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Key points:

- Machine learning methods can produce very good aerosol optical depth estimates from surface solar radiation data

- These tools have the potential to be used to retrieve long aerosol optical depth time series from from surface solar 

radiation measurements
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Abstract

In order to have a good estimate of the current forcing by anthropogenic aerosols knowledge on past aerosol levels is needed. 

Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only  

available from 1990’s onward. One option to lengthen the AOD time series beyond 1990’s is to retrieve AOD from surface 

solar radiation (SSR) measurements done with pyranometers. In this work, we have evaluated several inversion methods  

designed for this task. We compared a look-up table method based on radiative transfer modelling, a nonlinear regression 

method  and  four  machine  learning  methods  (Gaussian  Process,  Neural  Network,  Random  Forest  and  Support  Vector 

Machine)  with  AOD  observations  done  with  a  sun  photometer  at  an  Aerosol  Robotic  Network  (AERONET)  site  in 

Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to  

the look-up table and nonlinear regression methods. All of the applied methods produced AOD values that corresponded well  

to the AERONET observations with the lowest correlation coefficient value being 0.87 for the Random Forest method. 

While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, Neural network and 

support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both 

ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those  

with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into 

aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA 

in the retrieval where as the LUT method assumes a constant value for it. This would also mean that machine learning  

methods could have potential in reproducing AOD from SSR even though SSA would have changed during the observation 

period.

1. Introduction

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change states that the most significant source of 

uncertainty in the projections of climate is related to aerosols (IPCC, 2013).  One significant contribution to this uncertainty 

comes from the fact that without the knowledge of the aerosol burden in the past, we are not able to estimate the current 

forcing of anthropogenic aerosol. For example, the effect of changes in the current aerosol emissions on climate depends on 

the background aerosol load during the pre-industrial era (e.g. Andreae, 2007; Carslaw et al., 2013). In addition, the current 
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estimates of past aerosol emissions are highly uncertain (Granier et al., 2011) thus increased knowledge on historical aerosol 

levels would increase our ability to estimate the present day aerosol radiative forcing.

One limiting factor in determining the properties of global aerosol in the past has been that observations of aerosol radiative 

effects have been limited to fairly recent periods. For example, the aerosol optical depth has mainly been measured using sun 

photometers  and  the  most  widely  known  ground-based  network  of  sun  photometers  is  Aerosol  Robotic  Network 

(AERONET; Holben et al., 1998). Although, AERONET contains globally already over 700 stations, with a rather good  

spatial coverage, it still lacks in temporal coverage, providing aerosol optical properties and AOD only since 1990s, and  

reaching the current status until the recent years. The earliest records of satellite-based AOD are provided by TOMS (Total  

Ozone  Mapping  Spectrometer,  e.g.  Torres  et  al.,  2002)  and  AVHRR  (Advanced  Very  High  Resolution  Radiometer, 

Geogdzhayev et al.,  2005), from 1979 and 1983 onwards, respectively. However, neither one of these instruments were 

specifically designed to retrieve aerosol properties. The more recent dedicated aerosol sounders, such as ATSR (The Along 

Track  Scanning  Radiometer  2,  Llewellyn-Jones  and  Remedios,  2012),  MODIS  (Moderate  Resolution  Imaging 

Spectroradiometer, Levy et al., 2010), VIISR (Visible Infrared Imaging Radiometer Suite, Jackson et al., 2013), and MISR 

(Multi-angle  Imaging  SpectroRadiometer,  Kahn  and  Gaitley,  2015)  offer  data  from  1995,  2000  and  2002  onwards, 

respectively. It is therefore apparent that neither sun-photometer nor satellite records of AOD extend very far to the past. 

There have, however, been recent studies where aerosol load has been indirectly retrieved from surface solar radiation (SSR) 

measurements,  which  would  cover  much longer  time periods  than  sun  photometer  and  satellite  observations  of  AOD. 

Recently, Kudo et al., 2011 and Lindfors et al., 2013 used SSR measurements done with pyranometers to estimate AOD. 

