
Response to reviewers comments for the paper “Quantifying the volatility of organic aerosol 

in the southeastern U.S.” by Provat K. Saha et al. 

 

To Whom It May Concern: 

We would like to thank the two reviewers for their thoughtful and helpful comments. In 

addressing these comments, we feel we have substantially improved the manuscript. Here we 

provide a point-by-point response to review comments.  

Please find below detailed responses in normal text (with direct quotes from the revised 

manuscript shown in italics) to the comments and suggestions (shown in blue text) offered by 

the two reviewers.  

Best regards, 

The Authors 

 

Anonymous Referee #1 

General Comments: 

R1.0. Saha and co-authors present a well-articulated investigation of the volatility properties of 

organic aerosol at two sites in the southeast United States. The opportunity at Centerville, 

AL during SOAS is uniquely favorable since there were so many collocated measurements (of 

meteorological metrics and AMS factors, for example). The authors do a good job motivating the 

juxtaposition of these data to other data they have collected in Raleigh, albeit at a different time 

of year. Overall, I find the goal of the work and its presentation quality to be acceptable for ACP 

and important for the scientific community. However, I have some concerns about the 

discussion. For example, I think the issue of solubility, while not specifically addressed by their 

measurements, should be better woven throughout their discussions in the manuscript to make it 

clearer that the properties of volatility and solubility simultaneously affect the gas-particle 

partitioning of organic compounds. I look forward to discussing the following issues with the 

authors: 

 

 

 

 

 

 



 

A1.0. We thank the reviewer for his/her review and useful comments. All of the items mentioned 

here are addressed in response to specific comments below. 

 

R1.1. Page 2, Line 15: Although it is well-known that volatility plays a pivotal in gasparticle 

partitioning, I think it is worth mentioning that solubility will also be critical for this 

phenomenon, especially in places like the southeast US. Admittedly, solubility is outside the 

scope of this paper (and the RH of the observations is maintained relatively low at 30-40%). It is 

of course still vital and useful to gain an in-depth knowledge of the partitioning behavior of 

compounds to the “dry” organic phase. However, please also be careful throughout the text about 

statements like in line 17-18: “vapor pressure determines whether an organic compound is found 

in the particle- or gas-phase” since this is not exactly true for many compounds, which are highly 

volatile and highly soluble, for example. This should be reworded for completeness. 

 

AR1.1. We thank the reviewer for pointing out the role of solubility in OA gas-particle 

partitioning. We certainly agree with the reviewer that solubility in water may also play an 

important role in the gas-particle partitioning of many organic species (e.g., isoprene related 

species). We have revised the text to address this point. 

   “At equilibrium, volatility of organic species, specifically, saturation vapor pressure (or 

equivalently, saturation concentration, C*; μg m-3) plays a vital role in determining their gas-

particle partitioning (Donahue et al., 2006; Pankow, 1994). Solubility in water may also be 

critical for gas-particle partitioning for many species (Hennigan et al., 2009), especially in 

places with higher relative humidity, for example, in the southeast U.S. Enthalpies of 

vaporization (ΔHvap) dictate the change in partitioning with temperature (Donahue et al., 2006; 

Epstein et al., 2010). Although gas-particle partitioning is determined by the basic 

thermodynamic properties of OA species – their C*, ΔHvap, and solubility– these, along with the 

impacts of non-ideal mixing on individual species, are generally unknown for ambient OA.” 

 

R1.2. Did the authors size select the particles before entry to the TD units? It does not appear so. 

Could they comment on their method of incorporating the size distribution information into their 

model? Did they use a moving sectional, fixed sectional, or a modal algorithm? Or was only a 



single diameter used as is implied on page 6, line 13? If this is the case, can the authors provide 

some insight into how the inaccuracies introduced in their model results from the width of the 

distributions (as seen in Fig. S6c,d)? Are there significant size-dependent particle losses in the 

system and are these temperature dependent? 

 

AR1.2. We did not size select the particles before entry to the TD units. We heated a 

polydisperse distribution of particles in TDs and observed the changes in total volume/mass 

concentrations as a function of temperatures and residence times.  

 

In our TD kinetic modeling, we assumed the volume median diameter (VMD) as a representative 

size for a polydisperse aerosol; a reasonable assumption to extract average properties of aerosol. 

This assumption has been examined in the past (Park et al., 2013) and shown to have a 

minuscule effect on modeled particle evaporation. For example, Park et al. (2013) tested this 

assumption (Fig. S4, SI in Park et al.) for a similar model formulation to ours and showed that 

assumptions of poly- and monodisperse size distributions to represent a single-mode aerosol lead 

to virtually indistinguishable model results. In our dual-TD method characterization paper (Saha 

et al., 2015), we included a sensitivity analysis (SI; section S.6) to explore the potential influence 

of changes in particle VMD within a generous range (which would have a much larger effect 

than simply including a polydisperse aerosol population). We have shown that sensitivity of 

VMD within this range does not substantially alter our derived volatility parameter values. 

 

Regarding particle losses, we have applied empirically determined particle loss correction factors 

derived using non-volatile NaCl aerosol (this approach was discussed in Saha et al., 2015). 

Particle mass and number transmission through TDs is temperature dependent. The size 

dependence is much stronger for particle number transmission than mass/volume transmission. 

This is because of the substantial diffusional loss of smaller size particles which contribute 

relatively little to the particle mass/volume concentrations. We conducted our NaCl loss 

characterization experiments with a size distribution that was broadly comparable to the ambient 

distribution. Therefore, correcting our data with the mass transmission factors derived from 

laboratory-generated NaCl aerosol introduces minimal additional uncertainty. 

 



R1.3. Page 6, Line 19-21: what is the reason for putting only the fi sets that have been 

“accepted” against the TS-TD data through the VRT-TD analysis? What sets are undetected by 

not doing both applications for every set and then taking the best performers? On a related note, 

what initial fi values were used as input to the solver and how dependent was the “accepted” 

solution on these values? Were these initial conditions varied at all? Why are the authors 

confident they have evaluated the entire space of volatility distributions? 

AR1.3. For a given input temperature (T) and residence time (Rt), the evaporation kinetic model 

predicts a mass fraction remaining; MFR (T, Rt). In our method, the fitting can be done in one 

step (fitting all data from TS-TD and VRT-TD together) or two steps. We have found that the 

two-step fitting approach gives essentially identical results to fitting all data simultaneously. We, 

therefore, decided to use a two-step fitting approach because it narrows down the parameter 

space substantially in the first step, which reduces the computational requirements substantially. 

An additional advantage to applying the ‘two-step’ approach in this work is that it distinctly 

demonstrates the benefit of adding the additional dimension (Rt) to the traditional TD 

measurement space (T) via goodness of fit quantification across the [γe, ΔHvap] space at each step 

(Fig. 3). Thus, this approach/presentation gives insight into the range of parameter values that 

can be used to explain observations from ‘single-dimensional’ perturbations (only T) in typical 

TD arrangements used in various past/ongoing studies.  

 

For solving for fi distributions, we have used a non-linear constrained optimization solver 

(fmincon in Matlab). We tested our model with different initial guesses for fi distributions, and 

optimal solutions were found to be insensitive to the initial guess for a given set of inputs. A 

constraint of Σfi =1 was used. We have provided constraint for the lower (fi minimum = 0.02) and 

upper (fi maximum = 0.4) boundary for a fi value in each C* bin. This choice of a wide solution 

space for solving a fi value in each C* bin would address any sensitivity of the error to an 

optimum solution of fi. 

 

We have not evaluated the entire volatility distributions space using our method, and did not 

indicate this in the paper. However, we explicitly did mention that our selected C* bin range was 

based on our measurement conditions; specifically, the highest TD operating temperature and the 

average ambient OA loading provide limitations on the lower and upper C* bins we consider, 



respectively. Within this predefined range, our approach provides an empirical OA volatility 

distribution that explains the observed evaporation of bulk OA in our dual-TD system. 

 

R1.4. Page 7, Line 8-9: How do the enthalpies of vaporization used in this WRF-Chem 

simulation compare with those derived from the observations here (could they add this to the 

methods section)? What are the implications of comparing the volatility distribution from a 

model to observations when they are using different enthalpies? Is this something that other 

researchers should take seriously when comparing model output to TD data? On Page 15, Lines 

20-24, the authors provide some discussion of this issue. However, they seem to be assessing the 

sensitivity of the enthalpies in the model independently of the mass yields being used. Is this 

appropriate? 

AR1.4. In our CTM evaluation, we focused on comparing our observed OA volatility 

distribution against the WRF/Chem output using the current treatment of OA in models. 

Therefore, we used the VBS parametrizations (e.g., C* bin range), SOA yields and ΔHvap that are 

currently being used in the research community. For enthalpies of vaporization, the semi-

empirical correlation by Epstein et al. (2010) (ΔHvap, i = 130-11log10C*
i,298) was used in the 

WRF/Chem simulation (discussed in section 2.5). Our TD parameter fitting used a generalized 

functional form for ΔHvap (ΔHvap, i = intercept-slope (log10C*
i,298)), where intercept and slope 

were fit parameters. We found that a ΔHvap, i = 100-0 (log10C*
i,298) relationship ‘best’ explained 

the observed temperature sensitivity of bulk OA in our TDs (See Fig. 3 and discussion in section 

3.3).   

 

It should be noted here that the reference VBS temperature was 25ºC for both WRF/Chem run 

and TD fits. The difference in ΔHvap used in WRF/Chem runs and our TD-derived value would 

not have a significant effect on the comparison shown in Fig.10. This is because the modeled-

measured OA volatility comparison was made at temperatures (SOAS campaign average T= 

24.7ºC; WRF/Chem simulated campaign average T= 23.8ºC @ 2 m) that are very close to the 

VBS reference temperature (25ºC). Murphy et al. (2011) also reported a low sensitivity of ΔHvap 

when predicting surface OA loading during the FAME-08 study using a 2D-VBS framework. 

However, the effect of ΔHvap could be very significant when simulating OA loading at high 

altitudes. Therefore, we recommend that researchers should take the influence of ΔHvap 



seriously, especially when comparing an OA volatility distribution from a CTM at a temperature 

that is very different from the reference temperature of VBS. We included relevant discussions in 

our revised manuscript in page 16, Lines 15-20.  

 

“The difference in ΔHvap values used in WRF/Chem and our TD-derived values should not have a 

significant effect on the comparison shown in Fig.10. This is because the modeled-measured OA 

volatility comparison was made at temperatures (SOAS campaign average T= 24.7ºC; 

WRF/Chem simulated campaign average T= 23.8ºC) very close to the VBS reference 

temperature (25ºC). Murphy et al. (2011) also reported a low sensitivity of ΔHvap when 

predicating surface OA loading during the FAME-08 study using a 2D-VBS framework. 

However, the effect of ΔHvap could be significant when simulating OA loading at low ambient 

temperatures and high altitudes.” 

 

Ideally, yields parameterization and ΔHvap should be internally consistent for a CTM input. 

Traditionally yields parameterization and ΔHvap have not been coupled and constrained 

consistently. Typically a ΔHvap of 30 - 40 KJ mol-1 has been assumed for atmospheric modeling. 

A derivation of consistent parameterizations for yields and ΔHvap as CTM inputs are not within 

the scope of our paper. Following previous work (Farina et al., 2010; Murphy et al., 2011), we 

briefly discussed the sensitivity of ΔHvap to provide some insights into the influence of ΔHvap in a 

qualitative sense.  

 

R1.5. Page 9, Line 8-9: I’m not familiar with the term “condensation sink diameter”. Could the 

authors please explain it and potentially provide an equation in the supporting info for this 

quantity? How is it related to the more common term, condensation sink which is in units of 

inverse time? 

AR1.5. Yes, the concept of condensation sink diameter (dcs) is related to condensation sink (CS). 

This concept is first described in Lehtinen et al. (2003).  According to Lehtinen et al., 

 “The condensation sink diameter of a distribution of particles with total number concentration 

Ntot, is the diameter where a monodisperse population of particles of number concentration Ntot 

should be placed to obtain the same total condensation sink (CS) as for the polydisperse 

distribution of interest.”  



Mathematically, 2πD𝑑𝑐𝑠𝐹(𝑑𝑐𝑠)𝑁𝑡𝑜𝑡 = 2πD ∑ 𝐹(𝑑𝑝,𝑖)𝑑𝑝,𝑖𝑁𝑖 = 𝐶𝑆 

Where, D is the diffusion coefficient, F is the Fuchs and Sutugin correction factor, Ni is the 

number concentration of particles in size bin of dp,i. A new section (Sec. S2) has been added to 

the SI detailing the estimation of condensation sink diameter. 

 

R1.6. Do the authors have an explanation for why the 80-0 and 80-4 cases with evaporation 

coefficient equal to 0.5 and 1.0 performed acceptably for the Raleigh cases and not for the 

Centerville cases? How close were they to being accepted with the VRT-TD data? It perhaps 

appears that they performed better for the TS-TD data at Centerville than they did at Raleigh (or 

at least the cases around them with discernible colors did). 

AR1.6. Although the observed campaign-average evaporation in both data sets were 

indistinguishable at higher TD temperatures, there was a slight difference in evaporation profiles 

at various Rt at lower temperatures (see Figs 2.b and c). This slight differences in the observed 

evaporation profiles at 60 and 90 ºC as shown in Figs. 2b and c are likely the cause of the 

differences between optimal parameter sets. We cannot comment on the factors leading to this 

difference, as our estimated volatility parameter values are empirical estimates that optimally 

describe bulk volatility properties in combination with the assumed values of other parameters 

(D, σ, ρ, MW). 

 

R1.7. Page 10, Lines 5-10: The low enthalpies used in models are based on observation data (e.g. 

Offenberg et al. 2006; Pathak et al. 2007; Stanier et al., 2008) of so-called “effective” enthalpies, 

so please consider mentioning this for completeness; Stanier et al. (2008) were a bit higher than 

others and in line with the lower bound explored in this study. It has been argued that low 

enthalpies of vaporization result from describing systems with too few volatility surrogates 

(Riipinen et al., 2010). Could the authors comment on what they attribute the void between their 

high enthalpies and historical low enthalpies to? If they run their model with only two surrogates, 

for example, do they get low enthalpies as well?  

AR1.7. We thank the reviewers for the suggestion. We added these references in our paper. 

As the reviewer correctly pointed out, these are not real enthalpies, but "effective" ones. The 

reported "effective" enthalpies are often much lower than enthalpies of chemical compounds 

relevant to atmospheric aerosols. By reducing the number of surrogate compounds, the system 



moves further away from realistic enthalpies. As a mixture evaporates, it is progressively 

enriched in less volatile compounds, slowing down evaporation in terms of the total mixture 

mass. Thus, the apparent sensitivity of the aerosol mass to temperature appears to be low. This 

translates to a low enthalpy of vaporization if one uses, for example, one surrogate compound. 

We have not tested the dependence of the apparent ΔHvap values on the number of surrogate 

compounds, as our purpose was to describe the aerosol using the VBS representation with a 

commonly used number of bins.  

 

R1.8. Can the authors please provide some statistics to go along with the comparison in Fig. 4? 

For example, it would be useful to have mean bias, correlation coefficient and root mean square 

error so that future studies would have something succinct to use as a benchmark. 

