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Abstract. Retrievals of tropospheric NO2 columns from UV/visible observations of reflected sunlight require a priori vertical

profiles to account for the variation in sensitivity of the observations to NO2 at different altitudes. These profiles vary in

space and time but are usually approximated using models that do not resolve the full details of this variation. Currently, no

operational retrieval simulates these a priori profiles at both high spatial and high temporal resolution. Here we examine the

additional benefits of daily variations in a priori profiles for retrievals already simulating a priori NO2 profiles at sufficiently5

high spatial resolution to identify variations of NO2 within urban plumes. We show the effects of introducing daily variation

into a priori profiles can be as large as 40% and 3× 1015 molec. cm−2 for an individual day and lead to corrections as large as

−13% for a monthly average in a case study of Atlanta, GA, USA. Additionally, we show that NOx emissions estimated from

space-based remote sensing using daily, high spatial resolution a priori profiles are ∼ 100% greater compared to a retrieval

using spatially coarse a priori profiles, and 20–45% less compared to a retrieval using monthly averaged high spatial resolution10

profiles.

1 Introduction

NOx (= NO + NO2) is an atmospheric trace gas family that plays an important role in regulating the production of O3 and

particulate matter. NOx is emitted into the atmosphere by natural processes (e.g. lightning, biomass burning) and anthropogenic

sources, notably combustion. Understanding the contribution of each source is vital to determining the effectiveness of current15

and future efforts to improve air quality and to understanding the chemistry of the atmosphere. Studies have utilized satellite

observations to constrain NOx emissions from lightning (e.g. Miyazaki et al. 2014; Beirle et al. 2010; Martin et al. 2007;

Schumann and Huntrieser 2007), biomass burning (e.g. Castellanos et al. 2014; Mebust and Cohen 2014, 2013; Miyazaki et al.

2012; Mebust et al. 2011), anthropogenic NOx emissions and trends (e.g. Ding et al. 2015; Lamsal et al. 2015; Tong et al.

2015; Huang et al. 2014; Vinken et al. 2014b; Gu et al. 2013; Miyazaki et al. 2012; Russell et al. 2012; Lin et al. 2010; Kim20

et al. 2009), soil NOx emissions, (e.g. Zörner et al. 2016; Vinken et al. 2014a; Hudman et al. 2012), and NOx lifetime (Liu

et al., 2016; Lu et al., 2015; de Foy et al., 2014; Valin et al., 2013; Beirle et al., 2011).

The process of retrieving a tropospheric NO2 column with UV/visible spectroscopy from satellites requires three main steps.

First, the raw radiances are fit using Differential Optical Absorption Spectroscopy (DOAS) to yield slant column densities

(Richter and Wagner, 2011). Then, the stratospheric NO2 signal must be removed (Boersma et al., 2011; Bucsela et al., 2013).25

Finally, the tropospheric slant column density (SCD) must be converted to a vertical column density (VCD) by use of an air

mass factor (AMF) and Eq. (1). Depending on the specific algorithm, NO2 obscured by clouds may be ignored (producing a

visible-only tropospheric NO2 column, e.g. Boersma et al. 2002), corrected by use of an assumed ghost column (e.g. Burrows

et al. 1999; Koelemeijer and Stammes 1999), or corrected via the AMF (e.g. Martin et al. 2002). In all cases, the AMF

must account for the varying sensitivity of the satellite to NO2 at different altitudes, and therefore a priori knowledge of that30

sensitivity and the vertical profile of NO2 is required. Over low-reflectivity surfaces, light scattered in the atmosphere is the

primary source of radiance at the detector. The probability of back-scattered light penetrating to a given altitude is greater for

higher altitudes; thus there is greater interaction with, and therefore greater sensitivity to, NO2 at higher altitudes (Richter
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and Wagner, 2011; Hudson et al., 1995). Because of this, the correct AMF is smaller in locations influenced by surface NOx

sources. The relative contribution of errors in the calculated sensitivity and in the a priori profiles of NO2 to error in the final

VCD varies between polluted and clean pixels (Boersma et al., 2004). Previous work (e.g. Russell et al. 2011) has sought to

reduce errors in both, and highlighted the importance of accurate a priori profiles in urban areas.