Lindfors et al., 2013 demonstrated that AOD can be estimated by using SSR and water vapor information and a look-up table  

(LUT) generated with a radiative transfer code. Their method produces AOD estimates that have 2/3 of the results within ± 

20 % or ± 0.05 of collocated AERONET AODs. Because pyranometer SSR measurements have been done since 1950’s over  

the globe, the usage of AOD estimates based on SSR measurements would enable us to construct AOD time series that go 

several decades back in time. 
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Since the 1990’s machine learning methods have made their way to atmospheric sciences and have been used in e.g. satellite  

data processing, climate modeling, and weather prediction (Hsieh, 2009). Because of their ability to retrieve parameters from 

data that have strongly non-linear relationships, they have potential of retrieving AOD from a combination of solar radiation 

measurements and auxiliary data such as water vapour content (WVC) and solar zenith angle (SZA), similarly to what was  

done by Lindfors et al. (2013) using a radiative transfer based approach. The aim the present work is to investigate how well  

machine learning methods are able to estimate AOD from pyranometer observations, by evaluating their performance in 

comparison with a radiative transfer based look-up-table approach. We chose four different methods: Neural Network (NN, 

McCulloch and Pitts, 1943), Random Forest (RF, Breiman, 2001), Gaussian Process (GP, Santner et al., 2013) and Support 

Vector Machine (SVM, Smola and Schölkopf, 2004) and compared them against a look-up table and a nonlinear regression 

method (NR, Bates and Watts, 1988). The performance of these methods was evaluated with AERONET AOD observations 

done in Thessaloniki, Greece, after the AOD estimates were derived with SSR observations. Nonlinear regression has been 

successfully used in multiple studies within aerosol and atmospheric sciences (e.g. Huttunen et al.,  2014; Ahmad et al.,  

2013). Out of these machine learning methods, Neural network (NN) has been actively used in different types of applications 

in atmospheric sciences. For example, it has been applied to retrieve aerosol properties from remote sensing instruments  

(Olcese et al. 2015; Taylor et al., 2014; Foyo-Moreno et al, 2014). The application of Foyo-Moreno et al. (2014) is similar to 

ours, in a sense that they also estimated AOD exploiting SSR measurements. In their approach, SSR was separated to direct  

and diffuse components as inputs for NN to estimate AOD. To our knowledge, the rest of the analyzed methods have not  

been used to retrieve aerosol properties directly from observations.

2. Data and Methods

We compared the ability of several methods to estimate AOD, based on SSR and water vapor measurements (and SZA that  

can be readily determined for any given time and location), against AERONET AOD measurements at 500 nm (henceforth  

AOD) done at Thessalonki, Greece. This site was chosen for this study, because it has all the necessary measurements with  

high quality from a 10 year time period, and because it is the same site to which Lindfors et al. (2013) applied their LUT-

approach. Furthermore, the location has varying aerosol concentrations and relatively high AOD values throughout the year.
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2.1 Pyranometer measurements of surface solar  radiation

SSR has been measured at Thessaloniki since January 1993 with a CM21 pyranometer manufactured by Kipp and Zonen. 

The instrument is located on the roof of the Physics Department at the Aristotle University of Thessaloniki (40.63 N, 22.96 

E), ca. 60 m above sea level. The data are sampled every 1–2 s and every minute the average and standard deviation of the  

samples are recorded (see more details from Lindfors et al., 2013). The calibration of the pyranometer has been confirmed to 

stay within the quoted by the manufacturer accuracy (Bais et al., 2013).

2.2 AERONET measurements

AERONET is  a  network  of  sun  and  sky  scanning  radiometers  that  measure direct  sun  and  sky  radiance at  several 

wavelengths, typically centered at 340, 380, 440, 500, 670, 870, 940, and 1020 nm, providing measurements of various  

aerosol related properties (Holben et al., 1998). From direct sun measurements we exploited AOD and WVC data. When also 

sky  radiance  measurements  are  included,  more  detailed  aerosol  properties  such  as  single  scattering  albedo (SSA) and  

asymmetry parameter (gg) can be retrieved (Dubovik et al., 2000). In the evaluation of the machine learning methods we 

used  Level  2.0  (cloud-screened  and  quality  assured)  AERONET  direct  sun  measurements  of  AOD  and  WVC  for 

Thessaloniki.  The Cimel  sun photometer  is  located at  the roof  of  the Physics  Department  in  the  close  vicinity  of  the  

pyranometer discussed above. From the inversion products, to interpret some of our results in more detail, we used level 1.5  

(cloud-screened) retrievals. However, when we selected the data from the Level 1.5 inversion product, we applied all the  

other level 2.0 AERONET criteria except for the AOD threshold. In other words, we applied otherwise the same rigorous 

quality control that is required for Level 2 data, but we only relaxed the requirement for AOD at 440nm to range from 0.4 to 

0.1, in order to have more reliable measurements for our data analysis.  

