Parameter	Value	Units	Description
μ	1.6×10^{-5}	${\rm N}{\rm m}^{-2}{\rm s}$	air dynamic viscosity
$\lambda_{ m surf}$	3.0×10^{-2}	m	relief wavelength
h	1.5×10^{-2}	m	relief amplitude
α	1	-	horizontal aspect ratio
			of relief
k	8.0×10^{-10}	m^2	permeability

Table A1. Parameters for the calculation of the vertical speed of wind pumping and the effective diffusivity (Thomas et al., 2011).

Table A2. The chemical reaction mechanism applied in KINAL-SNOW, with the presence of a 35 cm snowpack which is divided into 7 uniform layers. A constant temperature T = 258 K is assumed in the model, and the rate of third-body reactions is estimated as $k = k_{\infty} \times \frac{k_0/k_{\infty}}{(1+k_0/k_{\infty})} \times F_c^{\frac{1}{1+(\log_1(k_0/k_{\infty}))^2}}$ (Atkinson et al., 2006).

Reaction	k	Order	Reference	Reaction No.
	$[(molec. cm^{-3})^{1-n}s^{-1}]$	n		
$O_3 + h\nu \rightarrow O(^2D) + O_2$	4.70×10^{-7}	1	Lehrer et al. (2004)	$(R1)(\times 8)$
$O(^{1}D) + O_{2} \rightarrow O_{3}$	$3.20 \times 10^{-11} \exp(67/T)$	2	Atkinson et al. (2006)	$(R2)(\times 8)$
$O(^{1}D) + N_{2} \rightarrow O_{3} + N_{2}$	$1.80 \times 10^{-11} \exp(107/T)$	2	Atkinson et al. (2006)	$(\mathbf{R3})(\times 8)$
$O(^{1}D) + H_{2}O \rightarrow 2OH$	2.20×10^{-10}	2	Atkinson et al. (2006)	$(\mathbf{R4})(\times 8)$
$\mathrm{Br} + \mathrm{O}_3 \to \mathrm{BrO} + \mathrm{O}_2$	$1.70 \times 10^{-11} \exp(-800/T)$	2	Atkinson et al. (2006)	$(R5)(\times 8)$
$Br_2 + h\nu \rightarrow 2Br$	0.021	1	Lehrer et al. (2004)	$(\mathbf{R6})(\times 8)$
$BrO + h\nu \xrightarrow{O_2} Br + O_3$	0.014	1	Lehrer et al. (2004)	(R7) (×8)
$BrO + BrO \rightarrow 2Br + O_2$	2.70×10^{-12}	2	Atkinson et al. (2006)	$(R8) (\times 8)$
$BrO + BrO \rightarrow Br_2 + O_2$	$2.90 \times 10^{-14} \exp(840/T)$	2	Atkinson et al. (2006)	(R9) (×8)
$BrO + HO_2 \rightarrow HOBr + O_2$	$4.5 \times 10^{-12} \exp(500/T)$	2	Atkinson et al. (2006)	$(R10) (\times 8)$
$\mathrm{HOBr} + h\nu \to \mathrm{Br} + \mathrm{OH}$	3.00×10^{-4}	1	Lehrer et al. (2004)	(R11) (×8)