VCD=
SCD

AMF
(1)5

A priori NO2 profiles are generated using chemical transport models. Previous studies (e.g. Cohan et al. 2006, Wild and

Prather 2006, Valin et al. 2011, Vinken et al. 2014b, Schaap et al. 2015) have demonstrated these modeled NO2 profiles are

strongly dependent on the spatial resolution of the chemical transport model used. The impact of model spatial resolution

on satellite retrievals has been evaluated through case studies (Valin et al., 2011; Heckel et al., 2011; Yamaji et al., 2014)

and through what could be termed “regional” retrievals (Russell et al., 2011; McLinden et al., 2014; Kuhlmann et al., 2015;10

Lin et al., 2015) that trade complete global coverage for improved spatial resolution of the input assumptions. These studies

recommend model resolution of< 20 km to accurately capture NOx chemistry on a priori profiles. Russell et al. (2011) showed

that increasing the spatial resolution of the input NO2 profiles produces a retrieval that more accurately represents contrast in

the spatial features of NO2 plumes, reducing systematic bias by as much as 30%. Reducing these biases improves the clarity of

the observed urban-rural gradients by providing unique urban and rural profiles, rather than one that averages over both types15

of locations. McLinden et al. (2014) showed that using 15 km resolution profiles increased the NO2 signal of the Canadian

oil sands by ∼ 100% compared to the DOMINO and NASA SP products, which they state corrects a low bias in the retrieved

column amounts.

Currently, only the Hong Kong-OMI retrieval has made use of daily a priori NO2 profiles at < 20 km spatial resolution

(Kuhlmann et al., 2015). Their retrieval covered the Pearl River Delta for the period October 2006 to January 2007. No opera-20

tional retrieval covering the majority of the OMI data record does so. The current generation Berkeley High Resolution (BEHR)

(Russell et al., 2011, 2012) and OMI-EC (McLinden et al., 2014) retrievals simulate monthly average NO2 profiles at 12 and

15 km, respectively. Conversely, the DOMINOv2 (Boersma et al., 2011), POMINO (Lin et al., 2015), and DOMINO2_GC

(Vinken et al., 2014b) retrievals simulate daily profiles at 3° lon × 2° lat (DOMINO) and 0.667° lon × 0.5° lat (POMINO

and DOMINO2_GC), respectively, which is insufficient to capture the full spatial variability of NO2 plumes, but does capture25

large scale variations in meteorology. Lamsal et al. (2014) quantitatively compared NO2 average profile shapes measured from

the P3-B aircraft for each of six sites in the DISCOVER-AQ Baltimore/DC campaign with the modeled profile shape from the

GMI chemical transport model used to compute the NO2 a priori profiles in the NASA Standard Product v2 retrieval, which

uses monthly average NO2 profiles at 2◦×2.5◦ spatial resolution. They found up to 30% differences between the measured and

modeled profile shape factors (i.e. S(p) in Eq. 3) at any single pressure throughout the troposphere. Several sites (Edgewood,30

Essex, and Beltsville) had less NO2 than the model throughout the free troposphere, and Edgewood also exhibited an elevated

NO2 layer at 970 hPa not captured in the model.
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Lamsal et al. (2014) also noted that there was significant day-to-day variability in the measured profiles that cannot be

captured by a monthly average model; however, they do not quantify those differences. These day-to-day differences can be

significant in a priori NO2 profiles. Valin et al. (2013) showed that the concentration of NO2 downwind of a city increases

significantly with wind speed, observing that NO2 100–200 km downwind from Riyadh, Saudi Arabia was approximately

130–250% greater for wind speeds between 6.4–8.3 m s−1 than wind speeds < 1.9 m s−1. When monthly average a priori

profiles are used, this is not accounted for in the retrieval. The effect on the AMF is illustrated in Fig. 1c. Compared to the5

monthly average a priori profiles, daily profiles from a day with fast winds would contain greater near-surface NO2 further

from the city. As discussed before Eq. (1), UV/visible satellite observations of NO2 are less sensitive to NO2 at low altitudes,

so this requires smaller AMFs at a greater distance from the city on days with fast winds to compensate through Eq. (1).