2.3 Cloud-screening of the pyranometer measurements and collocation with the AERONET measurements

Cloud-screening is a crucial factor in the analysis, thus only contribution of aerosols are considered, not clouds. The cloud-

screening was first applied to the SSR data and only the clear-sky measurements were included in the analysis (see Lindfors  
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et al., 2013 for more details). After the initial cloud-screening, the SSR data still included observations with corresponding  

AOD values that deviated significantly from the main body of the observations. Since there is a high probability that these 

outliers in the data were caused by e.g. cloud-contamination, we applied additional screening to the data. Thus, we removed  

the clear outliers of possibly undetected clouds, in our case those observations that deviated by more than ±20 Wm-2 from 

the  exponential  regression  fit  (SSR =  a*exp(-b*AOD)+c,  where  a,  b  and  c  are  regression  constants).  This  additional 

screening was applied through regression of SSR against AOD for a given range of SZA (within ±0.5o). The the SSR values 

were collocated for each AOD with the ±1 minutes difference, averaged and finally normalized for the Sun-Earth distance 

corresponding to January 1st.  The training dataset for the machine learning methods contained years 2009-2014 and the 

validation (verification) dataset years 2005-2008. These periods were selected because we wanted to verify if the methods 

could provide reasonable AOD estimates for a period different than the training. The training dataset covered approximately 

2/3 and the validation dataset 1/3 of the whole data. For all the methods the input parameters are SSR, WVC and SZA, and 

they produce AOD estimates.

2.4 LUT and NR methods for AOD retrievals

2.4.1 Radiative transfer model based look-up table (LUT)

To retrieve AOD from SSR observations Lindfors et al., (2013) produced a LUT based on radiative transfer simulations.  

They simulated SSR in different atmospheric conditions by varying AOD, WVC and SZA systematically. They used a single  

aerosol model for all the simulations, and therefore called their AOD estimate as an effective AOD, which is only a function  

of SSR, SZA, WVC. Other parameters were assumed as constants e.g. Ångström Exponent of 1.1, SSA at 500 nm of 0.92 

(the SSA's spectral pattern follows the rural background aerosol model by Shettle, 1989, where SSA changes from roughly  

0.92 at 400 nm to 0.89 at 1000 nm), the asymmetry parameter was assumed wavelength independent with a value of 0.68 

while the albedo was varying with wavelength and SZA. For a more detailed description of the LUT method see Lindfors et  

al., (2013).

2.4.2 Nonlinear regression method (NR)
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The nonlinear regression (NR) is a multivariate analysis method which is used when the dependencies between the study 

variables are not linear (Bates and Watts, 1988). NR is useful especially when there are physical reasons for believing that  

the relationship between the response and the predictors follows a particular functional form. Benefits of NR are that it needs 

only moderate sized sample of the studied phenomena to give adequately precise results and as an output it gives a simple,  

but not predefined, function for prediction. Additional advantage of NR against the other methods presented in this paper is  

that once the parameters are estimated, they can be used in similar cases without additional training data. In this study we  

assume that  AOD can be estimated as  a  function of SSR, WVC and SZA. Multiple different  formulations for the NR  

function was tested and the function with the best prediction ability found for this data is given by

AOD=b0+b1*exp(1/sza+b2*exp(1/flux+b3*exp(1/wvc+b4*exp(1/sza)*exp(1/flux+b5*exp(

1/sza)* exp(1/wvc)+ b6*exp(1/flux) *exp(1/wvc).

 The coefficients b0-b6 were determined using R-software (R Core Team, 2014).