AR1.8. We have added values of coefficient of determination (r2) and root mean square error 

(RMSE) for the measured and modeled MFRs in Fig 4.a and Fig.S9.  

 

R1.9. In Fig. 4a, is the COA that of the ambient (unheated) sample? There does appear to be 

systematic overprediction for low COA cases compared to high COA cases. Is this true? Could 

the authors provide some statistics stratified by COA to assess this? If there is a relationship, 

could they comment on why it emerges from their approach? 

AR1.9. Yes, the COA in Fig.4a is the measured ambient OA concentrations.  

We explored the relationship between COA and extracted volatility. Fig.AR.1 shows the scatter 

plot of (a) mean C* vs. ambient COA and (b) C*
eff vs. ambient COA (this Fig. is included in SI as 

Fig.S12). In a few low COA instances, the mean C* was found to be higher, but this trend is not 

consistent. The relative contribution of MO-OOA (more-oxidized oxygenated-OA) in COA in 

many of these instances was low (yellow/orange points in Fig. AR.1a, which likely influences 

this observation. However, there is large amounts of scatter in mean C* in the lowest COA range, 

so a consistent relationship is not evident.  The C*
eff vs. ambient COA plot shows an increasing 

trend of C*
eff with COA. This is because the C*

eff only considers the particle-phase components 

and was estimated following equilibrium partitioning theory – therefore this mild increase of 

C*eff is consistent with increasing partitioning of semi-volatile species to the particle-phase with 

increased COA. 



 

Fig.AR.1: Scatter plot of (a) mean C* vs. ambient OA loading (COA); (b) C*eff vs. ambient OA 

loading (COA). Results are shown from the Centreville campaign. Fig.S12 

 

R1.10. Page 13, Line 8: Please avoid using the word “relatively” and opt instead for a 

quantification of the difference between the afternoon and early morning. 

AR1.10. Revised text. 

 “OA appeared less volatile in the afternoon than early morning for both sites (Centreville: 

campaign average 𝐶∗̅̅ ̅ (μg m-3) in the morning ~ 0.25; afternoon ~ 0.13 and Raleigh: morning ~ 

0.2; afternoon ~ 0.12).” 

 

R1.11. Sections 3.4-3.5: The authors have defined both mean(C*) and C*eff and chose the 

former for their analysis of time series and diurnal profiles. I think this may have been an 

unfortunate choice. This value, as they say, accounts for both particle- and gas-phase 

compounds. It is not very surprising to me that it would be a more stable quantity, throughout the 

SOAS campaign at least. I wonder if they would capture the trends they are after better by using 

the C*eff which just accounts for the particle-phase material. This at least would seem to make 

more sense for correlating with AMS factors (Isoprene-OA, LO-OOA, and MO-OOA) since 

those apply just to the particle phase and not the total organic burden. Using this alternative 

approach would theoretically introduce a temperature and dilution dependence that might result 

in a more striking and meaningful variability. Of course, it may on the other hand yield a rather 

invariant trend similar to what they have already shown. 
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AR1.11. According to our definition, the mean C* is a log-mean of the volatility bins of organic 

species (particles + vapor) ( 𝐶∗̅̅ ̅ =  10∑ 𝑓𝑖 log10 𝐶𝑖
∗
), which gives a description of where the mass 

(center) of different volatility compounds is located. Therefore, the mean C* is a simpler 

representation of the volatility basis set (VBS). On the other hand, C*_eff is another simplified 

representation of OA volatility (𝐶𝑒𝑓𝑓
∗ = ∑ 𝑥𝑖 𝐶𝑖

∗) derived based on the Raoult's law and using 

arithmetic averaging. The C*_eff would indicate a current state of OA volatility and 

temperature- and dilution-dependence. We elected to use the mean C* for our extended analysis 

because we consider the log-mean a better representation of the volatility of ambient OA, not 

only what is measured in particle instruments. 

 

We explored the correlation between different OA factors and bulk OA volatility using both 

metrics (mean C* and C*_eff). As an example, Fig. AR.2 shows the scatter plot of (a) mean C* 

vs. MO-OOA fraction and (b) C*_eff vs. MO-OOA fraction COA (this Fig. is now included in the 

SI as Fig.S13). While the exact correlations of course vary, the correlation coefficients and thus 

our general conclusions on the correlation between different OA factors and bulk OA volatility 

remain unchanged.   

 

Fig.AR.2: Scatter plot of (a) mean C* vs. MO-OOA fraction in COA; (b) C*eff vs. MO-OOA 

fraction in COA.  Results are shown from the Centreville campaign. 

 

Minor Changes/Typos: 

R1.12. Pg 1, Line 11: Consider mentioning solubility as well. “quantitative estimates of the 

thermodynamic (volatility, water solubility, etc)” 
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AR1.12. We revised the text as suggested.  

R1.13. Pg 1, Line 14: “one at a biogenic: : :” 

AR1.13. We revised the text  

R1.14. Pg 2, Line 6-7: Of course SOA has also been shown to be introduced from oxidation of 

primary SVOCs and IVOCs followed by condensation and aqueous phase reactions of high 

soluble compounds. Depending on your definition of “secondary”, it is also formed by 

heterogeneous oxidation of POA without evaporation. Please mention these here or don’t be so 

specific about the VOCs role. 

AR1.14. We revised the text. Page 2, Lines 5-6: “Secondary OA (SOA) is formed in the 

atmosphere via oxidation reactions of gas-phase organic species; it may also be formed by 

reactions in the particle (condensed) phase” 

 

R1.15. Pg 5, Line 16-17: The VBS approach does not assume unity activity coefficients. Instead 

the activity coefficient are assumed to be lumped into the Cvap, making it C*. And so the 

activity coefficients have a value, but that value is assumed not to change from the lab or field to 

other mixtures or conditions. 

AR1.15. We revised the text. Page5, Lines 22-23: “The VBS approach is based on an effective 

saturation concentration (C*) where the activity coefficient is assumed to be lumped into the 

saturation concentration.”  

 

R1.16. Page 6, Line 10: I disagree that the model is applied in an “inverse sense”, as it appears 

that the authors are solving the evaporation problem in the forward way, brute-force, for all of 

their free parameter combinations and then comparing output to the observations. This could 

perhaps be labelled reverse engineering, but I think associating it with inverse modeling is 

inaccurate. 

AR1.16. We used a non-linear constrained optimization solver (‘fmincon’ in Matlab) to extract 

OA volatility distribution by matching measured and modeled evaporation data.   

We revised the text. “The model is applied to extract OA properties such as the volatility 

distribution, ΔHvap, and γe as fitting parameters by matching measured and modeled evaporation 

data.” 

 



R1.17. Page 6, Line 27: “common means to improve the performance of OA prediction in 

chemical transport models” 

AR1.17. We revised the text as suggested. 

 

R1.18. Fig. 2b,c: There is no explanation or legend for the colors of the trends. The text claims 

they distinguish different residence times but isn’t this described by the x-axis? Please clarify 

this point. 

AR1.18. Fig. 2a shows an OA MFR vs. temperature plot. A colour scale was used for Fig.2a to 

distinguish TD measurements data with different residence times across studies. It was 

mentioned in Fig.2 caption. The x-axis of Figs. 2b and c are residence times. Thus we do not 

need a residence time colour scale for these two panels. To clarify the legend issue, we added a 

sentence in Fig.2 caption: “Legend shown next to panel (a) applies to all panels (a-c).”  

R1.19. Page 9, Line 14: Just write “volatility”. Having the “/C*” is unnecessary. Page 15, Line 

7 as well. Page 9 and Fig. 3: Neither the description in the text nor the figure caption should 

claim that the figure depicts the fi values. As far as I can tell, it does not. 

AR1.19. We revised the text as suggested. 

We agree with the reviewer that Fig.3 visually does provide information about our fitted fi 

distributions. To clarify it we revised Fig.3 caption as, “Extraction process of OA gas-particle 

partitioning parameter (ΔHvap, γe and fi) values. A fi distribution was solved for each combination 

of (ΔHvap, γe) via evaporation kinetic model fits to campaign-average dual-TD observations” 

  

R1.20. Page 9, Line 18: Please indicate here, and throughout the text, that this C* is at Tref 

(presumably 298 or 300 K). This should especially be made clear for any references to mean C*. 

AR1.20. We revised the text as suggested. “A reference temperature (Tref) of 298 K is assumed. 

Any C* value reported in this paper should be considered at 298 K, unless otherwise specified.”  

R1.21. Page 10 and Fig. 2: The notation for Ceff is not consistent with Csat_eff. 

AR1.21. We revised the text as suggested.  

 

R1.22. Page 13, Line 26-27: You do not really need this final sentence since the section you refer 

to comes directly next. 

AR1.22. We revised the text as suggested.  



R1.23. Page 16, Line 16: Please be quantitative rather than saying “Relatively less volatile”. 

AR1.23. We removed the word ‘relatively’. Quantitative data is stated in page 13, Lines 16-18; 

“OA appeared less volatile in the afternoon than early in the morning for both sites (Centreville: 

campaign average 𝐶∗̅̅ ̅ (μg m-3) in the morning ~ 0.25; afternoon ~ 0.13 and Raleigh: morning ~ 

0.2; afternoon ~ 0.12)” 

 

R1.24. Page 16, Line 30: Murphy et al. (2011) compared predictions with the 2D-VBS in a 

Lagrangian column CTM against the FAME data reported by Lee et al. 

 

We thank the reviewer for the information. We cut that sentence and added the Murphy et al. 

(2011) reference. 

 

 

 

Anonymous Referee #2 

General Comments: 

R2.0. This manuscripts presents measurements and analysis of the evaporation behavior of 

organic aerosol (OA) measured at two different locations – one more rural, one more urban, but 

both influenced by significant concentrations of BVOCs. Measurements were taken with a dual 

thermodenuder system in which both the temperature and residence time were varied. Main 

conclusions of the work include that the OA evaporation behavior was fairly similar at the two 

sites and did not vary much over the course of the measurement campaign, and also that much of 

the OA is in low-volatility bins which are currently not represented in (most) air-quality models. 

The manuscript is well written and generally well argued, and overall the topic and quality of the 

manuscript makes it suitable for publication in ACP. However, I have a few concerns about the 

analysis and interpretation as explained below which I suggest the authors should address before 

publication. 

 

A2.0. We thank the reviewer for his/her review and useful comments. We address the specific 

comments below. 

Major comments: 

 



R2.1. The authors focus on the “best fit solution” and address to some extent the sensitivity of 

the error (SSR) to changes in dHvap and gamma (e.g. Fig. 3). I request that they also address the 

sensitivity of the error to changes in the fi. I am particularly worried that the fi in the lower C* 

bins may not be well constrained by the data. 

 

AR2.1. For solving a fi distribution, we have used a non-linear constrained optimization solver 

(fmincon in Matlab). We provided constraint for the lower (fi minimum = 0.02) and upper (fi 

maximum = 0.4) boundary for a fi value in each C* bin. This choice of a wide solution space for 

solving a fi value in each C* bin should address any sensitivity of the error to an optimum 

solution of fi. 

As we discussed in our manuscript that our selected C* bin range was based on our measurement 

conditions; specifically, the highest TD operating temperature and the average ambient OA 

loading provide limitations on the lower and upper C* bins we consider, respectively.  

Page 6, Lines 5-6, “With the above C* bin limits, materials having C* < 10-4 μg m-3 are lumped 

into the lowest bin……” 

Bins lower than ~10-4 are not constrained in our data set because maximum TD operating 

temperature was 180ºC. Materials those survived at 180 ºC may well be even lower volatility, 

but we need to see it evaporate to be able to say anything quantitative about volatility. The key 

point is that within this predefined range, our approach provides an empirical OA volatility 

distribution that explains the observed evaporation of bulk OA in our dual-TD system. 

R2.2. Regarding higher C* bins, on page 6 lines 1-2 the stated reason for not including 

C*>10 _g/m3 is that less than 5% of the materials would be present in the condensed phase at the 

average COA of 5 _g/m3. Common VBS bins used range from 0.1 to 100 _g/m3 for ambient OA 

concentration of _10 _g/m3. Elevated OA episodes (OA > 10 _g/m3) were observed, especially 

at the Raleigh site (Figure S7). It would be reasonable to include the 100 _g/m3 bin in the model 

to account for these episodes. Have the authors investigated the effects of including higher 

volatility bins on the fitted model parameters? As referee #1 pointed out and according to 

Riipinen et al. (2010), a two-surrogate product model could lead to very different conclusions 

about dHvap. How does the inclusion of more and lower volatility bins affect modeled dHvap? 

In other words, does bin selection introduce bias in to model results (and if so, how much)? 



AR2.2. As noted in the manuscript and above (AR1.3), the selection of C* bin range in our 

fitting was based on our measurement conditions, specifically the highest TD operating 

temperature and average ambient OA loading. We performed sensitivity analysis on the selection 

of C* bin range. Fig. AR.3 shows an example result showing the comparison between fits with 

ranges of C*= [10-4 to 10 µg m-3] (base case used in our paper) versus C*= [10-3 to 102 µg m-3] of 

the Raleigh campaign average TD observations. Result indicates that C*= [10-3 to 102 µg m 3] 

fails to recreate the observed evaporations at higher TD temperature and that there is an 

indistinguishable change at lower temperature conditions (where the C* = 102 µg m-3
 would have 

any influence on the fit).  

 

Fig.AR.3: Sensitivity of C* bin range in fitting TD data using an evaporation kinetic model. The 

best fitted curves with (ΔHvap = 100 kj mol-1 and γe = 0.5) are shown. 

The reviewer correctly pointed out that there were a few elevated COA episodes (≥ 10 µg m-3) 

during the Raleigh campaign. However, these episodes were for a relatively short period of time 

( 2-3 hours) and the time required for collecting a complete set of thermograms using our TD 

setup was ~ 4-5 hours, we were not been able to capture a complete set of data under a 

consistently elevated COA which could be fitted to constrain higher volatility bins. 

As we discussed earlier in response to reviewer #1 (AR1.7) Comment, by reducing the number 

of surrogate compounds, the system representation would potentially move further away from 

realistic enthalpies. Therefore, we focused to describe the aerosol using the VBS representation 



with a commonly-used number of bins. We have not tested the dependence of the apparent ΔHvap 

values on the number of surrogate compounds. Our goal of this study was to describe ambient 

OA within this pre-defined framework. In our fitting, we represented ΔHvap as a function of C* 

bin (ΔHvap = intercept-slope (log10C*)) and found that a relatively ‘shallow’ log10C* dependence 

(slope ~ 0, 4) better explain the observed temperature sensitivity of bulk OA in TDs. This 

suggests that an effective ΔHvap required to explain the observed temperature sensitivity of bulk 

OA would be less sensitive to an inclusion of higher/lower C* bins within a realistic range. 

However, we do recommend that further work explores the sensitivity of the apparent ΔHvap to 

the number of surrogate bins in future studies considering the use of basis sets with fewer bins. 

 

R2.3. Page 6 Line 21-23: Have the authors attempted to apply the two models in a different order 

(VRT-TD first then TS-TD)? How much does this change the results? 