These day-to-day variations may be particularly important for methods such as Beirle et al. (2011), Valin et al. (2013),

Lu et al. (2015), and Liu et al. (2016) that use observations sorted by wind speed to derive detailed information about NOx10

chemistry and emissions from space-borne observations. This is a very valuable tool because of the wealth of data available

from OMI (Levelt et al., 2006) and expected from upcoming instruments such as TROPOMI (Veefkind et al., 2012), TEMPO

(Chance et al., 2013), Sentinel-4 (Ingmann et al., 2012), and GEMS (Bak et al., 2013; Choi and Ho, 2015). However, the act

of sorting data by wind speed transforms errors in the profile shape resulting from day-to-day variability in wind speed from

random to systematic. For example, Beirle et al. (2011), Valin et al. (2013), and Lu et al. (2015) derive an effective NOx15

lifetime using data with fast wind speed, and Liu et al. (2016) does so by fitting a function with a component derived at slow

wind speeds to data derived from days with fast wind speeds. On a day when the wind speed is faster than average, a priori

NO2 profiles taken from a monthly average model would have less near-surface NO2 further from the city than is actually

present for that day (i.e. Fig. 1c vs. 1a). The resulting incorrect AMFs would lead to an underestimation of the spatial extent of

the plume, and could lead to an underestimate of the NOx lifetime as a consequence.20

In this paper we explore how day-to-day changes in the a priori NO2 profiles affect satellite retrievals of urban NO2. Several

scenarios are illustrated in Fig. 1. In each case the change in the AMF results because, over low albedo surfaces, a UV/visible

satellite spectrometer is less sensitive to near surface trace gases, necessitating a smaller AMF to account for the reduced

sensitivity. In Fig. 1a, the monthly average NO2 plume is shown as the grayscale gradient, to emphasize that it is static from

day to day. Most of the plume follows the prevailing wind direction (here, to the right), but because days with different wind25

directions are averaged together, there is some influence of the plume upwind of the city. Figure 1b shows a case where the

daily winds are similar to the monthly average. This leads to a similar NO2 plume as in the monthly average, but because we are

not averaging different wind directions, the upwind plume influence is removed (increasing the AMF, reflecting the reduction

in near-surface NO2) and conversely the downwind AMFs are slightly smaller, due to a slight increase in near-surface NO2

from not averaging in days when the wind direction is different. Figure 1c shows a case where the daily winds are faster than30

the average. Here the AMFs within the city need to be larger, as near-surface NO2 is being removed more efficiently and

transported downwind, where the AMFs must therefore be smaller. Finally, Fig. 1d has the wind change direction from the

monthly average. Left of the city must have smaller AMFs to account for the presence of the plume not seen in the monthly

average, and the opposite change occurs to the right.
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We combine the high spatial resolution a priori previously developed as part of the BErkeley High Resolution (BEHR)35

algorithm (Russell et al., 2011) with high temporal resolution to demonstrate the impact of day-to-day variations in the modeled

NO2 profiles on the calculated AMFs surrounding a major urban area such as Atlanta, GA, USA. Atlanta provides an example

of a strong NOx area source relatively isolated from other sources, with straightforward response of the day-to-day a priori

profiles to meteorological variables. Our point is not to derive exact answers for the size and frequency of the effects of daily

profiles, but rather to illustrate that these effects are large enough that their role should be assessed in any future analysis5

that does attempt to interpret space-based remote sensing of NOx. We show that the variability in the a priori profiles is

largely due to changes in wind speed and direction. We first consider the effects of day-to-day variations in a priori profile on

AMFs for the region surrounding Atlanta for a fixed grid of OMI pixels, simplifying day-to-day comparisons. We then fully

implement 91 days of retrieval to examine the effect on both day-to-day and monthly average NO2 columns. Finally, we apply

the exponentially-modified Gaussian (EMG) fitting method of Lu et al. (2015) to the new retrieval and show that the spatial10

and temporal resolution of the a priori profiles can significantly alter the derived emission rate and lifetime.

2 Methods

2.1 The Ozone Monitoring Instrument

The Ozone Monitoring Instrument (OMI), onboard the Aura satellite, is a polar-orbiting, nadir-viewing, UV/visible spec-

trometer with a swath width of 2600 km and a pixel size at nadir of 13× 24 km2. It observes backscattered solar radi-15

ation in the range of 270–500 nm with an average spectral resolution of 0.5 nm. (Levelt et al., 2006). It has a continu-

ous data record since 1 Oct 2004, with global daily coverage for the first ∼ 3 years of operation. Since 25 June 2007,

anomalous radiances have been observed in several of the pixel rows. These have been classified as the “row anomaly”

(http://projects.knmi.nl/omi/research/product/rowanomaly-background.php). As of 5 July 2011, one-third of OMI pixels are

flagged as affected by the row anomaly, indicating that data from these pixels should not be used. Using only the pixels unaf-20

fected by the row anomaly, it takes two days to observe the entire globe. There are two publicly available global NO2 products,

the KNMI DOMINO product (Boersma et al., 2011) and the NASA Standard Product (Bucsela et al., 2013).

