a “supercluster” distinct from both the strong and the outlier clusters. The inner cohesion of this supercluster, however, seems 

low, as evidenced by the low within-cluster silhouettes and the interchangeability in assignments into sub-clusters between 25 

equally good total solutions. 

To examine the effect of outliers in data, we additionally tested excluding the outlier and/or the strong clustered objects and 

re-running the analysis for the remaining data, but the results were found to revert to an analogous situation with the same 

problem of silhouette-wise ambiguity and low inner cohesion of the weak sub-clusters. 

From examining the within-cluster silhouette values of the clusters we would be inclined to look primarily to the Table 2 30 

solution at k = 8 for correlation metric solution, due to highest mathematical solution quality (silhouette 0.49) and reasonable 

(silhouette > 0.25) cohesion for all of the weak clusters. However, at this point we feel to have reached the limit of what we 
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can conclude based on the silhouette values alone, and have to also consider the aerosol chemical interpretability of the 

solutions. 

3.4 Aerosol chemical interpretation of clusters  

As ever when applying inherently mathematical algorithms such as PMF2/ME-2 and k-means++ to a physical or chemical 

experimental data, it is important to remember the algorithms are in the end only analytical tools that in the best case help in 5 

answering a particular question or gaining further understanding of the data. Their ultimate usefulness is therefore measured 

by the interpretability and applicability of the answer in the physical or chemical context, as much as its methodological 

robustness and statistical (un)certainty. In this work the final test of our methodology is to see if we can understand the resulting 

cluster assignations in the context of aerosol chemistry and to interpret the clusters as air pollution types. 

When interpreting aerosol mass spectra measured from ambient air, it should be kept in mind the aerosol is not only the product 10 

of the primary emission or nucleation, but also the physicochemical processes taking place post-emission. These include 

notably condensation and evaporation of trace gases, as well as interaction with other aerosol types. Particularly it has been 

suggested the interactions between on the other hand primary and secondary aerosols, and likewise anthropogenic and natural 

ones and their precursors, may play a considerable role in forming and transforming the atmospheric aerosols we observe (e.g. 

Weber et al., 2007; Carlton et al., 2010). These interactions are poorly understood and usually not taken into account when 15 

analysing ambient observations. It seems likely, though, that these effects would hinder attempts of classification by smearing 

out differences between aerosols from various different sources. 

Also, the issues caused of collinearities in loadings (i.e. PMF’s inability to separate collocated single sources, but rather 

produce an extraction containing a linear combination of the single sources) may produce samples with inadequate 

deconvolution, which would exhibit a superposition of spectral features of many aerosol source types. In the clustering phase, 20 

these samples would be expected to show up as between-cluster objects, falling between the “pure” samples, and exhibiting 

low silhouette values. The posterior processing (Sect. 2.3.5) we applied should thus down-weight these mixed observations, 

diminishing their influence on the final cluster centroids. The collinearity problems caused by spectral profile similarities, on 

the other hand, is harder to resolve. In case of high similarities between spectral profiles from various combustion processes 

(HOA vs COA vs BBOA; Mohr et al., 2012) as well as the tendency of most highly oxidised organised aerosols to closely 25 

resemble each other (Ng et al., 2010b; Zhang et al., 2011), the low dissimilarities between the objects hinder robust 

classification even if PMF manages to correctly extract these spectra from the background. In the end, differentiation between 

highly similar spectra comes down to the quality of a) the classification algorithm, b) dissimilarity metric and c) data weighting 

optimisation. Although our algorithm selection was in this work fixed, the parameter optimisations described in Sect. 3.2 

should provide us an improved “resolution” for examining the aerosol chemical classes and structures in the set of data.    30 

For AMS data we are fortunate to have access to years of research by the worldwide AMS users’ community and the numerous 

studies reporting compositions of various aerosol types, which significantly helps us in understanding the cluster centroid 

spectra. An especially helpful information repository relevant for any AMS related mass spectral identification and comparison 
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exercises such as the problem at hand, is the AMS spectral database (described by Ulbrich et al., 2009), containing a total of 

248 unit resolution AMS spectra from both ambient air, chamber and combustion experiments. The spectra contain examples 

of source-attributed aerosol types, obtained in a laboratory experiments or ambient aerosol feature extraction, various averaged 

mass spectra of ambient aerosols over longer periods and laboratory standards measured using the AMS. As the spectra are 

obtained using many different AMS variants and under very different conditions, not all the spectra contain the same variables 5 

(m/z) or are normalised in a standard way, which may cause uncertainty when comparing spectra.  

To help interpret our obtained clusters we calculated the similarities between the AMS spectral database specimens and the 

mass spectra derived from our cluster centroids. Where needed we would then refer to the specific publications describing the 

details of the comparison spectra of interest. As a measure of similarity we use the metric found to perform best for the tested 

data set (as per evaluation in Sect. 3.2), themass scaled spectral correlation coefficient, i.e. Pearson product-moment 10 

correlation, (Eq. 8), between the mass spectra, scaled dynamically by (m/z)1.36. We believe to have shown mass scaling is 

advantageous also for measuring the similarity of AMS spectra, as it is well known to improve spectral similarity comparisons 

in mass spectrometric applications (e.g. Horai et al., 2010; Kim et al., 2012; Stein and Scott, 1994), and will thus use rs and 

rs
2.as measures of similarity between a pair of spectra instead of the uniformly weighted r and r2. Only correlations with p < 

0.05 are considered. 15 

As mentioned in Sect.2.2, information on pollution event hourly times and peak wind directions were logged during the feature 

extraction analysis. The summary of these diagnostics sorted according to clustering results are shown in supporting material 

(Sect. S.9; Fig. S.11, S.12). However, due to the small amount of objects in most clusters, sample sizes are too low for solid 

conclusions to be made from this auxiliary data. 

3.4.1 The “strong” clusters – Biomass burning and sawmill pollution 20 

 The clusters we can identify, quantify and interpret with high confidence, are the strong clusters (S-I and S-II), clearly set 

apart by the k-means++ algorithm.  

Looking at the correlations to database spectra we find the first cluster (S-I) to correlate highly (rs
2 = 0.85) with the PMF 

derived semi-volatile oxidised organic aerosol (SV-OOA) spectra reported by Ng and co-authors (2010a) as an average spectra 

of 15 ambient AMS datasets, and also correlate with several other SV-OOA mass spectra from the database. The cluster S-I 25 

mass spectrum also correlates highly with most laboratory generated boreal forest relevant secondary organic aerosols, e.g. 

those from α-terpinolene (rs
2 = 0.91), α-terpinene (0.90), α-pinene (0.87), α-humulene (0.84) and myrcene (0.82) oxidation by 

ozone, reported by Bahreini et al. (2005). The spectrum also seems to closely match the biogenic background aerosol mass 

spectrum generally observed at the station when anthropogenic sources are absent. This type of spectrum has also been reported 

previously for the site for example by Allan and co-workers (2006). As the strong plume-like nature of these air pollution 30 

events makes the possibility of a purely natural source for this aerosol type unlikely, we investigated the wind direction patterns 

during the peak concentration of the events classified in this category, along with location of potential local and regional 

aerosol sources (supporting information; Fig. S.11; Fig. S.13 to S.16). Based on this auxiliary information we conclude the 
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aerosol plumes likely originate from the nearby sawmills at Korkeakoski, situated some kilometres from the station, matching 

also the monoterpene plume observations of Liao and others (2011). Despite the chemical similarity to natural semi-volatile 

background aerosol in boreal forest (e.g. OOA 2 from the work of Corrigan and co-workers (2013) the PMF model does 

manage to reliably discriminate the sawmill plume factor from the background, so it seems evident the two mass spectra have 

differences. We hence label this aerosol type the “sawmill secondary organic aerosol” (sawmill-SOA), and hypothesise it is 5 

formed via gas-to-particle conversion from the BVOC’s emitted in large quantities as wood is cut and subsequently dried at 

the sawmills. Notable in this spectrum type is the almost complete lack of signal at 57 Th (corresponding to C4H9
+ and C3H5O+; 

Mohr et al., 2012), a very typical peak to occur in most other anthropogenic AMS spectra. 

The second cluster that can be easily identified is S-II. The absolutely highest correlation (rs
2 = 0.97) within ambient spectra is 

the PMF derived, aged, low volatile biomass burning organic aerosol (OO2-BBOA) quantified by Crippa et al. (2013) for 10 

metropolitan Paris aerosol and with other similar, highly oxidised specimen, e.g. the low volatile oxidised organic aerosol 

(LV-OOA; rs
2 = 0.93) observed by Lanz and others  (2007a) in wintertime Zurich, and suggested in their analysis to have 

originated from wood burning. Of the laboratory spectra it closely matches the spectra collected during a burning experiment 

for oak smouldering (Weimer et al., 2008; rs
2 = 0.85) and burning a type of undergrowth vegetation (sage rabbit bush; rs

2 = 

0.88; Fire Lab at Missoula Experiment ”FLAME-1” – spectra submitted to AMS spectral database by J. Kroll). We will 15 

callname the S-II cluster “anthropogenic low volatile oxidised organic aerosol” (A-LV-OOA), since while it contains low 

amounts of biomass burning marker signals (m/z 60, C2H4O2
+ and m/z 73 Th, C3H5O2

+ fragments from the anhydrosugar 

levoglucosan; e.g. Elsasser et al., 2012; Cubison et al., 2011; Schneider et al., 2006), their ion concentrations remain low (f60 

+ f73 < 0.01) and thus we are hesitant to say the aerosol is from biomass exclusively. As discussed in Sect. 2.2.1, despite 

limited population in the area, domestic wood burning is common in rural Finland for domestic heating during the cold season 20 

and recreational purposes (saunas, barbeques) during the warmer season, and it has been shown biomass burning smoke is 

rapidly oxidised upon release to the atmosphere (Hennigan et al., 2011; Cubison et al., 2011), producing low volatile aerosol 

compounds in a matter of hours. It is also known (Ng et al., 2010b; Zhang et al., 2011) that upon reaching a high level oxidation, 

most aerosols start to resemble general LV-OOA, as they gradually lose their unique mass spectral features, making it plausible 

the pollution aerosols in cluster S-II are from different sources. However, compared to the highly oxidised, biogenic 25 

background LV-OOA the S-II mass spectrum exhibits the m/z 57 and 60 Th anthropogenic markers and is missing the 

characteristic, large 53 Th peak generally reported in boreal forest biogenic background aerosol (e.g. OOA-1 reported by 

Corrigan et al., 2013). As also the plume like nature of the pollution episodes studied would imply anthropogenic sources over 

natural ones, we conclude S-II is almost certainly of anthropogenic origin. 

The mass spectra of biomass burning and the sawmill aerosol groups, derived from the highest silhouette (0.49) solution 30 

(”corr”, k = 8) are depicted in Fig. 5Fig. 5. 



26 

 

3.4.2 The “weak” clusters – Anthropogenic fresh and semi-volatile aerosols from traffic, biomass burning, cooking and 

industry  

Whether due to too low amount of observations, limits imposed by instrument SNR ratio, or high chemical similarity between 

the weak clusters, or inconclusively resolved PMF extractions due to plumes consisting of multiple sources, the mass spectral 

structures separating the weak groups’ aerosols from each other is much less pronounced than the division between the strong 5 

and the outlier cluster characteristic spectra relative to other aerosol types. Although hard to judge based on this set of data 

alone, we thinkfeel the faults lies mostly with the collinearity issues arising from the chemical similarity and/or source 

collocationlast hypothesies, since the number of observations related to the weak groups overall is quite large (around 40% of 

total) and the instrument SNR seems to enable the classification of other groups without ambiguity. From the general outlook 

of the weak clusters’ spectra we observe many hints (low m/z  44 Th signal, pronounced 55 and 57 Th peaks, distinct repeating 10 

spectral structure at 65…83 Th) pointing to the direction of fresh anthropogenic combustion originated aerosols.  

