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Abstract. The aim of this paper is to present an overview of inverse modeling methods that have been developed over the years

for estimating the global sources and sinks of CH4. It provides insight into how techniques and estimates have evolved over

time, and what the remaining shortcomings are. As such, it serves a didactical purpose of introducing apprentices to the field,

but it also takes stock of the developments so far and reflects on promising new directions. The main focus is on methodological

aspects that are particularly relevant for CH4, such as its atmospheric oxidation, the use of methane isotopologues, and specific5

challenges in atmospheric transport modeling of CH4. The use of satellite retrievals receives special attention, as it is an

active field of methodological development, with special requirements on the sampling of the model and the treatment of data

uncertainty. Regional scale flux estimation and attribution is still a grand challenge, which calls for new methods capable

of combining information from multiple data streams of different measured parameters. A process model representation of

sources and sinks in atmospheric transport inversion schemes allows the integrated use of such data. These new developments10

are needed not only to improve our understanding of the main processes driving the observed global trend, but also to support

international efforts to reduce greenhouse gas emissions.

1 Introduction

Thanks to the efforts of surface monitoring networks, the global trends of long-lived greenhouse gases over the past decades

are known to high accuracy (Dlugokencky et al., 2009; Prinn et al., 2000; Simpson et al., 2012). However, deciphering the15

causes of observed growth rate variations remains a challenge, and is an active field of scientific research and development.

The large variations in the methane growth rate that have been observed in the past years are a particularly good example. A

wide variety of possible scenarios have been discussed in the recent literature, but only limited consensus has been reached
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so far (Rigby et al., 2008; Bousquet et al., 2011; Monteil et al., 2011; Kai et al., 2011; Aydin et al., 2011; Bergamaschi et al.,

2013; Houweling et al., 2014; Turner et al., 2016; Schaefer et al., 2016; Patra et al., 2016; Franco et al., 2016).

The reason for which the origin of these growth rate variations is difficult to identify was already discussed extensively in

the late 1980s to early 1990s, when the first inverse modeling techniques were developed for inferring greenhouse gas sources

and sinks from atmospheric measurements (Newsam and Enting, 1988; Enting and Newsam, 1990). The inverse problem was5

qualified as “ill posed”, because of the wide range of surface flux configurations that could explain the measurements about

equally well. Such problems require regularization using a priori assumptions on the surface fluxes, needed to fill in critical

flux information that the measurement networks are unable to provide.

Since then several approaches have been investigated to strengthen the constraints brought in by the measurements, for

example, by increasing the amount of data using regional tall tower networks (Bergamaschi et al., 2015; Miller et al., 2013)10

and satellites (Meirink et al., 2008a; Monteil et al., 2013; Cressot et al., 2014; Wecht et al., 2014) or by using different types

of measurements, including methane isotopologues (Mikaloff Fletcher et al., 2004a; Pison et al., 2009; Neef et al., 2010). To

accommodate new kinds of data in the inversion framework posed new methodological challenges, not only the computational

challenge of solving an inverse problem of significantly increased size, but also the treatment of new measurements with poorly

quantified error statistics (Houweling et al., 2014). Then, with improved measurement capabilities increasing the flux resolving15

power of the inversions, transport model uncertainties were recognized to play an increasingly important role (Patra et al., 2011;

Kirschke et al., 2013).

Despite methodological limitations, the inverse modeling approach allowed us to derive important constraints on the global

sources and sinks of CH4. Examples are the dominant role of the tropical and temperate northern latitudes as drivers of

the observed methane increase since 2007 (Bousquet et al., 2011). These constraints exist despite the limited availability of20

surface measurements in the Tropics. The extension of global inversions with satellite retrievals from SCIAMACHY and

GOSAT confirmed and even reinforced the importance of tropical fluxes (Frankenberg et al., 2005; Beck et al., 2012; Wilson

et al., 2016). Initially, using SCIAMACHY, it took a correction to account for an overestimated role of the Tropics due to

spectroscopic errors affecting the XCH4 retrieval (Frankenberg et al., 2008). For the Boreal and Arctic latitudes, inversions

confirm the sensitivity of methane fluxes to climatic variability, however, as yet without significant trends in response to global25

warming (Bergamaschi et al., 2013; Bruhwiler et al., 2014). Regarding the atmospheric sink strength, inversions have put

bounds on the plausible range of OH inter-annual variability, although it remains difficult to quantify surface sources and

atmospheric sinks independently of each other using the available measurements (Rigby et al., 2008).

The purpose of this paper is to review methods in global inverse modeling of CH4, and directions in which the field is

developing. The discussion is limited mostly to global and contemporary methane, although the range of applications has30

expanded over the years, covering scales ranging from paleoclimate studies (Fischer et al., 2008) to the estimation of single

point sources (Kort et al., 2014). Inverse modeling of CH4 has taken advantage of methodological advances gained in the

application of inverse modeling to CO2, except for some aspects that are specific to CH4, such as its limited atmospheric

lifetime, which will receive special attention.
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The next section starts with an overview of how CH4 inversions evolved over the years. The treatment of atmospheric sinks

is discussed separately in section 3. Sections 4 – 6 zoom in on the use of isotopic measurements, satellites, and the role of

chemistry transport models. Finally, new developments and directions are discussed in section 7.

2 The evolution of methods and estimates

The first inverse modeling analyses of global CH4 made use of concepts and techniques that were developed earlier for studying5

CO2, as published for example by Enting (1985) and Enting and Mansbridge (1989). The first synthesis of global methane was

performed by Fung et al. (1991), who assessed the contribution of various processes to the observed concentrations using a

3D atmospheric transport model. Sources were not yet optimized using an objective mathematical procedure. Instead, seven

scenarios were presented that agreed with the available information on emissions and photochemical oxidation of methane

as well as observed quantities, such as global mean CH4, 13CH4, and 14CH4, the amplitudes of their seasonal cycles, and10

latitudinal gradients.

Brown (1993, 1995) was the first to apply a matrix inversion approach to the available background measurements to derive

optimized monthly methane fluxes in 18 latitudinal bands. In Brown (1993) the number of unknowns was kept equal to the

number of knowns in order to derive a unique solution. In the follow up study (Brown, 1995) this condition was relaxed, through

the use of a truncated singular value decomposition approach. Both studies accounted for the atmospheric sink of methane by15

prescribing model calculated OH fields, which had been optimized to bring the global lifetime of methyl chloroform (MCF) in

agreement with measurements (see for example Spivakovsky et al. (1990)).

Hein et al. (1997) followed the "synthesis inversion" concept of Enting (1993), which made use of a Bayesian formulation

of the cost function penalizing deviations from a first guess (a priori) set of CH4 fluxes. In this study, the state vector consisted

of global and seasonal patterns of each source and sink process, as well as process-specific δ13C isotopic fractionation factors.20

Houweling et al. (1999) relaxed the hard-constraint on global flux patterns by using the adjoint of the TM2 transport model,

coded by Kaminski et al. (1996), to optimize the net CH4 surface flux per month and at the resolution of the transport model.

