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Abstract 1 

Atmospheric inversions are widely used in the optimization of surface carbon fluxes at regional 2 

scale using information from atmospheric CO2 dry mole fractions. In many studies the prior flux 3 

uncertainty applied to the inversion schemes does not reflect directly the true flux uncertainties 4 

but it is used in such a way to regularize the inverse problem. Here, we aim to implement an 5 

inversion scheme using the Jena inversion system and applying a prior flux error structure 6 

derived from a model – data residual analysis using high spatial and temporal resolution over a 7 

full year period in the European domain. We analyzed the performance of the inversion system 8 

with a synthetic experiment, where the flux constraint is derived following the same residual 9 

analysis but applied to the model-model mismatch. The synthetic study showed a quite good 10 

agreement between posterior and “true” fluxes at European/Country and annual/monthly scales. 11 

Posterior monthly and country aggregated fluxes improved their correlation coefficient with the 12 

“known truth” by 7% compared to the prior estimates when compared to the reference, with a 13 

mean correlation of 0.92. Respectively, the ratio of the standard deviation between 14 

posterior/reference and prior/reference was also reduced by 33% with a mean value of 1.15. We 15 

identified temporal and spatial scales where the inversion system maximizes the derived 16 

information; monthly temporal scales at around 200 km spatial resolution seem to maximize the 17 

information gain. 18 

    19 
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1 Introduction 1 

 2 

The continuous rise of the abundance of greenhouse gases in the atmosphere, especially due to 3 

fossil fuel combustion, alerted the scientific community to systematically monitor these 4 

emissions. The challenge is not limited only to revealing the spatial distribution of CO2 sources 5 

and sinks on continental scales, but also to accurately quantifying CO2 emissions and their 6 

uncertainties at country scales. In situ atmospheric measurements of the atmospheric CO2 7 

variability combined with inverse atmospheric models are used as an independent method to 8 

provide “top down” flux estimates for comparison with estimates from “bottom up” methods. 9 

The latter use local observations (e.g. eddy covariance), and combine these with ancillary data, 10 

e.g. soil maps, satellite data, and terrestrial ecosystem models in order to spatially scale up local 11 

flux estimates to larger regions (Jung et al., 2009). Both approaches act complementary, for 12 

optimal comprehension of carbon sources and sinks in a “multiple constraint” (Schulze et al., 13 

2010) approach and emission inventories assessment. As these inventories are used to deduce 14 

national emission estimates, in compliance with the Kyoto protocol requirements, accuracy is 15 

essential.   16 

An atmospheric inverse modeling system provides the link from atmospheric concentrations to 17 

surface fluxes. However, the limited number of observations available for solving the system for 18 

quite a number of unknowns (spatially and temporally resolved fluxes) makes the inverse 19 

problem strongly under-determined. To solve the inverse problem the system incorporates 20 

Bayes’ theorem and uses a-priori knowledge, provided by e.g. biosphere models and emission 21 

inventories accompanied by corresponding uncertainty estimates. Then, the system optimizes the 22 

a-priori fluxes by minimizing the difference between model predictions and observed 23 

concentrations. For the current study only the biospheric fluxes were optimized, and emissions 24 

from fossil fuel combustion are assumed to be known much better, as it is the case in almost all 25 

published regional inversion studies. Inversion systems have been extensively used to derive 26 

spatiotemporal flux patterns at global (e.g. Enting et al., 1995; Kaminski et al., 1999a; Gurney et 27 

al., 2003; Mueller et al., 2008), and regional scale (e.g. Gerbig et al., 2003a; Peylin et al., 2005; 28 

Lauvaux et al., 2012; Broquet et al., 2013).     29 
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The challenge in regional inversions is to reconstruct at high resolution the spatiotemporal flux 1 

patterns, usually of the net ecosystem exchange (NEE). For that purpose currently deployed 2 

global or regional inverse modeling schemes use different state spaces (i.e. the set of variables to 3 

be optimized through the inversion process). Peters et al. (2007) split the domain of interest into 4 

regions according to ecosystem type. Subsequently fluxes are optimized by using linear 5 

multiplication factors to scale NEE for each week and each region. The pitfall of this system is 6 

that a zero prior flux has no chance to be optimized and remains zero. Zupanski et al. (2007) 7 

divided the NEE into two components, i.e. the gross photosynthetic production (GPP) and 8 

ecosystem respiration (R). Then multiplicative factors for the gross fluxes were derived on the 9 

grid scale, under the assumption of being constant in time. A step further made by Lokupitiya et 10 

al. (2008) used the same approach but with an 8-week time window allowing for temporal 11 

variations for the multiplicative factors. A different approach introducing the carbon cycle data 12 

assimilation system (CCDAS) was implemented by Rayner et al. (2005) and Kaminski et al. 13 

(2012) by constraining global parameters within a biosphere model able to control surface-14 

atmosphere exchange fluxes, against observed atmospheric CO2 mole fractions, instead of the 15 

fluxes themselves; this CCDAS approach alwo allows for nonlinear dependencies of the fluxes 16 

on the parameters. Lauvaux et al. (2012) used a Bayesian approach based on matrix inversion, 17 

separately optimizing day and night time fluxes at a weekly time scale for a limited simulation 18 

period and domain. An attempt to assess which of these approaches better reproduces NEE was 19 

made by Tolk et al. (2011). This study investigated the impact of different inversion approaches 20 

via a synthetic experiment utilizing an ensemble Kalman filter technique and the same transport 21 

model for all cases. They found that inversions which separately optimize gross fluxes within a 22 

pixel inversion concept perform better on reconstructing the NEE, although they fail to obtain 23 

the gross fluxes. Taking into consideration these findings we also choose the pixel based 24 

inversions but optimizing the net biogenic fluxes as we are mainly interested in the total carbon 25 

flux budget.     26 

Introducing proper prior flux uncertainties is crucial for meaningful posterior estimates, as these 27 

uncertainties weight the prior knowledge between different locations and times, as well as with 28 

respect to the data constraint. The uncertainties have the form of a covariance matrix and can be 29 

categorized in uncertainties of the prior fluxes, and uncertainties of the observational constraint, 30 

which includes measurement and transport model uncertainties. While the measurement 31 
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uncertainty in the observational constraint may be more easilyis usually defined with the main 1 

diagonal of the covariance matrix representing the uncertainty of the observations and the model 2 

at a specific time and location, our knowledge for the prior uncertainty is limited, especially 3 

regarding temporal and spatial correlations that effectively control the state space. Early 4 

inversions assumed fully uncorrelated flux uncertainties (Kaminski et al., 1999b), while spatial 5 

and temporal correlations were used later by Rödenbeck et al. (2003), who investigated the 6 

autocorrelation of monthly CO2 fluxes calculated by a set of terrestrial and ocean models. In 7 

Rödenbeck (2005), spatial correlations for land fluxes were assigned to a state space of 4° 8 

latitude x 5° longitude resolution. Slightly different correlation length scales were considered for 9 

the meridional and zonal direction, assuming that the climate zone of the latter varies less than of 10 

the former. Flux correlations on land were determined by assuming an exponential pulse 11 

response function with a length of 1275 km. This leads to correlation lengths with approximately 12 

twoice times larger compared to the pulse the correlation length. Typically the spatial 13 

correlations are considered more as a tool to regularize the inverse problem, rather than an 14 

uncertainty feature. Schuh et al. (2010) obtained correlation lengths from Rödenbeck et al. 15 

(2003) but with a much higher state space resolution of 200 km.  Lauvaux et al. (2008) neglected 16 

the spatial correlations to enlarge the impact of the data. Carouge et al. (2010a) inferred spatial 17 

and temporal correlation lengths based on the agreement between posterior and “true” fluxes in 18 

the framework of a synthetic experiment, where the “truth” is known. A different approach was 19 

used in Peters et al. (2007) study where they interpret the length scale from a climatological and 20 

ecological perspective, and use it to spread information within regions, which the network is 21 

incapable to constrain. In particular correlations are applied such that the same ecosystem types 22 

in different TransCom regions (basis function regions, see also 23 

http://transcom.project.asu.edu/transcom03_protocol_basisMap.php) decrease exponentially with 24 

distance (L=2000km), and thus assumes a coupling between the behavior of the same ecosystem. 25 

Ad-hoc solutions have also been used, assuming that daily fluxes have smaller correlation 26 

lengths than monthly fluxes which are used by other studies (Peylin et al. 2005). More 27 

specifically Peylin et al. (2005) assumed 500 km for daily temporal resolution compared to the 28 

much larger correlation lengths used by Rödenbeck for monthly flux resolution. Michalak et al. 29 

(2004) implemented a geostatistical approach to describe the prior error structure. Specifically 30 

the prior error covariance describes at which degree deviations of the surface fluxes from their 31 

http://transcom.project.asu.edu/transcom03_protocol_basisMap.php
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mean behavior at two different locations or times are expected to be correlated as a function of 1 

the distance in space or in time. They simultaneously estimate posterior fluxes as well as 2 

parameters controlling the model-data mismatch uncertainty and the prior flux uncertainty, 3 

including variance as well as spatial and temporal correlation lengths. Although this approach 4 

may be considered as an objective way to infer spatial and temporal correlation lengths, it forces 5 

the structural parameters of the error covariance to be statistically consistent with the 6 

atmospheric data. In other words, flux parameters are optimized from atmospheric concentration 7 

data, and they are forced to have values which can reproduce the atmospheric data. from the few 8 

regions where station-to-station distances are small enough to be comparable to the correlation 9 

length scales.In a similar approach Ganesan et al. (2014) and Lunt et al. (2016), applied a 10 

hierarchical Bayesian model using atmospheric concentrations,  to estimate both fluxes, and a set 11 

of hyper-parameters (e.g. mean and standard deviation of a priori emissions PDF as well as 12 

model – measurement standard deviation and autocorrelation scales). However the covariance 13 

parameters depend on the atmospheric data and on the transport model (Michalak et., 2005). 14 