 

AR2.3. The order of model application has no effect on derived parameters. We have used the 

same model for fitting data from TS-TD and VRT-TD. For a given input temperature (T) and 

residence time (Rt), the evaporation kinetics model predicts a mass fraction remaining; MFR (T, 

Rt). In our method, the fitting can be done in one step (fitting all data from TS-TD and VRT-TD 

together) or two steps. We have found that the two-step fitting approach gives identical results to 

fitting all data simultaneously. We, therefore, elected to use a two-step fitting approach because 

it narrows down the parameter space substantially in the first step, which reduces the 

computational requirements substantially. An additional advantage to applying the ‘two-step’ 

approach in this work is that it distinctly demonstrates the benefit of the additional dimension 

(Rt) we have added to the traditional TD measurement space (T) via goodness of fit 

quantification across the [γe, ΔHvap]  space at each step (Fig. 3). 

 

R2.4. Page 13 Line 1-6: mean C* is perhaps not a suitable metric to correlate with the fraction of 

isoprene OA. If isoprene OA was in fact much less volatile, its overall contribution to mean C* 

would be minor; the calculated mean C* value would be dominated by fi values of more volatile 

surrogate compounds. Using Ceff would present similar issues. It seems more appropriate to 

investigate the correlation between isoprene OA and individual bin fi’s. 

 



A2.4. We thank the reviewer for this suggestion. We have performed this additional analysis and 

a summary result is shown below:  

log10C* bin -4 -3 -2 -1 0 10 mean C* C*_eff 

Pearson R value 

(Iso-OA fraction vs fi’s) 
0.02 0.29 -0.07 -0.06 -0.14 0.04 -0.06 0.19 

 

Based on our analysis we did not find any statistically-significant relationship between isoprene-

OA fraction and fi’s in any individual C* bin. This result is consistent with our original 

observation of no correlation between mean C* of bulk OA and the fractional contribution of 

isoprene-OA to COA. This new result is included in Table S2 and discussed on Page 13, Lines 29-

30: “Neither were statistically-significant relationships found between the isoprene-OA fraction 

and  fi’s in any particular C* bin (see Table S2).” 

 

R2.5. Page 6, line 7: Was a constant collection efficiency of 0.5 also applied to all thermally 

denuded data? Evaporating part of the organic aerosol (and therefore changing the org/sulfate 

ratio) could change the collection efficiency, which would bias MFR measurements. The authors 

could partially address this issue by comparing total SMPS and ACSM measurements (mass), i.e. 

the ACMS/SMPS ratio in the bypass and after the thermodenuder. 

 

AR2.5. Yes, we have analyzed both bypass and heated (TD) ACSM data using a constant 

collection efficiency (CE) of 0.5. A comparison of ACSM/SMPS ratio in the bypass (slope = 

0.95±0.006) and after the TD (slope = 0.91±0.009) data is shown in panels c and d in Fig S1. A 

slightly lower slope for the heated measurements suggest that CE could be ~4-8 % lower for the 

aerosol that passes through the TD. We did not attempt to use a different CE value for the 

thermodenuded aerosol based on this analysis because the SMPS measurement also could be 

affected by a potential change in particle morphology and shape upon heating. However, the 

bottom line is that the potential uncertainty that may arise from using a constant CE would be 

very low compared to the overall observed variability in measurements. 

 

R2.6. Fig S7 seems to assume that all nitrate measured in the ACSM is inorganic. This seems to 

contradict discussion earlier in the manuscript of the potential importance of organic nitrates. 



Previous work has shown that the ratio of NO+ to NO2+ fragments measured by AMS or ACSM 

instruments is quite different for organic nitrates and ammonium nitrate, and that the ratio can be 

used to estimate the fraction of measured nitrate due to organic nitrates. I suggest the authors use 

these measurements from the ACSM to estimate how much of the measured nitrate is organic vs. 

inorganic. Assuming full neutralization of sulfate by ammonium (which is reasonable in the 

presence of ammonium nitrate) could also be used to calculate the nitrate attributable to 

ammonium nitrate and, therefore, the nitrate due to organic nitrates.  

AR2.6. The Nitrate measured by an ACSM would be a combination of both organic and 

inorganic nitrate. We changed the axis label for panel (b and d) of Fig.S7 from ‘inorganic’ to 

‘SO4, NO3, NH4’. We explored the NO+ to NO2+ ratio from our ACSM measurements as 

suggested by the reviewer. A summary is given below: 

Measurements NO+ to NO2+ ratio 

(campaign average ± 1 SD) 

Centreville  10.02 ± 3.47 

Raleigh  5.93 ± 1.96 

Pure ammonium nitrate  (Cal aerosol) 3.58 ± 0.84 

 

The NO+: NO2+ ratios in both campaigns were significantly higher than that of pure ammonium 

nitrate aerosol in our instrument. This is consistent with a substantial contribution from organic 

nitrate and with our discussion of the potential importance of organic nitrates. However, an 

absolute quantification of organic nitrate is not critical for our analysis, as our paper focuses on 

the volatility of bulk OA as identified by the ACSM/AMS. 

 

R2.7. Page 4 Line 12: “All Rts reported here are calculated assuming plug flow at room 

temperature” This implies that a plug flow (as opposed to parabolic) velocity profile is assumed 

in the evaporation model. Is this correct? It was suggested by (Cappa, 2010) that assuming plug 

flow profile would lead to underestimation of dHavp and overestimation of Csat. Have the 

authors explored different assumptions for gas velocity profile in the model?  

 

A2.7. The Cappa (2010) paper discussed the effect of the laminar vs. plug flow assumptions on 

the derived saturation vapor pressure and enthalpy of vaporization of a single component aerosol. 



The author notes that the effect of this assumption changes with the compound saturation vapor 

pressure. It is not clear what effect this assumption would have if a multi-component aerosol is 

considered. It should be noticed that a plug flow approximation is widely used (Lee et al., 2010; 

Riipinen et al., 2010; Saleh et al., 2008), with the residence time and non-uniform temperature 

effects on derived quantities being relatively small (Park et al., 2013). Based on the sensitivity 

analysis result presented in our earlier dual-TD method characterization paper (Saha et al., 2015) 

and a detailed two-dimensional laminar flow modeling effort in Park et al. (2013), this plug-flow 

assumption has relatively smaller influences on evaporation in a TD relative to values of (C*, 

ΔHvap, and γe). 

 

Minor comments: 

R2.8. Page 5 Line 2: Please expand on what “instrumental inter-calibration factors” entail 

AR2.8.To get directly comparable SMPS concentration data from 3 SMPSs running in parallel 

with our dual TD system, we ran them periodically in parallel to determine an inter-calibration 

factor. The inter-calibration factor is determined from a scatter plot of SMPS inter-comparison 

data collected by running 3 SMPSs in parallel on the bypass line. Among the 3 SMPS, we chose 

one as a reference upon which all corrections were based. The reference SMPS system was selected 

based on which yielded counts most consistent with the median of those measured during a group 

SMPS inter-comparison test of 8 systems from different laboratories during the SOAS field 

campaign. We added this discussion briefly in the paper: 

“To get directly comparable SMPS concentration data from 3 SMPSs running in parallel with our 

dual TD system, we ran them periodically in parallel on the bypass line to determine inter-

calibration factors. Further details on SMPS inter-comparison are discussed in Saha et al (2015).” 

 

R2.9. Page 6 Line 23-24: Please clarify on how variability is calculated. Is it based on measured 

MFR values or OA measurements? Is it calculated over small intervals or over the entire course 

of campaign? 

AR2.9. We added this discussion to the paper: “Variability is based on measured MFR data. 

Raw data at each (T, Rt) condition were averaged over 20-30 minutes. At given TD operating 



conditions (T, Rt), we defined ±1 standard deviation of MFR data (20-30 minute resolution) from 

the whole campaign as an indicator of observed variability.” 

 

R2.10. Page 8 Line 31: Please provide references for previous field studies. 

AR2.10. Page 9; Line 12-13: References to field studies (“Häkkinen et al., 2012; Huffman et al., 

2009; Lee et al., 2010; Paciga et al., 2015; Xu et al., 2016”) are added. 

R2.11. Page 10 Line 8-10: Please add discussion on why observed slope may be different from 

the empirical relation determined by Epstein et al. 

AR2.11. The Epstein et al. correlation was determined from range of compounds with known 

ΔHvap.  However, it has been found that for this and other complex OA systems, a correlation 

other than the Epstein correlation better explains observations. For example, Ranjan et al.(2012) 

reported dHvap = 85-11logC* for gas–particle partitioning of POA emissions from diesel engine; 

May et al.(2013) reported dHvap = 85-4logC* for biomass burning POA emission. A key point is 

that like results from Ranjan et al. (2012), May et al. (2013) and many others, our estimated 

dHvap correlation for ambient OA is an empirical estimate, which explain our observations better 

than the Epstein correlation. We added this discussion in the paper. Page10, Line 28-33: 

“The Epstein et al. correlation was determined from range of compounds with known ΔHvap. 

Several recent studies of complex OA systems (May et al., 2013; Ranjan et al., 2012) have found 

that a correlation other than that from Epstein et al. better explains observations. For example, 

Ranjan et al.(2012) reported ΔHvap = 85-11logC* for gas–particle partitioning of POA 

emissions from a diesel engine; May et al.(2013) reported ΔHvap = 85-4logC* for biomass 

burning POA emissions. Similar to these and other studies, our ΔHvap correlation for ambient 

OA is an empirical estimate which best explains our observations.” 

R2.12. Page 2 line 6: “: : :SOA is formed in the atmosphere via condensation of low volatility 

products: : :” This statement is not inclusive enough. Please revise. 

 

AR2.12. We revised the text. Page 2; Line 5-6: “Secondary OA (SOA) is formed in the 

atmosphere via oxidation reactions of gas-phase organic species; it may also be formed by 

reactions in the particle (condensed) phase.”  
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Abstract. The volatility of organic aerosols (OA) has emerged as a property of primary importance in understanding their 

atmospheric lifecycle, and thus abundance and transport. However, quantitative estimates of the thermodynamic (volatility, 

water solubility) and kinetic parameters dictating ambient OA gas-particle partitioning, such as saturation concentrations (C*), 

enthalpy of evaporation (ΔHvap) and evaporation coefficient (γe), are highly uncertain. Here, we present measurements of 

ambient OA volatility at two sites in the southeastern U.S., one at a biogenic-volatile-organic-compound (BVOC)-dominated 15 

rural setting in Alabama as part of the Southern Oxidant and Aerosol Study (SOAS) in June-July, 2013, and another at a more 

anthropogenically-influenced urban location in North Carolina during October-November, 2013. These measurements applied 

a dual-thermodenuder (TD) system, in which temperature and residence times are varied in parallel, to constrain equilibrium 

and kinetic aerosol volatility properties. Gas-particle partitioning parameters were determined via evaporation kinetic model 

fits to the dual-TD observations. OA volatility parameters values derived from both datasets were similar despite the fact that 20 

measurements were collected in distinct settings and seasons. The OA volatility distributions also did not vary dramatically 

over the campaign period nor strongly correlate with OA components identified via positive matrix factorization of aerosol 

mass spectrometer data. A large portion (40-70%) of measured ambient OA at both sites was composed of very low volatility 

organics (C*≤ 0.1 μg m-3). An effective ΔHvap of bulk OA of ~ 80-100 kJ mol-1 and a γe value of ~ 0.5 best describe the 

evaporation observed in the TDs. This range of ΔHvap values is substantially higher than that typically assumed for simulating 25 

OA in atmospheric models (30-40 kJ mol-1). TD data indicate that γe is on the order of 0.1 to 0.5, indicating that repartitioning 

timescales for atmospheric OA are on the order of several minutes to an hour under atmospheric conditions. The OA volatility 

distributions resulting from fits were compared to those simulated in the Weather, Research and Forecasting model with 

Chemistry (WRF/Chem) with a current treatment of SOA formation. The substantial fraction of low-volatility material 

observed in our measurements is largely missing from simulations, and OA mass concentrations are underestimated. The large 30 

discrepancies between simulations and observations indicate a need to treat low volatility OA in atmospheric models. Volatility 

parameters extracted from ambient measurements enable evaluation of emerging treatments for OA (e.g., secondary OA using 

the volatility basis set or formed via aqueous chemistry) in atmospheric models. 
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1. Introduction 

Organic aerosol (OA) is a dominant component of atmospheric fine particulate matter (PM2.5) (Jimenez et al., 2009; Zhang et 

al., 2007), which is linked with adverse human health and uncertain climate effects. Atmospheric OA is a complex mixture of 

thousands of individual organic compounds originating from a range of natural and anthropogenic sources. Primary OA (POA) 

is emitted directly into the atmosphere. Secondary OA (SOA) is formed in the atmosphere via oxidation reactions of gas-phase 5 

organic species; it may also be formed by reactions in the particle (condensed) phase (Kroll and Seinfeld, 2008). A large 

fraction of SOA in many parts of the globe, e.g., in the southeast U.S., is formed from biogenic-VOCs (BVOCs) (Goldstein et 

al., 2009; Goldstein and Galbally, 2007). However, the mechanisms responsible for SOA production from BVOCs 

(Budisulistiorini et al., 2015; Goldstein and Galbally, 2007, 2007; Marais et al., 2016; Xu et al., 2015a, 2015b), its chemical 

composition and many important physical properties are largely undetermined (Goldstein et al., 2009; Schichtel et al., 2008; 10 

Weber et al., 2007). Therefore their representation in current atmospheric and climate models are highly uncertain (Hallquist 

et al., 2009; Liao et al., 2007; Pye et al., 2015; Pye and Seinfeld, 2010). 