The actual differentiation between AMS aerosol spectra from cooking, and traffic is notoriously hard for unit mass resolution 

spectra, as discussed by Mohr and co-authors (2012), and is traditionally mostly based on the relative abundances of signals 

at m/z 55 and 57 Th. Mass spectral differentiation between fresh BBOA and COA is even harder, as their characteristic unit-

resolution spectra are near indistinguishable — we calculated a similarity of rs
2 = 0.83 between (unit-resolution converted) 15 

COA and BBOA spectra from the data of Mohr et al. (2012). Also the nature of cooking fuel (e.g. wood, coal, natural gas) and 

use of cooking oil likely affects the resulting COA spectrum and its similarity towards either HOA or BBOA.  

Looking again at the highest silhouette solution (”corr”, k = 8), the fresh aerosol types, with lowest O:C are clusters W-II (O:C 

= 0.15) and W-III (0.15). Cluster W-II translates to a characteristic spectra that best correlates with hydrocarbon-like organic 

aerosol (HOA) reported by Ulbrich and co-workers (2009; for Pittsburgh), Crippa et al. (2013; Paris), Lanz and others (2007a; 20 

Zurich), and the average HOA of 15 datasets described by Ng and co-authors. (2010b) with respective rs
2’s of 0.92, 0.91, 0.90 

and 0.92. Similarities with laboratory data are observed with aerosol specimen such as lubricating oil aerosol (rs
2 = 0.87), diesel 

bus exhaust (0.90) and fuel (0.77), reported by Canagaratna et al. (2004), but notably high similarity also exist with mass 

spectra from burning plastic (0.96) and the various cooking experiments’ aerosol products (rs
2  = 0.84…0.92), described by 

Mohr and others (2009), as well as laboratory spectra of decanal (0.86) and hexadecanol (0.84) measured by Alfarra et al. 25 

(2004). However, the similarities of W-II spectra to reputable cooking organic aerosol spectra, extracted from comparable 

ambient observations (e.g. Mohr et al., 2012; Crippa et al., 2013); are notably lower (0.62; 0.71), compared to the 

aforementioned indications this aerosol class would be related to traffic related HOA. The ratio of m/z 55 : m/z 57 signals for 

this aerosol type is 1.17, agreeing with findings by Mohr and co-workers (2012) for HOA.  

Also the wind direction analysis combined with potential source survey (available in supporting information Sect. S.9; Fig. 30 

S.11, S.13 to S.16), additionally points to the conclusion the source of this aerosol is in the sector with a nearby public road. 

We thus term W-II as hydrocarbon-like organic aerosol (HOA), in accordance with AMS aerosol naming conventions. 

The other “fresh” aerosol type, W-III (Fig. 3.6) exhibits highest similarities (rs
2 = 0.88, 0.86) with the aforementioned ambient 

cooking aerosols, measured in Barcelona (Mohr et al., 2012) and Paris (Crippa et al., 2013) while correlating markedly less 
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(0.53…0.72) with the HOA spectra of the database. Laboratory spectrum matches are with charbroiling (0.72; Lanz et al., 

2007a) β-caryophyllene (0.87) β-pinene (0.75; Bahreini et al., 2005), the former sesquiterpene being an important constituent 

in many essential plant oils used in cooking. Moderate correlations (rs
2 = 0.56…0.70) are found with Mohr et al. (2012) cooking 

aerosol specimen and the various smoke chamber spectra from FLAME-1 (0.36…0.79) mass spectra (Fire Lab at Missoula 

Experiment – spectra submitted to AMS spectral database by J. Kroll). Signal ratio m/z 55 : m/z 57 for the W-III spectrum is 5 

3.14, which when interpreted in accordance with the COA estimation method introduced by Mohr and co-authors (2012), 

suggests this aerosol type would be cooking-related. We therefore label the W-III cluster as cooking organic aerosol (COA). 

However, in the end, due to the close similarity of COA and BBOA (Mohr et al., 2012), we cannot rule out the possibility of 

fresh biomass burning or combustion aerosol from barbeques also contributing to this mixed class of observations. 

Separating both of these fresh two sub-classes from the “weak supercluster” leaves us with the semi-volatiles species in form 10 

of one to three clusters. The solution with one semi-volatile aerosol pollution type, W-I, in (”corr”, k  = 8) is mathematically 

the most robust one. 

W-I pollution type exhibits mixed mass spectral characteristics between the HOA and COA types (Fig. 6Fig. 6). The main 

difference with the former two clusters’ spectra is the spectra from the remaining part of the weak clusters’ (W-X) group 

implies considerably higher oxidation state (estimated O:C ratio of 0.40; compared to 0.18 and 0.15 for HOA and COA; Aiken 15 

et al., 2008; Eq. (14)). The library spectra similarity examination brands this aerosol as general semi-volatile oxidised organic 

aerosol (SV-OOA), with closest similarity to SV-OOA observed in Barcelona (rs
2 = 0.91; Mohr et al., 2012) and Pasadena (rs

2 

= 0.88; Hersey et al., 2011). The similarities to ambient urban aerosols, HOA and COA specimen as well as traffic, burning 

and cooking related laboratory spectra are generally moderate to high (typically 0.5…0.8) but with no real pointers to a single, 

dominant type of origin over the others. The ratio of m/z 55 : m/z 57 of 1.57 is between that of the HOA (1.17) and COA (3.14) 20 

spectra  (Mohr et al., 2012) and the higher m/z range (45 to 100 Th) seem to offer little in terms of features distinct from COA 

and HOA. We brand W-III as A-SV-OOA, for anthropogenic semi-volatile oxidised organic aerosol, to separate it from the 

biogenic and natural SV-OOA types such as semi-volatile forest background or sawmill-SOA aerosols, as the close connection 

to combustion-related aerosol types seems evident based on the (dis)similarities between the clusters. We hypothesise this 

aerosol type is a mixture of anthropogenic aerosols from various origins, such as traffic, cooking, and possibly industrial 25 

processes, the common feature of which is that it has been subjected to some oxidation and mixing, smearing out the 

characteristic features of more distinct classes of aerosols such as the fresh HOA and COA types. 

However, we will also present here a further-going interpretation based on the k = 10 (”corr”) solution with three separate A-

SV-OOA factors: we suggest these three classes could be interpreted as source-specific anthropogenic SV-OOA types. We 

hypothesise the differences between the fresh aerosol types, sorted according to their emission source, are not yet completely 30 

smeared out by intermediate level of oxidation. This would allow k-means++ to differentiate (albeit with much less confidence) 

between the A-SV-OOA types, resulting in differentiation based on origin either from traffic SV(HOA), cooking SV(COA) or 

biomass burning SV(BBOA), shown in Fig. 7Fig. 7. 
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This interpretation is indeed supported to some extent by the correlation examination against HOA, COA and BBOA spectra 

of the AMS spectral database (Supplementary information; Table S.3), and in case of SV(HOA), the only group with a 

moderate number of observations (n = 11) also by the wind direction analysis, pointing to the south-to-west sector with the 

main nearby roads as the sector of origin (supporting information; Fig.uress S-11 and S-13). To corroborate this finer source 

specific differentiation of A-SV-OOA, however, a larger amount of observations would certainly be beneficial. 5 

3.4.3 The outliers – amine compounds from biogenic sources? 

While the spectra examined thus far seem interpretable in the “traditional” framework of AMS aerosol types classification 

(LV-OOA, SV-OOA, BBOA, HOA, COA), the outlier clusters do not fit these conventional categories. There are also no 

spectra matching our observations in the AMS spectral library. We therefore additionally examine the spectral features and 

compare them to observations in other mass spectrometry literature. Some additional details and discussion on the amines and 10 

their potential origins is available in supporting material (Sect. S.12)[EM1] 

To begin with, we note the distinctive feature of all the outlier clusters’ mass spectra are rather “exotic”, at least in AMS 

context, with peaks at 58, (72), 86 and 100 Th (Fig. 8Fig. 8). These even molecular masses are relatively rare to be observed 

in the AMS organic spectra due to the nitrogen rule implying the presence of a nitrogen atom. The homologous ion series of 

amine compounds (CnH2n+2N+) yields masses 30, 44, 58, 72, 86, 100 Th (Kraj et al., 2008), exactly matching the peaks not 15 

obscured by other organic large ions, which suggests presence of various amine compounds.  We also came across aA 

laboratory study by Rollins and co-workers (2010), alsowhich reported increased signals for m/z 58 and 86 Th also for when 

synthesised hydroxynitrates were measured with an AMS. However, their spectra seem to be dominated by peaks not observed 

in our outlier spectra, and the said nitrate[EM2] series (CnH2n+2N+) only forms a minor part of the whole signal reported by 

Rollins and others. Also Additionally, Wolf et al. (2015) reported some atmospheric bacteria related to ice-nucleation 20 

producing a 70 eV EI MS signal at 86 Th (C5H12N+), but this sample lacks the other signals present in our series. 

We additionally note that similar homologous series exist for some aliphatic ketones (CR2=C(OH)R+) following McLafferty 

rearrangement, producing a unit mass series at 58, 72, 86 and 100 Th (McLafferty, 1959). Conclusively differentiating between 

these two organic groups would benefit from high-resolution ToF data, which we unfortunately do not have available at this 

time. While we cannot definitely rule out the possibility of high concentrations of ketone compounds, we do not find references 25 

to this type of observations in the aerosol mass spectrometry related literature. [EM3] 

Conversely, there are overwhelming numbers of observations of amines in in aerosol phase — Ge and co-authors (2011) 

calculated in their review article a grand total of 67 aerosol phase amine observations (1972 to 2009). Amine spectra with 

some similar features have been observed elsewhere (Aiken et al., 2009; Huffman et al., 2009; Sun et al., 2011; Chang et al., 

2011), and amines have beem postulaed to contribute to AMS organic signal at 30 Th at the SMEAR II station (Allan et 30 

al.,2006). None of the studies cited offer a close match, though, and many of the main spectral features and signal ratios differ 

markedly from the ones seen here. Additionally, some rather similar spectra have been presented we encountered in literature 

were from those laboratory SOA formation study by Murphy et al. (2007), who measured using an AMS, secondary aerosol 
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generated from various aliphatic amines using an AMS, and in the 70 eV electron impact ionisation spectrum of 

trimethylamine, available from the U.S. National Institute of Standards and Technology (NIST). 

 

Conversely, there are overwhelming numbers of observations of amines in in aerosol phase — Ge and co-authors (2011) 

calculated in their review article a grand total of 67 aerosol phase amine observations (1972 to 2009). Within AMS 5 

measurements, amines have been postulated from unit resolution mass spectra (Aiken et al., 2009) and confirmed via high 

mass resolution analysis (Huffman et al., 2009; Sun et al., 2011) in studies conducted in the heavily populated and industrialised 

Megacities of New York, and Mexico City. Also Allan and co-workers (2006), performing the first quadrupole AMS 

measurements at the SMEAR II site in 2003 already speculated on the possibility of amines explaining the “extra” nitrate 

signal at 30 Th, not explicable by ammonium nitrate alone. The amines’ contribution at 30 Th peak corresponds to the NH2CH2
+ 10 

ion, but is often obscured in unit-resolution data by other organic fragments and the NO+ fragment from common NH4NO3. 