Those studies are focused on the sulfur hexafluoride (SF6) and methane (CH4) and a direct 15 

comparison is not possible. However Michalak et al. (2004) which applied the same approach to 16 

CO2, reported spatial decorrelation lengths of around 1000 km which are one order of magnitude 17 

larger from our estimates. In addition, Lunt et al. (2016) reports that due to the computational 18 

costs, they performed the inversion with no temporal dependence, assuming that the fluxes are 19 

constant over a fixed time period. Eddy Covariance stations (EC) can provide a more direct 20 

method to infer spatial and temporal flux correlations. Chevallier et al. (2006) and Chevallier et 21 

al. (2012) introduced autocorrelation analysis of the residual between fluxes simulated by 22 

biosphere models or and fluxes measured by EC to infer spatial and temporal error correlations. 23 

The derived error statistics were implemented in a regional CO2 inversion by Broquet et al. 24 

(2013).  25 

Daily NEE flux residuals from model - data comparisons showed temporal correlations up to 30 26 

days but very short spatial correlations up to 40 km (Kountouris et al. 2015). In such a case the a-27 

priori integrated uncertainty over time and space, e.g. annually and EU wide domain integrated, 28 

according to the error propagation will be exceptionally small. For example a variance of 1.82 29 

μmole.m
-2

.s
-1

 (from model – data differences) combined with the abovementioned correlation 30 

scales yields an uncertainty of 0.12 GtC y
-1

 for the total flux over Europe. This value is 31 
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significantly smaller than the assumed uncertainty which is typically used by the inversion 1 

systems. For comparison we refer to studies from Rivier et al. (2010) and Peylin et al. (2005) (for 2 

a slightly larger domain than ours) where an a priori uncertainty of approximately 1.4 GtC y
-1

 3 

and 1 GtC y
-1

 respectively was used. Further, Peylin et al. (2013) found that the variance of the 4 

posterior NEE fluxes for integrated over the European domain among 11 global inversions is 5 

also 3 to 4 times larger (0.45 GtC y
-1

). Although it is not yet entirely clear what would be the 6 

“correct” value for the prior uncertainty, it seems that in our study it should be increased not only 7 

to give enough flexibility to the system to adjust but also to be at least comparable with other 8 

posterior uncertainty estimates. A typical method is to inflate the spatiotemporal component by 9 

scaling accordingly the prior error covariance. In a study by Lauvaux et al. (2012) two 10 

correlation lengths were used at 300 and 50 km, and for the shorter scale the uncertainty was 11 

inflated by increasing the RMS of the prior error covariance. The model - data analysis 12 

(Kountouris et al. 2015) does neither justify the use of large correlation scales nor largely 13 

inflated variances which exceed the model-data flux mismatches, however it is consistent with an 14 

additional overall bias error which can not be captured from the estimated spatiotemporal error 15 

structure. Hence an appropriate approach would be to introduce two adjustable terms into the 16 

inversion system. One term to reflect the data-derived error structure without error inflation 17 

(prior error covariance matrix which describes the spatiotemporal component) and one term to 18 

represent a bias component. To the best of our knowledge such an approach has not yet been 19 

used in inversion systems.  20 

This study primarily aims to use the information extracted from the model-EC data residuals 21 

(spatiotemporal error structure) to define a data-driven error covariance rather than simply 22 

assuming one, adopting a conservative one or an expert knowledge solution. For that, we 23 

implement our previous methodology and findings regarding the prior uncertainty to atmospheric 24 

inversions following Kountouris et al. (2015). As explained above, we implement two 25 

uncertainty terms; the first one to reflect the true spatiotemporal error structure and the second 26 

term referred to reflectto a bias term. We use the Jena inversion system (Rödenbeck, 2005; 27 

Rödenbeck et al., 2009) for the regional scale consisting of a fully coupled system as described 28 

in Trusilova et al. (2010), between which couples the global three-dimensional atmospheric 29 

tracer transport model TM3 (Heimann and Körner, 2003) and the regional stochastic Lagrangian 30 

transport model STILT (Lin et al., 2003). This scheme allows retrieving surface fluxes at much 31 
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finer resolution (0.25
o
) compared to global models. The first part of this study details the 1 

methodology of the prior error implementation, and evaluates the system’s performance through 2 

a synthetic data experiment. The system evaluation is an extension of Trusilova et al. (2010) 3 

where the evaluation was limited to the observation space only. We extend that to the flux space 4 

by comparing flux retrievals at various spatial and temporal scales against synthetic “true” 5 

fluxes. Station locations and observation times (including gaps) were created as in the real 6 

observation time series presented in the second part of this study (Kountouris et al., 2016). That 7 

way we can use the synthetic experiment to evaluate to what extent we can trust the results, if a 8 

real-data inversion is performed. In the second part of this study (Kountouris et al., 2016) the 9 

regional inversion system is applied to real observations of atmospheric CO2 mole fractions from 10 

a network of 16 stations.  11 

This paper is structured as follows. In Section 2 we present the inversion scheme and introduce 12 

the settings of the atmospheric inversions. In Section 3 we present the results from a synthetic 13 

inversion experiment aimed to assess the prior error setup, considering it as a step towards 14 

atmospheric inversions using real atmospheric data with an objective, state of the art prior error 15 

formulation. Discussion and conclusions are following in Section 4 and 5 respectively.  16 

 17 

2 Methods 18 

 19 

2.1 Inversion scheme 20 

 21 

The Jena Inversion System (Rödenbeck 2005; Rödenbeck et al., 2009) was used for the current 22 

study. The scheme is based on the Bayesian inference and uses two transport models, the TM3 23 

model (Heimann and Körner, 2003) for global, and the STILT model (Lin et al., 2003) for 24 

regional simulations. The advantage of the system is that it combines a global transport model 25 

with a regional one without the need of a direct coupling along the boundaries. The global is 26 

used to calculate fluxes from the far field (outside of the regional domain of interest), and 27 

subsequently this information can be used to provide lateral boundary information for the 28 

regional model. Primary input of the system is the observed mixing ratios cmeas. This vector 29 
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contains all measured mixing ratios at different times and locations. The modeled mixing ratios 1 

cmod given from a temporally and spatially varying discretized flux field f are computed from an 2 

atmospheric transport model and can be formally expressed as  3 

ini
cAfc 

mod
                                                                                                              (1) 4 

where 
ini

c
 
is the initial concentration and A the transport matrix which maps the flux space to the 5 

observation space. For the regional domain the transport matrix A has been pre-computed by the 6 

STILT transport model. The system calculates the modeled concentrations when and where a 7 

measurement exists in the cmeas vector. The initial concentration assumed to be well mixed and 8 

remains constant throughout the simulation. The assumption of the well mixed initial 9 

concentration is considered to be valid, since any spatial structure would be lost during the spin-10 

up period.  11 

In the following, we briefly describe the inverse modeling approach. For more details the reader 12 

is referred to Rödenbeck (2005).  13 

In grid-based atmospheric inversions the number of unknowns (spatially and temporally resolved 14 

fluxes) is larger than the number of measurements (hourly dry mole fractions at different sites), 15 

making the inverse problem ill-posed. In the Bayesian concept this can be remedied by adding a-16 

priori information. This information can be written as 17 

pFff
fix

                                                                                                                           (2) 18 

where ffix is the a-priori expectation value of the flux, matrix F contains all the a-priori 19 

information about flux uncertainties and correlations (implicitly defining the covariance matrix) 20 

and p is a vector representing the adjustable parameters. The parameters p are uncorrelated with 21 

zero mean and unit variance. This flux model represents just a different way to define the a-priori 22 

probability distribution of the fluxes, than the traditional way where the a-priori error covariance 23 

matrix is explicitly specified. The cost function describing the observational constraint is 24 

expressed as 25 

 
)()(

2

1

mod

1

mod
ccQccJ

measc

T

measc




                                                                             
(3) 26 
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where Qc is the observation error covariance matrix. This diagonal matrix weights the mixing 1 

ratio values considering measurement uncertainty, location-dependent model uncertainty and a 2 

data density weighting. The data density inflates the uncertainty over weekly intervals by a factor 3 

of the square root of the measurements number within a given time interval. Thise latter ensures 4 

that the higher amount of data from continuous measurements compared to the data from flask 5 

measurements would not lead to a considerably stronger impact of these corresponding sites 6 

(Rödenbeck, 2005). This can also be formally interpreted as a temporal correlation scale which 7 

ensures that the model-data-mismatch error is not independent within a week, corresponding 8 

roughly to time scales of synoptic weather patterns. 9 

The inversion system seeks to minimize the following cost function that combines the 10 

observational (Eq. 3) and the prior flux constrain 11 

ppJJ
T

c


2

1
                                                                                                                     (4) 12 

The minimization of the cost function is done iteratively with respect to the parameters p by 13 

using a Conjugate Gradient algorithm with re-orthogonalization (Rödenbeck 2005).  14 

 15 

 16 

 17 

2.2 Characteristics of the inversion set up 18 

 19 

2.2.1 A-priori information and uncertainties 20 

 21 

The a-priori CO2 flux fields were derived from the Vegetation Photosynthesis and Respiration 22 

Model, VPRM (Mahadevan et al., 2008). VPRM uses ECMWF (European Centre for Medium 23 

Range Weather Forecasting) operational meteorological data for radiation (downward shortwave 24 

radiative flux) and temperatures (T2m), the SYNMAP landcover classification (Jung et al., 25 

2006), and EVI (enhanced vegetation index) and LSWI (land surface water index) derived from 26 