In addition, an attempt was made to take the spatial and temporal correlation of the uncertainty of the monthly fluxes between

surrounding grid boxes into account. An iterative procedure was used to minimize the cost function, in order to account for the

weak non-linearity introduced by optimizing the global OH sink (see section 3). In later studies flux regions have been defined25

in various ways, ranging between the global patterns of Hein et al. (1997) and the grid scale fluxes of Houweling et al. (1999),

such as, for example, the use of 11 continental TransCom regions in Bousquet et al. (2006).

Up to this stage, inverse modeling studies had addressed multi-year mean sources and sinks, and their average seasonal

variability. For example, the results of Hein et al. (1997) represented a quasi stationary state, reflecting the mean CH4 increase

during the analyzed time window of a few years, caused by the mean imbalance between the global sources and sinks during30

that period. Consistent with this approach, the atmospheric transport model recycled a single representative meteorological

year. Important CH4 growth rate fluctuations that were observed in the 1990s, such as in the years after the eruption of Mt.

Pinatubo and during the strong 1997-1998 El-Niño, raised the interest in methods that could address inter-annual variability. To
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do this, the use of actual meteorology in atmospheric transport modeling was recognized as being critical, since an important

fraction of the observed inter-annual variability in CH4 could be explained by variability in transport (Warwick et al., 2002).

The first so-called “time dependent” inversion of methane was published by Mikaloff Fletcher et al. (2004a), using the

Kalman filter for the optimization of CH4 fluxes (Bruhwiler et al., 2000). In this inversion, surface emissions were optimized

given a scenario for the sinks, i.e. without co-optimizing atmospheric sinks. This approach avoided spurious covariance between5

the inversion-optimized sources and sinks, resulting from the surface network providing insufficient information to constrain

these terms independently. Later studies, such as Pison et al. (2009), introduced independent information about the sink,

through the combined use of CH4 and MCF measurements. Although this approach limits the trade-off between sources and

sinks, some degree of influence remains depending on the weight of the CH4 data relative to those of MCF. The weight of CH4

data increased in particular with the use of satellite data. Several studies using SCIAMACHY satellite retrievals returned to the10

use of prescribed OH fields (Bergamaschi et al., 2007; Meirink et al., 2008b; Bergamaschi et al., 2009, 2013; Houweling et al.,

2014).

The availability of satellite data, starting with the SCIAMACHY instrument onboard ENVISAT (Bovensmann et al., 1999),

triggered new methodological developments to deal with the large amount of data becoming available, and to make efficient use

of the improved measurement coverage. Several groups adopted the 4D-VAR technique, developed by the weather prediction15

community, which makes use of the adjoint of the atmospheric transport model for efficient calculation of source receptor

relationships and the cost function gradient (Rayner et al., 2016; Chevallier et al., 2005; Baker et al., 2006; Meirink et al.,

2008b). With the increasing power of massively parallel super computers the ensemble Kalman filter (EnKF) gained popularity

(Feng et al., 2009; Fraser et al., 2013; Peters et al., 2005; Bruhwiler et al., 2014).

To use satellite data, the inversions were extended with bias correction algorithms to account for systematic errors in the20

satellite retrievals. Various approaches were tested (see section 5) with spatiotemporally varying bias functions either optimized

within the inversion or separately using measurements from the Total Column Carbon Observing Network (TCCON, Wunch

et al. (2011a)). Because of known short-comings of atmospheric transport models, for example in simulating the stratosphere-

troposphere exchange, inversion-optimized bias corrections were found to account in part for model deficiencies (Monteil et al.,

2013; Alexe et al., 2015; Locatelli et al., 2015). Compared with CO2, stratosphere-troposphere exchange is relatively important25

for the column average mixing ratio of CH4, because of the steeper vertical gradient of CH4 in the stratosphere caused by its

chemical transformation. The absence of CH4 in the stratosphere matters, because concentration gradients provide the flux

information that is used in inversions, and should therefore be represented well in models.

The proxy retrieval method, developed for the retrieval of CH4 from SCIAMACHY (Frankenberg et al., 2005), has an

additional source of systematic error from the use of transport model output (Parker et al., 2015; Pandey et al., 2016). In this30

method, XCH4 is derived from the satellite retrieved ratio of XCH4 and XCO2 to mitigate errors due to light scattering on

cirrus and aerosol particles. To translate the retrieved ratios into XCH4, model-derived estimates of XCO2 are used. When

proxy retrievals are used in inversions, inaccuracies in the modeled XCO2 variations are projected on the CH4 fluxes (Parker

et al., 2015). To deal with this problem, dual CO2 and CH4 inversions have been developed, which directly assimilate satellite

retrieved ratios of XCH4 and XCO2 (Fraser et al., 2013; Pandey et al., 2015, 2016), together with surface measurements.35
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Figure 1 presents large-scale estimates from published global CH4 inversion, and how they evolved over time. The global

flux is the best constrained property, and shows reasonable consistency across the published studies. The range of estimates

reflects mostly the improving capability to constrain the atmospheric oxidation of methane, which was still limited during

the 1990s. Brown (1995) explicitly mentions that the difference with Brown (1993) is largely due to the choice of methane

lifetime. Notice that the large error margin reported in Brown (1993) is consistent with this difference. Apart from this study,5

the inversion-derived estimates until 2006 cluster in two groups that differ by 80-100 TgCH4/yr. The global flux estimates in

more recent studies suggest that a consensus has been reached in favor of the lower cluster of estimates at 490–520 TgCH4/yr

for the 1990s. The increasing number of studies covering the period of renewed methane growth show an upward tendency

consistent with the CH4 increase. Note that these numbers are intended to include the soil sink, estimated to be in the range of

26–42 TgCH4 (Kirschke et al., 2013), but it is not always clear if reported global emissions include or exclude this sink.10

The contribution of the Northern Hemisphere to global emissions varies between 67 and 88% without a clear trend. The

differences between the inversions may be explained largely by differences in the inter-hemispheric exchange rate of the

transport models that are used (Patra et al., 2011). In Houweling et al. (1999) the exchange of the TM2 model was found to be

too slow, which is consistent with the TM models showing relatively low contributions of northern hemispheric emissions. The

anthropogenic contribution varies between 57 and 73%, with inversions accounting for process-specific information through15

the use of isotopes showing a smaller range of 60–63%.