Of the aforementioned studies only the amine containing aerosol from New York was available, submitted to the AMS high 

resolution database (Ulbrich et al., 2009; http://cires1.colorado.edu/jimenez-group/HRAMSsd/) with reference to after a later 

similar analysis by Docherty et al. (2011). This high-resolution AMS spectra was translated to unit mass resolution and 

compared with our samples. A moderate similarity (rs
2 = 0.67) was found between the library specimen and our cluster O-III, 15 

lending some confidence to the assertion of similarity. Although the other amine spectra were unavailable for mathematical 

correlation check, we note the general spectra of the aerosols reported by Huffman and others. (2009) for Mexico City and 

Sun et al. (2011) for New York exhibit some similar features to the spectra of O-I and O-III clusters, namely increased m/z 58, 

72 and 86 Th signals, but in different relative fractions.  

The aerosol described by Sun et al. has the major nitrate containing peaks at m/z (56), 58, 59 and 72 Th, but shows only a small 20 

peak at 86 Th and no significant contribution at 100 Th. The two Mexico City spectra reported by Huffman et al. (2009) include 

major peaks at 58 and 86 Th, but little to no contribution at 100 Th. By visual inspection the Aiken et al. (2009) amine aerosol 

specimen doesn’t seem to contain any of the peaks discussed here, so we consider it not to be a relevant reference in this 

particular case. 

Additionally, some very similar spectra we encountered in literature were from those laboratory SOA formation study by 25 

Murphy et al. (2007), who measured using an AMS, secondary aerosol generated from various aliphatic amines. The spectra 

they report for trimethylamine photo-oxidation product aerosol has multiple similar features at 58, 86 and 100 Th, albeit in 

different signal fractions (m/z 86 Th signal > m/z 100 Th signal) to ours. Looking up the 70 eV electron impact ionisation 

spectrum of trimethylamine, available from the U.S. National Institute of Standards and Technology (NIST), we find a 

specimen with the same peaks as our but again with different ratios for m/z 58, 72, 86 and 100 Th. 30 

Closest match for the O-I and O-II clusters within the AMS spectral database was the marine aerosol (rs
2 = 0.50 O-I; 0.68 O-

II) reported by Chang and co-authors (2011) for Arctic Ocean marine biogenic aerosol. It does contain a small peak at 58 Th, 

but only low signals at 86 or 100 Th. [EM4] 
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The aerosol phase amine sources have thus far mostly been attributed to either local industrial pollution or marine biological 

production (see Ge et al., 2011 for a review of observations). In our case both of these sources would be surprising considering 

the inland location and the scarcity of nearby industrial plants, along with the apparent seasonal dependence of the observations 

(only observed in the springtime measurements). However we cannot rule them out at this point. As additional hypotheses for 

the origin we offer the following: 1) biodegradation-produced volatile aerosol precursors released at snowmelt (Kieloaho et 5 

al., 2013; Kuhn et al., 2011). 2) Manure application to agricultural fields or amine emissions from nearby cattle farm (Schade 

and Crutzen, 1995; Ge et al., 2011; Kuhn et al. 2011; Sintermann et al., 2014; supporting information S.12, Fig. S.14) and 3) 

biogenic amine emissions (Kieloaho et al., 2013) related to clear-cutting a nearby patch of forest (Virkkula et al., 2014).  

Additional discussion on the amines and their potential origins is available in supporting material (Sect. S.12). This section 

also includes discussion on alternative sources for these signals, andW while the final decision on the sources and origins of 10 

the outlier clusters’ spectra remains controversialspeculative, we believe the most likely explanation for the outlier spectra are 

the amine compounds, a hypothesis based on the confirmed AMS amine observations in the aerosol phase, and the laboratory 

tests of Murphy and co-workers (2007), along with the lack of credible alternative accounts or explanations for understanding 

the m/z peaks observed. Therefore we name the outlier I-III peaks “amine-58” (O-I), “amine-100” (O-II) and “amine-86” (O-

III) respective to their major characteristic peaks, most likely corresponding to fragment ions with elemental composition 15 

CH4N+ (at m/z 30 Th), C2H6N+ (44 Th), C3H8N+ (58 Th), C4H10N+ (72 Th), C5H12N+ (86 Th) and C6H14N+ (at 100 Th). 

The aerosol phase amine sources have thus far mostly been attributed to either local industrial pollution or marine biological 

production (see Ge et al., 2011 for a review of observations). In our case both of these sources would be surprising considering 

the inland location and the scarcity of nearby industrial plants, along with the apparent seasonal dependence of the observations 

(only observed in the springtime measurements). However we cannot rule them out at this point. As additional hypotheses for 20 

the origin we offer the following: 1) biodegradation-produced volatile aerosol precursors released at snowmelt (Kieloaho et 

al., 2013; Kuhn et al., 2011). 2) Manure application to agricultural fields or amine emissions from nearby cattle farm (Schade 

and Crutzen, 1995; Ge et al., 2011; Kuhn et al. 2011; Sintermann et al., 2014; supporting information S.12, Fig. S.14) and 3) 

biogenic amine emissions (Kieloaho et al., 2013) related to clear-cutting a nearby patch of forest (Virkkula et al., 2014). 

However, to confirm the amines’ presence, identify the specific compounds and finally decide between the proposed origins, 25 

more comprehensive experimental measurements and/or analysis are likely required. [EM5] 

 

The aerosol phase amine sources have thus far mostly been attributed to either local industrial pollution or marine biological 

production (see Ge et al., 2011 for a review of observations). In our case both of these sources would be surprising considering 

the inland location and the scarcity of nearby industrial plants, along with the apparent seasonal dependence of the observations 30 

(only observed in the springtime measurements). However we cannot rule them out at this point. As additional hypotheses for 

the origin we offer the following; it would be conceivable the observations correspond to SOA formation from volatilised and 

possibly oxidised amine compounds, or amine salts, with the potential sources being 
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1. Amines from biodegradation of organic material such as leaves and needles, released from being trapped below the 

layer of snow and evaporated from the solar-heated ground surface at and after snowmelt. Amines are known to be 

common products of biomaterial degradation processes and to be volatile (Kieloaho et al., 2013; Kuhn et al., 2011). 

Alkylamines are also known to be produced at the forest floor and their concentrations are found to be temperature 

dependent and peaking during autumn forest litterfall (Kieloaho et al., 2013). Our AMS measurements coincided with 5 

the snow melt period at the site, but to our knowledge no data amine data from snowmelt period at SMEAR II exists, 

regrettably.  

2. Manure application in crop fields has been shown to be a potential source of amines (Schade and Crutzen, 1995; Ge 

et al., 2011). It would be plausible some nearby field that has been fertilised with manure, would release a considerable 

amount of volatile amine compounds upon drying. This hypothesis has been questioned, however, by the findings of 10 

Kuhn et al. (2011) who instead conclude the amine emissions are more likely from the animals’ exhalation and 

feeding. There exists a cattle farm some two kilometres to the east of the field station and some agricultural fields 

closer by (supporting information Fig. S.14). 

3. A nearby patch of forest of 0.8 hectares of area, at a distance of 300 to 500 meters from the site, was cut clear a month 

prior to the start of our measurements (Virkkula et al., 2014). Amines have been found to be emitted from tree trunks 15 

and needles of live coniferous trees of the boreal zone (Kieloaho et al., 2013), and it would therefore be imaginable 

the process of clear-cutting a forest stand using a harvester vehicle and the subsequent transportation of the trunks 

away from the site would cause considerable emissions of volatile organic compounds, including monoterpenes and 

amines for several weeks after the process. 

However, to confirm the amines’ presence, identify the specific compounds and finally decide between these and the earlier 20 

hypothesis of the proposed origins, more comprehensive experimental measurements and analysis are likely required. [EM6] 

 3.5 Interpretation of spectral structures and main dimensions defining the pollution types 

Below we try to summarise what we consider the most important dimensions or axes, on which the more complex (k = 6…10) 

classifications would be based, and their interpretation in an aerosol chemical framework.  

3.5.1 Oxidation level and aerosol age 25 

Traditional AMS spectral analysis revolves around studying the process of oxidation, or ageing of an aerosol particle in the 

atmosphere. The oxidation process depends on particle chemical structure, number and type of oxidant radicals available and 

the time spent in the atmosphere, so it is highly variable and difficult to model. From this branch of study and the connection 

of volatility to oxidation level (Donahue et al., 2011; Donahue et al., 2012; Kroll et al., 2011; Jimenez et al., 2009) originate 

also some of the “standard” labels for atmospheric processed aerosol types (LV-OOA, SV-OOA). It has been known for a long 30 

time in the AMS community, that mass spectra peaks such as m/z 43 Th (C3H7
+ fragment from alkyl group molecules and 
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C2H3O+ from non-acid organic oxidation products; e.g. Ng et al., 2011a) and 44 Th (CO2
+; common fragment from carboxylic 

acids; Duplissy et al., 2011), as well as their relative contributions, are good indicators for oxidation (Aiken et al., 2007; Ng et 

al., 2011a; Canagaratna et al., 2015). Upon aging the fraction of organic aerosol signal observed at 44 Th (f44) and O:C ratio 

of a particle increase, and the marker for fresh emissions, m/z 43 Th signal goes down along with most high mass (> 45 Th) 

signals. Agreeing with the clear separation of aerosol types by age found in the clustering solutions of this work, the “oxidation 5 

axis” is clearly one of the main dimensions along which cluster borders are drawn.  

3.5.2 Aerosol source specific characteristics 

The other axes for cluster separation seem to relate to their source-specific fingerprints. The results presented in Sect. 3.1 and 

3.2, and particularly the solution diagnostics values shown in Table 2Table 2, suggest that there are one or more source related 

divisions resulting in a fairly clear-cut separation of clusters. One such clear division seems to be between the anthropogenic 10 

aerosol groups considered primary, and thus usually originated from a combustion process (such as biomass or fossil fuel 

burning, combustion engines exhaust or aerosol formed in high-temperature cooking), and the secondary aerosol from particle 

conversion biogenic organic vapours (albeit in our case from “anthropogenic sources” in form of the sawmills). In our case 

this distinction separates in a clear-cut manner the sawmill secondary organic aerosol (cluster S-I) from other aerosols of 

similar age and oxidation from different sources (especially W-I). A short examination on a potential S-I spectral marker at 15 

m/z 53 Th can be found in the supplementary information (Sect. S.11, Fig. S.17) 

The structure the most difficult to explain conclusively is the set mass spectral features setting apart the various components 

of the weak cluster structure observed. The separation of fresh HOA from COA and BBOA has been discussed and 

characterised in many studies (e.g. Crippa et al., 2013; Mohr et al., 2009), but in practise classifying these aerosols in an 

unambiguous manner remains troublesome. It does, however, seem clear from the results presented here, that the f55:f57 ratio 20 

is indeed a viable indicator of a dimension separating HOA pollution type (low f55:f57) from COA and BBOA, as suggested 

by e.g. Mohr and Crippa and co-authors. We note the f55:f57 values derived from the clustering solution, 1.17 for HOA and 

3.14 for COA, match well with the estimates given by Mohr (0.9 ± 0.2 for HOA; 3.0 ± 0.7 for COA). Furthermore, there also 

appear to be additional, equally definitive indicators available in the higher masses, as discussed in the supplementary (S.11; 

Fig. S.18) 25 

As the important separation of the sawmill-SOA cluster (S-I) also happens to be clearly reflected in the f55:f57 dimension, 

due to the very low f57 signal in its centroid mass spectrum, we adopt this axis selection along with the oxidation axis (reflected 

by estimated O:C)  as a basis for representing the clustering solution in a simplified way. This results in a two-dimensional 

projection of the 125-dimensional data structure (Fig. 9Fig. 9). It should be underlined, that this representation is a crude 

simplification of the actual solution, aimed at providing at least some visualisation of the tremendously more complex spatial 30 

structure. Consequently, many of the potentially more complex structures located higher up on the m/z scale equally driving 

the solution are not shown, which explains why some points seem to be out-of-place in the two-dimensional projection. With 

that said, the solution does seem to make a lot of sense, and we can see the clusters are relatively well defined. 
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For this set of observations we did not obtain separate a distinct (fresh) BBOA cluster, so we were unable to evaluate the 

difference between BBOA and COA. As for the more controversial classification of A-SV-OOA subtypes, the separation can 

be visualised in the (f55:f57, f60+f73) space (Fig. 10Fig. 10), f60 and f73 corresponding to the expected biomass burning “axis” 

(Cubison et al., 2011; Elsasser et al., 2012; Schneider et al., 2006). The low cohesion of especially A-SV(COA) and A-

SV(BBOA) clusters is likely due to both a) very few observations available and b) scarcity of clear mass spectral differences 5 

between the groups.   