MODIS (Moderate Resolution Imaging Spectroradiometer). Model parameters were re-27 
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optimized for Europe using eddy covariance measurements made during 2007 from 47 sites (a 1 

full site list is given in Kountouris et al. (2015); we excluded some sites due to insufficient 2 

temporal data coverage or lack of representativeness). To mediate the impact of data gaps, a data 3 

density weighting was introduced that takes into account the coverage of different times of the 4 

day (using 3-hour bins) in the different seasons. Optimized parameters are shown in Table 1. The 5 

net ecosystem exchange at hourly scale and at 0.25
°
x 0.25

°
 spatial resolution for 2007 was 6 

simulated with the optimized parameters for the European domain shown in Fig. 1. The domain-7 

wide aggregated biospheric carbon budget for 2007 derived that way from VPRM was found to 8 

be -0.96 GtC y
-1

 (i.e. uptake by the biosphere). Note that without the density weighting an even 9 

stronger flux of -1.35 GtC y
-1

 was derived, indicating the importance of proper treatment of data 10 

gaps by either gap-filling or by the inclusion of weights.  11 

Additionally, biogenic CO2 fluxes were simulated with the BIOME-BGC model, specifically its 12 

global implementation as GBIOME-BGCv1 (Trusilova and Churkina 2008) at the same 0.25
°
x 13 

0.25
°
 spatial and hourly temporal resolution. The purpose of the second flux field is to provide a 14 

perfectly known flux distribution as “true” fluxes that can be used to generate synthetic 15 

observations. The BIOME-BGC model is a terrestrial ecosystem process model which requires 16 

only standard meteorological data like, daily maximum-minimum temperature, precipitation, 17 

incoming shortwave solar radiation, vapor pressure deficit (VPD), and the day length (DLn). 18 

How accurate the modeled fluxes are is difficult to say, since this would require a validation 19 

against observed fluxes from Eddy Covariance stations. Nevertheless, biospheric models still 20 

suffer from large uncertainties. The remarkably diverge results between models confirm how 21 

uncertain models are (see Friedlingstein et al. (2014)). However in the current experiment the 22 

accuracy of the “true” fluxes is not of a concern, since we aim only to create a synthetic flux 23 

field that we perfectly know. 24 

The a-priori flux in a real-data inversion would have three components including fossil fuel and 25 

ocean fluxes 26 

ocprffprneeprpr
ffff

,,,
                                                                                                         (5) 27 

We note that for the synthetic case the last two a priori terms are set to zero. Similarly the 28 

deviation term (the data-derived correction to the a-priori fluxes) of the flux model (Eq. 6) 29 
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consists of the terms referring to NEE, fossil fuel, and ocean fluxes.  but equivalentlyHere in the 1 

synthetic case the last two terms are set to zero (i.e. they are not optimized) for the synthetic 2 

inversion. 3 
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s

FFFsF







 ),,(                                                                                                 (6) 4 

Note that the a-priori error covariance matrix does not explicitly appear in the inversion, but is 5 

included though the second term in Eq. 8 (see section 2.2.2).  6 

According to this formulation the columns of Gtcor and Gxycor contain the spatiotemporal extents 7 

of the individual NEE pulses (range of values between 0 and 1) and the diagonal matrix fsh(x,y,t) 8 

contains the pixel-wise a priori uncertainties. These uncertainties were chosen to be flat 9 

(constant) in space and time. For more detailed information the reader is referred to Rödenbeck 10 

et al. (2005).  11 

The total prior uncertainty was chosen according to the mismatch between VPRM and BIOME-12 

BGCv1, calculated as the annual and domain wide integrated flux mismatch. Prior fluxes and the 13 

fluxes representing the synthetic truth are strongly different (-0.96 GtC y
-1

 and -0.31 GtC y
-1

 for 14 

VPRM and GBIOME-BGCv1, respectively). The error structure used for the synthetic study is 15 

estimated according to the method applied in Kountouris et al. (2015). Time-series of daily 16 

fluxes were extracted for both biosphere models at grid cell locations where an EC station exists. 17 

Fluxes from GBIOME-BGCv1 can also be regarded as synthetic EC fluxes. Then spatial and 18 

temporal autocorrelation analysis was performed on the daily model-model flux residuals, 19 

yielding a spatial correlation length scale of 566 km and a temporal correlation scale of 30 days. 20 

We note that the current study does not directly make use of the error structure derived in 21 

Kountouris et al. (2015), since this is applicable for real data inversions. Instead we use the same 22 

methodology to derive the actual model-model error structure since here we perform a synthetic 23 

data inversion, exploring amongst others the accuracy of this method.   24 

The eddy covariance station locations used for this analysis were exactly the same as in 25 

Kountouris et al. (2015) ensuring similarity in the derivation of the error structure for the 26 

synthetic data inversions. Following this approach apart from the similarity, we also ensure that 27 
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results from the synthetic experiment, would be informative for a real data inversion, by using 1 

exactly the same information to characterize the prior uncertainties. However oOf note is that for 2 

the synthetic data inversions, prior fluxes from VPRM model were not optimized against 3 

GBIOME-BGCv1 “true” fluxes.   4 

The implicitly defined prior error covariance matrix contains diagonal elements of (1.45 μmol m
-

5 

2 
s

-1
)

2
, which reflect the variance from model-model flux mismatches at the 50 km spatial 6 

resolution of the state space. Exponentially decaying spatial correlations were implemented with 7 

a correlation scale of 766 km at the zonal and 411 km at the meridional direction, roughly 8 

corresponding to the 566 km correlation scale yielded from the model-model residual 9 

autocorrelation analysis and preserving the same zonal/meridional ratio as in the global 10 

inversion. Temporal autocorrelation was set to 31 days, which is consistent with the Kountouris 11 

et al. (2015) analysis. These scales result in an uncertainty for the spatiotemporal component 12 

(Est) domain-wide and annually integrated of 0.44 GtC y
-1

. We chose two different approaches to 13 

increase the prior uncertainty at domain-wide and annually integrated scale such that it matches 14 

the mismatch of 0.65 GtC y
-1

 between the two biosphere models. First we inflate the error by 15 

scaling the error covariance matrix, this case is referred to as base case B1 hereafter. The second 16 

approach, referred to as scenario S1, could be considered as a more formal way: we introduce an 17 

additional degree of freedom to the inversion system by allowing for a bias term. This term is 18 

spatially distributed according to the annually averaged VPRM respiration component, and is 19 

kept constant in time. The idea behind the implementation of this term is that at large scales a 20 

bias might exists, which can not be captured in the model-data residual autocorrelation analysis 21 

(EC measurements are representative at scales ~ 1 km). This assumption avoids the artificial 22 

inflation of the uncertainty at pixel scale, and restricts the pixel to pixel corrections to be 23 

statistically consistent with the actual error structure. The bias shape selection (respiration shape) 24 

was preferred over the NEE fluxes, as otherwise a priori neutral pixels (with zero NEE) could 25 

not be bias corrected. Further, allowing bias to have a spatial shape might be sound, since 26 

regions with stronger fluxes might be also more biased. The error EBT of the bias component was 27 

adjusted such that the total prior error Etot for annually and domain-wide integrated fluxes 28 

matches the targeted total uncertainty: 29 

222

BTSTtot
EEE                                                                                                                      (7) 30 
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This resulted in an overall uncertainty Etot of 0.65 GtC y
-1

, which is identical to the mismatch 1 

between the two biosphere models. 2 

 3 

2.2.2 State space 4 

 5 

The inversion system optimizes additive corrections to three-hourly fluxes in a sense that the 6 

posterior flux estimate can be given by the sum of a fixed a priori term (first term of the right 7 

hand side in Eq. 8) and an adjustable term (second term in Eq. 8). The latter has a-priori a zero 8 

mean and unit variance. The biogenic fluxes can be defined as follows:  9 

 

s

s

stst

t

t

N

m

mminvmxycormtcor

N

m

shfix
pyxGtGtyxftyxftyxf

,,,,
),()(),,(),,(),,(                               (8) 10 

where fsh is a shape function which defines the adjustable term. The spatial and temporal 11 

correlation structures of the uncertainty are described by the pulse response functions Gxycor and 12 

Gtcor respectively. The term pinv contains the adjustable parameters which they a- priori have, a 13 

Gaussian distribution with zero mean and unit variance. 14 

Note that the a-priori error covariance matrix (Qf,pr) does not explicitly appear in the inversion, 15 

but is included though the second term in Eq. 8 (see section 2.2.2).  16 

According to this formulation the columns of Gtcor and Gxycor contain the spatiotemporal extents 17 

of the individual NEE pulses (range of values between 0 and 1) and the diagonal matrix fsh(x,y,t) 18 

contains the pixel-wise a priori uncertainties. These uncertainties were chosen to be flat 19 

(constant) in space and time. For more detailed information the reader is referred to Rödenbeck 20 

et al. (2005).  21 

 22 

For the S1 case the posterior flux estimates can be derived expressed by adding the optimized 23 

bias flux field to Eq. 8  24 
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               (9)                         3 

The bias term f
BT

 follows a flux shape (here we used annually averaged respiration, with no 4 

temporal variation). 5 

Following Rodgers 2000, the posterior flux uncertainties are contained in the covariance matrix 6 

of the posterior probability distribution which can be estimated from eq. (10)  7 