2.5 Machine learning methods for AOD retrievals

2.5.1 Neural Network (NN)

Artificial neural networks (NN) belong to the family of machine learning methods (McCulloch and Pitts, 1943). As usually 

in machine learning methods, the aim of an artificial neural network is to generate a mathematical model to represent the  

phenomenon that is examined. The mathematical model of NN structure specifically consists of interconnected neurons with 

numeric weights. A typical NN model is multilayer perceptron (MLP) (Rosenblatt, 1958), which is used in this study. A MLP 

network  consists  of  several  neuron  layers:  an  input  layer,  hidden  layers  and  an  output  layer.  The  weights  and  other 

parameters of the model are tuned or trained with a specific training set containing input-output pairs of the phenomenon. In  

this case the inputs are SSR, WVC, SZA and the output is AOD. The training is executed with a training algorithm, in this  

paper the Levenberg-Marquardt algorithm is used (Hagan and Menhaj, 1994). A total of 20 neural networks were trained in  

this case. Each network had its own number of neurons in a hidden layer. The networks which learned the training set best 
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were selected to a group which contained five networks. The final estimate of networks was given as a median of the outputs  

of all members of the group.

2.5.2 Random Forest (RF)

Random Forest (RF) (Breiman, 2001) is a machine learning technique that is used for classification and nonlinear regression. 

RF for nonlinear regression consists of an ensemble of binary regression trees. Each of these trees is constructed using a 

randomized training scheme and is essentially a piecewise constant fit to the training data set. The prediction of a RF model  

is obtained by averaging the regression tree predictions over the whole ensemble. In this study, the RF implementation from 

the Scikit-Learn machine learning library (Pedregosa et al. 2011) was used. The RF model inputs were (SSR, WVC, SZA,  

SSR*WVC, SSW*SZA, WVC*SZA) and the output (AOD). A randomized cross-validation scheme was used to find the 

optimal training parameters for the RF: min_samples_split = 4, max_features = 1.0, min_samples_leaf = 2, n_estimators = 

225, max_depth = 39. For more information on RFs see, for example, Friedman et al., (2001).

2.5.3 Support vector machine (SVM)

Support  vector  machine (SVM) is a  novel  machine learning technique (Vapnik,  1995; Burges,  1998),  which has  many 

benefits to the conventional artificial-NNs (Haykin, 1999). In this study, we use the standard SVM regression (SVR), the  

formulation based on the commonly used ε-SVR with radial basis kernel function (implemented in the libsvm package). The 

objective of ε-SVR is to find a function that has at most ε deviation from the actual outputs for all the training data and is at  

the same time as flat as possible. The proposed modelling problem can be formulated as a quadratic (convex) optimization 

problem based on minimization of the Vapnik's ε-insensitive loss function (e.g. Vapnik 1995). In principle, there are two 

parameters to be controlled: the regularization parameter,  which controls the smoothness of the approximation function 

(sensitivity to noise), and the parameter ε, which dominates the number of support vectors by governing the accuracy of the  

approximation function. The determination of SVM control parameters was solved by means of a grid search. For a more 

detailed description of the method, the reader is referred e.g. to Smola and Schölkopf (2004).

2.5.4 Gaussian process (GP)
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Gaussian process (GP) for machine learning is a generic supervised learning method that may be used, for example, for  

nonlinear regression. In GP learning, the function inputs and outputs are treated as Gaussian random variables and the  

correlations  between these  variables  are  modelled.  The predictions  given  by a GP model  are  computed  as  conditional 

probability distributions given the training data and function inputs. As the GP predictions are probability distributions, the 

error estimates for the predicted point estimates are obtained automatically. In this study, the GP implementation from the 

Scikit-Learn machine learning library was used. The same inputs and output variables as with the RF model were used in the 

GP training. A total of 25 GP models were trained. The training of each model was carried out using 2500 training data 

samples that were randomly sampled from the full training data set. A squared exponential autocorrelation function and the 

following training parameters were used in the training: theta0 = 1.0e-8, thetaL = 1.0e-16, thetaU = 1.0, nugget = 1.0e-3. The 

five best performing GP models were selected into the final GP model committee. The final prediction was computed as the 

median of the predictions given by the GP models in the committee. For more information on GPs for machine learning  see, 

for example, Welch et al., (1992), Rasmussen and Williams (2006), and Santner et al., (2013).