3.5.3 “Exotic” variables specific to outlier observations and groups 

In addition to these more traditional fingerprints in the AMS spectra, in this case we also have outlier observations, 

distinguishable by their unusual high mass (m/z 58, [76], 86, 100 Th) signals. It seems evident the dimension separating these 

groups would correspond to these specific variables. This reasoning is also supported by visualisation of the outlier spectra 10 

(Fig. 11Fig. 11) in an appropriate 2-d space (e.g. f86+f100 vs f58). 

3.6 Estimating the natural variability within the aerosol types  

Finally, we examine briefly the intra-cluster variabilities, translating to inferred mass spectral variability within the aerosol 

types. While we feel it would be dangerous to claim the variation within the spectra of a specific group can be directly 

understood as the natural variability of that aerosol type at this site, we propose it can be considered as an upper limit estimate 15 

of this variability, since the within-cluster variation is caused both by the actual variability in the natural aerosol, and the 

uncertainty induced by its measurement and analysis. Overall, the effects of instrument (white) noise is filtered in the feature 

extraction (PMF) phase, and the effects of possible misclassifications or presence of mixed source pollution events (collocated 

sources incompletely resolved by PMF) in clustering are likely limited to borderline, (between cluster) cases, that have minimal 

influence on the final spectra due to the silhouette-based posteriori weighting. The collinearity effects discussed in Sect 2.3.1 20 

do contribute to the total analysis error, but their quantitative determination was not achieved in this work. For the clean-cut, 

high silhouette “strong” and “outlier” clusters collinearity is unlikely to introduce significant uncertainty, and the analysis 

uncertainties would be expected to afflict mostly the “weak” clusters more susceptible to source collocation and high spectral 

similarities. However, such a distinct difference seems absent between the “strong” and “weak” classes clusters’ estimated 

variabilities, lending confidence that the collinearity effect is not consequential for this set of data. The rotational ambiguity 25 

of PMF remains an issue, and while we have done our best to find the cleanest possible separation of the pollution and 

background spectra, some degree of uncertainty is unavoidable.  Although there some tools have been proposed to assess the 

rotational sensitivity (e.g. bootstrapping; Norris et al., 2008; Tibshirani et al., 2001), the exact level of mass spectral uncertainty 

arising from the rotational ambiguity remains difficult to quantify. Also as the standard k-means does not utilise information 

of uncertainties of input objects, a profound error analysis would require more advanced classification tools. We note the 30 

uncertainty estimates of PMF results is a topic still requiring attention, as highlighted by Reff and co-authors (2007), and the 

field of AMS PMF would likely benefit from development of further easy-to-approach statistical tools. Nevertheless, 
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considering there exist very few if any statistically well founded estimates for this type of aerosol variability, we propose that 

in absence of more reliable results, the variabilities implied by this study can be used as an indicator of what the likely 

magnitude of the underlying natural variability within the observed classes of aerosols at a site like this. 

We examined the within-cluster variabilities of the aerosol types studied, and calculated silhouette weighted standard 

deviations as a function of m/z ratio, which was then fitted with constant, linear and exponential (quadratic) regression models. 5 

An example of such a parameterisation is shown in Fig. 12, and the model parameters for all clusters (in the ”corr” k = 8 

solution) are given in Table 3. 

.  

The variability parameters are especially important for (partially or fully) constrained factor analysis, such as techniques 

utilising the ME-2 algorithm. In e.g. the most commonly approach used in the Source Finder (SoFi), a single value (“a-value”; 10 

Canonaco et al., 2013), it is typical to restrict allowed spectral variation to a certain fraction of the reference spectra, applied 

uniformly across all m/z ratios. Based on this work we find the “a-value approach” may not be the optimal way to restrict 

spectral variation allowed in factorisation models such as the ME-2 driven constrained PMF, and that m/z dependent 

parametrisations would better represent the actual natural variability that should be accommodated by the model. Ultimately, 

pulling approaches (Canonaco et al., 2013; Paatero and Hopke, 2009) might prove preferable to hard limit constraints for 15 

variation. Nevertheless, if still opting for the use of a constant a-value, our results imply the natural variability within an aerosol 

type may be significantly larger than what is often allowed in conjunction with the constrained PMF/ME-2 (e.g. Crippa et al., 

2014).  

  4 Conclusions 

While advanced data analytical techniques, such as PMF, have already been widely adopted for AMS data reduction and 20 

feature extraction, the application of similar chemometric methods for AMS spectra identification and classification is as of 

yet an uncommon sight. 

In this study we make a pitch for adopting some of the tried and tested statistical methods from other mass spectrometric fields 

into the analysis of AMS results. As a practical example we present a case of applying simple clustering to a set of AMS 

pollution spectra, and show even a simple algorithm such as the k-means++ can, with proper optimisation, match and reproduce 25 

the traditional “expert classification” of AMS aerosol types unsupervised  (i.e. without a priori training). 

Clustering as a method is especially sensitive to certain parameters; the algorithm used, data pre-processing (scaling) and the 

dissimilarity measure (distance metric) used for the objects’ spatial representation. In this work we compared the performance 

of some of the most basic distance “metrics” in k-means++ clustering for our example data, along with some suggested data 

pre-processing (scaling) methods. At least in the context of this limited case, the ”[Pearson] correlation” metric seems slightly 30 

preferential as a measure of spectral (dis)similarity, followed close by [dot product] cosine and squared Euclidean dissimilarity 
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measures – at least when the  AMS mass spectra are normalised. For representing spectral similarity of un-normalised data, 

we suggest either cosine or correlation metrics due to mathematical considerations (i.e. multiplication invariance).   

Optimised mass scaling, that is weighting the mass spectra signals by an exponential function of their m/z ratios, seems 

beneficial for unsupervised classification of AMS aerosol types. Based on our example set of data we suggest scaling the signal 

variables at each mass-to-charge by an exponential weight (𝑚/𝑧) 𝑠𝑚  of sm = 1.36 ± 0.24. Contrarily, intensity scaling, or 5 

scaling the MS variables (signals) by their root function appears to be detrimental for the structure of our spectral dataset. We 

hypothesise this may be due to our spectra being normalised to unity and generally not being overtly dominated by any 

individual signals – unlike spectra in many soft ionisation MS applications – potentially upscaling general instrument noise 

more than the informative minor signals. 

Without scaling as a pre-processing step, k-means++ produces a differentiation between oxidised and fresh(er) aerosol 10 

samples. Up-weighting higher m/z signals allows for classification in the framework of source-specific AMS organic aerosol 

“sub-categories” such as differentiating between HOA and COA, strongly indicating much of the information needed for this 

classification resides among the higher up m/z variables. We thus suggest taking this piece information into consideration when 

interpreting and classifying AMS spectra, either manually or in applying a machine-learning approach. Exploring similar mass 

scaling in connection with comparable statistical analysis methods may prove useful especially in applications where data 15 

weighting is already commonplace and easy to implement.  

Limiting the role of PMF to solving simple short term air pollution events and plumescases with minimal number of few 

factors, facilitates allowed for (almost) unambiguous identificationidentification of the physically meaningful rotation, which 

best temporally separates the pollution plume from the background aerosol,. Using correlation minimum between the time 

series of the pollution and the background as a selection criterion with minimimalses the need for human analysts’ expert 20 

judgement by human analysts when exploring PMF solutions of pollution events. Similarly, applying computer-aided, 

unsupervised classification, any result should be more or less free of analyst bias, when deciding the classifications of mass 

spectra to organic aerosol subtypes. An appropriately chosen clustering quality metric, such as ‘silhouette value’, can be used 

to infer the natural number of clusters in data as well as to optimise scaling factors, to magnify the structures present in data.  

Naturally, this does not excuse the human analyst from the final responsibility of physicochemical interpretation, comparison 25 

and evaluation of the mathematical solutions produced by any classification algorithm. It should also be noted the first phases 

of the task, of manually identifying pollution events and performing the feature extraction step for each of the events 

individually is very labour-intensive and some subjectivity remains in deciding the selection criteria for what constitutes a 

pollution episode – hence the process should ideally be made more automatic and statistics-based.   

Despite the laboriousnessis cost, compared to alternative currently used approaches such as trying tousing use PMF to directly 30 

extract SOAsource specific, anthropogenic organic aerosol subtypes from extended datasets and identifying the correct 

rotations from the resulting solution space, we suggest the methodology presented here has several advantages: 1) due to 

limiting the  PMF time windows to short pollution episodes explained with fewer factors and variability driven by pollution 

plume behaviour, the major factor analytical problem of role of the analyst mainly to deciding the correct number of aerosol 
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classes we largely avoid the PMF’s Achilles heel of rotational ambiguity is diminished and there is less need for major expert 

judgement in selection of rotationsolutions. Concentrating on short lived events also better fulfils the factor analytical receptor 

model’s assumption of constant profiles (i.e. aerosol bulk composition is not driven by chemical processes but a result mixing 

from different sources). 2) From the clustering solution it is straightforward possible to derive solid, a quantitative estimates 

for the pollution architypes’ spectra along with their uncertaintiesy of a resulting reference spectrum – a piece of information 5 

which has direct use and value when applying the reference spectra in e.g. constraining future ME-2 factor analysies. Detailed 

chemical knowledge on pollution types may also help in further understanding the physicochemical properties of 

anthropogenic atmospheric aerosols and their interactions. Finally, 3) by analysing air pollution cases individually we can also 

identify and extract minor sources and identify outlier aerosol types, which fall way under “PMF’s limit of detection”, of 

explaining approximately 5% of the variability of the total aerosol mass (Ulbrich et al., 2009). These outlier groups may 10 

ultimately prove important and offer new scientific information, as exemplified by the observation of suspected amine 

compounds presented in our results. 

In our example of applying feature extraction (PMF) and unsupervised classification (k-means++) to a set of AMS data, we 

could produce reference spectra and their variability estimates for local pollution “archetypes”. Aerosol chemical interpretation 

of the results from our testbed set of data from a background, boreal forest station (SMEAR II) suggests the main dimensions 15 

or “axes”, driving the classification relate to a) oxidation state reflecting aerosol aging b) source types, whether representing 

spectral structures of various combustion source types (traffic, cooking, biomass burning) or characteristics of aerosol formed 

from biogenics through gas-to-particle conversion  c) “exotic” variables characteristic of outlier observations and “outlier 

groups” (from the perspective of traditional AMS aerosols’ classifications). We observe that although atmospheric ageing does 

gradually smear out the characteristics of the emitted aerosols, there seem to remain statistically resolvable spectral features 20 

seem to be retained and that could be used to infer the origin of the emission. However, as the spectral similarity of aerosols 

increases, proper selection of dissimilarity metric and scaling becomes essential, as does havingthe availableility of a sufficient 

amount of high-precision observations of single component pollution plumes. In future studies we also suggest exploring soft 

classification algorithms, such as “fuzzy” clustering (Dunn et al., 1973), in connection with aerosol mass spectral classification 

to avoid potential issues with non-discrete or incompletely de-convolved samples. 25 

We propose that optimising the similarity metrics, both via correct selection of algorithm and optimisingdata weighting, 

provides not only a basis for exploratory classification but also a means for identifying AMS spectra by comparing them with 

references available in (e.g.) the AMS spectral database. We can also see prospective use for exploratory classification, with 

clustering as an obvious example, in evaluating sets of discrete or de-convolved AMS spectral samples, such as the samples 

often produced in large numbers in bootstrapping or sensitivity analysis exercises when evaluating factor analytical models. 30 

Ultimately, we hope to have demonstrated that statistics-based, computer-aided classification of AMS spectra seems 

promising, and in that the differences and characteristic features of mass spectra can indeed be parameterised for an 

increasingly machine-learning oriented approach to AMS advanced data analysis. 
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Figures & Tables 

 

 

 

 5 

Panel 1a. Pollution plume characteristic spectra (magenta) extraction. A simple, clear case with stable background (green).   
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Panel 1b. An example of a well-resolved extraction with a repeating pollution plume (magenta) and two changing background factors 

(in green and blue). 
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Panel 1c. An extraction of a weaker pollution plume (magenta) factor from two temporally changing background factors (green and 

blue).   