One of the major sources of uncertainty in predicting SOA concentrations in atmospheric models arises from the poor 

understanding of gas-particle partitioning of chemical species comprising SOA (Hallquist et al., 2009; Jimenez et al., 2009; 

Seinfeld and Pankow, 2003). Gas-particle partitioning plays a central role in determining OA lifecycle and thus its atmospheric 15 

abundance, transport, and impacts (Donahue et al., 2006; Jimenez et al., 2009). At equilibrium, the volatility of organic species, 

specifically saturation vapor pressure (or equivalently, saturation concentration, C*; μg m-3), plays a vital role in determining 

their gas-particle partitioning. (Donahue et al., 2006; Pankow, 1994). Solubility of organic species in water may also be critical 

for gas-particle partitioning for many species (Hennigan et al., 2009), especially in places with higher relative humidity, for 

example, in the southeast US. Enthalpies of vaporization (ΔHvap) dictate the change in partitioning with temperature (Donahue 20 

et al., 2006; Epstein et al., 2010). Although gas-particle partitioning is determined by the basic thermodynamic properties of 

OA species – their C*, ΔHvap, and solubility– these, along with the impacts of non-ideal mixing on individual species, are 

generally unknown for ambient OA. Under changing conditions, gas-particle partitioning is also influenced by the kinetics of 

gas/particle exchange, for example due to barriers to mass transfer in solid or viscous particles or molecular accommodation 

at a particle surface (Kroll and Seinfeld, 2008). The overall kinetic limitation to mass transfer during repartitioning is typically 25 

described by an evaporation coefficient (γe) (also often called mass accommodation coefficient), which is highly uncertain for 

ambient OA and can dictate time-scales for partitioning (Saleh et al., 2013). Though current models assume OA to be at 

equilibrium within a model prediction time-step (several minutes to an hour) during atmospheric simulations, several studies 

have indicated that partitioning time scales could be as long as days or months (γe << 0.1) due to a highly viscous and/or glassy 

aerosol (Vaden et al., 2011; Zobrist et al., 2008). 30 

Quantitative measures of ambient OA gas-particle partitioning parameters are needed to provide inputs for, and to 

evaluate, atmospheric models. However, methods to quantitatively determine ambient OA volatility are in their infancy and 

the resulting estimates of parameters dictating OA volatility are highly uncertain (Cappa and Jimenez, 2010). Thermodenuder 
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(TD) systems have been previously applied to measure ambient OA volatility (Burtscher et al., 2001; Huffman et al., 2009; 

Lee et al., 2010; Paciga et al., 2015; Xu et al., 2016). A TD system measures evaporation of sampled aerosol at various 

temperature perturbations by systematically comparing the size distribution and/or aerosol mass concentration measured after 

heating in a TD and at a reference (“bypass”) condition (Huffman et al., 2008). Several efforts have been made to infer ambient 

OA volatility distributions by fitting observed evaporation in a TD using a model of evaporation kinetics (Cappa and Jimenez, 5 

2010; Lee et al., 2010). However, since OA evaporation in a TD is dictated by a large number of independent parameters (e.g., 

C*, ΔHvap, and γe) (Cappa and Jimenez, 2010; Lee et al., 2010), it is difficult to constrain all parameters with a single-

dimensional perturbation (e.g. varying TD temperature) to the initial equilibrium. Saha et al. (2015) showed that operating two 

TDs in parallel (dual-TD) that vary both temperature and residence time can provide tighter constraint on estimates of volatility 

parameter values (C*, ΔHvap, and γe) for single component OA via kinetic model fits to the observations. In Saha and Grieshop 10 

(2016), this approach was applied to determine volatility and phase-partitioning parameter values for laboratory α-pinene SOA. 

The resulting parameters are consistent with recent observations of low-volatility SOA (Jokinen et al., 2015; Zhang et al., 

2015) and evaporation rates (Vaden et al., 2011; Wilson et al., 2015) observed by several techniques. TD perturbations alone 

cannot give insights into the solubility of OA components, though may be used in concert with other techniques to do so 

(Cerully et al., 2015).  15 

This paper describes the application of the dual-TD approach during ambient observations from two different settings in 

the southeastern U.S. Measurements at a rural site during the Southern Oxidant and Aerosol Study (SOAS-2013) 

(https://soas2013.rutgers.edu/) leverage the range of complementary measurements available during this large field study. To 

provide a contrast, measurements were also taken several months later, under cooler conditions, in Raleigh, U.S., a small 

metropolitan area in a similar ecological zone, but with stronger influence from local anthropogenic emissions. The objectives 20 

of the study were to: (i) determine a set of volatility parameter values, such as OA volatility distribution using the Volatility 

Basis Set (VBS) framework (Donahue et al., 2006, 2012) and ΔHvap and γe,  that describe observations, (ii) examine the 

variability and consistency in ambient OA volatility distributions across diverse settings and conditions, (iii) examine 

relationships between extracted volatility distributions and OA composition and source contributions, and (iv) evaluate a model 

treatment of OA volatility by comparing the measured OA volatility distribution with that simulated by a chemical transport 25 

model using a current implementation of the VBS framework.  

2. Methods 

2.1. Measurement sites 

Ambient OA volatility measurements were conducted at two locations in the southeastern U.S., one in a forested rural setting 

and another in an urban location. Six weeks (June 1 to July 15, 2013) of continuous measurements were conducted in rural 30 

Alabama during the Southern Oxidant and Aerosol Study (SOAS-2013) field campaign. The SOAS field campaign occurred 
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in summer 2013 at several locations in the southeastern U.S. in order to study the interaction of biogenic and anthropogenic 

atmospheric compounds with a focus on BVOCs and organic aerosols. The measurements reported here are from the main 

SOAS ground site (32.903°N, 87.250°W), near Talladega National Forest and Centreville, Alabama. The Centreville, Alabama 

site is an ideal location to study volatility of OA dominated by secondary OA from BVOC precursors (Warneke et al., 2010) 

in the presence of a range of anthropogenic influences. An additional four weeks (October 18 to November 20, 2013) of 5 

ambient OA volatility measurements were conducted at the North Carolina State University (NCSU) main campus (35.786°N, 

78.669°W) in Raleigh, USA. The NCSU site, while in an area with plentiful tree cover and BVOC emissions, receives a 

substantially stronger influence from anthropogenic emissions due to its location within the Raleigh metro area. Section 3.1 

includes further comparison between two study areas. Here-in-after, the two data sets are referred to as ‘Centreville’ and 

‘Raleigh’.  10 

2.2. Dual thermodenuder operation and sampling strategy  

Measurements were collected using the dual TD experimental setup introduced in Saha et al. (2015) and only briefly described 

here. Two TDs operated in parallel, one at various temperature settings (temperature stepping TD; TS-TD) with a fixed, 

relatively longer residence time (Rt) and another at fixed temperature and various Rt settings (variable residence time TD; 

VRT-TD). The TS-TD temperature settings were 40, 60, 90, 120, 150, and 180 ℃ with ~50 s Rt, while the VRT-TD operated 15 

at 60 or 90℃ with Rt varying between 1 to 40 s (5-8 settings). All Rts reported here are calculated assuming plug flow at room 

temperature. Temperature effects on Rt were included during modeling of evaporation kinetics (discussed below) as Rt(TTD) 

= Rt(Tref)×(Tref/TTD), where Tref and TTD are the reference (e.g., room temperature) and TD temperature in K, respectively 

(Cappa, 2010). The time to run through all temperatures and Rt steps during measurements was ~ 4-5 hours. 

A schematic of the experimental setup is shown in Fig.1. Three Scanning Mobility Particle Sizers (SMPS, TSI Inc; Model 20 

3081 DMAs; Model 3010/3787 CPCs) simultaneously measured aerosol size distributions (10-600 nm) in 3 parallel lines (two 

TDs and one bypass). An Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research Inc.) alternated between the 

bypass and TS-TD lines at ~ 20-30 minute intervals using an automated 3-way valve system. The ACSM measured the sub-

micron aerosol (~ 75-650 nm) mass concentration of non-refractory chemical species (organic, sulfate, nitrate, ammonium, 

and chloride) (Ng et al., 2011a). 25 

All aerosol instruments and TD inlets were inside a temperature-controlled (25˚±2) trailer in Centreville, and laboratory 

room in Raleigh. Ambient air was continuously sampled through a sampling inlet located on the rooftop of a trailer/building 

(~5 m above ground level). The sampling inlet included a PM2.5 cyclone (URG Corp, 16.7 L min-1) followed by a ~ 8 mm inner 

diameter copper sample line. A silica gel diffusion dryer upstream of TD inlets and aerosol instruments maintained relative 

humidity (RH) < 30-40%. The dryer is required for instrument operation under these humid conditions but may induce some 30 

loss of water-soluble OA components (El-Sayed et al., 2016). 
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2.3. Quantifying OA evaporation  

Evaporation of bulk OA at a particular TD operating temperature and residence time is described in terms of mass fraction 

remaining (MFR). OA MFR is the ratio of OA mass concentration measured after passing through TD to that measured via 

the bypass (room temperature) line. For quantitative assessment of aerosol volatility, such as during modeling of aerosol 

evaporation, the initial OA concentration (COA) and particle size are also needed. Empirically estimated particle loss correction 5 

factors as a function of TD temperatures and residence times (Saha et al., 2015) and instrumental inter-calibration factors were 

applied in MFR calculations. To get directly comparable SMPS concentration data from 3 SMPSs running in parallel with our 

dual TD system, we ran them periodically in parallel on the bypass line to determine inter-calibration factors. Further details 

on SMPS inter-comparison are discussed in Saha et al. (2015). Since the VRT-TD line was measured with the SMPS only 

(Fig.1), it provided only information on evaporation of submicron aerosol in terms of its volume concentration. We estimated 10 

the OA MFR from VRT-TD/SMPS data assuming measured aerosol volume was comprised of OA and ammonium sulfate 

(AS) only. This is a reasonable assumption under these conditions because more than 90% of measured aerosol volume 

concentrations can be explained by OA+AS for both sites (see supplementary information; SI, Fig. S1). Our calculations also 

assumed that AS did not evaporate at the VRT-TD operating temperatures (60 or 90˚C) (Fig. S2). For further detail on the 

estimation of approximate OA MFR from VRT-TD/SMPS data, see SI, section S.1. 15 

2.4. Determining OA gas-particle partitioning parameters  

We apply a previously described volatility parameter extraction framework (Saha et al., 2015; Saha and Grieshop, 2016) to 

extract a set of volatility parameter (C*, ΔHvap, γe) values via inversion of dual-TD data using an evaporation kinetics model. 

The approach is outlined briefly below. The resulting fit describes OA using a log10 volatility basis set (VBS) framework 

(Donahue et al., 2006, 2012), where material is lumped into volatility bins separated by orders of magnitude in C* space at a 20 

reference temperature (Tref). The volatility distribution extracted using this approach is an empirical estimate describing the 

bulk volatility behavior of OA, assuming absorptive partitioning (Donahue et al., 2006, 2012). The VBS approach is based on 

an effective saturation concentration (C*) where the activity coefficient is assumed to be lumped into the saturation 

concentration.  In the VBS approach, total OA concentration (COA; μg m-3) is modeled using Eq. 1. 

1
*

1 i
OA tot i

i OA

C
C C f

C



 
  

 
  (1) 

Here, Ctot is the total organic material (vapor + aerosol) in phase equilibrium with COA; fi is the fraction of Ctot in each volatility 25 

(log10C*) bin. Thus, fi = Ctot,i/Ctot, describes the distribution of organics in volatility space and is usually called the ‘volatility 

distribution’. 

The Clausius-Clapyeron equation (Eq. 2) is used to represent temperature dependent C*. 
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             (2) 

Where R is the gas constant and ΔHvap is the enthalpy of vaporization. 

To extract the volatility distribution of OA from ambient measurements, we select lower and upper C* (Tref) bins of 10-4 

and 101 μg m-3, respectively. A reference temperature (Tref) of 298 K is assumed. All C* values reported in this paper should 

be considered at 298 K, unless otherwise specified. The selection of the lower and upper bins are determined by the highest 

TD operating temperature (180 ˚C) and the average ambient OA loading (COA ~ 5 μg m-3), respectively. With the above C* bin 5 

limits, materials having C* < 10-4 μg m-3 are lumped into the lowest bin, while materials having C* > 10 μg m-3 are not 

represented.  Note, if a C* bin of 100 μg m-3 is included, Eq. 1 indicates less than 5% of the material in this bin will be in the 

condensed-phase at COA ~ 5 μg m-3. Therefore, C* bins > 10 μg m-3 are not well constrained by our TD data and are not included 

in our analysis. 

The general approach to fitting a volatility parameterization employed in this study is similar to that applied to laboratory 10 

aerosol systems (Saha et al., 2015; Saha and Grieshop, 2016). Briefly, the kinetic model tracks both particle- and gas-phase 

concentrations of model species (each represented by a VBS bin) as they proceed through TD operated at a particular 

temperature and residence time. The model takes inputs of several aerosol properties (e.g., C* distribution, ΔHvap, diffusion 

coefficient (D), surface tension (σ), molecular weight (MW) and density (ρ)), total aerosol loading (COA) and particle diameter 

(dp) and determines how much aerosol mass concentration will evaporate for a set of input parameters at a particular TD 15 

temperature and residence time. Non-continuum effects on mass transfer are represented using the Fuchs−Sutugin correction 

factor, which depends on γe. The model is applied to extract OA properties such as the volatility distribution, ΔHvap, and γe as 

fitting parameters by matching measured and modeled evaporation data. Values of D, σ, MW, and ρ generally have a smaller 

influence on observed evaporation (Cappa and Jimenez, 2010; Saha et al., 2015), and are approximated from literature values 

(Table S-1). Volume median diameter was used as a representative dp. For simplicity, a large (ΔHvap, γe) space was considered 20 

for fitting a fi distribution of measured OA. Following previous work (Epstein et al., 2010; May et al., 2013), a linear 

relationship was assumed between ΔHvap and log10C* with ΔHvap,i  = intercept-slope (log10C*
i,298), where intercept and slope are 

fit parameters. Values for ΔHvap intercept = [50, 80, 100, 130, 200] and slope = [0, 4, 8, 11] KJ mol-1 were applied along with 

γe = [0.01, 0.05, 0.1, 0.25, 0.5, 1]. γe was assumed constant over all bins, and is an effective parameter representing all kinetic 

limitations within the condensed-phase and at the particle surface. 25 

A distribution of fi was solved for each combination of (ΔHvap, γe) applying the non-linear constrained optimization solver 

‘fmincon’ in Matlab (Mathworks, Inc.) by first fitting TS-TD data; ‘accepted’ solutions were then further refined by fitting 

VRT-TD observations. A constraint of Σfi =1 was used. The goodness of fit was quantified in terms of the sum of squared 

residual (SSR) values. For the campaign average fit, an ‘acceptance’ threshold value for SSR was selected based on observed 

variability (±one standard deviation) in measurements. A parameter set (fi, ΔHvap, and γe) was considered a finally ‘accepted’ 30 
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solution if it optimally reproduced both TS-TD and VRT-TD observations within the observed variability. Raw data at each 

(T, Rt) condition were averaged over 20-30 minutes. At given TD operating conditions (T, Rt), we defined ±1 standard 

deviation of MFR data (20-30 minute resolution) from the whole campaign as an indicator of the observed variability. The 

‘best fit’ is defined as that with the lowest SSR value among all the accepted combinations.  