3. Results

3.1 Comparison of the methods

Table 1 shows the statistics of the AOD observed by AERONET together with the statistical characteristics of the predicted  

AOD  for  the  years  2005-2008.  From  the  table,  we  can  see  that  predicted  values  show  good  correlation  against  the  

observations for all the methods. Predictions by RF had the lowest correlation coefficient with a value of 0.87 while the  

correlation coefficient for NR was only slightly larger, 0.88. For the best performing methods, LUT, GP, NN, and SVM, the  

correlation coefficients were approximately 0.92. Their predicted AODs in comparison to AERONET AOD are shown in 

Figure 1. Based on the different statistics in Table 1, machine learning methods (NN, SVM, GP) produce a good match with  

AERONET data and they perform equally good or better than the LUT method according to all the metrics. Due to the fact  

that RF and NR are not able to produce as good estimates as the LUT method, they were left out from the more detailed  

analysis. 
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Although these methods are able to predict the average AOD with a good accuracy, they differ when we compare their ability 

to predict different AOD levels. In Figure 1,  the color scales indicate the absolute amount of results in the areas with the 

interval of 0.01x0.01 (vertically and horizontally) for AOD, in addition 1:1-lines and linear fits are included. Based on the 

linear fits, NN appears to have the best agreement with AERONET data for the whole AOD range. As the average and 

median values of AERONET AOD are 0.240 and 0.207 respectively (Table 1), the main population of the measurements is in 

the range of moderate AODs. The machine learning methods are obviously weighted to perform best in this range of AODs.  

However, from Figure 2, which shows the absolute difference between AERONET and predicted AOD, we can see that LUT 

and GP tend to significantly underestimate AOD for AODs larger than 0.5, while NN and SVM are able to reach smaller 

differences with AERONET on average, although with larger overall variabilities than LUT and GP. Although NN and SVM 

also start to deviate from the observations at higher AODs, these deviations are more modest in relative sense as can be seen  

from Figure 3 which shows the relative difference between the observations and predictions. All the methods overestimate 

AOD in relative terms, when AOD approaches zero (Figure 3). However, as Figure 2 demonstrates, the absolute error is  

systematically very low in the small AOD region (AOD < 0.2). NN and SVM are generalized better for large AODs than the 

other methods, where the amount of data are small.

3.2 The effect of water vapour on AOD predictions

Huttunen et al. (2014) showed that WVC and AOD have typically a positive correlation. Therefore, we investigated how the 

AOD estimates from different methods are affected by WVC. Figure 4 shows the relative difference between the predictions 

and measured AOD with respect to WVC. From this figure, we can see that the LUT-based AODs are overestimated at the  

smallest and underestimated at the largest WVC contents. The reason for this behaviour is that the LUT method has been set  

to assume prescribed and constant properties for many relevant parameters that affect SSR (other than AOD and WVC); e.g.  

aerosol  single  scattering  albedo,  asymmetry  parameter  and  surface  albedo  (Lindfors  et  al.,  2013).  Consequently,  the 

assumption of constant SSA in particular leads to WVC-dependent systematic bias of the LUT-based AOD, as we will show 

next. The other methods are closer to the ratio of 1 without such a systematic bias, excluding the SVM's underestimation for  

the smallest WVC.
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Figure 5 shows measured SSR and LUT-based SSR for a narrow set of SZAs (49.75°-50.25°). AOD is on the horizontal axis, 

SSR on the vertical axis and WVC is shown with the colorbar. From Figure 5a it is evident that LUT incorporates a strong  

WVC-dependent structure: for a given SSR level, AOD decreases with increasing water vapor content. This pattern follows 

from the assumption that the aerosol composition remains the same, i.e. it has a fixed SSA value. Thus in the LUT method,  

increases in SSR absorption by water vapour are compensated by decreases in aerosol extinction. In the real atmosphere, 

water  vapour content  has also implications on aerosol  composition and size.  If  all  conditions apart  from water  vapour 

remained constant, increase of water vapour would also increase the uptake of water into aerosol particles thus affecting the  

aerosol SSA. The effect of fixed SSA is also visible in the way the LUT-based AOD estimates are distributed (Figure 5a). In 

Figure 5c we can see that for a given AOD in the LUT, the highest WVC values always correspond to the lowest SSR values.  