 5 
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Panel 1d. Extraction of characteristic spectra from a very complex pollution case. The two background factors are shown in green 

and blue. Additionally to the pollution factor shown here (magenta), three additional pollution factors (displayed in Panel 1d) were 

separated, (Figure 1e). 5 
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Panel 1e. Three additional pollution factors extracted from the case described in Panel 1d. 

Fig. 1. Examples of time series of extracted PMF factors for four different pollution cases, ranging from simple (panel a) to very 

complex cases (panel d & e). In panel b the factors are marginally correlated, but the separation is still considered clear. The event 5 
shown in panels d and e is a borderline accepted case due to its long duration (criterion 1; Sect. 2.2.2) and presence several pollution 

types (criterion 2), but was eventually accepted to the analysis due to the clear temporal and chemical separation of the pollution 

factors. 
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Fig. 2. Solution silhouette value of clustering solutions for k = 2 to k = 20, for the four dissimilarity metrics (colour coded). The solid 

lines depict solution silhouette values for unscaled data and the dashed lines represent the solution qualities for when data weighting 

is applied (non-optimised mass scaling, sm = 1.36; Sect. 2.3.3). The 0.25 and 0.50 limit (dotted black lines) indicate lower limits above 

which we could expect ”weak” (silhouette 0.25) and “strong” (0.50) structures to exist in the data (Kaufman and Rousseeuw, 2009; 5 
Sect. 2.3.4). 
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Fig. 3. A contour plot for a field of solution silhouette values for the studied dissimilarity metrics, as a function of cluster size k (x-

axis) and mass scaling factor sm (y-axis). The maximum near squared Euclidean k = 2, sm ≈ 3 indicate a solution with high silhouette, 

but this solution only separates one outlier cluster (n = 3; cluster O-II, explained in the next section) from the other objects, so this 

solution was not considered separately. 5 

 

Fig. 4. Weighted cluster centroid spectra for solution k = 2 (”corr” and ”cos”) for the non-pre-processed dataset. The k = 2 division 

appears to be driven mainly by age of the aerosol; cluster A corresponding to aged and cluster B to fresh aerosol. The error bars 

denote weighted within-cluster standard deviation.  
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Fig. 5. Mass spectra derived from [”corr”, k = 8] clusters S-I (sawmill-SOA) and S-II (A-LV-OOA). Error bars indicate within-

cluster variability (silhouette-weighted within-cluster standard deviation).  

 

Fig. 6. Mass spectra corresponding to clusters W-I (A-SV-OOA), W-II (HOA) and W-III (COA). Error bars denote within-cluster 5 
variability (silhouette-weighted within-cluster standard deviation). Solution for ”corr”, k = 8.  
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Fig. 7. Mass spectra for the ”corr” k = 10 solution, dividing the intermediate oxidised objects into three groups, labelled here, 

according to their proposed sources, as W-Ia (SV(HOA)), W-Ib (SV(COA)) and W-Ic (SV(BBOA)). Error bars represent within-

cluster variability (silhouette-weighted within-cluster standard deviation). 

 5 

Fig. 8. Mass spectra corresponding to weighted cluster centroids (”corr”, k = 8) for groups O-I (“amine-58”)), O-II (“amine-100”) 

and O-III (“amine-86”). Error bars denote within-cluster variability (silhouette-weighted within-cluster standard deviation, 

unavailable for the singleton O-III).  
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Fig. 9. ”corr” k = 8 clustering solution projected onto 2-d axes, corresponding to f44 derived oxidation level (estimated O:C; Aiken 

et al., 2008) and f55:f57 ratio (truncated at 10) typically used for COA vs HOA source apportionment (Mohr et al., 2012). Marker 

size corresponds to silhouette value of the point, ranging from zero to one. Cluster centroid locations are marked separately with 

darker colours. Outlier clusters are shown in grey, without centroids.  5 

 

   

Fig. 10. Classification of A-SV-OOA (Cluster W-I) types into subgroups W-Ia, W-Ib and W-Ic, corresponding to SV(HOA), 

SV(COA) and SV(BBOA). 2-d visualisation is given in y-axis f55/f57 (truncated to 4) and x-axis f60+f73. Marker size indicates object 

silhouette value. Other groups (W-II, W-III, S-X, O-X) are omitted from graph. Due to small sample size and low cohesion of clusters 10 
such a classification should be considered speculative at this point.  
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Fig. 11. Outlier clusters (O-I to O-III) assumed to contain amines, and their respective centroids plotted in colour, and any other 

clusters in grey in (f58, f86+f100) spatial projection. Marker size corresponds to object silhouette value (unavailable for the singleton 

cluster O-III). 

 5 

 

Fig. 12. Silhouette-weighted standard deviation, as a function of m/z, for cluster S-I (sawmill-SOA). Upper panel: constant value (“a-

value”) estimate. Middle panel: linear regression estimate. Lower panel: exponential (quadratic) regression estimate. 
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Table 1. Timeframes of measurements and numbers of successfully extracted pollution spectra per dataset. 

CAMPAIGN START DATE END DATE # OF DAYS SPECTRA EXTRACTED 

"May 2008" 29 Apr 2008 8 Jun 2008 40 23 

"September 2008" 10 Sep 2008 15 Oct 2008 35 25 

“March 2009" 4 Mar 2009 29 Mar 2009 25 33 

 

Table 2. Diagnostics values, clustering parameters and cluster populations for solutions of 6 to 10 clusters. Oxidation level is 

described for each cluster centroid and potential sources are (preliminarily) identified. Within-cluster silhouette values are colour 

coded for readability (< 0.24 orange, 0.25…0.49 yellow, > 0.5 green). Solutions chosen for further analysis (”corr” k = 8 and k = 10) 5 
are highlighted in red. 
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Table 3. Within-cluster, silhouette-weighted variabilities parametrised using constant, linear and exponential (quadratic) least 

squares regressions to the clustered data (variability [y] as a function of m/z [x]). The constant variability estimate corresponds to 

the “a-value” approach used in ME-2 analysis for constraining the PMF model.  

    
CONSTANT LINEAR FIT QUADRATIC FIT 

y = a y = bx + a y = cx2 + bx + a 

CLUSTER   a b (10-3) a c (10-5) b (10-3) a 

S-I sawmill SOA 0.32 2.56 0.10 2.70 -1.89 0.24 

S-II A-LV-OOA 0.34 1.81 0.19 1.60 -0.82 0.27 

W-I A-SV-OOA 0.18 0.59 0.13 1.28 -1.51 0.19 

W-II HOA 0.41 1.60 0.28 5.37 -7.25 0.56 

W-III COA 0.24 -0.09 0.24 3.25 -5.44 0.41 
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S.1 PMF – on robust mode and rotational ambiguity 5 

Since the amount of weight given in PMF to an observation (here: the value of a variable i at a certain time j) by the iterative 

process is proportional to the square of Ei,j / σi,j, outliers with abnormally high squared signal or low variance may end up 

dominating the model solution. This phenomenon is especially relevant in environmental observations, as there are several 

types of outliers that would conceivably cause this behaviour, such as errors in the functioning of the measurement instrument 

or extreme, rare events that are considered contamination from the point of view of the analysis. 10 

Therefore a “robust mode” for PMF was introduced (Paatero, 1997). The approach in short is to introduce a limit α, for the 

weight given to a point (Ei,j /  σi,j) beyond which the point is considered an outlier, and dynamically down-weighted to negate 

its disproportional effect on the objective function Q. For a complete explanation on outliers and the robust mode, we refer the 

reader to the original work (Paatero, 1997). 

The main weaknesses issues of PMF and indeed most factor analytic or linear algebraic methods are: 1) The “rotational 15 

ambiguity” of the solutions, i.e. the existence of multiple, sometimes very different, mathematical solutions with equally high 

rate of explanation of the observed (weighted) variance (Paatero, 1997; Paatero et al., 2002; Paatero et al., 2014). Exploring 

the rotations and selecting the best solution from the “solution space” needs to be done by the analyst, often based mainly on 

interpretability of the results in the context of the particular research topic at hand. 2) The selection of number of factors, f. 

While exploring the rate of decrease of Q when increasing f can be considered an indicator of the amount of factors present in 20 

the set of data (Paatero and Tapper, 1993; Ulbrich et al., 2009; Reff et al., 2007), it rarely gives unambiguous answers. In the 

end it is up to the analyst to decide f based on both the diagnostics offered by Q and the interpretability of the result. These 

two subjective selections are often considered the most debatable part of a factor analysis (Ulbrich et al., 2009; Reff et al., 

2007; Kim and Mueller, 1978). An additional constraint of the method is that its regards the chemical composition of a factor 

invariable, and as such is less than ideal for atmospheric conditions where physicochemical processes constantly alter the 25 

aerosol composition (Canonaco et al., 2015). 

In this work we utilise PMF in a non-standard way, to resolve the time series and mass spectral profiles explaining “anomalous” 

observations often discarded from a PMF analysis: the periods with air pollution spikes and plumes. PMF analysis is done for 

each air pollution event individually, altering the time window of the analysis around the event to include both the pollution 

episode and some background before and after the event. The advantage of studying this type of short relatively short term 30 

phenomena is, that we can easily evaluate fulfilment of the criteria outlined in Sect. 2.2.2, and we can additionally discriminate 
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between mathematically equal solutions, mostly evading the issue of rotational ambiguity.  Essentially knowing beforehand 

what the (qualitative) temporal behaviour of a pollution and background factors should be like, (i.e. the time series of the 

factors should be uncorrelated), we explore the number of factors and the solution space to select the solution best fulfilling 

our criteria for a physically correct solution. Adhering to these criteria, we strive to minimise the ambiguity related to our 

selection of solutions, as well as considerably reduce the effect of subjectivity with regard to selection of solutions. 5 

We note the inclusion of the robust mode, hard coded in our user interface of choice (SoFi 4.8; Canonaco et al., 2013) is a 

potential issue for events with temporally very short plumes of only a few time points, but our testing confirmed it did not 

noticeably hinder the algorithm finding the expected, physically realistic solutions. It was noted if the solution returned by the 

algorithm was not driven by the pollution plume-like temporal behaviour, the time window of the analysis was often too wide, 

and applying a narrower window reproduced the plume factor in most such cases. In the few cases, when despite using a 10 

narrow window an acceptable solution was not reached, the event was discarded from further analysis to avoid any errors in 

extraction of pollution features. 

In extracting pollution spectra, in cases where an acceptable solution was not found despite a large number (100) of seed runs, 

we additionally explored the rotational solution space using non-zero Fpeak values (Paatero and Hopke, 2009). In 7 cases 

(included in the total of 81 spectra) an acceptable rotation was found this way. The criteria for PMF solution acceptance 15 

remained the same, and when non-zero Fpeak was applied, extra care was taken not to allow factors with profiles that exhibit 

“unrealistic/unphysical behaviour” such as only containing noise-like spectra or e.g. no contribution to m/z 43 or 44 Th. 