2.5 Simulation of OA in a chemical transport model 5 

Considering that VBS-based parameterizations are becoming common means to improve the performance of OA prediction in 

chemical transport models (CTMs) (Farina et al., 2010; Lane et al., 2008b; Matsui et al., 2014; Murphy et al., 2011; Shrivastava 

et al., 2013), measurements of OA volatility provide a useful means by which to evaluate these simulations. We compared OA 

volatility distributions measured in this study to those resulting from CTM simulations with a current VBS-based 

parameterization implemented in a modified version of the Weather, Research and Forecasting model with Chemistry 10 

(WRF/Chem) v3.6.1 (Wang et al., 2015; Yahya et al., 2016b). The WRF/Chem simulation uses the Carbon Bond version 6 

(CB6) gas-phase mechanism (Yarwood et al., 2010) coupled by Wang et al. (2015) to the Model for Aerosol Dynamics for 

Europe – Volatility Basis Set (MADE/VBS) (Ackermann et al., 1998; Ahmadov et al., 2012; Shrivastava et al., 2011). The 

CB6-MADE/VBS treatment includes semivolatile POA and SOA, as well as a fragmentation and functionalization treatment 

for multi-generational OA aging based on Shrivastava et al. (2013). The fragmentation and functionalization treatment in this 15 

case assumes 25% fragmentation for the third and higher generations of oxidation (Shrivastava et al., 2013). The ranges of C* 

values used in WRF/Chem simulation are defined based on current SOA and semi-volatile POA parametrizations and were 

100 to 103 μg m-3 for ASOA (anthropogenic-SOA) and BSOA (biogenic-SOA), 10-2 to 106 μg m-3 for POA and 10-2 to 105 μg 

m-3 for SVOA (semi-volatile OA), where SVOA refers to oxidized OA from evaporated POA. The semi-empirical correlation 

for ΔHvap by Epstein et al. (2010) was used to estimate temperature-dependent partitioning. 20 

The simulations are performed at a horizontal resolution of 36-km with 148 × 112 horizontal grid cells over the continental 

U.S. domain and parts of Canada and Mexico, and a vertical resolution of 34 layers from the surface to 100-hPa. Anthropogenic 

emissions in 2010 are based on the 2008 National Emissions Inventory (NEI) from the Air Quality Model Evaluation 

International Initiative (AQMEII) project (Pouliot et al., 2015). Biogenic emissions are simulated online by the Model of 

Emissions of Gases and Aerosols from Nature v2.1 (MEGAN2.1) (Guenther et al., 2012). The chemical initial and boundary 25 

conditions (ICs/BCs) come from the modified Community Earth System Model/ Community Atmosphere Model 

(CESM/CAM v5.3) with updates by He and Zhang (2014) and Gantt et al.(2014). The meteorological ICs/BCs come from 

National Center for Environmental Protection Final Analysis (FNL) data.  
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3. Results  

3. 1. Overview of campaign characteristics 

The two field campaigns were conducted in settings with distinct local emission sources and metrological conditions. The 

Centreville campaign was during summer (T=24.7 ± 3.3˚C, RH = 83.1 ± 15.3%). Local organic emissions surrounding the 

Centreville site are dominated by BVOCs since this site is located in a forest and biogenic emissions substantially increase 5 

with temperature (Lappalainen et al., 2009; Tarvainen et al., 2005; Warneke et al., 2010). In contrast, Raleigh measurements 

were in a setting with substantially stronger anthropogenic emissions during fall/winter (T=12.7 ± 6.0˚C, RH = 65.7 ± 18.8%). 

Comparison of long-term data from an air quality monitoring station near the Raleigh site shows substantially higher NOx (5-

10 fold) and CO (2-4 fold) concentrations relative to those observed at Centreville (See Fig. S3). However, the Raleigh-Durham 

metropolitan area has plentiful tree cover and thus substantial local BVOC emissions. For instance, α- and β-pinene 10 

concentrations measured in summer at Centreville and Duke Forest (about 40 km Northwest of the Raleigh site) are in the 

same range (Fig. S4). However, since the Raleigh campaign was conducted at lower temperature conditions, local BVOC 

emissions are expected to be lower by a factor of 3 to 4 (Fig S.4). Measurements in such diverse but similar ecological settings 

allows us to examine the consistency of OA volatility under varying levels of biogenic and anthropogenic influence. 

Figs. S5 to S7 show average meteorological conditions, submicron aerosol size distributions, chemical composition and 15 

their temporal variations over the campaign periods. Ambient submicron particle number concentrations (10-600 nm) were 

higher in Raleigh (Centreville: 1500-3000 cm-3, Raleigh: 3000-6000 cm-3) and particle size was relatively smaller (volume 

median diameter, Centreville: 275 ± 30 nm, Raleigh: 227 ± 34 nm) (Fig. S6). Organic species were the dominant component 

in non-refractory submicron aerosol (PM1) as measured by the ACSM at both sites (Centreville: 71± 10 %, Raleigh: 76 ± 8 

%). The campaign average ± one standard deviation of ACSM-derived OA mass concentrations were 5.2 ± 3.0 μg m-3 in 20 

Centreville and 6.7 ± 3.6 μg m-3 in the Raleigh campaign, assuming a collection efficiency (CE) of 0.5. Application of the 

‘coarse’ tracer m/z based factor analysis approach to decompose OA mass spectra (Ng et al., 2011b), the majority of OA 

measured at both sites was oxygenated-OA (OOA). While approximately 7% of campaign averaged OA mass concentration 

in Raleigh was classified as hydrocarbon-like OA (HOA), the HOA contribution at the Centreville site was negligible. Positive 

matrix factorization (PMF) results from high-resolution mass spectra collected at the Centerville site (Xu et al., 2015a, 2015b) 25 

and their linkage with the measured OA volatility are discussed in sections 3.3 and 3.4, below.  

3. 2. Observed campaign average evaporation of OA 

Fig.2 shows the campaign average OA MFR as a function of TD temperature and residence time. (1-MFR) at a TD temperature 

and residence time indicates what fraction of bulk OA mass evaporates at that condition. It is important to note that MFR at a 

given temperature is not a consistent descriptor of OA volatility because it depends on many parameters related to TD 30 

experimental conditions (e.g., Rt) and sampled aerosol (e.g., COA, dp). Therefore, MFR data should not be interpreted as a direct 

measure of OA volatility or even directly compared (unless experiments are conducted under identical conditions). 
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Fig. 2a (MFR vs. temperature, frequently called a thermogram plot) shows TS-TD measurements from this study along 

with one other measurement from SOAS (Hu et al., 2016) and several previous field and laboratory measurements. The 

campaign average OA MFRs measured at the two sites in the southeastern US, under relatively consistent COA ~ 5 μg m-3, were 

found to be quite similar. Approximately 60 -70% of OA mass evaporated after heating at 100℃ with a residence time of 50 

s. The campaign average T50 and T90 (temperature at which 50% and 90% of OA mass evaporate, respectively) with a residence 5 

time of 50 s were ~ 78℃ and ~ 180℃, respectively. Data from α-pinene chamber SOA experiments collected using the same 

dual-TD setup at atmospheric conditions (dark ozonolysis, COA ~ 5 μg m-3), described in Saha and Grieshop (2016), are also 

shown. Relative to the ambient observations, the lab SOA data show similar evaporation behavior in the lower temperature 

range (40-90 ˚C), but relatively greater evaporation at higher temperatures.  

Fig. 2b and 2c show the campaign-average estimated OA MFRs at various residence times with the VRT-TD operated at 10 

60˚C and 90˚C, respectively. Results show increased evaporation with longer residence time. In Fig. 2a, data are color coded 

by the TD residence time used in each study. A substantial effect of residence time on the observed evaporation is consistent 

with that observed across TD measurements from several previous field studies (Häkkinen et al., 2012; Huffman et al., 2009; 

Lee et al., 2010; Paciga et al., 2015; Xu et al., 2016). This effect of residence time on observed MFR strongly suggests that 

comparisons of OA volatility across studies should not be made based on measured MFRs. Doing so may bias inferences about 15 

differences in aerosol volatility. Observed evaporation depends on TD residence time  and many physical and chemical 

properties of sampled aerosol (Cappa, 2010; Riipinen et al., 2010; Saleh et al., 2011), unless the aerosol reaches equilibrium 

inside a TD (saturates the gas phase across the volatility range). The equilibration time of aerosol in a TD is dictated by many 

parameters including particle size distribution, diffusion coefficient (D) and evaporation coefficient (γe) and is typically several 

minutes or more under atmospheric (low COA) conditions (Saleh et al., 2011, 2013).  20 

Following the method of Saleh et al. (2013), the estimated characteristic equilibration times for the sampled aerosol in the 

Centreville and Raleigh measurements are 147-470 s and 150-450 s, respectively, assuming unhindered mass transfer (γe = 1). 

These calculations are based on the interquartile ranges of particle number concentrations (Np) and condensation sink diameter 

(dcs) measured in Centreville (Np ~ 1500-3000 cm-3,  dcs ~ 125- 170 nm) and Raleigh (Np ~ 3000-6000 cm-3, dcs ~ 80- 105 nm), 

D = 3.5 × 10 -6 m2 s-1 and MW = 200 g mol-1. The condensation sink diameter (dcs) is estimated following Lehtinen et al. (2003); 25 

further detail is given in the SI.  A factor-of-ten reduction in γe relative to ideal accommodation (γe = 0.1) increases equilibration 

time by an order of magnitude. The observed continuous downward slope of MFR versus residence time (Fig. 2b, c) suggests 

that equilibrium was not reached in the TD during the maximum Rt of 50 s. This result implies that TD measurements in an 

ambient setting are essentially a measure of the evaporation rate of sampled aerosol, rather than one of volatility, an equilibrium 

thermodynamic property. Therefore, an evaporation kinetic model is needed to extract volatility parameter values from ambient 30 

TD data. 
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3.3. Extracted OA volatility parameter values 

Fig. 3 presents the results of the extraction process used to determine parameters dictating gas-particle partitioning (fi, ΔHvap, 

γe); the example shown is for a fit to the Centreville campaign-average data, though the same process was conducted for all 

fits. Fig. S8 shows a similar plot for the Raleigh data set. Fitting results show that a broad range of γe (0.05 to 1) can reproduce 

the TS-TD observation within observed variability (i.e., error bars in Fig. 2) for several ΔHvap combinations (accepted TS-TD 5 

fits are shown with filled inner circles). The inclusion of VRT-TD data provides additional constraints for parameter fitting. 

Only the points with white crosses (x) in Fig. 3 recreate both TD data sets; a larger sized ‘x’ represents a better fit. Thus, VRT-

TD data help to narrow the possible solution space. Fig. 3 shows that ΔHvap = 100 KJ mol-1 and γe = 0.5 provide the overall 

best fit for the Centreville data set. For the Raleigh data set, ΔHvap of both 80 (marginally better) and 100 KJ mol-1 with γe = 

0.5 provide similarly good fits (Fig S8). For simplicity, ΔHvap = 100 KJ mol-1 and γe = 0.5 are considered as best estimates for 10 

both data sets for the next portion of the paper.    

These results are inconsistent with a very small value of OA evaporation coefficient (e.g., γe << 0.1) that would indicate 

significant resistance to mass transfer during evaporation, which has been suggested previously based on dilution (Grieshop 

et al., 2007, 2009; Vaden et al., 2011) and heating (Lee et al., 2011) experiments. Our best estimate of γe ~ 0.5 is consistent 

with the observations of Saleh et al. (2012), in which they report an γe ~ 0.28 to 0.46 for ambient aerosols in Beirut, Lebanon 15 

via measured equilibration profiles of concentrated ambient aerosols (COA ~ 200-300 μg m-3) after heating in a TD at 60 ˚C. 

Our results show that an effective γe ~ 0.1 to 1 can explain dual-TD data to within observed variability, suggesting that there 

is no extreme resistance to mass transfer such as what might be encountered due to a glassy-solid or highly-viscous aerosol. 

Some previous assertions of highly inhibited evaporation (Grieshop et al., 2007; Vaden et al., 2011) were likely biased as they 

assumed volatility distributions based on smog-chamber yield experiments that likely overestimated the volatility, and thus 20 

expected evaporation rate of lab OA (Saha and Grieshop, 2016; Saleh et al., 2013).  

Our fitting results show that a ΔHvap intercept of 80 -130 KJ mol-1 and slopes of 0 or 4 KJ mol-1 can be used to explain 

campaign average observations (Fig. 3, Fig. S6). These ΔHvap values are consistent with those of atmospherically-relevant low-

volatility organics such as dicarboxylic acids (Bilde et al., 2015), but distinct from those typically assumed (30 - 40 KJ mol-1) 

for atmospheric modeling (Farina et al., 2010; Lane et al., 2008b; Pye and Seinfeld, 2010). The low enthalpies assumed in 25 

models are based on temperature sensitivity observations from smog chamber SOA experiments (Offenberg et al., 2006; Pathak 

et al., 2007; Stanier et al., 2008). The semi-empirical correlation based fit from Epstein et al. (2010) (ΔHvap=130-11 log10C*) 

has steeper log10C* dependence than those able to explain our observations (Figs. 3, S8). The Epstein et al. correlation was 

determined from range of compounds with known ΔHvap. Several recent studies of complex OA systems (May et al., 2013; 

Ranjan et al., 2012) have found that a correlation other than that from Epstein et al. better explains observations. For example, 30 

Ranjan et al.(2012) reported ΔHvap = 85-11logC* for gas–particle partitioning of POA emissions from a diesel engine; May et 

al.(2013) reported ΔHvap = 85-4logC* for biomass burning POA emissions. Similar to these and other studies, our ΔHvap 

correlation for ambient OA is an empirical estimate which best explain our observations. 
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Although several ΔHvap and γe combinations can recreate observations from both TDs within variability (Figs. 3, S8), to 

enable comparison of C* distributions we adopt our best estimates of ΔHvap and γe (ΔHvap = 100 KJ mol 1 and γe = 0.5) for 

further analysis of data from both campaigns. Campaign-average fi distributions corresponding to that (ΔHvap, γe) are the basis 

for model fits shown in Fig. 2. The ‘campaign-average’ fi distribution was derived by fitting campaign-average dual-TD 

observations (Fig. 2) and using campaign-average COA and dp. A fi distribution was also fit based on all the individual 5 

measurements from the campaign (MFR, COA, dp; 20-30 minute time resolution) using ΔHvap = 100 KJ mol -1 and γe = 0.5; we 

term this the ‘unified’ fit. The ‘campaign-average’ and ‘unified’ fi distributions for the Centreville and Raleigh data set are 

listed in Table 1. In addition to the volatility distribution (fi), we also show estimates of mean C* (𝐶∗̅̅ ̅; estimated as 𝐶∗̅̅ ̅ =

 10∑ 𝑓𝑖 log10 𝐶𝑖
∗
) to quantify the center of mass (central tendency) of different volatility distributions. Another way to collapse a 

distribution to a single value (also reported in Table 1) is the effective C* (𝐶𝑒𝑓𝑓
∗ ) of the ensemble, estimated as, 𝐶𝑒𝑓𝑓

∗ = ∑ 𝑥𝑖 𝐶𝑖
∗, 10 

where xi is the condensed-phase mass fraction in each 𝐶𝑖
∗ bin and Σ xi =1. While the volatility parameter values reported in 

Table 1 are the best fit results, other parameter sets can reproduce observations within variability. Application of fi distributions 

reported in Table 1 must be with reported γe and ΔHvap values. Sensitivities of the estimated volatility parameter values to 

assumed values of D, σ, MW, and ρ are discussed in Saha et al.(2015) and Saha and Grieshop(2016). These assumed parameters 

have relatively minor effects on observed evaporation in a TD compared to C*, γe, and ΔHvap. 15 

The extracted campaign-average and unified-fit OA volatility distributions (fi) and corresponding 𝐶∗̅̅ ̅  and 𝐶𝑒𝑓𝑓
∗  from 

Centreville and Raleigh data sets are quite similar (see Table 1). A large portion of the measured OA (40-70%) at both sites is 

composed of very low-volatility organics (LVOCs; C*≤ 0.1 μg m-3, Donahue et al., 2012). It is somewhat surprising that results 

from two field campaigns, which occurred in distinct scenarios with varying level of biogenic and anthropogenic emissions, 

results in such similar OA volatility distributions. This finding is consistent with those of Kolesar et al.(2015a), who report 20 

similar mass thermograms for laboratory SOA formed from a variety of anthropogenic and biogenic VOCs under different 

oxidant (O3, OH) conditions. Our extracted ambient OA volatility distributions are also comparable to those previously derived 

from TD measurement in Mexico City (Cappa and Jimenez, 2010) and Finokalia, Greece (Lee et al., 2010). However, the 

ambient OA volatility distributions determined here are relatively less volatile than those from chamber-generated fresh SOA 

from α-pinene ozonolysis (Table 1). 25 

Fig. 4a demonstrates a forward modeling exercise to show how the extracted average volatility parameter values (fi, ΔHvap, 

and γe; those listed in Table 1) can reproduce individual measurements from the whole Centreville campaign as well as TD 

data from other groups (Cerully et al., 2015; Hu et al., 2016) during SOAS. The results show that a single set of volatility 

parameter values (campaign average/unified fit fi, γe = 0.5 and ΔHvap = 100 KJ mol-1) reproduce individual observations from 

the whole campaign within approximately ± 20% (coefficient of determination, r2 = 0.83; root mean squared error, RMSE: 30 

0.11). These parameter values also closely reproduced the measured campaign average OA MFRs from the University of 

Colorado TD (Rt ~ 15 s) (Hu et al., 2016) and Georgia Tech TD (Rt ~ 7 s) (Cerully et al., 2015) collected during the Centreville 

campaign (see solid blue squares and cyan triangles in Fig. 4a). MFRs reported in Cerully et al. (2015) are for the total 
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submicron aerosol species. These were converted to OA MFRs applying the method given in SI Sec. S1 to enable direct 

comparison with modeled OA MFRs.   

