Supplementary materials for Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer based source apportionment using radiocarbon measurements of ambient aerosol

P. $Zotter^{1,\#}$, H. $Herich^2$, M. $Gysel^1$, I. El- $Haddad^1$, Y.L. $Zhang^{1,3,4,5,\dagger}$, G. $Močnik^{6,7}$, C. $H\ddot{u}glin^2$, U. $Baltensperger^1$, S. $Szidat^{3,4}$, A.S.H. $Pr\acute{e}v\^{o}t^1$

³Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland

⁴Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

⁶Aerosol d.o.o., Research and Development Department., Ljubljana, Slovenia

⁷Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia

'now at: Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, 210044, Nanjing, China

Correspondence to: A.S.H. Prévôt (andre.prevot@psi.ch)

¹Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland

²Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, 8600 Dübendorf, Switzerland

⁵Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland

^{*}now at: Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Bioenergy Research, Technikumstrasse 21, CH-6048 Horw, Switzerland †now at: Yale-NUIST Center on Atmospheric Environment, Nanjing University of

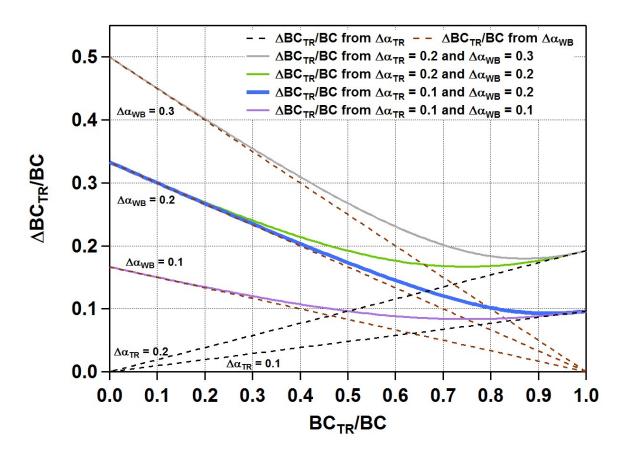


Figure S1: Residuals of BC_{TR}/BC compared to EC_F/EC (Δ BC_{TR}/BC) as a function of BC_{TR}/BC calculated with $\alpha_{TR} = 0.90$ and $\alpha_{WB} = 1.68$ and using the wavelength pair 470 nm and 950 nm. The brown and black dashes lines denote the residuals of BC_{TR}/BC with respect to an error of α_{WB} and α_{TR} ($\Delta\alpha_{WB}$ and $\Delta\alpha_{TR}$), respectively, and the solid coloured lines represent the errors in BC_{TR}/BC with respect to errors in both, α_{WB} and α_{TR} .

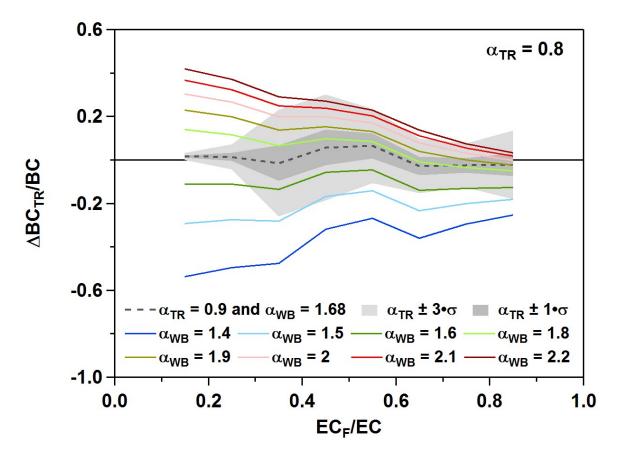


Figure S2: Residuals of BC_{TR}/BC compared to EC_F/EC (Δ BC_{TR}/BC) as a function of EC_F/EC for $\alpha_{TR} = 0.8$ and $\alpha_{WB} = 1.4$ -2.2 and using the wavelength pair 470 nm and 950 nm. Average Δ BC_{TR}/BC values for EC_F/EC bins of 0.1 are displayed. The dashed grey line denotes the best α pair ($\alpha_{TR} = 0.9$ and $\alpha_{WB} = 1.68$) as obtained in Sect. 3.2.1 and the dark and light grey shaded areas mark the 1σ (standard deviation) and 3σ of Δ BC_{TR}/BC per EC_F/EC bin for this best α pair.

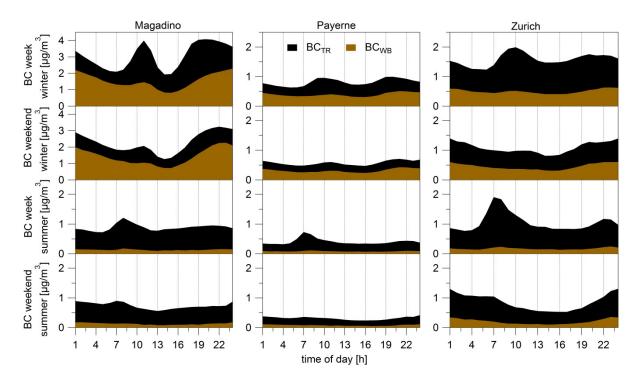


Figure S3: Diurnal cycles of BC for the stations MAG, PAY and ZUR - 1h averages from 2009 to 2012. BC_{WB} and BC_{TR} were calculated using the best α pair ($\alpha_{TR} = 0.9$ and $\alpha_{WB} = 1.68$) as obtained in Sect. 3.2.1 and using the wavelength pair 470 nm and 950 nm. The split uncertainty between BC_{WB} and BC_{TR} (Δ BC_{TR}/BC) is max. 0.04 μ g m⁻³.

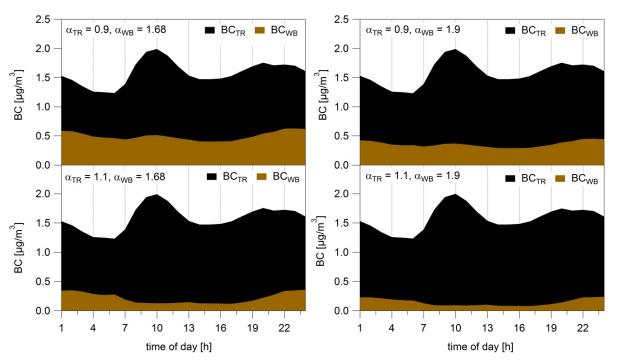


Figure S4: Diurnal cycles of BC for ZUR - 1h averages for winter week days from 2009 to 2012 calculated with different α combinations and using the wavelength pair 470 nm and 950 nm.