 

S.2 k-means clustering, parameter selection 

The iterative method to achieve this operates as follows: 20 

1. (Initialisation) In the very first step, called initialisation, a pre-set amount of k starting cluster centres are defined: this 

can be done in a number of ways, but often involves random selection. Distances between each object x and every 

cluster centre c are calculated  

2. (Step 1: Assignation) All sample objects are assigned to their nearest cluster centre, based on the selected metric of 

distance (dissimilarity). Every object now belongs to exactly one cluster.   25 

3. (Step 2: Updating) Cluster centres c are re-calculated as a mean µ of the now updated cluster members xi of each 

cluster. After updating the cluster centres the assignation is performed again (move to step 1).  

4. (Convergence) This cycle is repeated until no more changes are made in the assignments in consecutive iterations. 

The algorithm has reached a convergence. 

 30 

The input parameters required for the operation of k-means include:  
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1. Number of clusters, k. This value must be selected by the user. It can be based on a priori, external information 

revealing the number of clusters to be expected present, or in an exploratory analysis it can be set a posteriori, based 

on diagnostics values indicating the quality of solution for various k values and/or based on analyst expert opinion 

(reasonability and interpretability of the result). This requires calculating clustering solutions for a range of k values.   

2. A metric for distance used in calculation of 𝐽(𝐶𝑛). Typically Euclidean squared “distance” ‖𝑥𝑖 − µ𝑛‖2 is used, (as in 5 

Eq. (5), main text), but other option also exist. In lieu of an actual distance between two objects, a metric describing 

the similarity or (conversely dissimilarity) of the said objects may be used instead (Anderberg, 1973). 

3. Initialisation cluster centres. They can either be selected by the user or randomly chosen. Random selection can be 

obtained sampling from among all the objects at random (or uniformly at random), or by performing pre-clustering 

with a subset of data (e.g. 10% of the objects selected randomly) and using these as initialisation for the final 10 

clustering. The selection of initialisation, (along with the number of random repetitions of the clustering) may 

influence the likelihood of finding the global minimum of J(C) instead of a local one.  

Regarding initialisation, it has been shown by Arthur and Vassilvitskii (2007) that selecting the initialisation points not 

uniformly at random but spreading them out via stepwise selection from a weighted distribution improves the performance of 

the k-means algorithm. We also adopt this k-means initialisation method, resulting in an algorithm commonly known as “k-15 

means++”. 

As there are no general rules for the selection of metric or number of clusters, but they rather depend on the type of data and 

application at hand, we will experimentally study their effects and try to select the settings fitting the classification of AMS 

mass spectra. 

S.3 On spectral (dis)similarity 20 

When applying clustering methodologies, the analyst’s choice of an appropriate distance or dissimilarity metric, constructed 

from the variables studied in the analysis, is inherently dependent on the class of data variables (i.e. nominal, ordinal, interval, 

ratio scale) on hand. When dealing with aerosol mass spectrometric results, the data consists of a set of “ratio scale” variables, 

i.e. fractions of signals at various m/z ratios that together form a mass spectra (an “observation” or “object”). Ratio scale 

measurement fulfil the strictest requirements of quantitative measurements (i.e. the unit difference between two values is 25 

meaningful as is the zero point of the scale), and contain the most information of these metric categories (Kaufman and 

Rousseeuw, 2009). They also impose the least restrictions on the choice of a distance metric. 

A significant benefit of the AMS as an instrument is, that the mass spectrometric signal is well quantified and linear. All the 

variables in our data adhere the same units and scale, so they can be considered homogenous and harmonised relative to each 

other. While the variables are not completely independent, when dealing with fractions of total signal, the dependence is 30 

generally not dominant over the actual variations in the signal. Typically for the AMS the dynamic range of individual 
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normalised signals is quite moderate compared to many other mass spectrometers, which partly avoids the problem of large 

signals completely dominating the clustering outcome – and also with the aforementioned issue with the signal fractions being 

co-dependent. Still, we are far from immune to these effects, and will discuss and test the effect signal intensity and possible 

scaling options. 

Authors of classic textbooks such as Anderberg (1973), Kaufman and Rousseeuw (2009) and Spath (1980) also discuss the 5 

dissimilarity metrics’ theoretical background. It is noted e.g. by Anderberg (1973) that the correlation and cosine methods are 

very closely related, and their advantage is they are invariant to uniform multiplicative scaling, unlike the Euclidean and 

cityblock distances. For mass spectra this means if a spectra B is a scalar multiplicative of spectra A (as a thought experiment 

we disregard breaking of normalisation here), they are rightly considered identical by the cosine and correlation methods while 

the cityblock and Euclidean distances would find them different. With proper normalisation, this is less of a problem in 10 

practicse, although, there are cases when this could conceivably cause issues. As an example, consider a case when we have 

two otherwise identical spectra, but in the other we let us say double m/z 44 Th, diminishing the other signals respectively via 

the normalisation. The single difference in aerosol chemistry would now be considered the change of oxidation level, but the 

Euclidean distance method would now find all the m/z signals to be dissimilar, the correlation and cosine methods would 

(perhaps more correctly) consider the dissimilarity increased only with regard m/z 44 Th. The feature is further exacerbated 15 

by Euclidean distances’ proneness to giving excessive weight to outlying values of single variable (Cormack, 1971). We 

therefore hypothesise the Euclidean distance will discriminate the AMS spectra more with regard to their highest signals, such 

as 44 and 43 Th ions often linked to aerosol oxidation level (Aiken et al., 2007; Aiken et al., 2008), and possible outliers. 

Conversely, cosine and correlation would rather focus on the (dis)similarity of the higher end of the spectrum. This hypothesis 

is supported in light of the results in Sect. (3.3), where it is shown the squared Euclidean algorithm does best in sorting aerosols 20 

types by their oxidation state and finds outlier groups, but struggles to separate classes with minor variation in higher up 

spectral structures. 

On the more subtle differences between the closely related methods of cosine and correlation, Anderberg (1973) states: 

 “[…]the distinction [between cosine and correlation] is precisely the difference between ratio and interval 

scale variables, respectively. Thus, the cosine makes use of ratio scale information, while the correlation coefficient 25 

only uses interval scale information.”, 

and recommends cosine to be used when the origin is meaningful and well established, which is the case with our AMS mass 

spectra (and derivatively the PMF results). This can be considered as a good argument for selecting the cosine metric. 

Anderberg (1973) additionally notes the correlation metric is invariant to any linear transformations, such as uniformly adding 

a constant to all the elements (here: spectrum m/z’s) and therefore less discriminating, which in the case of clustering isn’t a 30 

favourable quality, than the cosine metric. Previous AMS clustering studies (e.g. Marcolli et al., 2006) have also utilised a 

“dot-product” similarity metric 

  𝑑(𝑢, 𝑣) =  1 − 𝑢 ∙ 𝑣,          (S.1) 
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which when normalized by the vector lengths, as is done for our mass spectra from PMF results, becomes exactly equal to the 

cosine metric (Eq. 7). 

There also exist experimental evaluations for the performance of different metrics, the most comprehensive known to us being 

the aforementioned work of Stein and Scott (1994), focusing on evaluating the (dis)similarity metrics used to automatically 

identify mass spectra. The compared metrics include the dot product (cosine) metric and the Euclidean distance, and finds the 5 

dot product metric to perform highest in matching the primary NIST library spectrum and an alternative spectrum from the 

same compound, with 75% identification accuracy. Euclidean distance is the runner-up among the five metrics included, with 

72% accuracy. (The three others being absolute value distance (68%), probability based matching (68%) and the Hertz et al. 

method (64%); Stein and Scott, 1994). Stein and Scott therefore conclude dot product (cosine) to be the best algorithm for 

mass spectra matching. 10 

Additionally, in connection to the hypothesis about oxidation level indicator signals presented above, and in the spirit of Stein 

& Scott’s mass weighting rationale (“[mass weighting] deemphasizes the more variable and less characteristic lower mass 

range in a spectrum and emphasizes the more informative higher mass ions near the molecular ion”) we also tested completely 

omitting the oxidation-sensitive signal range, below 45 Th, with proper re-normalisation, of course, to see if we can alter the 

basis of discrimination in the clustering. The results proved intriguing, as can be found in Figure S.1, but were considered 15 

similar to the ones derived with the more elegant mass weighting processing, which we consider preferential over the omission 

method. The silhouette maximum seen at k = 4 (Figure S.1, left panel) for m/z < 45 Th omission derives from discrimination 

against outlier groups, discussed in main text (Sect. 3.4.3) and was therefore seen as not incorporating new information over 

the selected method of mass scaling. 

 20 

Figure S.1. Silhouettes for clustering solutions over k values from 2 to 20. Left: dataset processed with mass scaling. Right: m/z < 45 

Th omitted. These curves can be further compared to the case of the original set of data (Figure 2), which can be considered a 

baseline for any pre-processing tests. 
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S.4 Additional methods for evaluating clustering solutions 

The alternative methods of solution quality evaluation were briefly examined. Evaluation results and references are presented 

in Figures S.2 to S.4. 

 

Figure S.2. Calinski-Harabasz criterion; (suggests max value k = 3; Caliński and Harabasz, 1974).  5 

 

Figure S.3. Davies-Bouldin criterion; (suggests min value k = 2; Davies and Bouldin, 1979). 



8 

 

 

Figure S.4. Gap criterion; (suggests elbow value k = 18; Tibshirani et al., 2001). 

 

S.5 Notes on silhouette value 

From the main defining Eq. (11) it follows that  5 

−1 ≤ 𝑠(𝑖) ≤ 1.           (S.2) 

The definition of s(i) in this fashion is invariant to multiplicative matrix operations, e.g. multiplying the distances by a positive 

number, but not additive operations such as adding a positive constant to the distances. The silhouette method not only provides 

a metric for the robustness of a clustering solution but also introduces a graphical display for the description of n-dimensional 

results, an immensely helpful feature for an analyst when having to judge the “goodness” of a particular solution offered up 10 

by the clustering algorithm. A typical way to display silhouette values is a horizontal bar plot, such as the graph presented for 

the solution “corr” k = 8 of this study in Figure S.5. 
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Figure S.5. Silhouette plot for “corr” k = 8 (sm=1.21) solution. Numeric clusters 1 – 8 correspond (from top down) to clusters S-I, S-

II, W-I, W-II, W-III, O-I, O-II and O-III, interpreted further in Sect. 3.4. 

 

S.6 Posteriori weighting by silhouette value, effect on mass spectra 5 

Posteriori weighting by silhouette values had minimal effect on cluster centroids, but did affect calculated intra-cluster 

variability values somewhat. The difference between unweighted and weighted cases is shown in Figure S.6. 
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Figure S.6. Effect of cluster centroid weighting by silhouette for the S-X and W-X clusters’ mass spectra. Above (5 uppermost 

spectra): unweighted cluster centroid spectra (mean of objects in cluster). Below (lowest 5 spectra), similar spectra weighted by the 

silhouettes of the objects. Correlation between the respective clusters is effectively unity (rs
2 > 0.994), so the main difference is seen  

for the intra-cluster variabilities, depicted by the error bars. 5 
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S.7 Mass and intensity weighting, effect on solution quality 

Scaling effect on mass spectra is further illustrated in Figures S.7 to S.9 below. Histograms of mass scaled silhouette values are 

presented in Figure S.10 

 5 

 

 

Figure S.7. Improvement in (solution) absolute silhouette values for mass scaling.  
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Figure S.8. Solution absolute silhouette values with intensity scaling. 