3 Treatment of atmospheric sinks

In this section, we discuss the treatment of atmospheric methane oxidation in inversions. The change in CH4 mixing ratio in

an air parcel i due to local sources and sinks is described by

∂zi
∂t

= Ei −
∑
j

ki,j [Oxj ]izi +
∑
l

Tlzl, (1)20

with zi and [Oxj ]i the mixing ratios of CH4 and its main photochemical oxidants OH, Cl, and O(1D), reacting at rate ki,j . Ei

is the emission into air parcel i and transport operator Tl accounts for the advection and mixing of zi with its surroundings l

(l includes i). The purpose of inverse modeling is to estimate scaling factors x of the surface emissions and chemical transfor-

mation rates by fitting atmospheric transport model simulated mixing ratios to a set of measurements y. The relation between

model simulated measurements zf and the sources and sinks of CH4 can be expressed as25

zf = HMexe −HMsZxs +HM0Z0x0 (2)

where M is a linear chemistry and transport operator translating the state vector x into model simulated CH4 mixing ratios z,

which are sampled using observation operator H to obtain zf . The notation follows Rayner et al. (2016) as much as possible

(see Appendix B), except that we separate the state vector x in its source, sink, and initial concentration components indicated

by subscripts ”e”,”s” and ”0”. We use M because the transport model propagates the concentration state, needed to compute30

the methane sink, from one time step to the next (is an equation 1). Matrix Z is introduced because de state vector components
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xs and x0 are usually not defined at the dimension of the modelled mixing ratios z. Z is defined such that the product Zx

yields z scaled according to the definition of x. Note that the model simulated observations zf are not linearly dependent on

xs, because, unlike xe, the sink magnitude depends on the methane mixing ratio z, which is influenced by changes in xs. This

introduces a non-linearity in CH4 inversions that optimize the transformation rate. In the Bayesian formulation of the cost

function, the a priori estimate of xs is usually derived from a chemistry transport model (CTM). In that model the oxidant5

abundances also depend on the mixing ratio of CH4, adding further non-linearity. Following our notation, the CTM changes

[Oxj ] in equation 1, which is incorporated in Ms of equation 2. This means that when photochemical feedbacks are taken into

account, Ms becomes a non-linear operator.

Since CH4 is a long-lived gas, i.e. long compared with the typical time window of inversions, the uncertainties in its sources

and sinks influence only a small fraction of its average mixing ratio. Therefore, as long as the inversion uses realistic initial10

concentrations, e.g. derived from the global surface network, and the a priori source and sink estimates are in reasonable

balance with the observed global growth rate, the relative changes in z remain minor. In this case, the inverse problem is only

weakly non-linear. As we have seen, the CTM calculated oxidant fields are usually applied to the inversion after correcting

global mean OH to match the measurement-inferred lifetime of MCF of 5.5±0.2 yr (Montzka et al., 2011). This step eliminates

any modification of global mean OH in the CTM in response to updated CH4 concentrations coming from the inversion.15

Because of this, the influence of optimized CH4 mixing ratios on CTM calculated OH is usually ignored. Besides global mean

OH, it seems reasonable to assume that as long as the relative modifications in CH4 remain small, changes in CTM calculated

OH distributions are not significant.

What remains to be accounted for is the non-linearity introduced by optimizing the transformation rate xs within the uncer-

tainty of the methyl chloroform analysis. For this purpose, equation 2 can be linearized around an approximation of the CH420

mixing ratio (zn) as follows,

zfn+1 = HMexe,n −HMsZnxs,n +HZ0x0,n (3)

which can then be used to solve the inverse problem using the iterative procedure

xn+1 = xn − (MT
nH

TR−1HMn +B−1)−1(MT
nH

TR−1(HMnxn −y) +B−1(xn −xb)). (4)

Here xn is a trial state vector after iteration n (combining ”e”,”s” and ”0”). The other elements in this equation follow the25

standard notation of Rayner et al. (2016). Usually, the a priori CH4 source and sink estimates lead to an atmospheric state that

is realistic enough for equation 4 to converge within only a few iterations.

Equation 4 can be simplified further by ignoring uncertainties in xs and solving only for surface emissions. In this case the

inverse problem becomes linear, and the analytical solution is obtained in a single iteration. If xgn is replaced by xb and xgn+1

by xa then equation 4 indeed reduces to the least squares solution of the linear inverse problem (Tarantola, 2005). The reason30

why this is commonly done is not primarily out of computational convenience, but rather because surface measurements and

satellite retrieved total columns provide insufficient information to distinguish between source and sink influences. If sources

and sinks are optimised simultaneously, solutions are obtained where source adjustments compensate for sink adjustments
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and vice verse. Depending on the freedom of the inversion to adjust the sink, solutions will be obtained that show unrealistic

compensating adjustments between sources and sinks.

To deal with this problem, MCF measurements are used to independently constrain the sink, either within the inversion (see

for example Bousquet et al. (2006)) or in a separate inversion preceding the CH4 inversion (see for example Bergamaschi

et al. (2009)). Usually, this step only optimizes a climatological global OH sink, i.e. ignoring year-to-year variations and5

uncertainties in its geographical distribution. Given the importance of the methane sinks, their estimated temporal variations

(Montzka et al., 2011) and the associated uncertainties (Holmes et al., 2013; Voulgarakis et al., 2013; Naik et al., 2013), these

methods are not satisfactory. This will be true even more in the future, when MCF mixing ratios approach a new steady state to

unreported residual sources at concentration levels that will be difficult to measure accurately (Lelieveld et al., 2006). We will

return to this discussion in section 7.10

4 The use of isotopes

Using measurements of CH4 mixing ratios, only limited information is obtained about source and sink processes. Attempts have

been made to use a priori information on spatiotemporal emission patterns to optimize the contribution of specific emission

classes. If the state vector is defined at a lower resolution than the model, then the a priori emission distribution within the

source regions provides some process-specific information (as in Hein et al. (1997)). For inversions that solve at the resolution15

of the model grid, process-specific flux patterns can be specified only as temporal and spatial correlations in the a priori flux

error covariance matrix (as in Bergamaschi et al. (2009)), turning this information into a weak constraint. Alternatively, one

may just rely on the a priori contribution of each process per grid box and partition the inversion optimized flux accordingly.

However, for CH4 the a priori patterns themselves are rather uncertain and therefore it is questionable whether these methods

allow any useful process-specific information to be gained from the inversion. The hope may be that this situation will improve20

in the future with improved measurement coverage, for example, from high resolution satellite imagers capable of separating

source processes geographically.

Alternatively, isotopic measurements provide truly independent process-specific information. For this purpose, several inver-

sion studies have used measurements of δ13C-CH4 (Brown, 1993, 1995; Hein et al., 1997; Bergamaschi et al., 2000; Mikaloff

Fletcher et al., 2004b; Bousquet et al., 2006). So far, however, the impact has been limited because of limitations in network25

coverage, the low single measurement precision, and differences in calibration standards between laboratories (Levin et al.,

2012). Furthermore, this approach requires accurate knowledge of the process-specific isotopic fractionation factors, which are

not well separated, for example, for different microbial sources such as ruminants, wetlands, and waste treatment, and may

also vary strongly for a single source class depending on specific conditions (Zazzeri et al., 2015; Röckmann et al., 2016).