$\mathrm{CO} + \mathrm{OH}(+\mathrm{M}) \xrightarrow{\mathrm{O}_2} \mathrm{HO}_2 + \mathrm{CO}_2(+\mathrm{M})$	$1.44 \times 10^{-13} \left(1 + \frac{[N_2]}{4 \times 10^{19}}\right)$	2	Atkinson et al. (2006)	(R12) (×8)
$\rm Br+HO_2\rightarrow HBr+O_2$	$7.70 \times 10^{-12} \exp(-450/T)$	2	Atkinson et al. (2006)	(R13) (×8)
$\mathrm{HOBr} {+} \mathrm{HBr} \stackrel{\mathrm{aerosol}}{\longrightarrow} \mathrm{Br}_2 {+} \mathrm{H}_2\mathrm{O}$	See Sect. 2.2 of the manuscript			(R14) (×8)
$\operatorname{Br}+\operatorname{HCHO} \xrightarrow{\operatorname{O}_2} \operatorname{HBr}+\operatorname{CO}+\operatorname{HO}_2$	$7.70 \times 10^{-12} \exp(-580/T)$	2	Atkinson et al. (2006)	(R15) (×8)
$Br + CH_3CHO \xrightarrow{O_2} HBr + CH_3CO_3$	$1.80 \times 10^{-11} \exp(-460/T)$	2	Atkinson et al. (2006)	(R16) (×8)
$Br_2 + OH \rightarrow HOBr + Br$	$2.0 \times 10^{-11} \exp(240/T)$	2	Atkinson et al. (2006)	(R17) (×8)
$\rm HBr+OH {\rightarrow} \rm H_2O+Br$	$5.50 \times 10^{-12} \exp(205/T)$	2	Atkinson et al. (2006)	(R18) (×8)
$\mathrm{Br} + \mathrm{C}_{2}\mathrm{H}_{2} \xrightarrow{\mathrm{3O}_{2}} 2\mathrm{CO} + 2\mathrm{HO}_{2} + \mathrm{Br}$	4.20×10^{-14}	2	Borken (1996)	(R19) (×8)
$\mathrm{Br} + \mathrm{C}_{2}\mathrm{H}_{2} \xrightarrow{\mathrm{2O}_{2}} \mathrm{2CO} + \mathrm{HO}_{2} + \mathrm{HBr}$	8.92×10^{-14}	2	Borken (1996)	(R20) (×8)
$\mathrm{Br} + \mathrm{C}_{2}\mathrm{H}_{4} \xrightarrow{3.5\mathrm{O}_{2}} 2\mathrm{CO} + 2\mathrm{HO}_{2} + \mathrm{Br} + \mathrm{H}_{2}\mathrm{O}$	2.52×10^{-13}	2	Barnes et al. (1993)	(R21) (×8)
$\mathrm{Br} + \mathrm{C}_{2}\mathrm{H}_{4} \xrightarrow{2.5\mathrm{O}_{2}} 2\mathrm{CO} + \mathrm{HO}_{2} + \mathrm{HBr} + \mathrm{H}_{2}\mathrm{O}$	5.34×10^{-13}	2	Barnes et al. (1993)	(R22) (×8)
$\mathrm{CH}_4 + \mathrm{OH} \xrightarrow{\mathrm{O}_2} \mathrm{CH}_3\mathrm{O}_2 + \mathrm{H}_2\mathrm{O}$	$1.85 \times 10^{-12} \exp(-1690/T)$	2	Atkinson et al. (2006)	(R23) (×8)
$\rm BrO+CH_3O_2 \rightarrow Br+HCHO+HO_2$	1.60×10^{-12}	2	Aranda et al. (1997)	(R24) (×8)
$\rm BrO+CH_3O_2 \rightarrow \rm HOBr+\rm HCHO+0.5O_2$	4.10×10^{-12}	2	Aranda et al. (1997)	(R25) (×8)

Daga	tion	

Reaction	k [(molec. cm ⁻³) ¹⁻ⁿ s ⁻¹]	Order n	Reference	Reaction No.