11

,

1

,
))()((
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T
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QFAQFAQ                                                                           (10) 8 

where Qc is the measurement error covariance matrix.  9 

 10 

2.2.3 Observation vector and uncertainties 11 

 12 

The observation vector cmeas contains mixing ratio observations at all site locations and sampling 13 

times. A common procedure to derive synthetic observations is to create a “true” flux field by 14 

adding some error realizations to the a-priori fluxes (Schuh et al., 2009; Broquet et al., 2011) or 15 

to perturb the resulting synthetic observations (Wu et al., 2011).  For the current study instead we 16 

use a different biosphere model, the GBIOME-BGCv1 model, to derive biogenic CO2 fluxes at 17 

hourly scale. Such an approach is also used by Tolk et al. (2011). Then a forward transport 18 

model run was performed to create synthetic mixing ratios at hourly resolution for each station 19 

location. We note that the synthetic data were derived without adding error realizations. This 20 

choice of using two different biosphere models for deriving the a-priori and the “true” fluxes is 21 

expected to increase the realism of the synthetic data study, given the fact that the real 22 

spatiotemporal flux distribution is highly unknown (though the model-to-model difference may 23 

not accurately reflect the model errors either). The use of two different biosphere models assures, 24 

that the prior simulated CO2 time series, will never match with the pseudo-observations (the 25 

known truth). For the synthetic study, observations were created for the same station locations 26 

and observation times as in the real observation time series which are used in the second part of 27 
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this study (Kountouris et al., (2016)). An overview of the atmospheric stations is given in table 2 1 

and Fig. 1.  The data coverage per station is shown in Figure 2Figure 2. Only daytime 2 

observations were considered (11:00 – 16:00 local time) since the transport model is expected to 3 

perform worse during night when a stable boundary layer forms. An exception is made for 4 

mountain stations that measure the free troposphere, where only nighttime observations (23:00 – 5 

04:00 local time) were considered, as this time can be better represented by the transport model 6 

(Geels et al., (2007)). In total 20273 hourly observations from the year 2007 were used. 7 

The model-data mismatch uncertainty associated with each measurement is expressed as a 8 

diagonal covariance matrix, and contains measurement errors and errors from different 9 

components describing the modeling framework (i.e. model errors due to imperfect transport, 10 

aggregation errors, etc.) (Gerbig et al., 2003b). For the current study, all sites are classified 11 

according to their characteristics (e.g. tall tower, mountain sites etc.), and uncertainties were 12 

defined depending on the site class (Figure 2Figure 2, legend on the right). The uncertainties are 13 

considered as representative for current inverse modeling systems. Although the measurement 14 

error covariance is a diagonal matrix, transport error correlations might be present. Although we 15 

do not explicitly introduce off-diagonal terms in the measurement error covariance matrix, we do 16 

consider for temporal correlations via a data density weighting function which inflates the 17 

uncertainty. (see Section 2.1 and more information in Rödenbeck, C., 2005).  18 

 19 

2.2.4 Atmospheric transport 20 

 21 

For the synthetic data study only the regional atmospheric model STILT was used to create the 22 

observations with a forward run, and to perform the inversion. This was feasible since the 23 

synthetic CO2 observations are only influenced by fluxes occurring within the Domain of Interest 24 

(DoI), hence global runs to retrieve boundary conditions at the edge of DoI are not necessary. 25 

The transport matrix for the regional inversions was generated in form of pre-calculated 26 

footprints (sensitivities of atmospheric observations to upstream fluxes) at 0.25 degrees spatial 27 

and hourly temporal resolution for the full year 2007. STILT trajectory ensembles were driven 28 

by ECMWF meteorological fields (Trusilova et al., 2010), and computed for 10 days backwards 29 

in time, ensuring that nearly all trajectories have left the domain of interest.  30 

Formatted: Font: Not Bold, Check spelling and
grammar

Formatted: Font: Not Bold, Check spelling and
grammar



17 
 

With respect to the assumed model height, STILT uses surface elevation maps from ECMWF 1 

(European Centre for Medium Range Weather Forecasting) with a resolution of 0.25 x 0.25 2 

degrees. As the model orography represents an average over the whole grid cell, it is, in 3 

particular at steep mountain sites, significantly smaller compared to the real orographic height at 4 

the station location. In order to better represent the location of the station in the large scale flow, 5 

usually a model height is assumed that more closely represents the real height (above sea level) 6 

of the measurements. However, using exactly the measurement height (a.s.l.) in the model would 7 

decouple the CO2 signal too strongly from the surface fluxes and hence lead to a systematic 8 

underestimation of the surface influence on the concentrations (Geels et al., 2007). A compromise 9 

was reached by adjusting the model height (above ground) by half the distance between the 10 

model orographic height and the real station height. 11 

2.3 Metrics for performance evaluation 12 

 13 

Following Rödenbeck et al. (2003) we evaluate the goodness of fit for each station (station 14 

specific χ
2
). The modeled dry mole fractions should be with 68% probability within the ± 1σ 15 

range from the observed mole fractions. This is equivalent to the requirement that the dry mole 16 

fraction part of the cost function defined as the sum of hourly squared differences, divided by the 17 

uncertainty interval and the number of observations n (Eq. 10), should be close to unity. 18 

n

c

t t

t

c






2

2

2

)(


                                                                                                                          (10) 19 

Another important aspect is the reduced χr
2
 metric that compares the a-priori model performance 20 

with the specified error structure by dividing the squared residuals of optimized minus observed 21 

dry mole fractions by the squared specified uncertainties. This is also equivalent to two times the 22 

cost function at its minimum divided by the number of degrees of freedom (effective number of 23 

observations) (Thompson et al., 2011):  24 

n

J

r

min2

2                                                                                                                                  25 

(11) 26 
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Again, a correct balance should be close to unity. Smaller values suggest that the model 1 

performance was better than specified in the covariance structure and hence the assumed 2 

uncertainties (denominator) were conservative. 3 

In flux space, we evaluate the inversion performance, by comparing the retrieved flux estimates 4 

against the synthetic fluxes (“true”) at different temporal and spatial scales: annually and 5 

monthly integrated fluxes, domain-wide and at country scale. In particular we are interested in 6 

capturing the “true” fluxes down to country scale. For that we assess monthly posterior retrievals 7 

which we compare to reference data (“true” fluxes), country aggregated, using a Taylor diagram. 8 

This diagram provides a concise statistical summary of how well patterns match each other in 9 

terms of their correlation and the ratio of their variances. 10 

 11 

3 Results 12 

 13 

The purpose of the synthetic study is to evaluate the system set-up with a realistic approach. To 14 

evaluate the ability of the system to retrieve the synthetic true fluxes we visualize spatially 15 

distributed fluxes and we study spatially integrated (domain and national scale) as well as 16 

temporally (annual and monthly scale) integrated fluxes. 17 

 18 

3.1 CO2 mole fractions 19 

 20 

A comparison of true and modeled CO2 dry mole fractions from forward runs of the optimized 21 

fluxes can reveal the goodness of fit, realized through the optimization process. Such a 22 

comparison is presented in Figure 3Figure 3 for the Schauinsland (SCH) continuous station. Both 23 

B1 and S1 inversions significantly reduce the misfit between the synthetic (truth) and the a-priori 24 

mole fractions. As expected from the optimization (i.e. minimization of the cost function),T the 25 

RMSD between the prior/posterior from the “true” timeseries for all stations (Table 3) shows an 26 

average reduction of around 74% and 76% for the S1 and B1 inversions respectively. Prior 27 

correlations (prior vs. true dry mole fractions), have an averaged value of 0.46 which is increased 28 
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to 0.93 for both inversions. Significant differences between the two inversions were not found 1 

apart from a slightly larger decrease of the RMSD for the B1 case. Figure 4Figure 4 summarizes 2 

the capability of the inversions to capture the true signal at each station location in form of a 3 

Taylor diagram, indicating that the inversions showed a significant increase of the correlation for 4 

all sites. Further the variance of the modeled time-series is significantly closer to the variance of 5 

the true signal. 6 

To estimate the goodness of fit we consider the station specific χc
2
 values (Eq. 110) following 7 

Rödenbeck et al. (2003)., We usinge here 7-day aggregated residuals instead of hourly to match 8 

the temporal scale of one week of the observation error.  The modeled dry mole fractions should 9 

be with 68% probability within the ± 1σ range from the observed mole fractions. This is 10 

equivalent to the requirement that the dry mole fraction part of the cost function defined as the 11 

sum of hourly squared differences, divided by the uncertainty interval and the number of 12 

observations n (Eq. 11), should be close to unity. 13 

n
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                                                                                                                          (11) 14 

Values smaller than 1 are found for most of the stations with a mean value of 0.28 and 0.32 for 15 

the B1 and S1 cases respectively, suggesting a good fitting performance for all stations and for 16 

both inversions. The results are comparable with those found in the Rödenbeck et al. (2003) 17 

study.  18 

Another important aspect is the reduced χr
2
 metric, which we use to assess the model 19 

performance. By definition the reduced χr
2
 can be obtained by dividing the squared residuals of 20 

optimized minus observed dry mole fractions by the squared specified uncertainties. This is also 21 

equivalent to two times the cost function at its minimum divided by the number of degrees of 22 

freedom (effective number of observations) (Tarantola 2005):  23 

n

J

r

min2

2                                                                                                                                  24 

(12) 25 
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Again, a correct balance should be close to unity. The reduced chi-squared (Eq. 121) was found 1 

to be 0.21 for both cases, indicating that the error variance is overestimated, making the error 2 

assumption rather conservative.  3 

 4 

3.2 Flux estimates and uncertainties 5 

 6 

In flux space, we evaluate the inversion performance, by comparing the retrieved flux estimates 7 

against the synthetic fluxes (“true”) at different temporal and spatial scales: annually and 8 

monthly integrated fluxes, domain-wide and at country scale. In particular we are interested in 9 

capturing the “true” fluxes down to country scale. For that we assess monthly posterior retrievals 10 

which we compare to reference data (“true” fluxes), country aggregated, using a Taylor diagram. 11 