Nevertheless, a rough distinction is possible between the contribution of emissions from microbial sources (wetlands, agricul-30

ture, waste processing), energy use (fossil fuel production and consumption), and biomass burning. In addition, measurement

techniques are under development with the potential to significantly improve the availability of high quality data in the future

(Röckmann et al., 2016; Eyer et al., 2016).
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The additional constraints gained by isotopic measurements can be derived starting from the 13C analogue of equation 3,

Rzz
f = HMeRexe −HMsα

13
12,sRzZxs +HM0R0Z0x0, (5)

with the diagonal matrix R containing the 13C/12C ratios of CH4. Likewise α13
12,s contains the isotopic fractionation of the

oxidation reactions in s. Note that this equation and those that follow also apply to CH3D. Equation 5 can be reformulated in

δ notation as follows5

δzz
f = HMeδexe −HMs(α

13
12,s +α13

12,sδz − I)Zxs +HM0δ0Z0x0, (6)

where δz and δe contain the isotopic delta values of, respectively, atmospheric CH4 and its emissions. For the derivation of

equation 6 see appendix A. Different approaches are taken for solving inversions using isotopic measurements, depending

on whether sinks strengths and/or δ values are optimized. If both are optimized, the use of isotopic measurements introduces

additional non-linearity as the observed δ values are influenced by the product of source strength and fractionation. In Bousquet10

et al. (2006), the inverse problem is solved by linearizing equation 6 around the first guess state as in equation 3 and iteratively

solving the problem as in equation 4. As in CH4 inversions where sinks are optimized, the problem is only weakly non-linear.

If the initial state is realistic, subsequent iterations do not modify the solution significantly. As shown in Hein et al. (1997),

equation 6 can be further simplified with a few approximations taking out the non-linearity. If sinks and isotopic fractionation

constants are not optimized, including the delta value of the initial condition, then the inversion becomes linear again (see e.g.15

Mikaloff Fletcher et al. (2004a)).

The role of the initial condition in inversions using isotopic measurements has received special attention. Tans (1997) and

Lassey et al. (2000) demonstrated that δ13C-CH4 takes longer to reach steady state after a perturbation than CH4 itself. The

question was raised how long the spin up time of inversions should be to avoid that errors in the assumed initial concentration

field influence the results. If this time is too short, the inversion may fit the data by compensating errors in the initial condition20

with artificial emission adjustments. It should be noted, however, that the perturbation recovery time for CH4 is also much

longer than the spin-up time that is used in inversions using only CH4 data (i.e. without using isotopes). This does not cause

problems, as long as the inverse problem is defined such that the initial condition is given sufficient freedom to be optimized

itself. The same holds for 13CH4 in inversions using isotopic measurements.

Second in importance is the representation of initial spatial gradients that take longest to equilibrate, such as the inter-25

hemispheric difference and vertical gradients in the stratosphere. However, as long as these gradient components do not con-

tribute to the global burden (i.e. their global integral adds up to zero), the corresponding relaxation times of both CH4 and

δ13C-CH4 remain in the order of the corresponding dynamical mixing times. To demonstrate this point, we performed three

simulations using a two-box model with the boxes representing the Northern and Southern Hemisphere (see Figure 2). In the

reference simulation the initial condition is in balance with the steady state, and, as expected in this case, nothing changes30

during the simulation. In a second simulation, the initial concentrations are modified changing the inter-hemispheric gradient,

but without changing the global burdens of CH4 and 13CH4. As can be seen, this simulation recovers at the time scale of the

inter-hemispheric exchange (here set to 1 year). Only in the third simulation, where the initial concentrations are perturbed
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without conserving global mass, the recovery times become of the order of the CH4 lifetime. Interestingly, in this case the

north-south gradient of CH4 still recovers at the time scale of inter-hemispheric mixing, whereas the gradient of δ13C takes

much longer to equilibrate.

From this experiment it follows that long relaxation times, and therefore long spin-up times, can be avoided if the inversion

is capable of recovering the right initial burdens of CH4 and 13CH4. Therefore, the inversion should be given sufficient freedom5

to achieve this, i.e to correct errors in the a priori assumed initial global burdens. Additional errors in the global distribution

of the initial concentrations call for a spin up time of the order of the longest dynamical mixing time scale, which is the same

for CH4 and δ13C-CH4. The required spin up time can be reduced further, for CH4 and δ13C-CH4, by introducing additional

degrees of freedom to the initial condition, such as the difference between the Northern and Southern Hemisphere and between

the stratosphere and troposphere, such that these gradients can be optimized from the data also.10

5 Application to satellite data

The use of satellites in inverse modeling is attractive because of their superior spatial coverage compared with the surface net-

works. Although a significant step forwards has indeed been made using SCIAMACHY and GOSAT, especially in regions that

are poorly covered by the surface network, the coverage is still limited by the need for clear sky conditions to retrieve XCH4.

In addition, the temporal coverage is limited by the revisit time of the satellite. The most useful remote sensing instruments15

for the quantification of CH4 emissions from space make use of spectral measurements in the Short Wave InfraRed (SWIR)

of Earth reflected sun light. Since these photons have traveled the whole atmosphere twice, the measurements are sensitive

to CH4 absorption across the full column, down into the planetary boundary layer where the signals of surface emissions are

largest (Frankenberg et al., 2005). To obtain sufficient signal puts requirements on the sun angle, which limits the coverage

at high latitudes. Techniques exist to further reduce these coverage limitations, e.g. using active instrumentation (Ehret et al.,20

2008), an elliptical orbit (Nassar et al., 2014) or a large measurement swath (Landgraf et al., 2016), but these have not been

tested out in space yet. Therefore, further improvements in measurement coverage are expected for future missions.

To make efficient use of the growing stream of space borne greenhouse measurements, inversion methods need adaptation.

Important steps in this direction have been taken by the application of the 4D-VAR technique to the inversion of CH4 emis-

sions (Meirink et al., 2008b; Rayner et al., 2016), which we refer to as the variational approach to avoid confusion about the25

applicability of "4D" to the optimization of surface emissions. In this technique, the use of an adjoint model allows evaluation

of the cost function gradient at computing time and memory costs that do not scale with the number of measurements, as is

the case for the classical matrix inversion technique. However, with the growing information content of the data, a growing

number of fluxes can independently be resolved, increasing the required number of iterations. A major limitation of the vari-

ational approach is the use of sequential search algorithms to minimize the cost function. Each step in the sequence involves30

an evaluation of the cost function gradient, requiring a forward and adjoint model simulation for the full time span of the

inversion. Because this procedure is strictly sequential, it is difficult to take advantage of the computational power of modern

massive parallel computers. Although parallel search algorithms exist (see e.g. Desroziers and Berre (2012)), they have not
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been applied to CH4 emission optimization yet. An alternative approach is the use of ensemble methods such as the ensemble

Kalman filter (Peters et al., 2007; Bruhwiler et al., 2014), which allows efficient use of large numbers of processors, although

the number of regions for which emissions are estimated are still far less compared with the variational approach.