Fig 4b shows a comparison of the extracted campaign-average OA volatility distribution from this study with those from 

two other independent approaches during the Centreville campaign (Hu et al., 2016; Lopez-Hilfiker et al., 2016). Hu et al. 

(2016) report OA volatility distributions from observed evaporation in a TD during the Centreville campaign fit using the 5 

method given by Faulhaber et al.(2009). In this method, TD evaporation observations at different temperatures are translated 

to a volatility distribution using an empirically derived calibration curve based on evaporation of known compounds and their 

C* (Faulhaber et al., 2009). Our derived distribution from dual-TD observations coupled with evaporation kinetic model is 

comparable to that from Hu et al. (2016), although this distribution is slightly less volatile than ours. Lopez-Hilfiker et al. 

(2016) derived an OA volatility distribution from Centreville measurements with the Filter Inlet for Gases and AEROsols-10 

Chemical Ionization Mass Spectrometer (FIGAERO-CIMS), which thermally desorbs filter-bound aerosol into a CIMS. The 

FIGAERO-derived distribution is several orders of magnitude less volatile than ours; all OA in it has C* ≤ 10-4 μg m-3. 

Therefore, in Fig.4b the Centreville campaign-average COA of ~ 5 µg m-3 is assigned to the log10C* ≤ -4 bin to enable direct 

comparison with TD-ACSM/AMS measurements (this study and Hu et al.). However, in reality FIGAERO-CIMS observations 

accounted for ~50% of AMS organic mass concentrations measured at Centreville (Lopez-Hilfiker et al. 2016), indicating half 15 

the OA was not quantified. The discrepancy between FIGAERO- and TD-based distributions would be reduced if this 

unmeasured OA is distributed in higher volatility bins, thus re-assigning material shown in the lowest volatility bin in Fig. 4b. 

Lopez-Hilfiker et al. (2016) reported that heating OA at higher temperatures has the potential to introduce artifacts into 

quantification of its volatility, for example if it causes oligomer decomposition leading to artificially high volatility. If this 

occurs, this may bias any heating-based measurement approaches, including TD measurements.   20 

A test for these various parameter values is to use them to recreate data from other (non-heating-based) perturbations of 

gas-particle partitioning. Fig. 5 shows evaporation kinetics of OA upon continuous stripping of vapors under isothermal (25 

˚C) conditions simulated using volatility parameter values from multiple independent approaches. The simulation framework 

used here is described elsewhere (Saha and Grieshop, 2016). The shaded region in Fig.5 shows the prediction range applying 

dual-TD derived parameter values from this study within estimated uncertainty ranges (campaign average and unified fits of 25 

fi, γe = 0.1 to 1) with initial COA values from 2 to 10 μg m-3 and dp = 100 nm and 150 nm. Simulations are also shown with the 

OA volatility distribution from Hu et al.(2016) and FIGAERO-CIMS-derived OA volatility distribution (Lopez-Hilfiker et al., 

2016) from Centreville measurements. The room temperature evaporation data from Vaden et al. (2011) measurements of 

ambient aerosols during the Carbonaceous Aerosols and Radiative Effects Study (CARES-2010) field campaign in 

Sacramento, California are also shown. This study attributed the observed slower-than-expected evaporation to extreme kinetic 30 

limitations to mass transfer (γe << 0.1). Although a direct comparison of observations collected in California and simulations 

based on volatility distributions from Centreville is not ideal, the consistency of volatility behavior across our and other sites 

(Fig. 2; Table 1) suggests it is reasonable. Fig. 5 shows that these data fall within the range of values simulated using our TD-
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estimated volatility parameter values (γe ≥ 0.1). The Hu et al. (2016) volatility distribution with γe = 1 also recreates these data. 

In contrast, simulations with the FIGAERO-CIMS-derived OA volatility distribution (Lopez-Hilfiker et al., 2016) from 

Centreville measurements (assuming γe = 1) predict almost zero evaporation (dashed black line in Fig. 5). This distribution 

thus appears to be inconsistent with our observations and those from room temperature evaporation experiments.  

3.4 Temporal variation of OA volatility 5 

A time series of OA volatility distributions extracted over the campaign period is shown in Figs. 6 (Centreville) and S10 

(Raleigh). The volatility distributions (fi) were extracted as described above from ~ 6-hour windows with fixed ΔHvap = 100 

KJ mol-1 and γe = 0.5 based on the best estimates from campaign-average fits. The average and (95% confidence interval) of 

𝐶∗̅̅ ̅ (μg m-3) are 0.18 (0.05 - 0.54) and 0.16 (0.04 - 0.43) for the Centreville and Raleigh data sets, respectively, in line with 

values from the campaign-average and unified fits. The OA volatility distributions do not vary dramatically over the campaign 10 

period for either site.  

Ambient OA concentrations (COA) shown in Fig. 6a (Centreville) and S10a (Raleigh). Fig. 6b shows a time series of the 

fractional contribution of isoprene-derived OA and more-oxidized oxygenated OA (MO-OOA) (Xu et al., 2015a, 2015b) to 

total OA during the Centreville campaign. In a few low COA instances, 𝐶∗̅̅ ̅ was found to be higher, but there was no strong 

relation between these two quantities (see Fig. S12; scatter plot of mean C* vs COA). The relative contribution of MO-OOA to 15 

COA in many of these higher-𝐶∗̅̅ ̅ instances was low likely leading to more-volatile aerosol during these periods. Isoprene was 

the dominant biogenic VOC (> 80% of total VOC mass) measured during Centreville campaign (Xu et al., 2015b), and is the 

biogenic VOC with greatest global emissions (Sindelarova et al., 2014). Isoprene-derived OA contributed ~ 17-18% to the 

campaign average COA at the Centreville site during the SOAS (Hu et al., 2015; Xu et al., 2015a, 2015b) while MO-OOA 

contributed ~ 39% (Xu et al., 2015a, 2015b). Lopez-Hilfiker et al. (2016) reported isoprene-derived OA was more volatile 20 

than the remaining OA using FIGAERO-CIMS measurements at the Centreville site. This result contradicts with Hu et al. 

(2016), who reported a lower volatility of isoprene-derived OA than the bulk OA using TD measurements at the same site. 

Since our derived volatility distributions are for the bulk OA, we cannot make a specific comment on the volatility of isoprene-

derived OA. However, if the volatility of isoprene-derived OA differs substantially from the remaining bulk, OA volatility 

might be expected to co-vary with the fractional contribution of isoprene-OA to COA. Fig. 6c shows extracted bulk OA volatility 25 

distributions and their mean C* over the Centreville campaign period. Fig.6d shows a scatter plot of mean C* versus the 

fractional contribution of isoprene-OA to COA; the two show no correlation. Neither were statistically significant relationships 

found between the isoprene-OA fraction and  fi’s in any particular C* bin (see table S2). These results indicates that the effective 

volatility of isoprene-OA may not be substantially different than the remaining bulk OA. If there is a difference we cannot 

differentiate this effects from bulk OA volatility, potentially due to the contributions of other components to bulk OA.  30 

Diurnal trends in OA volatility distributions are shown in Figs. 7 (Centreville) and S11 (Raleigh). Results show that OA 

appeared less volatile in the afternoon than early in the morning for both sites (Centreville: campaign average 𝐶∗̅̅ ̅ (μg m-3) in 
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the morning ~ 0.25; afternoon ~ 0.13 and Raleigh: morning ~ 0.2; afternoon ~ 0.12). This trend is consistent with previous 

field measurements in Mexico City (MILAGRO) and Riverside (SOAR-1) (Huffman et al., 2009). Fig. 7a shows diurnal trends 

of OA factors derived from PMF analysis during the Centreville campaign (Xu et al., 2015a, 2015b). Less-oxidized 

oxygenated-OA (LO-OOA; average O:C ~ 0.63) dominated in the early morning (~40-50 %) while more-oxidized oxygenated-

OA (MO-OOA; average O:C ~ 1.02) was the largest OA component in the afternoon (~50%). Xu et al.(2015a) hypothesized 5 

that oxidation of monoterpenes forms a large portion of observed LO-OOA in the Southeastern U.S. via NOx and O3 (NO3 

radical) pathways, and that organo-nitrates contribute substantially to LO-OOA (20-30%). Laboratory chamber experiments 

also suggest that nitrate-containing species make a significant contribution to SOA formed during terpene 

photooxidation/ozonolysis under high NOx conditions (Ng et al., 2007; Presto et al., 2005), and from reactions with nitrate 

radicals (Boyd et al., 2015). Lee et al. (2011) observed greater evaporation in a TD of α-pinene and β-pinene ozonolysis SOA 10 

formed under high NOx conditions than under low NOx condition. Thus the higher volatility observed in the morning can 

likely be linked with the prevalence of LO-OOA and possible contributions from organo-nitrates. In contrast, bulk OA was 

dominated by MO-OOA in the afternoon. That OA is relatively less volatile in the afternoon is consistent with the observation 

that OA volatility often decreases with increased oxidation (during functionalization) (Jimenez et al., 2009). Fig. 8 shows 

scatter plots of 𝐶∗̅̅ ̅ versus LO-OOA and MO-OOA fractions of OA during the Centreville campaign. Although the average 15 

slopes of the scatter plots show an increase (decrease) of 𝐶∗̅̅ ̅  with increasing LO-OOA (MO-OOA) fraction, respectively, these 

correlations are not strong (correlation coefficient; r ~ 0.5). Similar levels of correlation were found with effective C* (Fig. 

S13).  A poor correlation between 𝐶∗̅̅ ̅  and OA factors is also observed in the Raleigh data set. For example, Fig. S14 shows 

scatter plots of 𝐶∗̅̅ ̅  versus tracer m/z based HOA fraction and OOA fraction estimates (Ng et al., 2011b) with an average slope 

of – 0.3 ± 0.16 (r ~ 0.2) for HOA and - 0.12 ± 0.11 (r ~ 0.1) for OOA.  20 

3.5 Average volatility and oxidation state of OA 

Fig. 9 explores the link between average carbon oxidation state, 𝑂𝑆𝑐
̅̅ ̅̅ ̅, calculated as 2× O:C - H:C (Kroll et al., 2011), and 𝐶∗̅̅ ̅. 

O:C and H:C are estimated from an empirical parameterization of OA elemental ratio from unit mass resolution data, given by 

Canagaratna et al. (2015) as a function of f44 (O:C = 0.079 + 4.31× f44 ) and f43 (H:C = 1.12 + 6.74 ×f43 – 17.77 × 𝑓43
2 ) , 

respectively. f44 and f43 are the fractional ion intensity at m/z 44 and 43, respectively, taken from ACSM measurements. The 25 

estimated OA elemental ratios using the above empirical parameterizations are in relatively good agreement with those 

determined via elemental analysis of the high resolution mass spectra data (HRToF-AMS) collected by other groups during 

SOAS. For example, our estimated campaign average O:C during Centreville campaign (0.68 ± 0.07) is within 1-2 standard 

deviation of that determined in Xu et al.(2015b) (~ 0.78). 

The scatter plot of 𝑂𝑆𝑐
̅̅ ̅̅ ̅ versus 𝐶∗̅̅ ̅  (Fig. 9) shows a mild downward trend, which is suggestive of lower-volatility OA being 30 

associated with higher oxidation state. However, the correlation is not statistically robust (r < 0.3). This is consistent with the 

observations of Xu et al.(2016) and Paciga et al. (2015) who reported weak association between average oxidation state and 
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volatility for OA measured in the London and Paris areas, respectively. The campaign-average 𝑂𝑆𝑐
̅̅ ̅̅ ̅ during the Centreville 

measurements (-0.18 ± 0.15) was higher than in Raleigh (-0.42 ± 0.16) (p-value << 0.0001), whereas campaign-average 𝐶∗̅̅ ̅ 

values were essentially identical (Centreville: 0.18 ± 0.14, Raleigh: 0.16 ± 0.12 µg m-3; p-value > 0.1). 

3.6 Application of measured volatility distribution to evaluate simulated OA in a CTM 

Fig. 10 compares the measured and simulated OA volatility distributions at Centreville for June, 2013. The simulated OA 5 

volatility distribution in the C* bins between 100 and 101 μg m-3 agrees reasonably well with observations. The model predicts 

a dominance of BSOA in the two bins, consistent with observations in the Centreville region. However, large discrepancies 

exist between the observed and simulated OA volatility distribution in the C* bins between 10-2 and 10-1 μg m-3. The model 

tends to greatly underpredict the OA concentrations in this volatility range. WRF/Chem did not reproduce the observed portion 

of the mass of OA in the lower C* bins, from 10-4 to 10-1 μg m-3, because the VBS SOA module in this version of WRF/Chem 10 

does not treat volatility in this range. Consistent with the measurement results from this study, a number of laboratory (Ehn et 

al., 2014; Jokinen et al., 2015; Kokkola et al., 2014; Zhang et al., 2015) and field (Hu et al., 2016; Lopez-Hilfiker et al., 2016) 

studies have reported a significant fraction of SOA from biogenic precursors is low-volatility. These low volatility materials 

are missing in the WRF/Chem simulation. 