$\begin{array}{l} \mathrm{OH} + \mathrm{O}_3 \rightarrow \mathrm{HO}_2 + \mathrm{O}_2 \\ \mathrm{OH} + \mathrm{HO}_2 \rightarrow \mathrm{H}_2 \mathrm{O} + \mathrm{O}_2 \\ \mathrm{OH} + \mathrm{H}_2 \mathrm{O}_2 \rightarrow \mathrm{HO}_2 + \mathrm{H}_2 \mathrm{O} \end{array}$	$\begin{array}{l} 1.70 \times 10^{-12} \exp(-940/T) \\ 4.80 \times 10^{-11} \exp(250/T) \\ 2.90 \times 10^{-12} \exp(-160/T) \end{array}$	2 2 2	Atkinson et al. (2006) Atkinson et al. (2006) Atkinson et al. (2006)	(R26) (×8) (R27) (×8) (R28) (×8)
$\begin{array}{c} OH + OH \xrightarrow{O_2} H_2O + O_3 \\ HO_2 + O_3 \rightarrow OH + 2O_2 \\ HO_2 + HO_2 \rightarrow O_2 + H_2O_2 \\ C_2H_6 + OH \rightarrow C_2H_5 + H_2O \\ C_2H_5 + O_2 \rightarrow C_2H_4 + HO_2 \\ C_2H_5 + O_2(+M) \rightarrow C_2H_5O_2(+M) \end{array}$	$\begin{split} & 6.20 \times 10^{-14} (T/298)^{2.6} \exp(945/T) \\ & 2.03 \times 10^{-16} (T/300)^{4.57} \exp(693/T) \\ & 2.20 \times 10^{-13} \exp(600/T) \\ & 6.90 \times 10^{-12} \exp(-1000/T) \\ & 3.80 \times 10^{-15} \\ & k_0 = 5.90 \times 10^{-29} (T/300)^{-3.8} [\mathrm{N_2}] \\ & k_\infty = 7.80 \times 10^{-12} \\ & F_c = 0.58 \exp(-T/1250) \\ & + 0.42 \exp(-T/183) \end{split}$	2 2 2 2 2 2 2	Atkinson et al. (2006) Atkinson et al. (2006)	(R29) (×8) (R30) (×8) (R31) (×8) (R32) (×8) (R33) (×8) (R34) (×8)
$C_2H_4 + OH(+M) \xrightarrow{1.5O_2} CH_3O_2 + CO + H_2O(+M)$	$\begin{split} k_0 &= 8.60 \times 10^{-29} (T/300)^{-3.1} [\mathrm{N}_2] \\ k_\infty &= 9.00 \times 10^{-12} (T/300)^{-0.85} \\ F_c &= 0.48 \end{split}$	2	Atkinson et al. (2006)	(R35) (×8)
$\begin{split} \mathbf{C_2H_4} + \mathbf{O_3} &\rightarrow \mathbf{HCHO} + \mathbf{CO} + \mathbf{H_2O} \\ \mathbf{C_2H_2} + \mathbf{OH}(+\mathbf{M}) \xrightarrow{\mathbf{1.5O_2}} \mathbf{HCHO} + \mathbf{CO} + \mathbf{HO_2}(+\mathbf{M}) \end{split}$	$\begin{aligned} 4.33 \times 10^{-19} \\ k_0 &= 5.00 \times 10^{-30} (T/300)^{-1.5} [\text{N}_2] \\ k_\infty &= 1.00 \times 10^{-12} \\ F_c &= 0.37 \end{aligned}$	2 2	Sander et al. (1997) Atkinson et al. (2006)	(R36) (×8) (R37) (×8)
$C_3H_8 + OH \xrightarrow{2O_2} C_2H_5O_2 + CO + 2H_2O$	$7.60 \times 10^{-12} \exp(-585/T)$	2	Atkinson et al. (2006)	(R38) (×8)