Finding the solution of a large dimensional inverse problem is not the only challenge in using satellite data. Estimating

the corresponding posterior uncertainties is an even harder computational problem to solve, because methods to approximate5

the Hessian of the cost function (i.e. the inverse of the posterior covariance matrix) tend to converge slower than the solution

itself. This is true in particular at the smallest spatio-temporal scales that are solved for, hence the problem is expected to get

worse moving to higher resolutions using instruments that provide more spatio-temporal detail (Meirink et al., 2008b). High-

resolution posterior uncertainty estimates are particularly useful in Observing System Simulation Experiments (OSSEs) for

testing the performance of inversions using new concepts for measuring greenhouse gases from space (Houweling et al., 2005;10

Miller et al., 2007; Hungershoefer et al., 2010). A popular method to derive such uncertainties is a Monte Carlo application of

the variational approach introduced by Chevallier et al. (2007). This method is computational demanding, however, because of

the large number of inversions needed to determine the posterior uncertainty at a precision of a few % (Pandey et al., 2015).

More precise methods exists (Rödenbeck, 2005; Hungershoefer et al., 2010), but they can only be applied to the uncertainty of

a limited number of fluxes.15

To sample the model for comparison to satellite retrievals involves application of the retrieval averaging kernel to the modeled

vertical profile of CH4 as follows,

zf = tTl Al,lzl + tTl (Il,l −Al,l)z
b
l (7)

here the total column operator tl contains normalized partial columns ∆pi/psurf for each layer i of the retrieved profile of l

layers. The product of tTl and the profile averaging kernel Al,l is the column averaging kernel al. If the retrieval uses profile20

scaling then only al is available (see e.g. Borsdorff et al. (2013)). zl is the modeled vertical profile of methane at the vertical

grid of the retrieval. Since the averaging kernel values depend on the vertical discretization of the retrieved state, the model

profile should be discretized the same way (i.e according to the retrieval grid). Furthermore, the averaging kernel depends

on the unit in which the state vector (of the retrieval) is expressed, either absorber amount or mixing ratio, and so the model

profile has to be expressed accordingly (Deeter et al., 2007). It is advised to correct errors in the CH4 column amount due to25

regridding from the vertical grid of the model to that of the retrieval to ensure that the regridding conserves mass. zbl is the a

priori profile that was used in the retrieval, and Il,l is the identity matrix. For retrievals that use profile scaling the second RHS

term in equation 7 should be close to zero (see Borsdorff et al. (2013)). Deviations point to the use of a different a priori profile

than was used in the retrieval.

For proxy XCH4 retrievals the use of equation 7 introduces an additional complication, because of the way information30

about CH4 and CO2 is combined. The correct way to deal with this can readily be understood looking at its equation

XCHproxy
4 =

XCHret
4

XCOret
2

.XCOmod
2 , (8)

showing how the proxy retrieval is derived from the ratio of non-scattering retrievals XCHret
4 and XCOret

2 , and a model-

derived estimate XCOmod
2 as discussed already in section 2. Suppose that XCOmod

2 and XCOret
2 were perfect, then the
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contribution of CO2 to the RHS of equation 8 would cancel out. However, this also requires that the averaging kernel of

XCOret
2 is applied to XCOmod

2 , which is therefore the correct way to specify XCOmod
2 . What remains is weighted according

to the averaging kernel of XCHret
4 , which is the one that should be used when applying equation 7 to proxy XCH4 retrievals.

In a ratio inversion, equation 7 is applied separately to the modeled profiles of CO2 and CH4, after which the ratio of the

modeled total columns is taken.5

The use of averaging kernels could in theory be avoided by including the radiative transfer model in the inversion, so that

the model yields the satellite observed spectral radiances instead of retrieved mixing ratios. However, for practical reasons this

has not been done so far. This approach would avoid inconsistencies between the a priori profile and its uncertainty as used in

the retrieval and as generated by the a priori transport model. For further discussion about the statistical consequences of this

inconsistency see Chevallier (2015).10

A major challenge in the use of satellite data in inversions is to realistically account for uncertainty. Satellite retrievals

are influenced by various physical and chemical conditions along the light path that is being measured. Inaccuracies in the

capability of the retrieval to take these into account vary at the same spatiotemporal scales as these conditions themselves. They

may even correlate with the retrieved variable, like water vapor in the case of SCIAMACHY XCH4 retrievals (Frankenberg

et al., 2008; Houweling et al., 2014), which makes it difficult to distinguish signal from error. Errors that behave quasi-random15

and affect neighboring retrievals in a coherent way, can in theory by accounted for by specifying the off-diagonal terms in

the data error covariance matrix. In practice, there are many ways to do this, but quantitative information is lacking to justify

a specific choice. In general, correlated uncertainty reduces the number of independent measurements, which justifies the

averaging of retrievals within a certain distance of each other. Usually the uncertainty of the mean is calculated using a lower

bound representing the contribution of purely systematic error. An alternative approach, referred to as "error inflation", is to20

increase the error of individually assimilated retrievals such that the uncertainty of a mean of surrounding retrievals does not

drop below this minimum level (Chevallier, 2007). The advantage of this approach is that it avoids subjective decisions about

which samples to combine into an average. Error inflation, or similar methods that compensate the neglect of off diagonals

in the data error covariance matrix by increasing the (diagonal) uncertainty, lead to a χ2 below 1. Although this may seem

sub-optimal from a statistical point of view, Chevallier (2007) demonstrated that this de-weighing of data nevertheless leads25

to uncertainty reductions that are closer to those obtained when off-diagonals in R had been accounted for. Therefore, this

approach avoids over-constraining the problem by neglecting the contribution of data error covariance.

As the inversion formalism assumes all errors to be random, measurement bias must either be corrected prior to use in the

inversion, or be estimated as state vector elements. Both cases require knowledge of the spatiotemporal pattern of the bias.