This diagram provides a concise statistical summary of how well patterns match each other in 12 

terms of their correlation and the ratio of their variances. 13 

The spatial distributions of the annual biosphere-atmosphere exchange fluxes for the prior, the 14 

known truth, and the posterior cases are presented in Figure 5Figure 5. Note that annual fluxes 15 

between the two biosphere models used for prior fluxes and true fluxes are substantially 16 

different. The inversion significantly adjusts the spatial flux distribution mainly in central Europe 17 

and in southern Scandinavia, where a denser atmospheric network exists. The absolute annual 18 

mean difference in fluxes (|mean(true – prior)| and |mean(true – posterior)|) is greatly reduced 19 

from 70.8 gCm
-2

y
-1

 to 14.7 gCm
-2

y
-1

 and 24.6 gCm
-2

y
-1

 for the B1 and S1 inversions 20 

respectively.  Detailed patterns, however, are not well reproduced: the fraction of explained 21 

spatial variance in the true fluxes (measureds as squared Pearson correlation coefficient) 22 

decreases from the prior (0.17) to the posterior (0.07 and 0.06 for the cases B1 and S1, 23 

respectively). When evaluating this at monthly scales, the fraction of explained spatial variance 24 

increases in the posterior estimates compared to the prior for winter months from around 0-15% 25 

to about 15-50%, while during the growing season typically a decrease from around 10-35% to 26 

about 0-34% is found. The accumulated footprint of the atmospheric network is shown in Figure 27 

6Figure 6, clearly indicating the strongest constraint on fluxes in central Europe. Interestingly 28 

both error structures from S1 and B1 inversions produce posterior fluxes that have approximately 29 

the same spatial distribution. When separating the spatiotemporal component from the bias 30 
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component (in S1 case) we can identify differences between the two inversions. Significant 1 

deviations of the spatial flux distribution between the spatiotemporal components were found: 2 

The spatiotemporal component in the S1 case has a domain wide annual flux correction of 0.39 3 

GtC y
-1

 (prior – posterior) while the corresponding term in the B1 case has a correction of 0.78 4 

GtC y
-1

. Nevertheless standard deviations of the corrections with respect to the true spatial flux 5 

distribution (true – posterior) was found to have no significant difference (6.88*10
-5

 and 6 

7.38*10
-5

 GtC y
-1

cell
-1

 for S1 and B1 respectively). We do not observe any strong correction in 7 

the south-eastern part of Europe as it cannot be “seen” from the atmospheric network due to the 8 

distance to the observing sites and the prevailing westerly winds. This could also be inferred 9 

from the flux innovation plots (see Figure 5Figure 5) defined as the difference between prior and 10 

posterior fluxes. Only very small or even no corrections occurred in this area.  11 

We are specifically interested in the ability of the inversion system to capture integrated fluxes 12 

over time and space. Figure 7Figure 7 shows an overview of the domain-integrated fluxes at a 13 

monthly and annual scale. Despite the remarkably larger a-priori (VPRM) sink compared to the 14 

synthetic truth (GBIOME-BGCv1) during the growing season, both inversions, with and without 15 

the bias term, produce posterior flux estimates that fully capture the "true" monthly and annually 16 

integrated fluxes. While the monthly posterior estimates give no clear evidence on which 17 

inversion performs better, retrievals at annual scale slightly favor the inversion without the bias 18 

term (B1 case). A difference was observed in the prior uncertainties between the two inversions. 19 

While both were scaled to have the same prior annual uncertainty, the B1 inversion has 20 

systematically larger prior monthly uncertainties than the S1 as a result of the inflated 21 

spatiotemporal component of the prior error covariance. Posterior uncertainties were found to be 22 

similar, and include or are close to including (S1 case) the true flux estimates. The uncertainty 23 

reduction for annually and domain-wide integrated fluxes, defined as the difference between 24 

prior and posterior uncertainties normalized by the prior uncertainty, was found to be 73% and 25 

69% for the S1 and B1 respectively. Note that whilst the prior uncertainty refers only to the flux 26 

space, the posterior uncertainty depends on the uncertainty of prior fluxes, measurements, and 27 

transport.    28 

In order to assess how well the posterior estimates agree with the true fluxes, root mean square 29 

difference (RMSD) between true and posterior monthly integrated gridded fluxes were computed 30 
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(Table 4). Both inversions B1 and S1 show a similar reduction in the RMSD values compared to 1 

the prior. The same picture emerges for the annually integrated fluxes.  2 

Of particular interest is the performance of the system at regional scale, specifically at national 3 

level. Figure 8Figure 8 shows monthly fluxes for selected European countries, including the 4 

prior, true and posterior estimates with the corresponding uncertainties. Both error structures 5 

show a similar performance. Despite the large prior misfit, the system succeeded in retrieving 6 

monthly fluxes at country level. Better constrained regions mainly located in central Europe 7 

show the ability to broadly capture the temporal flux variation at monthly scale. Figure 9 8 

summarizes in a Taylor diagram the inversion performance for the S1 case and for each EU-27 9 

country, showing the improvement of monthly and country aggregated fluxes (perfect match 10 

would be if the head of the arrow coincides with the reference point marked as green bullet). It is 11 

worth mentioning that also for regions that are less constrained by the network, such as Great 12 

Britain, Spain, Poland and Romania, the inversions still improved the posterior estimates 13 

compared to the prior estimates (see also Fig. 9).  14 

 15 

3.3 Evaluation with synthetic eddy covariance data 16 

 17 

In order to investigate the potential of using eddy covariance measurements for evaluating the 18 

retrieved CO2 fluxes, monthly fluxes from the prior (VPRM), the truth (GBIOME-BGCv1), and 19 

the posterior for cases B1 and S1 were extracted at the grid cell locations where eddy covariance 20 

stations exist, using the same 53 sites as in Kountouris et al. (2015). The corresponding fluxes 21 

were then aggregated over all sites, using a weight that compensates for the asymmetry between 22 

number of flux towers for specific vegetation types and the fraction of land area covered by the 23 

specific vegetation type. Prior fluxes show a systematically larger uptake compared to the truth, 24 

predominantly during the growing season with maximum differences of 0.8 gCm
-2

day
-1

 (Figure 25 

Figure 10). Posterior estimates for both cases captured the magnitude of the true fluxes, with 26 

maximum differences of around 0.3 gCm
-2

day
-1

 during June/July. A significantly larger 27 

correction is apparent during spring and summer compared to winter and fall. The very close 28 

correspondence of these results with those shown in Figure 7 for the domain-wide monthly flux 29 
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budget clearly shows that eddy covariance measurements can principally be used for validation 1 

of the inverse estimates at monthly timescales. 2 

 3 

4 Discussion 4 

 5 

4.1 Performance in flux space 6 

 7 

Results from the synthetic experiment showed the strengths but also the weaknesses of the 8 

system to retrieve the “true” spatial flux distribution. Although the error structure applied to this 9 

experiment was statistically coherent with the mismatch between prior and true fluxes, we note a 10 

limited ability of the current atmospheric network to retrieve fluxes at local scales. For coarser 11 

spatial scales (country level) the carbon budget estimates in the synthetic inversion showed a 12 

quite good performance at monthly and annual temporal scales. Further we observed an average 13 

reduction of the monthly uncertainties of 65% for the B1 case, and 64% for the S1 case. In 14 

combination with the fact that the flux estimates reproduce the “truth” within the posterior 15 

uncertainties, this gives us confidence in the accuracy of our estimates.  16 

The current study does not focus on the transport error quantification but it rather includes it, as 17 

diagonal elements in the measurement error covariance, which is typical in atmospheric 18 

inversions. The chi square values confirm that there is no underestimation of the uncertainties. 19 

We note though that erroneous flux estimates are likely to be estimated, especially at finer spatial 20 

scales where the transport model is not able to resolve the real transport (e.g. individual eddys, 21 

complicate terrain etc). However, for coarser spatial scales transport models is expected to 22 

perform better, which seems to be in line with comparisons of the prior/posterior with the true 23 

flux estimates, which better agree at largely aggregated scales.   24 

Prior error correlation in time and space limits the scale, at which information can be retrieved 25 

from the inversion. The spatial correlation of several hundred kilometers implies that fluxes at 26 

scales smaller than this cannot be significantly improved by the inversion, as the results clearly 27 

showed. To assess this more quantitatively, the spatial correlation between a priori or retrieved 28 
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and true monthly fluxes is calculated for different spatial aggregation scales (starting at 0.25 1 

degree, fluxes were aggregated to 0.5, and then in 1-degree steps up to 8 degree). Results shown 2 

in Fig. 11 a) indicate a nearly continuous monotonous increase of the spatial correlation of prior 3 

and posterior fluxes with increasing aggregation scale. The additional explained variance brought 4 

about by the inversion, i.e. the difference between posterior (red/blue line) and prior (grey line) 5 

flux correlation (r-square) with the truth, starts at low values around 0.1, and reaches values 6 

around 0.2 for scales larger or equal 2 degrees. Similarly, the spatial correlation between a priori 7 

and true fluxes for a given spatial aggregation of 2 degrees, but for different temporal 8 

aggregation scales ranging from 1 day to 128 days (Fig. 11 b) shows a continuous increase from 9 

about 0.23 to 0.42 (r-square), while the spatial correlation between retrieved and true fluxes only 10 

varies slightly between 0.4 and 0.53 (Fig. 11 b), red and blue lines). Here, the additional spatial 11 

variance explained by the retrieved fluxes is largest at around monthly time scales (differences 12 

between prior and posterior r-square around 0.2), while at seasonal scales this additional 13 

explained variance is only around 0.1. Overall, this analysis confirms that there are preferred 14 

spatial and temporal scales at which the inversion retrieves the flux distribution best and where 15 

thus most information is gained. This is not dependent on whether or not a bias term is included 16 

in the state vector, as results for case B1 and S1 do not differ in this regard. It is important to 17 

realize that all other scales, at which the inversion does not provide much information, need to be 18 

properly represented by the a priori flux distribution. Thus the a priori fluxes need to be realistic 19 

at short spatial scales below about 200 km, at seasonal temporal scales, and of course at hourly 20 

time scales which are not retrieved by the inversion.   21 

The annual spatial flux distribution of the B1 and S1 cases was found to be quite similar, 22 

indicating that inflating the uncertainty by a factor of 1.5 (B1 case, see also 2.2.1 section) or 23 

adding a bias component to compensate the inflation (S1 case) lead to a similar flux constraint. 24 