$\mathrm{HCHO} + \mathrm{OH} \xrightarrow{\mathrm{O}_2} \mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2$	$5.40 \times 10^{-12} \exp(135/T)$	2	Atkinson et al. (2006)	(R39) (×8)
$ \begin{array}{l} \operatorname{CH}_3\operatorname{CHO} + \operatorname{OH} \xrightarrow{\operatorname{O}_2} \operatorname{CH}_3\operatorname{CO}_3 + \operatorname{H}_2\operatorname{O} \\ \operatorname{CH}_3\operatorname{O}_2 + \operatorname{HO}_2 \to \operatorname{CH}_3\operatorname{O}_2\operatorname{H} + \operatorname{O}_2 \\ \operatorname{CH}_3\operatorname{O}_2 + \operatorname{HO}_2 \to \operatorname{HCHO} + \operatorname{H}_2\operatorname{O} + \operatorname{O}_2 \\ \operatorname{CH}_3\operatorname{OOH} + \operatorname{OH} \to \operatorname{CH}_3\operatorname{O}_2 + \operatorname{H}_2\operatorname{O} \\ \operatorname{CH}_3\operatorname{OOH} + \operatorname{OH} \to \operatorname{HCHO} + \operatorname{OH} + \operatorname{H}_2\operatorname{O} \\ \operatorname{CH}_3\operatorname{OOH} + \operatorname{Br} \to \operatorname{CH}_3\operatorname{O}_2 + \operatorname{HBr} \\ \operatorname{CH}_3\operatorname{O}_2 + \operatorname{CH}_3\operatorname{O}_2 \to \operatorname{CH}_3\operatorname{OH} + \operatorname{HCHO} + \operatorname{O}_2 \end{array} $	$\begin{array}{l} 4.40 \times 10^{-12} \exp(365/T) \\ 3.42 \times 10^{-13} \exp(780/T) \\ 3.79 \times 10^{-14} \exp(780/T) \\ 1.00 \times 10^{-12} \exp(190/T) \\ 1.90 \times 10^{-12} \exp(190/T) \\ 2.66 \times 10^{-12} \exp(-1610/T) \\ 6.29 \times 10^{-14} \exp(365/T) \end{array}$	2 2 2 2 2 2 2 2 2	Atkinson et al. (2006) Atkinson et al. (2006) Atkinson et al. (2006) Atkinson et al. (2006) Atkinson et al. (2006) Mallard et al. (1993) Atkinson et al. (2006)	$\begin{array}{c} (R40) \ (\times 8) \\ (R41) \ (\times 8) \\ (R42) \ (\times 8) \\ (R43) \ (\times 8) \\ (R44) \ (\times 8) \\ (R44) \ (\times 8) \\ (R45) \ (\times 8) \\ (R46) \ (\times 8) \end{array}$
$\mathrm{CH}_{3}\mathrm{O}_{2} + \mathrm{CH}_{3}\mathrm{O}_{2} \xrightarrow{\mathrm{O}_{2}} 2\mathrm{HCHO} + 2\mathrm{HO}_{2}$	$3.71 \times 10^{-14} \exp(365/T)$	2	Atkinson et al. (2006)	(R47) (×8)