Given a model representation of the bias H′, the model simulated measurements can be reformulated as,30

zf = HMx+H′(x′), (9)

where systematic errors are accounted for using a set of extended state vector elements x′. Different formulations of H′(x′)

have been used in CH4 inversions using satellite retrievals from GOSAT and SCIAMACHY. Bergamaschi et al. (2007) use

simple polynomials of latitude and season, to account for inconsistencies arising from the combined use of surface and satellite

11



measurements at large scales. The motivation is that surface measurements are best suited to constrain the large scales, whereas

satellite data can be used to fill in regional detail, which the surface network is unable to resolve. An alternative approach

(Houweling et al., 2014) is to assess potential causes of systematic error in satellite retrievals, identify the main drivers - or

variables that can serve as proxies of their spatiotemporal variation - and optimize the magnitude of the corresponding error

contribution in the inversion. It should be noted that the inversion optimized x′a has contributions from the measurements as5

well as systematic errors in the transport model. In addition, if the bias variables covary with the XCH4 signal of uncertainties

in the surface fluxes, then the inversion will have limited skill in resolving their contributions. To avoid this problem, the

TCCON network can be used to optimize the bias model (Wunch et al., 2011b; Houweling et al., 2014). However, because

of its sparse global coverage and uncertainties in the TCCON measurements themselves, uncertainties will remain that can be

further optimized in the inversion.10

6 The importance of transport model uncertainties

An important assumption in inverse modeling is that the influence of atmospheric transport model uncertainties is small com-

pared with the uncertainty of the a priori fluxes. Formally, there are ways to account for transport model uncertainty in the

optimization, however, in practice they are difficult to implement lacking the information required to characterize the statistics

of transport model uncertainties in a realistic manner. In addition, there is the fundamental problem that the transport model15

uncertainty has a significant and poorly quantified systematic component. Patra et al. (2011) assess the importance of transport

model uncertainties, based on the results of the TransCom-CH4 model inter-comparison. The results highlight the importance

of specific aspects of atmospheric transport that are critical for the simulation of atmospheric methane, as will be discussed

further in this section. To quantify the impact of transport model differences on inversion-estimated surface fluxes requires an

inversion inter-comparison. Attempts in this direction have been made, for example by Kirschke et al. (2013), however, in that20

study inversions have been compared without a protocol to standardize the setups. Although useful for an assessment of global

CH4 emissions and uncertainties, to isolate the role of transport model uncertainties requires a dedicated experiment. Locatelli

et al. (2013) used the output of 10 models participating in the TransCom-CH4 experiment to generate ’pseudo measurements’

that were inverted in the LMDz model. The results confirm the importance of transport model uncertainties, with estimated

annual fluxes on sub-continental scales varying by 23–48%.25

Several studies have highlighted the large contribution of atmospheric transport, including intra and inter-annual variability,

to the observed variability in CH4 (Warwick et al., 2002; Patra et al., 2009; Terao et al., 2011). Because of this, studies which

directly relate mixing ratio variations to source variations should be treated with care (see e.g. Bloom et al. (2010) and Turner

et al. (2016)). For CH4 inversions the observed inter-hemispheric gradient is of particular importance as it is the dominant

mode of variation in background CH4 mixing ratios. The results of Patra et al. (2011) point to a ∼50 ppb (40%) difference in30

the simulation of this gradient due to differences in model simulated inter-hemispheric exchange times. Uncertainty in inter-

hemispheric exchange not only affects the inversion-derived latitudinal distribution of emissions, but also its seasonal cycle in

the Tropics. The latter is caused by the seasonal dynamics of the intertropical convergence zone (ITCZ). The observed seasonal
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cycles at tropical measurement sites, such as Samoa and Seychelles, are largely determined by the seasonally varying position

of the ITCZ in combination with the size of the north-south gradient of CH4. To assess and improve the inter-hemispheric

exchange in models, SF6 measurements have been used (Patra et al., 2011; Monteil et al., 2013). Despite sizable uncertainties

in the emission inventory of SF6 (Levin et al., 2010), it nevertheless provides an important constraint on inter-hemispheric

exchange.5

Large CH4 gradients are found also in the stratosphere, owing to the long time scale of stratosphere-troposphere exchange

in combination with the chemical degradation of CH4 in the stratosphere. The modeling of stratospheric CH4 is gaining

importance with the increasing use of satellite data in source–sink inversions. The offline atmospheric transport models that

are used for inverse modeling tend to underestimate the residence time (or "age") of stratospheric air (Douglass et al., 2003;

Bregman et al., 2006). As a consequence of this, models which accurately reproduce the surface concentrations as observed10

by the global networks (e.g. after optimization using those data) are expected to overestimate satellite observed total column

CH4 (Locatelli et al., 2015). Since the mean age of stratospheric air varies latitudinally and seasonally, the transport bias varies

accordingly. Indeed, the TransCom-CH4 simulations (Patra et al., 2011) show large differences between models increasing

towards higher latitudes in the stratosphere. Although the averaging kernel of SWIR XCH4 retrievals decreases with altitude in

the stratosphere, transport model differences are large enough to be important for emission quantification. Satellite instruments15

capable of measuring stratospheric CH4, such as MIPAS and ACE-FTS, are useful for testing models. However, the accuracy

of those measurements is also limited (Ostler et al., 2016). A promising development is the use of air core to measure the

stratospheric profile of CH4 at high accuracy (Karion et al., 2010), not only to evaluate the accuracy of total column FTS

measurements from the TTCON network but also atmospheric transport models. However, because of the observed local

variability, which coarse grid models have difficulty reproducing, many balloon flights will be needed to assess and improve,20

or bias correct, the models.

Using continuous measurements from dense regional networks within Europe and the USA the large-scale transport prob-

lems discussed above are less important. In this case, the observed variability is determined mostly by the passage of fronts of

synoptic weather systems and the planetary boundary layer (PBL) dynamics. Although the emissions of methane from energy

use have some diurnal variation, the PBL dynamics are more important especially during summer. Unfortunately, the represen-25

tation of the nocturnal boundary layer in transport models is too poor to make use of the observed diurnal variability. Instead,

measurements are used only during the afternoon when the planetary boundary layer is well developed. Nevertheless, the mix-

ing within the PBL and the trace gas exchange with the free troposphere is an important source of uncertainty (Kretschmer

et al., 2012; Koffi et al., 2016). Since satellite data from sensors operating in the SWIR are only weakly sensitive to the vertical

distribution of CH4 in the troposphere, their use may be less sensitive to such errors. The increased coverage and spatial resolu-30

tion of the new generation of satellite sensors, such as Sentinel 5 precursor TROPOMI (Landgraf et al., 2016), will increase the

relevance of satellites for regional-scale emission assessment. These data are highly complementary to surface measurements

in the sense that they have a different sensitivity to critical aspects of transport model uncertainty. To bring together regional

emission estimates from satellites and surface data is both a major challenge, and a great opportunity for testing atmospheric

transport.35
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To assess transport model uncertainties in the simulation of XCH4 we analyzed the archived output of the TransCom-CH4

experiment (Patra et al., 2011) (see Figure 3). XCH4 fields were calculated from monthly mean mixing ratio output on pressure

levels for the year 2000, interpolated to a common horizontal resolution of 2◦x2◦. To account for the vertical sensitivity of

satellite retrieved XCH4, we apply averaging kernels from the RemoTeC GOSAT full physics retrieval (Butz et al., 2011).