The simulated total OA mass concentration (COA) was underpredicted by a factor of 2 to 3 at Centreville during the SOAS 15 

period. Several factors may contribute to this underprediction. Comparison of WRF/Chem predictions of most relevant 

meteorological variables and major precursor VOCs with measurements collected during the SOAS shows a relatively good 

performance (Yahya et al., 2016a). For example, the mean biases for simulated temperature at 2 m, relative humidity at 2 m, 

and wind speed at 10 m are -0.9 ºC, -0.8%, and 0.3 m s-1, respectively. The normalized mean bias (NMB) of the simulated 

planetary boundary layer height (PBLH) is -38%, which would tend to bias OA concentrations high, suggesting that the 20 

underprediction in PBLH is not responsible for the underpredictions of OA. In terms of VOC concentrations, the model 

performs well for β-pinene and formaldehyde with NMBs of -8.5% and -4.3%, respectively, but underpredicts α-pinene with 

an NMB of -51.7% and significantly overpredicts limonene with an NMB of 249% (Figure not shown). The WRF/Chem 

simulation only considers the SOA formed from a few BVOCs including isoprene, α-pinene, β-pinene, limonene, humulene, 

and ociene and does not account for contributions from other BSOA precursors such as other sesquiterpenes. Therefore, 25 

underestimation of precursor VOC emissions and missing precursors may contribute to OA underprediction. Other sources of 

uncertainty in the VBS treatment in WRF/Chem include the coarse spatial resolution in the model simulation, the assumed 

fraction of OA added for each oxidation/aging step, the assumed fragmented and functionalized percentages of organic 

condensable vapors, as well as the uncertainties in the dry and wet deposition velocities of SOA and SOA precursors. These 

factors can also contribute to the discrepancies between the model and observed COA at Centreville. 30 

One likely contributor to the model’s under-prediction is issues with the SOA yield parameterizations in the model. Smog 

chamber growth-experiment-derived mass yield coefficients (i.e., distributions of product mass yield in different volatility/C* 
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bins) (Pathak et al., 2007) are used to model SOA in a CTM. The estimated SOA yield from a traditional smog chamber 

experiment could be underestimated due to wall losses of condensable vapors. For example, Zhang et al. (2014) showed up to 

a factor of 4 yield underestimation for toluene SOA due to this fact. The high and low NOx mass yields used in WRF/Chem 

simulations for ASOA and BSOA are based on traditional smog chamber yield experiments, taken from Lane et al.(2008b).  

These distributions do not consider mass yields from the C* bins 10-4 to 10-1 μg m-3, where a significant portion of the OA 5 

mass was observed. The substantial amounts of low volatility materials are typically missing in these traditional yield 

measurement based distributions (Kolesar et al., 2015b; Saha and Grieshop, 2016). Our recent dual-TD-based effort to 

determine the SOA mass yield distribution for α-pinene ozonolysis (Saha and Grieshop, 2016) indicates products are 

substantially less volatile than the parameterizations used in current models (including that discussed above). This α-pinene 

product distribution suggests a factor of 2-4 more SOA yield under atmospherically relevant conditions compared to traditional 10 

distributions from smog chamber growth experiments. Updating SOA mass yield coefficient data is likely required for all 

known precursors, and may lead to large improvements in model predictions of both COA and OA volatility distributions.  

The WRF/Chem simulation used the semi-empirical ΔHvap correlation derived by Epstein et al. (2010) (ΔHvap = 130 -

11log10C*, 298K), which gives higher values, with a steeper log10C* dependence, than our TD-derived values (~80-100 kJ mol-

1). The difference in ΔHvap values used in WRF/Chem and our TD-derived values should not have a significant effect on the 15 

comparison shown in Fig.10. This is because the modeled-measured OA volatility comparison was made at temperatures 

(SOAS campaign average T= 24.7ºC; WRF/Chem simulated campaign average T= 23.8ºC) very close to the VBS reference 

temperature (25ºC). Murphy et al. (2011) also reported a low sensitivity of ΔHvap when predicating surface OA loading during 

the FAME-08 study using a 2D-VBS framework. However, the effect of ΔHvap could be significant when simulating OA 

loading at low ambient temperatures and high altitudes. 20 

4. Conclusions and Implications 

This paper presents results from ambient OA volatility measurements from two sites in the southeastern U.S. under diverse 

conditions. Measurement campaigns were conducted at a BVOC-dominated forested rural setting during summer and another 

more anthropogenically-influenced, but forested urban location under cooler conditions. This study applied a dual-

thermodenuder (dual-TD) setup that varied temperature and residence time in parallel. Ambient OA gas-particle partitioning 25 

parameters (C*, ΔHvap, γe) value were extracted by fitting observed dual-TD data using an evaporation kinetic model. The OA 

volatility distribution derived via inverse modeling is sensitive to ΔHvap, and γe values. The addition of variable residence time 

TD (VRT-TD) data provided tighter constraints on the extracted parameter values. A ΔHvap of ~ 100 KJ mole-1 and γe of 0.5 

best explain observations collected at both sites, under diverse conditions. An effective γe value of ~ 0.1 to 1 can explain 

observed evaporations within variability while a very small γe value (γe << 0.1) cannot fit the observations from both TDs. The 30 

Epstein et al. (2010) ΔHvap correlation, which was determined based on measured properties of a variety of known compounds 

also did not reproduce the evaporation observed in this study. 
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While measurement campaigns were conducted under different meteorological conditions at locations with differing levels 

of biogenic and anthropogenic emissions, the derived OA volatility distributions are found to be very similar. A substantial 

amount of OA (40-70%) at both sites was found to be of very low volatility (C*≤ 0.1 μg m-3) so will remain predominantly in 

the particle-phase (effectively non-volatile) under typical atmospheric conditions. OA volatility distributions also did not vary 

substantially over the campaign period. Our derived OA volatility parameterizations appear to be broadly consistent with 5 

observations of room temperature evaporation (Vaden et al., 2011) during CARES-2010 in California. The observed 

consistency in OA volatility across diverse settings is an important finding, which implies that OA in the atmosphere formed 

from a variety of sources can exhibit similar volatility properties and chemical signatures. This result also suggests that 

measurements of OA volatility distributions such as derived here could provide good diagnostics for overall model 

representativeness, but may not be as useful for diagnosing differences across sites and conditions.    10 

The diurnal profile of extracted OA volatility showed that bulk OA was less volatile in the afternoon than early in the 

morning. This trend is consistent with the prevalence of LO-OOA (less oxidized) in the morning and MO-OOA (more 

oxidized) in the afternoon. However, while average O:C and/or oxidation state (𝑂𝑆𝑐
̅̅ ̅̅ ̅) of bulk OA is often considered linked to 

volatility, in our data sets correlations between mean oxidation state (𝑂𝑆𝑐
̅̅ ̅̅ ̅) and mean volatility (𝐶∗̅̅ ̅ ) were weak (r <0.3). This 

observed weak correlation and the fact that atmospheric OA is a complex mixture of organics of a broad range of volatilities 15 

and oxidation states, reinforces the need to measure and understand the distribution of both volatility and oxidation states. The 

2D-VBS framework (Donahue et al., 2012) offers one way to constrain these parameters in atmospheric models. While 

determination of OA volatility distributions was the focus of this study, future efforts also should measure distributions of 

volatility and oxidation states comprising ambient OA.   

The gas-particle partitioning parameters (C*, ΔHvap, γe) extracted from these measurements have important implications 20 

for the treatment and evaluation of OA in current atmospheric models. Since a CTM incorporating the VBS framework predicts 

OA concentrations in each volatility (log10C*) bin (i.e., OA volatility distribution), comparison of simulated and measured OA 

volatility distribution is an useful means for model evaluation beyond only comparing total OA concentration (COA).  Here, we 

compared our measured OA volatility distribution with that simulated by WRF/Chem. This evaluation indicates that OA 

volatility distributions predicted in WRF/Chem are inconsistent with measurements over the C* range from 10-4 to 10-1 μg m-25 

3. This may give important clues towards the root causes of the model’s underestimation of COA by a factor of 2 to 3. In 

comparison to our TD-derived OA volatility distribution and other recent evidence (Ehn et al., 2014; Hu et al., 2016, 2016; 

Jokinen et al., 2015; Kokkola et al., 2014; Lopez-Hilfiker et al., 2016; Saha and Grieshop, 2016), low-volatility materials are 

mostly missing from the WRF/Chem predictions. Recent evidence of SOA from aqueous-phase oxidation in presence of 

abundant particle water (Carlton and Turpin, 2013; Marais et al., 2016), formation of oligomers and large molecular 30 

compounds directly in the gas- phase (Ehn et al., 2014) and via condensed phase chemistry (Kroll et al., 2015; Kroll and 

Seinfeld, 2008) suggest that complex and multi-phase formation and evolution processes produce SOA in the atmosphere. 

Many of these processes can produce very low-volatility organics and most are not included in current CTMs. These low-
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volatility organics appear to make significant contributions to the atmospheric OA budget and cloud condensation nuclei 

formation (Jokinen et al., 2015). 

The ΔHvap and γe values extracted here for atmospheric OA in the Southeastern U.S. also have important implications for 

predicting OA concentrations in a CTM. First, a ΔHvap value of 30-40 KJ mol-1 (Farina et al., 2010; Lane et al., 2008b; Pye 

and Seinfeld, 2010) is typically assumed for modeling OA in a CTM, which is substantially lower than that suggested by our 5 

TD observations (~100 KJ mol-1 ). An increase of assumed ΔHvap value can increase atmospheric OA burden and lifetime for 

a particular input volatility distribution (Farina et al., 2010), especially at low ambient temperatures and high altitudes. Finally, 

a value of γe ≥ 0.1 indicates a gas-particle repartitioning timescale (Saleh et al., 2013) on the order of minutes to an hour under 

atmospherically relevant conditions (Np ~ 1000-5000 cm-3). Therefore, the equilibrium phase-partitioning assumption typically 

made in CTMs should be reasonable for a prediction timestep of ~ 1 hour. 10 
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Table 1: Best fit OA volatility parameter values extracted from this study along with several previous field and lab studies 

Study  Centreville 

(this study) 

Raleigh 

(this study) 

FAME 

(Lee et al., 

2010) 

MILAGRO 

(Cappa and Jimenez, 2010) 

AP-SOA 

(Saha and 

Grieshop, 

2016) 

Campaign average 

 COA (μg m-3) 
5.2 6.7 2.8 17 5 

Note a b a b   c d c d e 

γe 0.5 0.5 0.5 0.5 0.05 1 1 1 0.1 0.1 0.1 

ΔHvap (KJ mol-1) 100 100 100 100 80 80 100 100 100 100 [80,11]ǂ 

logC*(μg m-3) fi 

-6       0.06  0.04   

-5       0.06  0.04   

-4 0.14 0.18 0.14 0.16   0.06 0.27 0.04 0.21 0.03 

-3 0.05 0.05 0.06 0.05  0.2 0.07 0.11 0.04 0.07 0.07 

-2 0.06 0.08 0.08 0.13 0.2 0.2 0.07 0.11 0.05 0.09 0.03 

-1 0.15 0.13 0.12 0.20 0.2 0.3 0.08 0.12 0.06 0.10 0.12 

0 0.29 0.33 0.28 0.20 0.3 0.3 0.10 0.15 0.1 0.18 0.18 

1 0.31 0.23 0.32 0.26 0.3  0.16 0.24 0.2 0.35 0.57 

2       0.34  0.43   

Mean C* (μg m-3) 0.21 0.12 0.20 0.10 0.50 0.05 0.32 0.03 1.5 0.1 1.16 

 𝐶𝑒𝑓𝑓
∗  (μg m-3) 1.8 1.4 2.0 1.5 1.3 0.3 9.4 1.9 13.8 2.8 3.5 

aCampaign average dual-TD data fit with campaign average COA and dp. 5 

b Unified fit of individual measurement from whole campaign (MFR, COA, dp; 20-30 minute resolution data). 

 c The fi distribution derived from Ci,tot = a1+a2exp[a3(log(C*)-3)]; fi = Ci,tot /ΣCi,tot ; a1, a2, and a3 coefficients were taken from 

table 1 of Cappa and Jimenez (2010). log10C* bin ranged from -6 to +2, as in Cappa and Jimenez (2010).  

d Same as c, but only considered log10C* bin range of -4 to +1 to be consistent with the bin ranges used in this study. To do so, 

materials in log10C* < -4 bins are assigned to -4 bin, material at log10C* = 2 bin is excluded, and distribution is renormalized 10 

to make Σfi =1. 

 e Chamber generated SOA from low-COA α-pinene ozonolysis experiment applying renormalization approach described in 

note e to the distribution given in Saha and Grieshop (2016) SI, table S.5.    

ǂ ΔHvap (KJ mol-1) = 80-11logC*(μg m-3)  
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Figure 1: Dual thermodenuder aerosol volatility measurement setup used during field campaigns at two sites in the southeastern U.S. TS-

TD: Temperature stepping TD, VRT-TD: Variable residence time TD, Rt: Residence time, EFC: Extra flow control, ACSM: Aerosol 5 
chemical speciation monitor, SMPS: Scanning mobility particle sizer. 
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Figure 2: Measured (solid symbols) and modeled (solid thick lines) campaign average organic aerosol (OA) mass fraction remaining (MFR) 

as a function of TD temperatures (T) and residence times (Rt). The solid symbol shows mean value and error bar is ± one standard deviation 

of all campaign data at each (T, Rt) condition. Model lines are shown using the ‘best fit’ volatility parameter values from campaign average 

TD data fit (parameter values listed in Table 1). TD measurement data from the Centreville site collected by the University of Colorado 5 
group at SOAS-2013 (Hu et al., 2016) are also shown. Measurements from several previous field studies are shown with various open 

symbols:  Hyytiala/2008-2010, Finland (Häkkinen et al., 2012); ClearfLo/2012, London (Xu et al., 2016); MILAGRO/2006, Mexico City 

(Huffman et al., 2009); SOAR-1/2005, Riverside, California (Huffman et al., 2009); FAME/2008, Finokalia, Greece (Lee et al., 2010); 

MEGAPOLI/2009-10, Paris, France (Paciga et al., 2015). Chamber alpha-pinene SOA (dark ozonolysis, COA ~ 5 μg m-3, VMD ~ 140 nm) 

evaporation data are shown from Saha and Grieshop (2016). In panel-a, data are color coded by TD residence times used during 10 
measurements. Legend shown next to panel (a) applies to all panels (a-c).  
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Figure 3: Extraction process of OA gas-particle partitioning parameter (ΔHvap, γe and fi) values. A fi distribution was solved for each 

combination of (ΔHvap, γe) via evaporation kinetic model fits to campaign-average dual-TD observations during the Centreville campaign. 