This could be explained due to the long correlation length (566 km) which drastically reduces the 25 

effective number of degrees of freedom, forcing the fluxes to be smoothly corrected, regardless 26 

the use of the bias component.     27 

The “true” fluxes were used to validate the posterior flux estimates. In this synthetic experiment, 28 

both fluxes share the same spatial resolution (25km) which makes the validation straightforward. 29 

In a real data inversion, eddy covariance measurements will substitute the “true” fluxes making 30 
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the spatial scales not directly comparable. Despite the scale mismatch, Broquet et al. (2013) 1 

compared the posterior flux estimates against eddy covariance data with promising results; 2 

showing that posterior mismatches are in good agreement with the theoretical uncertainties.  3 

 4 

4.2 Performance in observation space  5 

 6 

The high RMSD reduction in combination with the high correlation values and the captured 7 

variability between posterior and true dry mole fractions in the synthetic experiment suggest a 8 

good performance of the inversion system to retrieve the “true” mixing ratios. Nevertheless this 9 

is not surprising, as the atmospheric data are “fitted” by the inversion, and furthermore the 10 

forward and the inverse runs used identical transport, without any impact from imperfections in 11 

transport simulations.   12 

The uncertainties in the flux space are statistically consistent with the model-model flux 13 

mismatch. However the reduced χr
2
 values obtained from the inversions were rather small 14 

(around 0.21). This indicates that overall conservative uncertainties were assumed, and the small 15 

χr
2
 values are a result from the assumed uncertainties in the observation space. Indeed 16 

uncertainties in the observation space include also transport uncertainties; however, given that 17 

the same transport is used to create synthetic observations and to perform the inversion, there is 18 

no actual model-data mismatch related to transport uncertainties, and so the assumed 19 

uncertainties are overestimated. In the current study we assumed a diagonal measurement error 20 

covariance matrix. Concerns might rise that the observational uncertainties are underestimated 21 

due to the absence of the error correlations. However we do consider implicitly that transport 22 

errors might by correlated over time, and we do consider that via the data density function. 23 

Further, for the synthetic study the χr
2
 values prove a fair treatment of the observational 24 

uncertainties.     25 

 26 

5 Conclusions 27 

 28 
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This paper describes the setup and the implementation of prior uncertainties as derived from 1 

model-eddy covariance data comparisons into an atmospheric CO2 inversion. The inversion 2 

system assimilates hourly dry air mole fractions from 16 ground stations to optimize 3-hourly 3 

NEE fluxes for the study year 2007. Two different error structures were introduced to describe 4 

the prior uncertainty by either inflating the error or by adding an additional degree of freedom 5 

allowing for a long term bias. The need of this error inflation comes from the fact that the 6 

spatiotemporal model - data error structure alone underestimates prior uncertainties typically 7 

assumed for inversion systems at continental/annual scale. In this study we evaluate the Jena 8 

inversion system by performing a synthetic experiment and expanding the evaluation also to the 9 

retrieved fluxes, whilst only the observation space was evaluated in Trusilova et al. (2010). 10 

Further we assess the impact when adding a bias term in the flux error structure. This study is a 11 

preparatory step to retrieving European biogenic fluxes using a data driven error structure 12 

consistent with model-flux data mismatches, which is described in the companion paper 13 

(Kountouris et al. 2016). 14 

Significant flux corrections and error reductions were found for larger aggregated regions (i.e. 15 

domain-wide and countries), giving us confidence on the reliability of the results for a real data 16 

inversion at least for aggregated scales up to the country level. We found a similar performance 17 

for both error structures. A more detailed analysis of the spatial and temporal scales, at which the 18 

inversion provides a significant gain in information on the distribution of fluxes, clearly confirms 19 

that a) fluxes at spatial scales much smaller than the spatial correlation length used for the a prior 20 

uncertainty cannot be retrieved; b) the inversion performs best at temporal scales around 21 

monthly, and c) especially the small spatial scales need to be realistically represented in the a 22 

priori fluxes.  23 
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Appendix 7 
 8 
The exponentially decaying temporal autocorrelations is a feature newly implemented into the 9 

Jena Inversion System. Temporal correlations are not directly defined as off-diagonal elements 10 

in the a-priori error covariance, as the latter does not appear explicitly in the inversion. Rather, 11 

the inversion system involves time series filtering in terms of weighted Fourier expansions. More 12 

specifically the columns of matrix Gtcor contain Fourier modes, weighted according to the 13 

frequency spectrum that corresponds to the desired autocorrelation function. The reader is 14 

referred to Rödenbeck (2005) for more information. Following Rödenbeck (2005) we define the 15 

following spectral weight w: 16 

22

)2( 







low

low

v

w                                                                                                    A1 17 

where νlow is the characteristic frequency. The characteristic frequency νlow can be calculated 18 

from the desired temporal autocorrelation time (30 days) of the exponential decay and is 19 

expressed in years: 20 

νlow = 1/(1/12) where 1/12 is the autocorrelation time in years. Hence the characteristic frequency 21 

corresponding to a monthly autocorrelation is 12.   22 

To test numerically whether the implemented autocorrelation decay shape approximates an 23 

exponential decay, an error realization of the characteristic frequency was added to the prior 24 

fluxes, and the autocorrelation function as described in Kountouris et al. (2015) was calculated 25 

numerically simultaneously for the flux time series of all grid cells. Then an exponentially 26 

decaying function was fitted (Fig. A1) to derive the autocorrelation scale for the corresponding 27 

frequency. The resulting autocorrelation shape indeed approximates very well an exponential 28 



28 
 

decay, with an e-folding time of precisely 30 days. The tight confidence bounds of the fitted 1 

parameter (29.3 and 30.6 days within 95 % confidence interval), in combination with the small 2 

residual sum-of-squares (0.14) suggests a very good approximation of the exponential decay.     3 

 4 

Figure A1: Autocorrelation function for a characteristic frequency of the exponential filter. The 5 

autocorrelation is calculated simultaneously for all the domain grid cells. The numerical 6 

realization of the autocorrelation does not decay to zero because of the flux seasonality. 7 

 8 

 9 

 10 
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Table 1. Optimized VPRM parameters SW0,  λSW, α, β  for different vegetation classes
a
 1 

 SW0 SW   

Evergreen forest 275 0.226 0.288 -1.10 

Deciduous forest 254 0.215 0.181 0.84 

Mixed forest 446 0.163 0.244 -0.49 

Open shrub 70 0.293 0.055 -0.12 

Crop 1132 0.086 0.092 0.29 

Grass 528 0.119 0.125 0.017 

a
Units are as follows: SW0 : W m

-2
; SW: mole CO2 m

-2
s

-1
 / (W m

-2
); : mole CO2 m

-2
s

-1
 / 

0
C; 2 

: (mole CO2 m
-2

s
-1

). 3 

  4 
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Table 2. Information on the stations used for the regional inversions. Same network applied for 1 

the synthetic, and the real data inversions in Kountouris et al. (2016). In first column the term 2 

“type” stands for continuous (C) or flask (F) data.  3 

Site 

Code / 

type 

Name Latitude 

( 
o
 ) 

Longitude 

( 
o
 ) 

Height  

(m.a.s.l.) 

(m) 

Measurement 

height 

(above 

ground) (m) 

Model 

height 

BAL/F Baltic Sea, Poland 55.50 16.67 8 57 28 

BIK/C Bialystok, Poland 53.23 23.03 183 90 90 

CBW/C Cabauw, 

Netherlands 

51.58 4.55 -2 200 200 

CMN/C Monte Cimone, 

Italy 

44.18 10.7 2165 12 670 

HEI/C Heidelberg, 

Germany 

49.42 8.67 116 30 30 

HPB/F Hohenpeissenberg, 

Germany 

47.80 11.01 934 50 10 

HUN/C Hegyhatsal, 

Hungary 

46.95 16.65 248 115 96 

JFJ/C Jungfraujoch, 

Switzerland 

46.55 7.98 3572 10 720 

KAS/C Kasprowy Wierch 49.23 19.93 1987 5 480 

LMU/C La Muela, Spain 41.36 -1.6 570 79 80 

MHD/C Mace Head, 

Ireland 

53.33 -9.90 25 10 15 

OXK/C Ochsenkopf, 50.03 11.81 1022 163 163 
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Germany 

PRS/C Plateau Rosa, 

Italy 

45.93 7.71 3480 - 500 

PUY/C Puy De Dome, 

France 

45.77 2.97 1465 10 400 

SCH/C Schauinsland, 

Germany 

47.92 7.92 1205 -8 230 

WES/C Westerland, 

Germany 

54.93 8.32 12 - 15 
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Table 3. RMSD (first column in ppm) and correlation coefficients (second column) between 1 

known truth and prior/posterior CO2 dry mole fractions for daily “daytime” or “nighttime” 2 

averaged values and for each station. The third column shows χ
2
, the normalized dry mole 3 

fraction mismatch per degree of freedom for 7-day averaged residuals, as a measure of how well 4 