Finally, standard deviations were calculated for each vertical column using results from 7 models: ACTM, GEOS-CHEM,5

MOZART, NIES, PCTM, TM5, and TOMCAT. Figure 3 shows 1-σ differences between the models for the total column, as well

as the percentage contribution of stratospheric and tropospheric sub-columns. Results for the total column show σ values up to

∼2% (or 35 ppb), associated mostly with steep orography, see e.g. the Andes, the Himalayas, and most notably the ice caps. The

contribution from the troposphere is low in the Southern Hemisphere compared with the Northern Hemisphere, because a global

offset between the models has been removed at the South Pole. Therefore, the impact of differences in inter-hemispheric mixing10

is seen mostly in the Arctic, contributing ∼10 ppb in XCH4. The tropospheric contribution to transport model uncertainty also

highlights the centers of tropical convection. The contribution of the stratospheric column to the variation in XCH4 is sizable,

and increases towards the poles. The asymmetry between north and south pole is mainly because of the South Pole correction,

taking out offsets in the SH lower troposphere. It means that the large uncertainties in XCH4 over Antarctica are caused

mainly by the stratosphere. They follow the orography of the ice cap, because the impact of the stratospheric sub-column15

increases as the thickness of the tropospheric sub-column reduces. Towards northern latitudes differences increase up to 50–

60%, highlighting the importance of uncertainty in stratospheric transport when inverting satellite retrieved total columns.

7 New directions

Compared with the 1990s, when the first inverse modeling studies on CH4 were published, many things have changed, most

notably the availability of data and computer power. Inverse modeling techniques have been developing further to make use of20

these advances. Studies concentrated on the use of specific data sets, for example, to investigate the use of remote sensing, or

tall tower networks. Other types of measurements were used to further constrain specific processes, such as the use of MCF

to constrain OH or satellite-observed inundation to improve the representation of wetland dynamics. Despite these efforts,

the robustness of inverse modeling derived estimates is still limited for scales smaller than broad latitudinal bands (Kirschke

et al., 2013). Because of this, it remains difficult to attribute the significant changes in the global growth rate that have been25

observed in the past decades to specific processes. Besides important efforts to further improve the quality of data and models,

there is scope to further explore the combined use of different datasets to further constrain the inverse problem from different

directions.

To improve our understanding of what drives the inter-annual variability in the CH4 growth rate it is critical to be able to

separate influences from varying sources and sinks. To this end, further effort is needed to constrain the atmospheric oxidation30

of CH4. Since the CH4 and δ13C-CH4 data provide limited constraints on the sink, other data will be needed. The problem with

the MCF optimization method is that the two measurement networks, NOAA and AGAGE, lead to different answers, which

again differ from chemistry transport model simulations, as demonstrated nicely by Holmes et al. (2013). A better understand-
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ing is needed of what causes these differences, including the role of the sparse network for measuring MCF and remaining

questions regarding radical recycling in CTMs (Lelieveld et al., 2016). A promising direction is the use of measurements

of other key compounds in photochemistry, such as CO, O3, CH2O, and NOx to bring the photochemical models in better

agreement with the actual observed state (Miyazaki et al., 2012).

Measurements of the vertical profile of CH4 may further improve the separation between surface sources and atmospheric5

sinks. For this purpose, aircraft measurements are available, as well as satellites that are particularly sensitive to specific alti-

tudes, such as IASI (Cressot et al., 2014) and TES (Worden et al., 2012). However, since the gradients in the free troposphere

are small, and influenced by uncertainties in the sub grid parameterization of vertical transport in transport models, it is ques-

tionable how effective aircraft profile measurements can be. In the stratosphere the prospects for independent measurement

constraints on the sinks are better, since the gradients are much larger. It will still require the combined use of CH4 and a10

chemically inert tracer such as SF6 or CO2 to distinguish between uncertainties in stratospheric transport and chemistry.

Another approach to separate the influences of sources and sinks is to limit the domain of the inversion to important source

regions. In such regions, the concentration signal of the sources is much more variable than that of the sink because of the

high spatial heterogeneity of CH4 emissions. The sink scales with the total CH4 abundance, which is still dominated by the

background. The sources can be quantified, independent of the sink, using short-term departures from the background due15

to fresh emissions. The influence of the sink on those departures can be neglected, because the regional transport times are

much shorter than the lifetime of CH4. Meanwhile, several successful attempts have been made to quantify regional CH4

emissions using this approach, for example, using the tall tower networks in Europe (Bergamaschi et al., 2010, 2015), and the

U. S. A. (Miller et al., 2013; Bruhwiler et al., 2014). Continuous measurements from tall towers record highly variable CH4

concentrations providing much information about regional sources, challenging the performance of high-resolution mesoscale20

transport models. Despite the challenges, the results demonstrate its potential for supporting country scale emission verification.

The use of land surface models to provide a priori emission estimates for use in inverse modeling implies that the concept of

carbon cycle data assimilation (CCDAS), which has only been applied to CO2 so far, may be beneficial for CH4 also. Besides

the advantage of gaining actual process understanding, which is needed for improved projections of future CH4 concentrations,

optimization at process level facilitates the combined use of different types of measurements. In the case of wetland emissions,25

hydrological conditions are an important driver, particularly in the Tropics (Ringeval et al., 2014). Satellite observed inundation

is already used to prescribe the dynamics of the wetland extent (Ringeval et al., 2010; Pison et al., 2013). In combination

with hydrological modeling, some limitations of the measurements could be addressed, such as the difficulty to measure

water underneath dense vegetation and the fact that wetland soils may be partially saturated but are not necessarily inundated.

To improve the representation of wetland emissions in process models will also require extension of the flux measurement30

network. These measurements would be an essential component of a multi-stream data assimilation system for methane (or

MDAS), but the coverage of the network should be more comparable to that of FLUXNET CO2 (Baldocchi et al., 2001). In

particular, the model parameterization of methane emissions from tropical wetlands is severely limited by the availability of

flux measurements. Such limitations are important to address, but in the meantime the concepts and methods for MDAS should

already be developed using the existing data.35
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Besides the use of satellites to improve the representation wetland hydrology, several other kinds of measurements can

provide process-specific information. For example, atmospheric tracers such as ethane and carbon monoxide provide useful

information about emissions from fossil fuel mining (Simpson et al., 2012; Aydin et al., 2011; Hausmann et al., 2016) and

biomass burning (Wilson et al., 2016; Bastos et al., 1995), which could be combined with methane measurements in a data

assimilation framework. Figure 4 shows a conceptual diagram of how current inversion setups could evolve in order to further5

increase the constraints on the source and sink processes from the use of of various types of measurements.