A relationship of ΔHvap = intercept-slope (log10C* @ 298K) was assumed (e.g., 50-0 on x-axis represents intercept =50 and slope = 0). 5 
Symbols and colors represent the goodness of fit. Points with filled inner circles recreate TS-TD observations and points with a white cross 

(x) recreate both TD data sets to within observational variability. Crosses represent the overall goodness of fit including both TS-TD and 

VRT-TD observations, with larger size corresponding to a better fit. 
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Figure 4: (a) Comparison of individual observations from the Centreville campaign and corresponding modeled MFRs applying the 

extracted fi distribution from the campaign-average fit (r2 = 0.83; RMSE: 0.11). MFR data collected by other groups during the Centreville 

campaign are also shown: University of Colorado TD (CU TD; blue squares) (Hu et al., 2016) and Georgia-Tech TD (GT TD; cyan triangles) 

(Cerully et al., 2015) along with corresponding MFRs modeled applying volatility parameterizations from this study with the campaign 5 
average COA and dp. Fig. S9 shows an extended data figure of panel a, including similar plot using the fi distribution from the unified fit and 

analysis results for the Raleigh data set. (b) Comparison of the SOAS campaign-average OA volatility distribution (showing only condensed 

phase) derived from this study (dual-TDs; kinetic evaporation model fits), Hu et al.(2016) (TD; method of Faulhaber et al.(2009)), and 

Lopez-Hilfiker et al.(2016) (FIGAERO-CIMS). Error bars on data from this study are ± one standard deviation of distributions extracted 

over the campaign period (Fig.6).    10 
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Figure 5: Isothermal evaporation kinetics of OA at 25˚C (room temperature) upon continuous stripping of vapors. Shaded region shows the 

evaporation kinetic model prediction range applying TD-derived volatility parameter values from this study; solid line shows the mean 

estimate. Dashed lines show model predictions using the OA volatility distribution derived using alternative approaches during the 

Centreville campaign (Hu et al., 2016; Lopez-Hilfiker et al., 2016). Symbols show experimental data from Vaden et al. (2011) collected 5 
during the CARES-2010 field campaign in California.     
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Figure 6: Time series of (a) ambient organic aerosol concentrations; COA, (b) fractional contribution of isoprene OA and more-oxidized 

oxygenated OA (MO-OOA) to total OA determined from PMF analysis, and (c) OA volatility distribution (fi) and mean C* (open black 

circles) during the Centreville campaign. All data are averaged over ~ 6 hours (the time resolution of fi distribution). Panel (d) shows a scatter 

plot of mean C* verses isoprene-OA fraction in COA. Fig. S10 shows similar analysis results for the Raleigh data set. 5 
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Figure 7: Campaign average diurnal trends for the Centreville measurements of: (a) concentrations of total OA and OA factors, (b) OA 

volatility (fi and mean C*) (c) OA MFR after heating at 60, 90 and 120 ˚C with a TD residence time of 50 s. Fig. S11 shows similar analysis 

results for the Raleigh data set. PMF factors in panel-a are LO-OOA: less-oxidized oxygenated OA; MO-OOA: more-oxidized oxygenated 

OA; Isoprene-OA: isoprene-derived OA (for details on OA factors analysis see Xu et al., 2015a, 2015b).   5 
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Figure 8: Scatter plot of mean C* verses (a) LO-OOA fraction, and (b) MO-OOA fraction in total OA concentration during the Centreville 

campaign. 
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Figure 9: Mean oxidation state (𝑶𝑺𝒄)̅̅ ̅̅ ̅̅ ̅̅ ̅ versus mean volatility(𝑪∗̅̅ ̅) measured during the Centreville and Raleigh campaigns. Dots are 

campaign data, dashed lines are linear regression fits of data, and symbols are the campaign average with error bar showing ±one standard 

deviation. 
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Figure 10: Comparison between measured OA volatility distributions and those simulated in WRF/Chem over the Centerville region. Bar 

height is mean, and error bar is ± one standard deviation of distributions extracted from measurements and simulations for June 2013. The 

inset shows a two-bin comparison (bin-1: C*≤1 μg m-3 and bin-2: C*=10 μg m-3). Simulated OA components include ASOA (anthropogenic-

SOA), BSOA (biogenic-SOA), POA (primary-OA), and SVOA (semi-volatile OA/oxidized POA). 5 
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S1. Estimation of approximate equivalent OA MFR for VRT-TD/SMPS data 

We assumed that measured total volume of submicron aerosol (Vtot) by SMPS (10-600 nm) is comprised of the volume of 

organic (Vorg) and ammonium sulfate (Vas). Since the sample was sufficiently dried (RH < 30-40%) before traveling to 

instruments, the contribution of water to Vtot was neglected. Contributions of nitrate and chloride aerosol were also neglected. 

tot org asV V V   (S-1) 

Apply the mass-volume relationship, the mass of organic aerosol (morg) can be written as  15 

as
org tot org

as

m
m V 



 
  
 

 (S-2) 

Where, ρorg and ρas are the densities of organic aerosol and ammonium sulfate aerosol, respectively. 

Organic aerosol mass fraction remaining (OA MFR) at a TD temperature and residence time (T, Rt) is 

,  ( , )

, 

 ( ,  Rt)
org TD T Rt

org

org BP

m
MFR T

m
  (S-3) 

Where, ‘TD’ refers to thermodenuder and ‘BP’ for bypass. 

Replacing morg in Eq.S3 with Eq. S2 
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 (S-4) 

Here, Vtot is in μm3 cm-3 and mass of ammonium sulfate (mas) is in μg m-3. ρas is considered 1.77 gm cm-3. Change in ρorg after 20 

heating at moderate temperature (<100˚C) is assumed to be small (ρorg,BP ~ ρorg,TD). It is assumed that ammonium sulfate did 



2 

 

not evaporate at a TD temperature < 100˚C (mas,BP ~ mas,TD). Note, in MFR calculation, particle loss in TD due to diffusional 

and inertial and thermophoresis deposition were applied separately via empirically estimated correction factors as a function 

of temperature and residence time (Saha et al., 2015). Relative transmission of Vtot and different aerosol species (e.g., organic, 

sulfate, nitrate, and ammonium) are assumed to be the same. 

To estimate mass of ammonium sulfate mass (mas), we assumed a stoichiometric relationship between sulfate and ammonium. 5 

Therefore, mas is calculated as  
132

96
× mSO4; ~ 1.375× mSO4. 

4
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 (S-5) 

Eq.S-5 was applied to estimate an approximate OA MFR for VRT-TD data at 60 ˚C and 90˚C, where mSO4, BP is used from 

ACSM measurements. 

In Eq. S-5, contribution of ammonium nitrate (AN) aerosol to Vtot is neglected, which has a relatively minor influence on the 

estimated OA MFR at both of our measurement sites. This is because the overall contribution of AN in PM1 was small (Fig. 10 

S6). The observed evaporation of ambient AN aerosol is much less than the laboratory generated pure AN aerosol (Huffman 

et al., 2009) and its observed evaporation is quite similar to the OA evaporation (Fig. S2). Since evaporation of AN under 

VRT-TD operating conditions would be a function of temperature and residence time, an exclusion of contribution of AN from 

Vtot is not as straightforward as for AS. However, we explore the overall influences of AN on the estimated OA MFR by 

examining an extreme case. In this analysis, we considered the Raleigh data set, where relatively more NO3 contribution in 15 

PM1 was measured (Fig. S6, S7) and the highest operating Rt of VRT-TD (40 s), where maximum bias is expected.  Estimated 

OA MFR using Eq. S-5 (neglecting AN contribution) at 60 ˚C and Rt = 40 s was 0.72 ± 0.06 (base case). In a sensitivity case, 

we included the contribution of AN (Vtot= Vorg+Vas+Van) and assumed that evaporation of NO3 measured in TS-TD (60˚C, Rt 

= 50 s) is same in VRT-TD for the above condition. The estimated mean OA MFR from sensitivity case was 0.735, which is 

within ~ 2% of our base case estimation and falls well within the variability range. At 90 ˚C and Rt = 40 s, estimated mean 20 

OA MFR in sensitivity case was 0.498 versus 0.48 ± 0.078 in base case, which is within 4 %. 

S2. Estimation of condensation sink diameter (dcs) 

The condensation sink diameter is estimated following Lehtinen et al., 2003.  The condensation sink diameter is the diameter 

where a monodisperse population of particles of number concentration Ntot can be placed to obtain the same total condensation 

sink (CS) as for a poly-disperse distribution of particles with total number concentration Ntot (Lehtinen et al., 2003).   25 

Mathematically, 2πD𝑑𝑐𝑠𝐹(𝑑𝑐𝑠)𝑁𝑡𝑜𝑡 = 2πD∑𝐹(𝑑𝑝,𝑖)𝑑𝑝,𝑖𝑁𝑖 = 𝐶𝑆                                                                     (S-6) 

Where, D is the diffusion coefficient, F is the Fuchs and Sutugin correction factor, Ni is the number concentration of particles 

in size bin of dp,i 
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S3. Supplementary Figures     

 

Figure S1: Comparison of submicron ambient aerosol volume concentrations measured by SMPS (10-600 nm) with the volume 

concentrations of organic aerosol (OA) + ammonium sulfate (AS) aerosol measured by ACSM. Both bypass and TD (heated) ACSM data 5 
were analyzed using a collection efficiency (CE) of 0.5 (Ng et al., 2011a) for all species.  OA volume are calculated from the measured OA 

mass concentrations (morg) and an effective density of OA  of 1.4 g cm-3 , estimated from a parameterization using elemental composition 

(O:C; H:C)  (Kuwata et al., 2012). AS mass concentration (mas) is calculated as  
𝟏𝟑𝟐

𝟗𝟔
× mSO4 , where mSO4 is the mass concentration of sulfate 

(SO4). AS volume is calculated assuming density of 1.77 g cm-3.  



4 

 

 

 

 

 

 5 

 

Figure S2: Campaign average mass thermogram (mass fraction remaining; MFR versus temperature) of NR-PM1 species (OA, sulfate, 

nitrate, ammonium) from ACSM measurements via the TS-TD during the (a) Centreville and (b) Raleigh campaigns.  
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Figure S3: (a) Geographical locations of measurement sites and long-term trends of ambient (b) NOx and (c) CO concentrations in the study 

areas. Centreville data are shown from SEARCH site (atmospheric-research.com/studies/SEARCH/) at Centreville (same location of the 

SOAS main ground site at Centreville). Raleigh data are shown from a monitoring station at Millbrook, Raleigh (35.856 ˚N, 78.574˚W, 

which is ~ 12 km northeast of the NCSU measurement site) operated by North Carolina Department of Environment and Natural Resources 5 
(NC DENR). 
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Figure S4: Comparison of ambient α-pinene + β-pinene concentration across two study areas. (a) Centreville data were collected during the 

SOAS campaign at Centreville, June-July, 2013 by Shepson’s Group (Purdue University); (b) Duke Forest data were collected during 

CELTIC (Chemical Emission, Loss, Transformation and Interactions within Canopies) field campaign in 2003, reported from Stroud et 

al.(2005). Duke Forest site (35.98˚N, 79.09˚W) is about 40 km to the Northwest from the NCSU site. (c) Duke forest data are shown after 5 
scaling by a temperature adjustment factor, using the campaign- average temperature during our Raleigh measurements (October –

November, 2013). The temperature adjustment factor for monoterpenes is estimated as, Ct = e0.09 (T-303), where T is in K (Warneke et al., 

2010). 
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Figure S5: Diurnal trends of ambient temperature and relative humidity (RH) during the Centreville and Raleigh field campaign. Symbol is 

the mean value and error bar is ± one standard deviation of hourly data. 
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Figure S6: (a-b) Submicron aerosol compositions and (c-d) size distributions measured in ambient (bypass) condition. Non-refractory 

submicron aerosol (NR PM1) composition data are measured by ACSM and number size distribution by SMPS. In panel b and c, solid lines 

show campaign median and shaded regions show interquartile range (25th to 75th percentile). Mean ± one standard deviation (SD) of organic 

aerosol (OA), PM1 mass concentrations, and integrated number concentrations (10-600 nm) are reported.    5 
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Figure S7: Time series and mean diurnal profiles of ambient submicron aerosol species concentrations (organics, sulfate; SO4, nitrate; NO3, 

and ammonium; NH4) measured by ACSM. All ACSM data are analyzed with an assumed collection efficiency (CE) of 0.5. 
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Figure S8: Similar to figure 3 in the main text showing analysis results for Raleigh data set. Extraction of OA gas-particle partitioning 

parameter (ΔHvap, γe and fi) values via evaporation kinetic model fits to campaign-average dual-TD observations. ΔHvap = intercept-slope 

(log10C*) relationship was used (e.g., 50-0 on x-axis represents intercept =50 and slope = 0). Symbols and colors represent the goodness of 

fit. Points with filled inner circles recreate TS-TD observations and points with a white cross (x) recreate both TD data sets to within 5 
observational variability. Crosses represent the overall goodness of fit including both TS-TD and VRT-TD observations, with larger size 

corresponding to a better fit. 
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Fig S9: Comparison of individual observations and corresponding modeled MFRs applying the extracted fi distribution from the campaign-

average fit and unified fit with γe = 0.5 and ΔHvap = 100 kj mol-1 (see Table 1 in main text for fi distributions). (a-b) Centreville data set, (c-

d) Raleigh data set. Panel a is same as Fig. 4 (a) in main text. The coefficient of determination (r2) and root mean squared error (RMSE) for 

the panel (a) r2 = 0.83; RMSE = 0.11; (b) r2 = 0.81; RMSE = 0.11; (c) r2 = 0.82; RMSE = 0.12; and (d) r2 = 0.86; RMSE = 0.09.  5 
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Figure S10: Similar to figure 6 in the main text showing analysis results for Raleigh data set. Time series of (a) ambient OA concentrations 

(COA), (b) hydrocarbon-like OA (HOA) fractional contribution to COA, and (c) OA volatility distribution (fi) and 𝑪∗̅̅ ̅   (open black 

circles).Tracer m/z based rough HOA are estimated as ∼ 13.4 × (C57 − 0.1 × C44), where C57 and C44 are the equivalent mass concentration 

of tracer ion m/z 57 and 44, respectively (Ng et al., 2011b). 5 
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Figure S11: Similar to figure 7 in the main text showing analysis results for Raleigh data set. Campaign average diurnal trends of: (a) 

concentration of total OA and rough OA factors, (b) OA volatility (fi and  𝑪∗̅̅ ̅), (c) OA MFR after heating at 60, 90 and 120 ˚C with a TD 

residence time of 50 s. Tracer m/z based rough OA components are estimated following Ng et al.(2011) as: hydrocarbon-like OA (HOA ~ 

13.4 × (C57 − 0.1 × C44)) and oxygenated OA (OOA ~ 6.6 × C44) , where C57 and C44 are the equivalent mass concentration of tracer ion m/z 5 
57 and 44, respectively.   
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Figure S12: Scatter plot of (a) mean C* vs. ambient OA loading (COA); (b) C*eff vs. ambient OA loading (COA). Results are shown from the 

Centreville campaign. 
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Figure S13: Scatter plot of (a) mean C* vs. MO-OOA fraction in COA; (b) C*eff vs. MO-OOA fraction in COA.  Results are shown from the 

Centreville campaign. 10 
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Figure S14: Similar to figure 8 in the main text showing analysis results for Raleigh data set. Scatter plot of mean C* verses (a) rough HOA 

fraction, and (b) rough OOA fraction in total OA concentration during the Raleigh campaign. For rough HOA and OOA estimation method, 5 
see Fig S11 caption. 
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S4. Supplementary Tables                                                                                                                 

Table S1: TD kinetic model input parameters 

Parameters  Value Notes 

Density (kg m-3) 1400  Kuwata et al., 2012 parameterization 

Diffusion coefficient (m2 s-1)  3.5 E-06  Cappa and Jimenez (2010) 

Surface tension (J m-2) 0.08  Approximated as Pimelic acid, Bilde et 

al.(2003)  

Molecular weight (MW) MWi (g mol-1) =169-28 (log10C*
i) Approximated from Di-carboxylic acid 

 

 

Table S2: Statistical correlation (Pearson R value) between isoprene-OA fraction to COA and fi’s in any particular C* bin 5 

log10C* bin -4 -3 -2 -1 0 10 mean C* C*
eff 

Pearson R value 0.02 0.29 -0.07 -0.06 -0.14 0.04 -0.06 0.19 
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