$\begin{split} \mathrm{CH}_3\mathrm{OH} + \mathrm{OH} & \xrightarrow{\mathrm{O}_2} \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O} \\ \mathrm{C}_2\mathrm{H}_5\mathrm{O}_2 + \mathrm{C}_2\mathrm{H}_5\mathrm{O}_2 &\to \mathrm{C}_2\mathrm{H}_5\mathrm{O} + \mathrm{C}_2\mathrm{H}_5\mathrm{O} + \mathrm{O}_2 \\ \mathrm{C}_2\mathrm{H}_5\mathrm{O} + \mathrm{O}_2 &\to \mathrm{CH}_3\mathrm{CHO} + \mathrm{HO}_2 \\ \mathrm{C}_2\mathrm{H}_5\mathrm{O} + \mathrm{O}_2 &\to \mathrm{CH}_3\mathrm{O}_2 + \mathrm{HCHO} \\ \mathrm{C}_2\mathrm{H}_5\mathrm{O}_2 + \mathrm{HO}_2 &\to \mathrm{C}_2\mathrm{H}_5\mathrm{OOH} + \mathrm{O}_2 \\ \mathrm{C}_2\mathrm{H}_5\mathrm{OOH} + \mathrm{OH} &\to \mathrm{C}_2\mathrm{H}_5\mathrm{O}_2 + \mathrm{H}_2\mathrm{O} \\ \mathrm{C}_2\mathrm{H}_5\mathrm{OOH} + \mathrm{Br} \to \mathrm{C}_2\mathrm{H}_5\mathrm{O}_2 + \mathrm{HBr} \\ \mathrm{OH} + \mathrm{OH}(+\mathrm{M}) &\longrightarrow \mathrm{H}_2\mathrm{O}_2(+\mathrm{M}) \end{split}$	$2.42 \times 10^{-12} \exp(-345/T)$ 6.40×10^{-14} 7.44×10^{-15} 7.51×10^{-17} $3.80 \times 10^{-13} \exp(900/T)$ 8.21×10^{-12} 5.19×10^{-15} $k_0 = 6.90 \times 10^{-31} (T/300)^{-0.8} [N_2]$ $k_{\infty} = 2.60 \times 10^{-11}$ F = 0.50	2 2 2 2 2 2 2 2 2 2 2 2	Atkinson et al. (2006) Atkinson et al. (2006) Sander et al. (1997) Sander et al. (1997) Atkinson et al. (2006) Sander et al. (1997) Sander et al. (1997) Atkinson et al. (2006)	(R48) (×8) (R49) (×8) (R50) (×8) (R51) (×8) (R52) (×8) (R53) (×8) (R54) (×8) (R55) (×8)
$\rm H_2O_2 + h\nu \rightarrow 2OH$	2.00×10^{-6}	1	Lehrer et al. (2004)	(R56) (×8)
$\begin{split} & \mathrm{HCHO} + h\nu \xrightarrow{\mathrm{2O}_2} 2\mathrm{HO}_2 + \mathrm{CO} \\ & \mathrm{HCHO} + h\nu \rightarrow \mathrm{H}_2 + \mathrm{CO} \\ & \mathrm{C}_2\mathrm{H}_4\mathrm{O} + h\nu \rightarrow \mathrm{CH}_3\mathrm{O}_2 + \mathrm{CO} + + \mathrm{HO}_2 \\ & \mathrm{CH}_3\mathrm{O}_2\mathrm{H} + h\nu \rightarrow \mathrm{OH} + \mathrm{HCHO} + \mathrm{HO}_2 \\ & \mathrm{C}_2\mathrm{H}_5\mathrm{O}_2\mathrm{H} + h\nu \rightarrow \mathrm{C}_2\mathrm{H}_5\mathrm{O} + \mathrm{OH} \end{split}$	$5.50 \times 10^{-6} 9.60 \times 10^{-6} 6.90 \times 10^{-7} 1.20 \times 10^{-6} 1.20 \times 10^{-6} $	1 1 1 1	Lehrer et al. (2004) Lehrer et al. (2004) Lehrer et al. (2004) Lehrer et al. (2004) Lehrer et al. (2004)	(R57) (×8) (R58) (×8) (R59) (×8) (R60) (×8) (R61) (×8)

Reaction	k	Order	Reference	Reaction No.