However, the same pattern is not clearly visible either in the plot with the measured values (Figure 5b) or in the plot with  

AOD from NN (Figure 5d). This indicates that although the machine learning methods do not get explicitly any information 

about the possible systematic co-variability of WVC and SSA, they seem to be able to detect it indirectly, at least to some 

extent.

To further illustrate this, Figure 6a shows the AERONET measurements of AOD and single scattering co-albedo, 1-SSA at  

670 nm as  a  function of WVC. Here,  together  with the absorption strength by the water  vapour,  we considered more 

illustrative  to  show the  single  scattering  co-albedo  rather  than  SSA.  In  this  plot,  SZA,  SSR and  season were  limited 

respectively to: 58° < SZA < 62°,  420 Wm -2 <  SSR < 460 Wm-2,  June-August,  allowing enough data with the limited 

parameters. Thus, the plot illustrates the co-variability of WVC and SSA for a limited range of surface solar radiation and  

SZA, for conditions when the LUT method produces lower AOD values for higher WVC (Figure 5a). However, Figure 6a 

clearly shows that an opposite relationship between AOD and WVC is obtained by the measurements. Moreover, this pattern 

is compensated by aerosol absorption (remember that in this sub-set we constrained SSR), which decreases with increasing  

WVC; this is  likely related to the aerosol swelling by hygroscopic growth that  increases  the scattering of  the aerosol.  

Therefore, we can conclude from the measurements that because of the co-variability of WVC and SSA in Thessaloniki, the  

assumption of a fixed SSA in the LUT causes limitations for predicting AOD, while the machine learning methods can take  

into account, at least to some extent, this relationship indirectly. Using radiative transfer modeling we demonstrated that the 
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magnitude of these changes in water vapor and aerosol absorption, as indicated in Figure 6. Indeed, they induced opposite 

effects of similar magnitude in surface solar irradiance. For the base case, we simulated SSR with WVC of 2.8 cm and 1-

SSA of 0.06 (with SZA of 60° and AOD of 0.3) as inputs, resulting in 439.9 Wm -2. When we increased the water vapour 

column to 3.6 cm, the corresponding decrease in SSR was about 6.8 Wm-2. However, when we additionally decreased the 

aerosol absorption (1-SSA) to 0.04, the difference to the base case shrank to 1.8 Wm -2 and this remaining amount can mostly 

be  explained  by  the  asymmetry  parameter,  which  also exhibits  a  systematic  dependence  with  WVC (stronger  forward 

scattering by particles grown in humid conditions). 

The lower panel of Figure 6 further illustrates the role of fixed SSA in the observed WVC-dependent bias in the LUT results,  

which can be avoided with the machine learning methods. It  shows the mean ratio of LUT-estimated and AERONET-

measured AOD on the right-hand side y-axis as a function of water vapour content (so essentially the same results shown by  

a box-plot in Figure 4). Additionally, on the left-hand side y-axis, the single scattering albedo (estimated for 500 nm) from 

AERONET measurements is shown as a function of water vapour amount as well. This also demonstrates that the over- and  

underestimations of the LUT method coincide with SSA range that is under and over the assumed fixed value of 0.92 (shown 

with red dashed line), respectively. Visibly, the ratio in the right-hand axis of Fig. 6b, reaches one not until SSA is roughly  

0.93 instead of 0.92. Presumably, SSA has actually a different wavelength pattern than the one assumed in LUT.

4. Conclusions

We have used several inverse methods to retrieve aerosol optical depth (AOD) from surface solar radiation (SSR) and water  

vapour  content  (WVC) measurements  (with corresponding solar  zenith  angle  data)  done in  Thessaloniki,  Greece.  Two 

traditional (look-up table (LUT) and nonlinear regression (NR)) and four machine learning methods (Gaussian Process (GP),  

Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM)) were used to retrieve AOD estimates for  

the years 2005-2008. Then we compared the AOD estimates with collocated AOD measurements done by Aerosol Robotic  

Network (AERONET). Our comparisons showed that:

- AOD estimates based on the LUT method agreed better with AERONET than the NR estimates but apart from RF, the  

machine learning methods produced AOD estimates that were comparable or better than LUT.
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- NN and SVM methods reproduced good correspondence to AERONET observations for both low and high AODs while 

rest  of  the  methods  tended to  overestimate  low AODs and underestimate  high AODs.  The main  reason  for  the  better  

performance of these machine learning methods was that there were no constrains of the aerosol single scattering albedo 

(SSA) in the retrieval.  In  other words,  the methods do not need to explicitly make assumptions on the optical  aerosol  

properties of the atmosphere and because seem to be able to indirectly account for the covariation of WVC and SSA. 