  

Figure S.9 Silhouette improvement / degradation for intensity scaling. 
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Figure S.10. Histograms of total solution silhouette value distributions for mass scaled data, corresponding to results presented in 

Figure 3. Value of 0.45 (red line) was chosen as a lower limit for solution to be included in a more detailed examination (Sect. 3.3; 

Table 2). Note: for “cityblock” metric the x-axis scaling differs – the minimum x-axis value of other panels, 0.25, is marked with a 

dashed line. 5 

 

 

S.8.Clusters’ cross correlations and diagnostics values 

Some of the main diagnostics values and correlations for the clustering result are presented in Tables S.1 to S.3. 

Table S.1. Similarity matrix for clustering results, “corr” k = 8. Scaled similarity values (rs
2 ; sm=1.36; p < 0.05) are used. 10 
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COA 0.53 0.18 0.63 0.54 - 0.14 0.13 0.13 

"amine-58" 0.45 0.48 0.33 0.13 0.14 - 0.27 0.17 
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"amine-100" 0.33 0.47 0.35 0.16 0.13 0.27 - 0.08 

"amine-86" 0.07 - 0.12 0.15 0.13 0.17 0.08 - 
 

Table S.2. Cluster diagnostics values: population, silhouette, f-values, estimated O:C ratio  

cluster n silhouette f43 f44 f55 f57 f60 f58 f72 f86 f100 O:C(est) f55/f57  

sawmill-SOA 27 0.60 0.15 0.08 0.03 0.01 0.002 0.01 0.00 0.00 0.00 0.41 5.59  

A-LV-OOA 21 0.62 0.06 0.15 0.03 0.01 0.005 0.01 0.00 0.00 0.00 0.60 2.38  

A-SV-OOA 19 0.27 0.06 0.09 0.05 0.03 0.003 0.01 0.00 0.00 0.00 0.40 1.68  

HOA 11 0.36 0.13 0.03 0.08 0.07 0.003 0.01 0.00 0.00 0.00 0.18 1.18  

COA 9 0.37 0.09 0.02 0.05 0.02 0.004 0.00 0.00 0.00 0.00 0.15 3.48  

"amine-100" 4 0.81 0.06 0.09 0.03 0.02 0.003 0.02 0.00 0.02 0.05 0.45 1.43  

"amine-58" 7 0.46 0.07 0.10 0.02 0.01 0.003 0.09 0.00 0.00 0.00 0.48 4.22  

"amine-86" 1 NaN 0.04 0.00 0.04 0.04 0.004 0.08 0.02 0.08 0.00 0.08 1.15  
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Table S.3. Library spectra similarities related to SV-OOA sub-species differentiation. Mass scaled (sm=1.36) squared Pearson 

correlation coefficients against reference spectra from AMS spectral database (Ulbrich et al., 2009). 

 

spectrum name reference rs
2 vs SV(HOA) SV(COA) SV(BBOA) 

       
HOA cluster (W-IV) (this study)  0.70 0.51 0.35 
COA cluster (W-V) (this study)  0.79 0.58 0.68 

       

       
A_DEC_Q_010_HOA Lanz et al., 2007  0.81 0.53 0.39 
A_DEC_Q_012_PittsHOA Ulbricht et al., 2009  0.76 0.67 0.51 
A_DEC_Q_015_HOA_avg Ng et al., 2011  0.67 0.57 0.40 
A_DEC_C_032_HOA Hersey et al., 2011  0.66 0.65 0.44 
A_DEC_W_037_HOA Crippa et al., 2013  0.63 0.60 0.41 
A_DEC_Q_001_HOA_Pittsburgh Zhang et al., 2005  0.63 0.60 0.41 
A_HR_015_HOA_HOA Mohr et al., 2013  0.53 0.50 0.32 
A_DEC_Q_005_HOA' Lanz et al., 2008  0.50 0.27 0.18 

       
A_DEC_W_036_COA Crippa et al., 2013  0.65 0.77 0.65 
A_HR_014_COA_COA Mohr et al., 2013  0.71 0.86 0.76 

       
A_DEC_Q_011_Wood_burning Lanz et al., 2008  0.69 0.50 0.74 
A_DEC_W_035_BBOA Crippa et al., 2013  0.56 0.29 0.72 
A_DEC_Q_019_BBOA_avg Ng et al., 2011  0.71 0.62 0.70 
A_HR_013_BBOA_BBOA Mohr et al., 2013  0.69 0.72 0.58 

 

  5 

S.9 Wind direction dependences and diurnality of pollution events: 

Average wind directions at 0-64 m height and local time at peak concentration was recorded for all events, and is shown in 

Figure S.11. Sawmill-SOA seems connected to directions with lumber mills (see Liao et al., 2011) and the A-SV-OOA 

similarly to the Juupajoki/Korkeakoski direction. HOA seems to originate from the direction with the nearest road (western 

sector), and the A-LV-OOA that we find connected to wood burning, is mostly seen with incoming air  passing over the 10 

Hyytiälä forestry station buildings, saunas and the nearby cottages and houses. COA directionality is already more evenly 

distributed, but includes the forestry station as one major direction of origin. For the outlier spectra there are too few data 

points available, but we note there is a cattle farm to the east direction, and agricultural fields to the south, which would be 

possible sources of the amine compounds. Also the forest clear-cut area is to the south. 
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As for the diurnality analysis presented in a histogram in Figure S.12., the results are inconclusive at best. For sawmill-SOA 

the most peaks arrive after midnight, but include observations at all times of a day. For A-LV-OOA and A-SV-OOA the 

observations are more frequent during night time. In the case of A-LV-OOA domestic heating and cooking in the evening may 

play a part. HOA plumes occur mostly daytime, while the COA (potentially mixed with fresh BBOA) is evenly distributed. 

The few amine plumes occur night-time or in the early morning, potentially suggesting the compounds could be semi-volatile 5 

and therefore sensitive to diurnal temperature changes. Again, all of the above is speculative due to statistically too low sample 

sizes. Also it should be noted these are times when the plume is observed at the receptor location (SMEAR II), and therefore 

delayed by an unknown amount of time from the actual time of the emission. 

 

Figure S.11. Wind rose “histogram” plot for (“corr” k= 8) clusters: sawmill-SOA, A-LV-OOA, A-SV-OOA, HOA, COA, “amine-10 
58”, “amine-100” and “amine-86”. Bar length depicts number of pollution cases with wind direction from the sector in question. 
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Figure S.12. Diurnal plots for the “corr” k=8 clusters. x-axis: local time when the plume is observed at SMEAR II, y-axis: plume 

count. Due to very low sample sizes not many conclusions can be drawn. 

 

S.10 Local and regional sources identification 5 

To support source identification, wind direction analysis (Figure S.11) was combined with geographical information (Figures 

S.13 to S.16) of the area nearby SMEAR II (Hyytiälä) measurement station. 
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Figure S.13. Potential close-proximity aerosol sources – the main close range sources are related to the activities at the Hyytiälä 

forestry station, and the local road “Hyytiäläntie”. 

 

 5 
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Figure S.14. Potential local aerosol sources – despite the remote location of SMEAR II there is scattered housing and small scale 

agriculture nearby. 

 

Figure S.15. The two sawmills and adjoined pellet factory are situated some seven kilometres south-east of SMEAR II, at the village 

of Korkeakoski. 5 
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Figure S.16. Likely regional sources of anthropogenic aerosols. The town of Orivesi and the city of Tampere are highlighted. Sawmill 

locations taken from Liao et al. (2011) are marked by the arrows. 

 

S.11 On additional important dimensions driving the clustering results 5 

The source-indicative f55:f57 dimension is what we interpret separates the sawmill aerosol type from the other semi-oxidised 

aerosol types with similar O:C ratios and f44 contributions (WI-III, A-SV-OOA types). While we should not draw stretched 

conclusions based on the separation of this one instance of a biogenic source, we find the sawmill aerosol type is additionally 

characterised by the high 53 to 57 Th ratio (or “f53:f57”); the biogenic sawmill aerosol has very low m/z 57 Th contribution, 

while the relatively high 53 Th signal clearly sets it apart from e.g. COA with sometimes similarly low f57 but high f55. We 10 

find a ratio of f53:f57 > 2 seems indicative of aerosol originating from the SOA conversion of sawmill monoterpene emissions 

(Figure S.17).  

 

As for the HOA vs COA separation, we feel equally conclusive indicators as f55:f57 of the same division are found higher up 

in the mass spectrum m/z scale; the odd m/z value structures from 65 to 71 Th and 77 to 85 Th seem to offer equally good 15 

markers. Specifically we suggest a low ratio of f65 to f71 and f85 to f77 can be used as an alternative a marker for HOA as 

opposed to COA (possibly mixed with fresh BBOA) (Figure S.18). 
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Figure S.17. “corr” k = 8 clustering solution projected onto 2-d axes corresponding to f44 derived oxidation level (estimated O:C; 

Aiken et al., 2008) and f53:f57. Marker size corresponds to silhouette value of the point, ranging from zero to one. Cluster centroid 

locations are marked separately with darker colours. Outlier clusters are shown in grey, without centroids.  
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Figure S.18. The ratios f77:f85 (upper panel) and f65:f71 (lower panel) seem to offer good additional indicators for separating 

the COA (W-III) and HOA (W-II) clusters. Marker size corresponds to silhouette value of the point, ranging from zero to one. 

Cluster centroid locations are marked separately with darker colours. 

 

S.12 Outlier clusters chemical interpretation and source hypotheses 5 

Within AMS measurements, amines have been postulated from unit resolution mass spectra (Aiken et al., 2009) and confirmed 

via high mass resolution analysis (Huffman et al., 2009; Sun et al., 2011) in studies conducted in the heavily populated and 

industrialised Megacities of New York, and Mexico City. Also Allan and co-workers (2006), performing the first quadrupole 

AMS measurements at the SMEAR II site in 2003 already speculated on the possibility of amines explaining the “extra” nitrate 

signal at 30 Th, not explicable by ammonium nitrate alone. The amines’ contribution at 30 Th peak corresponds to the NH2CH2
+ 10 

ion, but is often obscured in unit-resolution data by other organic fragments and the NO+ fragment from common NH4NO3. 

Of the aforementioned studies only the amine containing aerosol from New York was available, submitted to the AMS high 

resolution database (Ulbrich et al., 2009; http://cires1.colorado.edu/jimenez-group/HRAMSsd/) with reference to after a later 

similar analysis by Docherty et al. (2011). This high-resolution AMS spectra was translated to unit mass resolution and 

compared with our samples. A moderate similarity (rs
2 = 0.67) was found between the library specimen and our cluster O-III, 15 

lending some confidence to the assertion of similarity. Although the other amine spectra were unavailable for mathematical 

correlation check, we note the general spectra of the aerosols reported by Huffman and others. (2009) for Mexico City and 

Sun et al. (2011) for New York exhibit some similar features to the spectra of O-I and O-III clusters, namely increased m/z 58, 

72 and 86 Th signals, but in different relative fractions.  

The aerosol described by Sun et al. has the major nitrate containing peaks at m/z (56), 58, 59 and 72 Th, but shows only a small 20 

peak at 86 Th and no significant contribution at 100 Th. The two Mexico City spectra reported by Huffman et al. (2009) include 

major peaks at 58 and 86 Th, but little to no contribution at 100 Th. By visual inspection the Aiken et al. (2009) amine aerosol 

specimen doesn’t seem to contain any of the peaks discussed here, so we consider it not to be a relevant reference in this 

particular case. 