	$[(molec. cm^{-3})^{1-n}s^{-1}]$	n		
$NO + O_3 \rightarrow NO_2 + O_2$	$1.40 \times 10^{-12} \exp(-1310/T)$	2	Atkinson et al. (2006)	$(R62) (\times 8)$
$\rm NO + HO_2 \rightarrow NO_2 + OH$	$3.60 \times 10^{-12} \exp(270/T)$	2	Atkinson et al. (2006)	$(R63) (\times 8)$
$NO_2 + O_3 \rightarrow NO_3 + O_2$	$1.40 \times 10^{-13} \exp(-2470/T)$	2	Atkinson et al. (2006)	$(R64) (\times 8)$
$NO_2 + OH(+M) \rightarrow HNO_3(+M)$	$k_0 = 3.30 \times 10^{-30} (T/300)^{-3.0} [N_2]$	2	Atkinson et al. (2006)	$(R65)(\times 8)$
	$k_{\infty} = 4.10 \times 10^{-11}$ $F_c = 0.40$			
$\rm NO + NO_3 \rightarrow 2NO_2$	$1.80 \times 10^{-11} \exp(110/T)$	2	Atkinson et al. (2006)	(R66) (×8)
$\rm HONO + OH \rightarrow \rm NO_2 + H_2O$	$2.50 \times 10^{-12} \exp(260/T)$	2	Atkinson et al. (2006)	(R67) (×8)
$\mathrm{HO}_{2} + \mathrm{NO}_{2}(+\mathrm{M}) \rightarrow \mathrm{HNO}_{4}(+\mathrm{M})$	$k_0 = 1.80 \times 10^{-31} (T/300)^{-3.2} [N_2]$	2	Atkinson et al. (2006)	(R68) (×8)
	$k_{\infty} = 4.70 \times 10^{-12}$			
	$F_c = 0.60$			
$\mathrm{HNO}_4(+\mathrm{M}) \mathop{\rightarrow} \mathrm{NO}_2 + \mathrm{HO}_2(+\mathrm{M})$	$k_0 = 4.10 \times 10^{-5} \exp(-10650/T) [N_2]$	1	Atkinson et al. (2006)	$(R69) (\times 8)$
	$k_{\infty} = 4.80 \times 10^{13} \exp(-11170/T)$			
	$F_c = 0.00$ 2.20 × 10 ⁻¹³ cmc (600 /T)	2	Attringen et al. (2006)	(D70)(x, 9)
$\text{NO}_4 + \text{OH} \rightarrow \text{NO}_2 + \text{H}_2\text{O} + \text{O}_2$ $\text{NO} + \text{OH}(+\text{M}) \rightarrow \text{HONO}(+\text{M})$	$5.20 \times 10^{-31} (T/300)^{-2.4}$ [N]	2	Atkinson et al. (2006)	$(\mathbf{R}/0)$ (×8)
$\rm NO + OH(+M) \rightarrow \rm HONO(+M)$	$k_0 = 7.40 \times 10^{-11} (T/300)^{-0.3}$	2	Atkinson et al. (2000)	$(\mathbf{K}/1)(\times 0)$
	$F_{\infty} = 0.81$			
$OH + NO_2 \rightarrow NO_2 + HO_2$	2.00×10^{-11}	2	Atkinson et al. (2006)	$(R72)(\times 8)$
$HNO_3 + h\nu \rightarrow NO_2 + OH$	4.40×10^{-8}	1	Lehrer et al. (2004)	$(R73)(\times 8)$
$NO_2 + h\nu \xrightarrow{O_2} NO + O_3$	3.50×10^{-3}	1	Lehrer et al. (2004)	(R74) (×8)
$NO_2 + h\nu \xrightarrow{O_2} NO_2 + O_2$	1.40×10^{-1}	1	Lehrer et al. (2004)	$(R75)(\times 8)$
$NO_3 + h\nu \rightarrow NO + O_2$	1.70×10^{-2}	1	Lehrer et al. (2004)	(R76) (×8)
$NO + CH_3O_2 \xrightarrow{O_2} HCHO + HO_2 + NO_2$	$2.30 \times 10^{-12} \exp(360/T)$	2	Atkinson et al. (2006)	(R77) (×8)
$NO_3 + CH_3OH \xrightarrow{O_2} HCHO + HO_2 + HNO_3$	$9.40 \times 10^{-13} \exp(-2650/T)$	2	Atkinson et al. (2006)	(R78) (×8)
$\text{NO}_3 + \text{HCHO} \xrightarrow{\text{O}_2} \text{CO} + \text{HO}_2 + \text{HNO}_3$	5.60×10^{-16}	2	Atkinson et al. (2006)	(R79) (×8)
$NO + C_2H_5O_2 \xrightarrow{O_2} CH_3CHO + NO_2 + HO_2$	$2.60 \times 10^{-12} \exp(380/T)$	2	Atkinson et al. (2006)	(R80) (×8)