8 Closing remarks

In the past three decades of CH4 inverse modeling important progress has been made in developing atmospheric transport

models and inversion methods for the use of various kinds of measurements. Despite this progress, it remains a challenge to

identify the dominant drivers of the large global growth rate variations that have been observed during this period. This is10

caused in part by the difficulty of separating the influence of surface emissions and atmospheric sinks. Breaking up global

estimates into regional contributions, the robustness of the estimates decreases further, except in regions where tall tower

networks support regional flux estimation. There is no single solution to this problem since every new approach, such as the

use of methane isotopologues or satellite data, brings new information as well as additional unknowns. To make optimal use

of the improving observational constraints on atmospheric methane puts increasing demands on the quality of atmospheric15

transport models. We demonstrated that the use of satellite retrieved XCH4 calls from an improved model representation of

stratospheric methane.

Besides the ongoing developments to improve models and measurement datasets, the combined use of different datasets

in a single optimization framework is still left largely unexplored. As discussed, the methane budget offers several directions

for applying the CCDAS concept to CH4, on the side of the sources, the sinks, or, ideally both. It will be a challenge to20

combine different datasets in a consistent manner, but inconsistencies will also help identify new directions for improvement.

The use of isotopic measurements was discussed and how the initial condition can be set up to avoid influences of long isotopic

equilibration times.

The COP21 climate agreement offers a great opportunity for inverse modeling to support international efforts to reduce

emissions, by providing independent estimates to verify if intended reduction targets are being achieved. However, the steps25

that are needed to become relevant in this process are still sizable. Compared with the achievements of the past three decades,

it is clear that the overall progress will have to accelerate. To achieve this will require a closer international collaboration, to

make more efficient use of the collective effort that is spend by different research groups already. The annual assessments of

GCP-CH4 (Saunois et al., 2016) are an important first step in this direction.
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Appendix A: Isotopic equation in delta notation

To derive equation 6 from equation 5 we first subtract equation 2, multiplied with a reference isotopic ration Rref , from

equation 5 resulting in

(Rz −Rref )zf = HMe(Re −Rref )xe −HM(α13
12,sRz −Rref )Zxs +HM(R0 −Rref )Z0x0, (A1)

to transfer to delta notation we substitute R in equation A1 using5

Rx = (I+ δx)RV PDB (A2)

where subscript x refers to any specific occurrence of R in equation A1 and RV PDB is the isotopic ratio of the Vienna Pee

Dee Belemnite international reference standard. Note that since we are using matrix notation R represents a diagonal matrix of

isotopic ratios (this same applies to δ and α). After substitution and dividing by RV PDB we obtain

(δz − δref )zf = HM(δe − δref )xe −HM(α13
12,sδz +α13

12,s − (δref + I))Zxs +HM(δ0 − δref )Z0x0. (A3)10

Depending on the choice of δref different formulations can be derived. Equation 6 is derived using δref = 0.

Appendix B: Notation
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the ISSI’s Working Group on "Carbon Cycle Data Assimilation: How to consistently assimilate multiple data streams".
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Table 1. Table of notation, taken from Rayner et al. (2016) Table 1, page 4.

Basic Notation

Symbol Description

BOLD Matrix

bold Vector

x Target variables for assimilation

z Model state variables

y Vector of observations

J Cost function

U(x,xt) Uncertainty covariance of x around some reference point xt

C(x) Uncertainty correlation of x

p(x) Probability density function evaluated at x

G(x,µ,U) Multivariate normal (Gaussian) distribution with mean µ and covariance U

H Observation operator mapping model state onto observables

H Jacobian of H , often used in its place, especially for linear problems

M Model to evolve state vector from one timestep to the next

M Jacobian of M

(·)a Posterior or analysis

(·)b Background or prior

(·)f Forecast

(·)g (First) guess in iteration

(·)t True

δ Increment

Some Useful Shortcuts

Symbol Description

d y−H(x) (Innovation)

U(x) Uncertainty covariance of x about its own mean, i.e. the true uncertainty covariance

B U(xb) (Prior uncertainty covariance)

Q U(xf ,xt) (Forecast uncertainty covariance)

R U(y−H(xt)) (Innovation uncertainty covariance)

A U(xa) (Posterior uncertainty covariance)
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Figure 1. Evolution of inversion-derived estimates for the global total CH4 flux (top), its hemispheric distribution (middle), and the anthro-

pogenic contribution (bottom). Horizontal solid lines indicated the time range of the estimate. The right end of dotted lines point to the date

of publication. Note that the CH4 trends that are seen are influenced by the evolution of the inversion methods that were used. Numbered

circles refer to publication references, as follows: 1:Brown (1993); 2:Brown (1995); 3:Hein et al. (1997), inv.S0; 4:Houweling et al. (1999);

5:Bergamaschi et al. (2000); 6:Wang et al. (2004); 7:Mikaloff Fletcher et al. (2004b), inv.S2; 8:Chen et al. (2006); 9:Bousquet et al. (2006);

10:Bergamaschi et al. (2007), inv.S3; 11:Bergamaschi et al. (2009), inv.S1; 12:Pison et al. (2009); 13:Fraser et al. (2013), inv.3; 14:Berga-

maschi et al. (2013), inv.S1SCIA; 15:Monteil et al. (2013), inv.FPNO; 16:Houweling et al. (2014), inv.SQflex; 17:Bruhwiler et al. (2014);

18:Bruhwiler et al. (2014); 19:Cressot et al. (2014), inv.SU0.6
1 ; 20:Cressot et al. (2014), inv.TA0.6

0.075; 21:Turner et al. (2015); 22:Alexe et al.

(2015); 23:Patra et al. (2016).
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Figure 2. Box model calculated relaxation times to hemispheric disturbances in CH4 and 13CH4 with respect to a steady state equilibrium

("Eq"). Theoretical disturbances of the steady state are either global mass conserved ("MC") or not ("D.Eq").
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Figure 3. Uncertainty in XCH4 due to transport model differences for January (left) and July (right). The middle and bottom panels show

the percent contribution from the troposphere (1000–200 hPa) and the stratosphere (200–0 hPa) to the total column variability shown in the

top panel. Results are obtained using the submissions to the TransCom-CH4 experiment (Patra et al., 2011) (CTL tracer for the year 2000).
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Figure 4. Conceptual diagram of ways to extend the use of measurements in CH4 flux inversions. Square boxes represent models, ovals mea-

surements, and the rounded box represents the target variable of the CH4 inversion. Call outs provide examples of the kind of measurements

that are meant by the ovals (without attempting to be complete). Black arrows: Coupled / assimilated in inversions already; Dashed arrows:

Not (yet) coupled / assimilated.
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