Additionally, some very similar spectra we encountered in literature were from those laboratory SOA formation study by 25 

Murphy et al. (2007), who measured using an AMS, secondary aerosol generated from various aliphatic amines. The spectra 

they report for trimethylamine photo-oxidation product aerosol has multiple similar features at 58, 86 and 100 Th, albeit in 

different signal fractions (m/z 86 Th signal > m/z 100 Th signal) to ours. Looking up the 70 eV electron impact ionisation 

spectrum of trimethylamine, available from the U.S. National Institute of Standards and Technology (NIST), we find a 

specimen with the same peaks as our but again with different ratios for m/z 58, 72, 86 and 100 Th. 30 
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Closest match for the O-I and O-II clusters within the AMS spectral database was the marine aerosol (rs
2 = 0.50 O-I; 0.68 O-

II) reported by Chang and co-authors (2011) for Arctic Ocean marine biogenic aerosol. It does contain a small peak at 58 Th, 

but only low signals at 86 or 100 Th. 

 As for the sources, in addition to marine and industrial emissions, amines have been reported from biodegradation of 

forest organic material such as leaves and needles In spring they could be released from their trapping below the layer of snow 5 

and subsequently be evaporated from the solar-heated ground surface at and after snowmelt. Amines are known to be common 

products of biomaterial degradation processes and to be volatile (Kieloaho et al., 2013; Kuhn et al., 2011). Alkylamines are 

also known to be produced at the forest floor and their concentrations are found to be temperature dependent and peaking 

during autumn forest litterfall (Kieloaho et al., 2013). Our AMS measurements coincided with the snow melt period at the site, 

but to our knowledge no data amine data from snowmelt period at SMEAR II exists, regrettably.  10 

 Also manure application in crop fields has been shown to be a potential source of amines (Schade and Crutzen, 1995; 

Ge et al., 2011). It would be plausible some nearby field that has been fertilised with manure, would release a considerable 

amount of volatile amine compounds upon drying. This hypothesis has been questioned, however, by the findings of Kuhn et 

al. (2011) who instead conclude the amine emissions are more likely from the animals’ exhalation and feeding. Also more 

specific studies on cattle amine emission can be found; for example, emission of trimethylamine from cattle was reported by 15 

Sintermann and co-authors (2014). There exists a cattle farm some two kilometres to the east of the field station and some 

agricultural fields closer by (supporting information Fig. S.14). 

Finally, a nearby patch of forest of 0.8 hectares of area, at a distance of 300 to 500 meters from the site, was cut clear a month 

prior to the start of our measurements (Virkkula et al., 2014). Amines have been found to be emitted from tree trunks and 

needles of live coniferous trees of the boreal zone (Kieloaho et al., 2013), and it would therefore be imaginable the process of 20 

clear-cutting a forest stand using a harvester vehicle and the subsequent transportation of the trunks away from the site would 

cause considerable emissions of volatile organic compounds, including monoterpenes and amines for several weeks after the 

process. 

Besides amines, other possible, but in our opinion unlikely explanations for the signals observed in our outlier clusters may 

exist. A laboratory study by Rollins and co-workers (2010) also reported increased signals for m/z 58 and 86 Th when 25 

synthesised hydroxynitrates were measured with an AMS. However, their spectra seem to be dominated by peaks not observed 

in our outlier spectra, and the said series (CnH2n+2N+) only forms a minor part of the whole signal reported by Rollins and 

others. Additionally, Wolf et al. (2015) reported some atmospheric bacteria related to ice-nucleation producing a 70 eV EI MS 

signal at 86 Th (C5H12N+), but this sample lacks the other signals present in our series. 

We additionally note that similar homologous series exist for some aliphatic ketones (CR2=C(OH)R+) following McLafferty 30 

rearrangement, producing a unit mass series at 58, 72, 86 and 100 Th (McLafferty, 1959). Conclusively differentiating between 

these two organic groups would benefit from high-resolution ToF data, which we unfortunately do not have available at this 
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time. While we cannot definitely rule out the possibility of high concentrations of ketone compounds, we do not find references 

to this type of observations in the aerosol mass spectrometry related literature.  

 

 

 5 
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Figures and Tables 

 

Figure S.1. Silhouettes for clustering solutions over k values from 2 to 20. Left: dataset processed with 

mass scaling. Right: m/z < 45 Th omitted. These curves can be further compared to the case of the original 

set of data (Figure 2), which can be considered a baseline for any pre-processing tests. 5 

 

Figure S.2. Calinski-Harabasz criterion; (suggests max value k = 3; Caliński and Harabasz, 1974).  

 

Figure S.3. Davies-Bouldin criterion; (suggests min value k = 2; Davies and Bouldin, 1979). 
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Figure S.4. Gap criterion; (suggests elbow value k = 18; Tibshirani et al., 2001). 

 

Figure S.5. Silhouette plot for “corr” k = 8 (sm=1.21) solution. Numeric clusters 1 – 8 correspond (from 

top down) to clusters S-I, S-II, W-I, W-II, W-III, O-I, O-II and O-III, interpreted further in Sect. 3.4. 5 
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Figure S.6. Effect of cluster centroid weighting by silhouette for the S-X and W-X clusters’ mass spectra. 

Above (5 uppermost spectra): unweighted cluster centroid spectra (mean of objects in cluster). Below 

(lowest 5 spectra), similar spectra weighted by the silhouettes of the objects. Correlation between the 
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respective clusters is effectively unity (rs
2 > 0.994), so the main difference is seen  for the intra-cluster 

variabilities, depicted by the error bars. 

 

Figure S.7. Improvement in (solution) absolute silhouette values for mass scaling. 

 5 

Figure S.8. Solution absolute silhouette values with intensity scaling. 
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Figure S.9 Silhouette improvement / degradation for intensity scaling. 

 

Figure S.10. Histograms of total solution silhouette value distributions for mass scaled data, 

corresponding to results presented in Figure 3. Value of 0.45 (red line) was chosen as a lower limit for 5 



37 

 

solution to be included in a more detailed examination (Sect. 3.3; Table 2). Note: for “cityblock” metric 

the x-axis scaling differs – the minimum x-axis value of other panels, 0.25, is marked with a dashed line. 

 

Figure S.11. Wind rose “histogram” plot for (“corr” k= 8) clusters: sawmill-SOA, A-LV-OOA, A-SV-

OOA, HOA, COA, “amine-58”, “amine-100” and “amine-86”. Bar length depicts number of pollution 5 

cases with wind direction from the sector in question. 

 

Figure S.12. Diurnal plots for the “corr” k=8 clusters. x-axis: local time when the plume is observed at 

SMEAR II, y-axis: plume count. Due to very low sample sizes not many conclusions can be drawn. 
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Figure S.13. Potential close-proximity aerosol sources – the main close range sources are related to the 

activities at the Hyytiälä forestry station, and the local road “Hyytiäläntie”. 

 5 
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Figure S.14. Potential local aerosol sources – despite the remote location of SMEAR II there is scattered 

housing and small scale agriculture nearby. 

 

Figure S.15. The two sawmills and adjoined pellet factory are situated some seven kilometres south-east 

of SMEAR II, at the village of Korkeakoski. 5 
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Figure S.16. Likely regional sources of anthropogenic aerosols. The town of Orivesi and the city of 

Tampere are highlighted. Sawmill locations taken from Liao et al. (2011) are marked by the arrows. 

 

 

 5 

Figure S.17. “corr” k = 8 clustering solution projected onto 2-d axes corresponding to f44 derived 

oxidation level (estimated O:C; Aiken et al., 2008) and f53:f57. Marker size corresponds to silhouette 

value of the point, ranging from zero to one. Cluster centroid locations are marked separately with darker 

colours. Outlier clusters are shown in grey, without centroids.  
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Figure S.18. The ratios f77:f85 (upper panel) and f65:f71 (lower panel) seem to offer good additional 

indicators for separating the COA (W-III) and HOA (W-II) clusters. Marker size corresponds to silhouette 
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value of the point, ranging from zero to one. Cluster centroid locations are marked separately with darker 

colours. 

 

Table S.1. Similarity matrix for clustering results, “corr” k = 8. Scaled similarity values (rs
2 ; sm=1.36; p 

< 0.05) are used. 5 
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sawmill-SOA - 0.63 0.63 0.39 0.53 0.45 0.33 0.07 

A-LV-OOA 0.63 - 0.62 0.16 0.18 0.48 0.47 - 

A-SV-OOA 0.63 0.62 - 0.69 0.63 0.33 0.35 0.12 

HOA 0.39 0.16 0.69 - 0.54 0.13 0.16 0.15 

COA 0.53 0.18 0.63 0.54 - 0.14 0.13 0.13 

"amine-58" 0.45 0.48 0.33 0.13 0.14 - 0.27 0.17 

"amine-100" 0.33 0.47 0.35 0.16 0.13 0.27 - 0.08 

"amine-86" 0.07 - 0.12 0.15 0.13 0.17 0.08 - 

 

Table S.2. Cluster diagnostics values: population, silhouette, f-values, estimated O:C ratio  

cluster n silhouette f43 f44 f55 f57 f60 f58 f72 f86 f100 O:C(est) f55/f57  

sawmill-SOA 27 0.60 0.15 0.08 0.03 0.01 0.002 0.01 0.00 0.00 0.00 0.41 5.59  

A-LV-OOA 21 0.62 0.06 0.15 0.03 0.01 0.005 0.01 0.00 0.00 0.00 0.60 2.38  

A-SV-OOA 19 0.27 0.06 0.09 0.05 0.03 0.003 0.01 0.00 0.00 0.00 0.40 1.68  

HOA 11 0.36 0.13 0.03 0.08 0.07 0.003 0.01 0.00 0.00 0.00 0.18 1.18  

COA 9 0.37 0.09 0.02 0.05 0.02 0.004 0.00 0.00 0.00 0.00 0.15 3.48  

"amine-100" 4 0.81 0.06 0.09 0.03 0.02 0.003 0.02 0.00 0.02 0.05 0.45 1.43  

"amine-58" 7 0.46 0.07 0.10 0.02 0.01 0.003 0.09 0.00 0.00 0.00 0.48 4.22  

"amine-86" 1 NaN 0.04 0.00 0.04 0.04 0.004 0.08 0.02 0.08 0.00 0.08 1.15  
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Table S.3. Library spectra similarities related to SV-OOA sub-species differentiation. Mass scaled 

(sm=1.36) squared Pearson correlation coefficients against reference spectra from AMS spectral database 

(Ulbrich et al., 2009). 

 

spectrum name reference rs
2 vs SV(HOA) SV(COA) SV(BBOA) 

       

HOA cluster (W-IV) (this study)  0.70 0.51 0.35 

COA cluster (W-V) (this study)  0.79 0.58 0.68 

       
       

A_DEC_Q_010_HOA Lanz et al., 2007  0.81 0.53 0.39 

A_DEC_Q_012_PittsHOA Ulbricht et al., 2009  0.76 0.67 0.51 

A_DEC_Q_015_HOA_avg Ng et al., 2011  0.67 0.57 0.40 

A_DEC_C_032_HOA Hersey et al., 2011  0.66 0.65 0.44 

A_DEC_W_037_HOA Crippa et al., 2013  0.63 0.60 0.41 

A_DEC_Q_001_HOA_Pittsburgh Zhang et al., 2005  0.63 0.60 0.41 

A_HR_015_HOA_HOA Mohr et al., 2013  0.53 0.50 0.32 

A_DEC_Q_005_HOA' Lanz et al., 2008  0.50 0.27 0.18 

       

A_DEC_W_036_COA Crippa et al., 2013  0.65 0.77 0.65 

A_HR_014_COA_COA Mohr et al., 2013  0.71 0.86 0.76 

       

A_DEC_Q_011_Wood_burning Lanz et al., 2008  0.69 0.50 0.74 

A_DEC_W_035_BBOA Crippa et al., 2013  0.56 0.29 0.72 

A_DEC_Q_019_BBOA_avg Ng et al., 2011  0.71 0.62 0.70 

A_HR_013_BBOA_BBOA Mohr et al., 2013  0.69 0.72 0.58 
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