$NO + CH_3CO_3 \xrightarrow{O_2} CH_3O_2 + NO_2 + CO_2$	$7.50 \times 10^{-12} \exp(290/T)$	2	Atkinson et al. (2006)	(R81) (×8)
$NO_2 + CH_3CO_3(+M) \rightarrow PAN(+M)$	$k_0 = 2.70 \times 10^{-28} (T/300)^{-7.1} [\mathrm{N_2}]$	2	Atkinson et al. (2006)	(R82) (×8)
	$k_{\infty} = 1.20 \times 10^{-11} (T/300)^{-0.9}$			
	$F_c = 0.30$			
$\operatorname{Br}+\operatorname{NO}_2(+\mathrm{M}) \to \operatorname{BrNO}_2(+\mathrm{M})$	$k_0 = 4.20 \times 10^{-31} (T/300)^{-2.4} [N_2]$	2	Atkinson et al. (2006)	$(R83) (\times 8)$
	$k_{\infty} = 2.70 \times 10^{-11}$			
$\mathbf{P}_{\mathbf{r}} + \mathbf{N}\mathbf{O} \rightarrow \mathbf{P}_{\mathbf{r}}\mathbf{O} + \mathbf{N}\mathbf{O}$	$F_c = 0.55$ 1.60 × 10 ⁻¹¹	2	Attringen et al. (2006)	$(\mathbf{D}\mathbf{Q}\mathbf{A})$ (\mathbf{y},\mathbf{Q})
$BrO + NO (+M) \rightarrow BrONO (+M)$	1.00×10 $k_{0} = 4.70 \times 10^{-31} (T/300)^{-3.1} [N]$	2	Atkinson et al. (2006)	$(R04)(\times 0)$
$BIO + NO_2(+M) \rightarrow BIONO_2(+M)$	$k_0 = 4.70 \times 10^{-11}$ [N ₂]	2	Atkinson et al. (2000)	$(\mathbf{K}_{0}\mathbf{J})(\times 0)$
	$F_{\infty} = 1.00 \times 10$ $F_{-} = 0.40$			
$BrO + NO \rightarrow Br + NO_2$	$8.70 \times 10^{-12} \exp(260/T)$	2	Atkinson et al. (2006)	(R86) (×8)
$BrONO_2 + h\nu \rightarrow NO_2 + BrO$	3.40×10^{-4}	1	Lehrer et al. (2004)	(R87) (×8)
$BrNO_2 + h\nu \rightarrow NO_2 + Br$	9.30×10^{-5}	1	Lehrer et al. (2004)	(R88) (×8)
$BrONO_{2} + H_{2}O \xrightarrow{aerosol} HOBr + HNO_{2}$	See Sect. 2.2 of the manuscript			$(R89)(\times 8)$
$PAN + h\nu \rightarrow NO_2 + CH_2CO_2$	6.79×10^{-7}	1	Fishman and Carney (1984)	$(R90)(\times 8)$
- 2 - 3 - 3				

of the manuscript of the manuscript of the manuscript of the manuscript of the manuscript		(R721) (×7) (R728) (×7) (R735) (×7) (R742) (×7) (R749) (×7)
of the manuscript 3	Beckwith et al. (1996)	(R756) (×7)
of the manuscript 1	Beckwith et al. (1996)	(R763) (×7)
of the manuscript 3	Wang et al. (1994)	(R770) (×7)
of the manuscript 1	Wang et al. (1994)	(R777) (×7)
of the manuscript 2	Michalowski et al. (2000)	(R784) (×7)
of the manuscript 1	Wang et al. (1994)	(R791) (×7)
of the manuscript 1	Wang et al. (1994)	(R798) (×7)
of the manuscript 2	Michalowski et al. (2000)	(R805) (×7)
of the manuscript of the manuscript of the manuscript the manuscript		$(R812) (\times 7) (R819) (\times 7) (R826) (\times 7) (R833) (\times 7) (R840) (\times 7) (R847) (\times 7) (R854) (\times 7) (R861) (\times 7) (R868) (\times 7) (R875) (\times 7) (R882) (\times 7) (R889) (\times 7) (R896) (\times 7) \\ (R80) (\times$