- When compared with AERONET measurements,  the best AOD estimates were retrieved with the machine learning  

algorithms, but only NN and SVM were able to generalize accurate estimates also for large AODs.

- The machine learning methods are sensitive to the selection of  the training data set  and other  constraints,  and are  

generally valid only for the range of the variables used for their training; thus care needs to be taken when these methods are 

employed.

- These tools have the potential to be used in the retrieval of AOD from SSR measurements to lengthen the time series of  

AOD. Historical AOD is essential in the estimation of anthropogenic aerosol effects and in the evaluation of AOD retrievals 

from space borne instruments before the 1990s.  
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(MAD), median and their  ±20% percentiles between the observed and predicted. Also time consumptions with a recent 

average computer power of the methods for training / estimation in the magnitude of seconds, minutes and hours. The  

number of observations is 10684.

Method Average(std) R2 MAD Median Fraction  in  +/-

20%

Time 

consumption

AERONET 0.240(0.147) 0.207

NR 0.228(0.123) 0.880 0.053 0.210 48.4 % seconds  /  < 

second

LUT 0.254(0.136) 0.920 0.046 0.236 52.6 % hours / minutes

NN 0.251(0.156) 0.920 0.044 0.212 59.1 % hours /

< second

RF 0.225(0.116) 0.870 0.052 0.204 52.9 % tens of seconds /

< second

GP 0.240(0.130) 0.927 0.041 0.213 60.8 % minutes /

tens of seconds

SVM 0.242(0.150) 0.918 0.044 0.201 58.4 % tens of seconds /

< second

NN, SVM 0.247(0.152) 0.924 0.043 0.207 59.7 %

NN, SVM, RF 0.240(0.138) 0.922 0.042 0.205 59.9 %

SVM, RF 0.234(0.131) 0.913 0.044 0.202 58.0 %

NN, RF 0.238(0.134) 0.916 0.043 0.207 59.0 %
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Figure 1: Observed (AERONET) and predicted AOD by the methods of a) LUT (look-up table), b) GP (Gaussian Process), 

c) NN (Neural Network) and d) SVM (Support Vector Machine). The colorbar indicates the absolute amount of results in the  

areas with the interval of 0.01x0.01. The 1:1-lines and linear fits included. The number of observations is 10684.
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Figure 2: Differences between predicted and observed (AERONET) AOD for the methods: a) LUT (look-up table), b) GP 

(Gaussian Process), c) NN (Neural Network) and d) SVM (Support Vector Machine) with respect of the observed AOD. The 

crosses indicate the means of each sub-group, the limits of the boxes are 25 %, 50 % and 75 % of the data, and the lines are  

plotted with 1.5 times the inter-quartile ranges.
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Figure 3: The same as Fig. 2, but in the vertical axis is the ratio of the predicted to the observed (AERONET) AOD.
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Figure 4: The same as Fig. 3, but the ratio of predicted to  measured AOD is given as a function of t the water vapor column  

(WVC).
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Figure 5: Solar surface radiation (SSR), aerosol optical depth (AOD) and water vapor column (WVC) for a fixed solar zenith 

angle (49.75°-50.25°) for a) look-up table (LUT) and b) measurements (Meas). The predicted AODs for c) LUT and d) 

neural network (NN) corresponding the same SSR, WVC and SZA.
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Figure 6: a) Aerosol optical depth (AOD), water vapor column (WVC) and 1-SSA at 670 nm from the AERONET inversion 

sky data. b) SSA at 500 nm, WVC and the LUT's predicted AOD divided with the observational AOD (AERONET), with the 

red line fixed to SSA (500 nm) = 0.92 (as in LUT).
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