the data were fitted. The format for each station is as follows: RMSD | r
2
 | χ

2
. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 Prior B1 S1 

BAL 4.78 | 0.07 | 18.44 0.89 | 0.97 | 0.48 1.02 | 0.96 | 0.37 

BIK 5.28 | 0.43 | 15.50 1.20 | 0.97 | 0.18 1.29 | 0.97 | 0.25 

CBW 8.60 | 0.04 | 74.29 0.99 | 0.99 | 1.31 1.06 | 0.99 | 1.34 

CMN 2.68 | 0.33 | 6.31 0.74 | 0.93 | 0.08 0.78 | 0.92 | 0.10 

HEI 11.39 | 0.37 | 12.97 1.83 | 0.98 | 0.36 1.84 | 0.98 | 0.37 

HPB 7.73 | 0.35 | 26.58 1.01 | 0.99 | 0.21 1.19 | 0.99 | 0.31 

HUN 6.50 | 0.63 | 31.89 1.36 | 0.98 | 0.21 1.46 | 0.98 | 0.25 

JFJ 3.12 | 0.21 | 3.93 1.24 | 0.86 | 0.24 1.31 | 0.84 | 0.27 

KAS 4.00 | 0.32 | 10.67 0.73 | 0.98 | 0.11 0.80 | 0.97 | 0.15 

LMU 3.42 | 0.19 | 6.5 0.79 | 0.95 | 0.12 0.86 | 0.94 | 0.16 

MHD 1.53 | 0.0002 | 0.83 0.65 | 0.09 | 0.16 0.68 | 0.06 | 0.17 

OXK 6.10 | 0.21 | 38.50 3.35 | 0.76 | 0.76 3.40 | 0.75 | 0.80 

PRS 2.32 | 0.15 | 2.46 0.70 | 0.92 | 0.30 0.74 | 0.91 | 0.33 

PUY 4.27 | 0.15 | 12.06 0.68 | 0.97 | 0.06 0.73 | 0.15 96 | 0.09 

SCH 4.76 | 0.26 | 21.17 0.90 | 0.97 | 0.07 0.95 | 0.97 | 0.09 
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Table 4. Performance of the two error structures expressed as the spatial RMSD of the optimized 1 

monthly and annual NEE fluxes compared to the truth for the whole domain in μmole m
-2

 s
-1

. 2 

 Annual JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

prior 0.38 0.61 0.53 0.55 1.06 1.26 1.56 1.17 0.94 0.65 0.57 0.63 0.63 

B1 0.33 0.46 0.40 0.45 0.84 0.99 1.21 1.00 0.86 0.63 0.43 0.46 0.44 

S1 0.34 0.48 0.41 0.45 0.86 1.01 1.24 1.03 0.86 0.63 0.45 0.47 0.45 

 3 
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    1 

Figure 1. Domain of the inversions (dashed rectangle). Locations of the atmospheric 2 
measurement stations are shown with blue marks. Red stars denote the eddy covariance locations 3 

used for flux comparisons at grid scale. 4 

 5 
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 1 

Figure 2. Monthly data coverage plot for the atmospheric stations used in the regional inversions. 2 
Left column shows the code name and the right columns show the station class and the assigned 3 

uncertainty in units of ppm. “C” stands for continental sites near the surface, “T” for continental 4 
tall towers, “S” for stations near shore, “M” for mountain sites, “MU” for mountain sites with 5 

diurnal upslope winds and “UP” for urban pollutant. 6 
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 1 

Figure 3. Daily nighttime (23:00-4:00 UTC) averages for prior, true, and posterior CO2 dry mole 2 

fraction time series for the mountain site Schauinsland. Time starts at 1
st
 January 2007. Note due 3 

to the almost perfect fit posterior and true time-series overlap to each other. 4 

 5 
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 13 

 14 
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 16 
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 1 

 2 

Figure 4. Taylor diagram for daily averaged modeled and measured time-series (annual basis) of 3 
CO2 dry mole fractions. Prior (black), true (green, the perfect match of modeled and true time-4 
series) and the different inversion cases (BR01 blue; SR1 red) are displayed. Different symbols 5 
denote different atmospheric stations. The normalized SD was calculated as the ration of the SD 6 

of the modeled time-series to the SD of observations.7 
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  1 

Figure 5. Annual spatial distribution for the prior, true, and posterior biogenic flux estimates for 2 
the two synthetic inversions S1 and B1 (top two rows), and flux innovation defined as the 3 

difference posterior - prior (bottom row). Fluxes are given in units of gCy
-1

m
-2

 y
-1

. 4 
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 1 

Figure 6. Annual integrated influence for 2007 of the current atmospheric network. Footprint 2 

influence is presented in a logarithmic scale and units are in log10[ppm/(μmol/m
2
/s)] 3 



49 
 

 1 

Figure 7. Monthly and annual carbon flux budget, integrated over the European domain. Note 2 

that both inversions share the same annual prior uncertainty but monthly uncertainties differ. 3 

Blue and red error bars denote the prior uncertainty for the B1 and S1 scenarios respectively. 4 

 5 
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 1 

Figure 8. Temporal evolution of monthly NEE for selected European countries for the synthetic 2 

data inversion. 3 

 4 
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 1 

Figure 9. Overview of the model performance (S1 case) summarized in a Taylor diagram. Posterior and 2 

prior monthly and country scale aggregated biospheric fluxes are compared against the reference fluxes 3 

(“true”). Each line corresponds to a different country. The starting point of each arrow shows 4 

prior/reference comparison and the ending point the posterior/reference comparison. Ideally the ending 5 

point should coincide with the green point which represents the reference model.  6 

 7 

 8 

 9 

 10 

 11 
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 3 

 4 

Figure 10. Mean monthly NEE averaged over the 53 different eddy covariance site locations as 5 
reported in Kountouris et al. (2015). A priori (black), true (green), and posterior fluxes for 6 

scenarios B1 (blue) and S1 (red) are shown. Units are in gCm
-2

day
-1

. 7 

  8 
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 1 

 2 

Figure 11. a): Mean spatial correlation of monthly fluxes with true fluxes as function of spatial 3 

flux aggregation scale for prior fluxes (grey), and for posterior fluxes from scenarios B1 (blue) 4 
and S1 (red). b): Mean spatial correlation of fluxes with true fluxes at 2 deg. spatial resolution as 5 
function of temporal flux aggregation scale for prior fluxes (grey), and for posterior fluxes from 6 

scenarios B1 (blue) and S1 (red). 7 
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Response to comments raised by reviewer #3 1 

We thank the reviewer for his helpful comments, and hope to have addressed the concerns in the 2 

revised manuscript. Below we respond to each of the comments, and list the corresponding 3 

modifications that were made to the manuscript. The original comments are in bold face letters, 4 

and our replies are in regular face letters. 5 

 6 

1. My previous comment still stands that improvements in "goodness of fit" tests (RMSE, 7 

correlation, chi-squared) are simply a consequence of the inversion code performing in a 8 

way that is not obviously erroneous. In their response the authors state that an 9 

improvement in flux space is not a necessarily condition of an improvement in 10 

concentration space. Whilst this is true in the real world (in contrast to some of the 11 

comments in the revised paper, see below), it should absolutely not be the case in the 12 

situation where the model and data are perfect, as they are here. Think of the limiting case: 13 

if model-data error was very small, and prior flux error was large, one should be able to 14 

derive very close to "perfect" fluxes in the case of a perfect model and perfect data. By 15 

reducing the data constraint, one simply moves the flux solution back from "perfection" 16 

towards the prior. 17 

This comment refers to the previous first comment, where the reviewer was not convinced that 18 

different inversion setups can be compared using a synthetic data experiment. We agree that the 19 

metrics of RMSE and correlation mostly indicate that the inversion is working. We also agree 20 

that a comparison between different inversion setups might not be possible using a pseudo-data 21 

experiment. However, it is not our intention to actually compare different setups in order to 22 

decide which setup performs better than another. We intended to assess the spatial and temporal 23 

scales at which we can expect the inversion system to inform us about surface-atmosphere 24 

exchange fluxes, which is different from quantitatively comparing different setups. We do think 25 

that this information on the relevant spatiotemporal scales, at which the inversion is informative, 26 

can be transferred to the real-world case, at least to a certain degree.  27 

Regarding perfect model and data we think there seems to be a fundamental misunderstanding of 28 

how the synthetic experiment is performed. Unlike the reviewer states, the model used in the 29 

inversion is not perfect (i.e. identical to the model used for the truth). The flux fields as a priori 30 

are generated from a completely different biosphere model than that used to generate the “true” 31 

fluxes. Also uncertainties for model-data mismatch are included in a realistic way. The only 32 

aspect of the synthetic experiment where the model is perfect is the atmospheric transport (i.e. 33 

the identical transport is used for forward and inverse, and no realization of the model-data 34 

mismatch error was added to the simulated concentrations), but the inversion does not make use 35 

of this “perfect” transport model, as a realistic model-data mismatch error is used. Even for the 36 

limiting case mentioned by the reviewer, where model-data mismatch error is very small and 37 
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prior uncertainties are large, we would not expect the retrieved fluxes to perfectly match the 1 

“true” fluxes, as the underlying spatiotemporal patterns are fairly different between “true” and 2 

prior fluxes; this is related to the fact that the information provided by the observations is not 3 

sufficient to fully constrain the fluxes at all spatiotemporal scales (i.e. the inverse problem is 4 

underdetermined). 5 

 6 

We attempted to clarify this in the revised manuscript in the following way:  7 

In response also to the comment below (P15 L20), we now state in the paper: 8 

P15 L25 “We note that the synthetic data were derived without adding realizations of model-data 9 

mismatch error”    10 

P16 L3 we added: “The use of two different biosphere models ensures that the posterior 11 

simulated CO2 time series will never exactly match the pseudo-observations (the known truth).” 12 

Regarding the potential impact of transport model error: 13 

P23 L24 now reads: “Note that the current study does not include the impact of transport model 14 

imperfection, as we used the identical transport model in the inversion as for generating the 15 

synthetic observations. However the inversion includes the related uncertainty in a realistic way 16 

as diagonal elements in the measurement error covariance, which is typically done in 17 

atmospheric inversions. The chi square values confirm that there is no underestimation of the 18 

uncertainties. We note though that erroneous flux estimates are likely to be estimated especially 19 

at finer spatial scales where the transport model is not able to resolve the real transport (e.g. 20 

individual eddys, complex terrain etc). However, at those coarser spatial scales, where the 21 

inversion shows good performance, transport models are also expected to perform better, thus 22 

limiting the impact of transport model errors.“ 23 

 24 

2. My second general comment highlighted several papers that had developed methodology 25 

in this area in recent years. Whilst the authors have now cite a couple of them, I was hoping 26 

that, since this is a "methodology" paper, they would compare and contrast the 27 

methodology in this paper with the recent developments by other authors. However, 28 

instead they simply say that eddy covariance data are not available for the gases used in the 29 

other publications. This misses the point to me; if these papers applied their methodology 30 

to CO2 (and there is no reason why they couldn't), would the limitations identified by the 31 

authors still apply? If so, what would be the benefits of the proposed system. 32 