	of the manuscript of the manuscript of the manuscriptof the manuscriptof the manuscriptof the manuscriptaof the manuscript1of the manuscript3of the manuscript1of the manuscript11111111111111111111111111111111111<	of the manuscript of the manuscript3Beckwith et al. (1996)of the manuscript3Beckwith et al. (1996)of the manuscript1Beckwith et al. (1996)of the manuscript3Wang et al. (1994)of the manuscript1Wang et al. (1994)of the manuscript2Michalowski et al. (2000)of the manuscript1Wang et al. (1994)of the manuscript2Michalowski et al. (2000)of the manuscript1Wang et al. (1994)of the manuscript2Michalowski et al. (2000)of the manuscript1Wang et al. (1994)of the manuscript1Wang et al. (1994)of the manuscript2Michalowski et al. (2000)of the manuscript1Wang et al. (1994)of the manuscript <t< td=""></t<>

Fig. A1. Temporal evolution of the mixing ratios of ozone and bromine species in the ambient air of the 200 m boundary layer when the initial PH value of the snowpack is (a) 7 and (b) 10.

References

- Aranda, A., Le Bras, G., La Verdet, G., and Poulet, G.: The BrO + Ch₃O₂ reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745–2748, doi:10.1029/ 97GL02686, 1997.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry, Tech. rep., 2006.
- Barnes, I., Becker, K., and Overath, R.: Oxidation of organic sulfur compounds, in: The Tropospheric Chemistry of Ozone in the Polar Regions, edited by Niki, H. and Becker, K., vol. 7, pp. 371–383, Springer Berlin Heidelberg, doi:10.1007/ 978-3-642-78211-4_27, 1993.
- Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35, 995–1000, doi:10.1021/ic950909w, 1996.
- Borken, J.: Ozonabbau durch Halogene in der arktischen Grenzschicht, Ph.D. thesis, Heidelberg University, 1996.
- Fishman, J. and Carney, T. A.: A one-dimensional photochemical model of the troposphere with planetary boundary-layer parameterization, J. Atmos. Chem., 1, 351–376, 1984.
- Lehrer, E., Hönninger, G., and Platt, U.: A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere, Atmos. Chem. Phys., 4, 2427– 2440, doi:10.5194/acp-4-2427-2004, 2004.
- Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzel, D. H.: NIST chemical kinetics database: version 5.0, Tech. rep., Gaithersburg, 1993.
- Michalowski, B. A., Francisco, J. S., Li, S.-M., Barrie, L. A., Bottenheim, J. W., and Shepson, P. B.: A computer model study of multiphase chemistry in the Arctic boundary layer during polar sunrise, J. Geophys. Res. Atmos., 105, 15131–15145, doi: 10.1029/2000JD900004, 2000.
- Sander, R., Vogt, R., Harris, G. W., and Crutzen, P. J.: Modelling the chemistry of ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring, Tellus B, 49, 522–532, doi:10.1034/j.1600-0889.49.issue5.8.x, 1997.
- Thomas, J. L., Stutz, J., Lefer, B., Huey, L. G., Toyota, K., Dibb, J. E., and von Glasow, R.: Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results, Atmos. Chem. Phys., 11, 4899–4914, doi: 10.5194/acp-11-4899-2011, 2011.
- Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species, Inorg. Chem., 33, 5872–5878, doi:10.1021/ ic00103a040, 1994.