We thank the reviewer for pointing out the importance of this comparison. We provide a more 33 

detailed information, which we hope will make this point clearer. 34 
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 The abovementioned papers from Ganesan et al. (2014) and Lunt et al. (2016), are using a 1 

hierarchical Bayesian method to infer terrestrial fluxes from dry mole tracer fractions. They 2 

follow a method which has been used over the last 10 years and introduced first by Michalak et 3 

al. (2004; 2005). In this approach, the so called “hyperparameters” (spatial and temporal 4 

correlation scales which are characterizing the covariance matrix as well as mean and standard 5 

deviation which they describe the prior Probability Density Function), are derived from 6 

atmospheric data. The main difference between those studies is that the latter calculates the 7 

covariance parameters first and then, in a second step, derives the fluxes. In Ganesan et al. 8 

(2014) and Lunt et al. (2016) studies, covariance parameters and fluxes are calculated 9 

simultaneously. Since the main principle is the same, atmospheric data are used to infer the 10 

covariance parameters, those parameters are strongly dependent on the atmospheric data as well 11 

as the transport model (Michalak et al. 2005). Assuming that two studies are sharing the same 12 

atmospheric data set but different transport model, they will potentially derive a different set of 13 

optimized parameters. Since we refer to hyperparameters within the prior error covariance (flux 14 

uncertainties), they should not depend on the transport model. 15 

It would be of great interest if we could directly compare the two approaches, the one described 16 

in Ganesan et al. (2014) and the one described in the current study. Apart from the fact that this 17 

would be beyond the scope of this study, a direct comparison is not possible since the two 18 

approaches have been applied to different tracers. Nevertheless, the study from Michalak et al. 19 

(2004), as explained, uses the same principle as Ganesan et al. (2014) and the companion papers. 20 

They report correlation length scales for the prior land fluxes of around 1000 km, which is 21 

significantly different from the lengths we derived (around 40 km, see Kountouris et al., 2015) 22 

and which we apply in the companion paper (Kountouris et al., 2016). Whilst the prior error 23 

covariance parameters are driven from the atmosphere in the above mentioned papers, in our 24 

study those parameters are directly driven from the fluxes themselves.   25 

Lunt et al. (2016) reduced the spatial dimension of the state vector, where the data are used to 26 

determine this reduction. They achieved this by defining basis functions partitioning the domain 27 

into Voronoi cells. However, computational cost seems to be significant and they choose to 28 

perform their optimization only in the spatial space, ignoring the time dimension. In our study 29 

spatial and temporal space (three-hourly fluxes) are being optimized. 30 

P6 L10 now reads: “In a similar approach Ganesan et al. (2014) and Lunt et al. (2016), applied a 31 

hierarchical Bayesian model using atmospheric concentrations,  to estimate both, fluxes and a set 32 

of hyper-parameters (e.g. mean and standard deviation of a priori emissions PDF as well as 33 

model – measurement standard deviation and autocorrelation scales). Those studies are focused 34 

on sulfur hexafluoride (SF6) and methane (CH4), so a direct comparison of spatial autocorrelation 35 

scales for prior flux uncertainties in CO2 inversions is not possible. In addition, Lunt et al. (2016) 36 

reports that due to the computational costs, they performed the inversion with no temporal 37 

dependence, assuming that the fluxes are constant over a fixed time period. Furthermore, the 38 

covariance parameters depend on the atmospheric data and on the transport model used 39 
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(Michalak et., 2005). Michalak et al. (2004) applied a similar approach to CO2 and reported 1 

spatial decorrelation lengths of around 1000 km, which are one order of magnitude larger than 2 

our estimates. ” 3 

 4 

Additional comments: 5 

- P15 L20 In the revised paper the authors now state that no error was added to the 6 

model/data. Wouldn't it have been more interesting to include some uncertainty here and 7 

see how it influenced the mismatch between the "true" and a posteriori flux. This follows 8 

directly from comment 1 above. Without any error in the model/data, the improvement in 9 

fit is fairly trivial. 10 

We think that this pointed issue is just a misunderstanding. We clarify that in atmospheric 11 

inversions most of the synthetic studies, use the same model to derive prior fluxes and to 12 

construct the synthetic observations. This would obviously result to a zero model data mismatch. 13 

Hence an error realization should be added, to at least, give some mismatch between the model 14 

and the “measurements”. For example, in Lunt et al. (2016), they perform also a pseudo 15 

experiment. However, the pseudo observations were derived simply by scaling the prior flux 16 

distribution. Then they added a random noise to the observations to simulate model-17 

measurement errors.   18 

By using a different model for the prior, and another model to construct the observations, we 19 

make sure that the inversions have to overcome a difference in model structure. Such an 20 

approach is already used in Tolk et al. (2011). This causes the simulated CO2 time series (prior) 21 

to never perfectly match with the true. 22 

P16 L1 we added: “The use of two different biosphere models assures that the prior simulated 23 

CO2 time series will never exactly match the pseudo-observations (the known truth).” 24 

 25 

- P23 L17, states that model transport error is not "excessively assessed". This is not true. 26 

Model transport error is ignored. 27 

In atmospheric inversions, the measurement error covariance matrix (i.e Qc in Eq.3) accounts 28 

typically for measurement errors, the representation error (uncertainties introduced from the 29 

insufficient grid resolution to resolve fluxes as small scales) and the transport error. Hence 30 

transport uncertainties are implicitly assumed in the error covariance matrix which is a standard 31 

approach in atmospheric inversions.  32 

P23 L21 we clarify: “Note that the current study does not include the impact of transport model 33 

imperfection, as we used the identical transport model in the inversion as for generating the 34 
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synthetic observations. However the inversion includes the related uncertainty in a realistic way 1 

as diagonal elements in the measurement error covariance, which is typically done in 2 

atmospheric inversions. The chi square values confirm that there is no underestimation of the 3 

uncertainties.” 4 

 5 

- P23 L22 now states that "for coarser spatial scales transport morels perform better, and 6 

as long as the fitting performance shows good results, flux estimates should be more 7 

reliable." The first part of this sentence is an unproven assertion (that better resolution = 8 

better transport), and the second part is not correct (that better fit to the data = more 9 

reliable flux). I could have a terrible transport model that fits the data perfectly simply by 10 

compensating for transport error by deriving completely wrong fluxes. 11 

We agree with the reviewer that higher resolution models do not necessarily simulate better the 12 

atmosphere. In fact, we say the same thing: transport models, perform better at coarser spatial 13 

scales. We do not refer to higher resolution models and their potentials here. For the second part 14 

of the sentence we agree again with the reviewer that a good fit does not assure a reliable flux. 15 

However, validating the fluxes with independent measurements could be an indicator if the flux 16 

correction was done appropriately.  17 

P23 L28 we clarify: “However, at those coarser spatial scales, where the inversion shows good 18 

performance, transport models are also expected to perform better, thus limiting the impact of 19 

transport model errors.” 20 

- P25 L15 states that "Concerns might rise that the observational uncertainties are 21 

underestimated due to the absence of the error correlations. However the χr2 values prove 22 

the opposite." This may be true in this synthetic case, but it won't hold at all in the real 23 

world. In reality there must be correlated errors in chemical transport models. 24 

This statement is misleading. We already mentioned that we make use of a data density function 25 

(see section 2.1 and Rödenbeck, C., 2005). The function inflates the uncertainty and it is 26 

equivalent with the assumption that transport errors are correlated in the order of a week.  27 

In the inversion system, data and model uncertainties result to a total uncertainty of 28 

22

mod obstot
   29 

The data density inflates the uncertainty over weekly intervals and the total uncertainty is now 30 

given as 31 

toti
N  

*

 where N
*
 is the number of measurements within a given time interval. This way, 32 

we do consider that transport errors are correlated in time. 33 
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P10 L4 we added: “The data density inflates the uncertainty over weekly intervals by a factor of 1 

the square root of the number of measurements within a given time interval. This ensures…” 2 

P25 L28 we clarify: “However we do consider implicitly that transport errors might by correlated 3 

over time, and we do consider that via the data density function. Further, for the synthetic study 4 

the χr
2
 values prove a fair treatment of the observational uncertainties.” 5 

 6 

- My previous comment that the comparison with pseudo-EC data still stands, and has not 7 

been addressed in the revised manuscript. The authors cannot conclude from this study 8 

that EC data can be used to validate these fluxes in the real world. In the real world, 9 

scaling issues will be absolutely critical (EC data being representative of scales that are 10 

typically an order of magnitude smaller than the transport model). 11 

Although we addressed reviewer’s comment in our previous response, we unintentionally did not 12 

include it in the revised manuscript. We thank the reviewer for his comment; we made the 13 

following changes to the manuscript: 14 

P23 L3-6: we deleted: “The very close correspondence of these results with those shown in 15 

Figure 7Fig. 7 for the domain-wide monthly flux budget potentially shows that eddy covariance 16 

measurements can principally be used for validation of the inverse estimates at monthly 17 

timescales.” 18 

P25 L4 we added : “The “true” fluxes were used to validate the posterior flux estimates. In this 19 

synthetic experiment, both fluxes share the same spatial resolution (25km) which makes the 20 

validation straightforward. In a real data inversion, eddy covariance measurements will substitute 21 

the “true” fluxes making the spatial scales not directly comparable. Despite the scale mismatch, 22 

Broquet et al. (2013) compared the posterior flux estimates against eddy covariance data with 23 

promising results; showing that posterior mismatches are in good agreement with the theoretical 24 

uncertainties.” 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 
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