2.2 BErkeley High Resolution (BEHR) Retrieval

The BEHR retrieval is described in detail in Russell et al. (2011), and updates are described on the BEHR website (http://behr.

cchem.berkeley.edu/Portals/2/Changelog.txt). The product is openly available for download at http://behr.cchem.berkeley.edu/.25

Briefly, the BEHR retrieval is based on the NASA Standard Product v2 (SP v2) retrieval (Bucsela et al., 2013). The total slant

column densities (SCDs) are from OMNO2A v1.2.3 (Boersma et al., 2002; Bucsela et al., 2006, 2013), and have been recently

evaluated by van Geffen et al. (2015) and Marchenko et al. (2015). The stratospheric subtraction and destriping used is that

of the NASA SP v2 retrieval. The tropospheric AMF is then recalculated similarly to the AMF formalism described in Palmer

et al. (2001). Clear and cloudy AMFs are calculated as shown in Eq. (2). p represents the vertical coordinate as pressure. w(p)30
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represents scattering weights derived from the NASA SP v2 look up table. g(p) represents the mixing ratio NO2 a priori profile

taken from WRF-Chem, simulated at 12 km resolution in the published BEHR product. p0 represents the surface pressure

(clear sky AMF) or cloud pressure (cloudy AMF) of the satellite pixel, and ptp the tropopause pressure. The cloud pressure

is that provided in the NASA SP v2 product, and is retrieved using the OMI O2-O2 cloud algorithm (Acarreta et al., 2004;

Sneep et al., 2008; Bucsela et al., 2013). A static tropopause pressure of 200 hPa is used. psurf in Eq. (3) is the terrain surface

pressure. The integration is carried out using the scheme described in Ziemke et al. (2001) which allows integration of mixing5

ratio over pressure.

AMF=

ptp∫
p0

w(p)S(p) dp (2)

where

S(p) =
1∫ ptp

psurf
g(p) dp

g(p) (3)

The scattering weights, w(p), depend on the viewing geometry, surface albedo, and terrain pressure altitude. The BEHR al-10

gorithm uses the 0.05◦×0.05◦ combined MODIS MCD43C3 black-sky albedo product and a surface pressure derived from the

Global Land One-km Base Elevation project database (http://www.ngdc.noaa.gov/mgg/topo/globe.html; Hastings and Dunbar

1999) with a 7.4 km scale height as inputs to the clear sky scattering weights. Cloudy scattering weights treat the cloud pressure

as the surface pressure and use an assumed cloud albedo of 0.8 (Stammes et al., 2008; Bucsela et al., 2013). The final AMF

is computed as the cloud radiance fraction (frad) weighted average of the clear and cloudy AMFs (Eq. 4). The cloud radiance15

fraction is taken from the SP v2 data product (Bucsela et al., 2013).

AMFtotal = fradAMFcloudy +(1− frad)AMFclear (4)

Calculating clear and cloudy AMFs and using the weighted average to compute the final AMF is consistent with the OMI

algorithm theoretical basis document (Boersma et al., 2002) and yields only the visible NO2 column as the final product; the

visible column is the value provided in the BEHRColumnAmountNO2Trop field. A scaling factor is provided in the BEHR20

product for users who wish to include the ghost column. This factor, G, is computed as:

G=
Vsurf

(1− fgeo)Vsurf + fgeoVcld
=

∫ ptp

psurf
g(p) dp

(1− fgeo)
∫ ptp

psurf
g(p) dp+ fgeo

∫ ptp

pcld
g(p) dp

(5)

where Vsurf and Vcld are the modeled vertical column densities above the ground surface and cloud, respectively, and which

are obtained by integrating the a priori profile above the surface or cloud pressure. fgeo is the geometric cloud fraction included

in the NASA standard product, which is the OMI O2-O2 cloud product (Acarreta et al., 2004). This factor is stored in the25
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BEHRGhostFraction field of the BEHR product. Multiplying the VCDs stored in BEHRColumnAmountNO2Trop by these

values will provide the estimated total (visible + ghost) column.

The results obtained in this work use the visible columns only. The ghost column is not added in for any of the following

results.

2.3 WRF-Chem

Modeled NO2 a priori profiles are simulated using the WRF-Chem model v3.5.1 (Grell et al., 2005). The domain is 81 (east-

west) by 73 (north-south) grid cells centered on 84.35° W, 34.15° N on a Lambert Conformal map projection (approximate

edges of the domain are 89.5° W–79.2° W and 30.3° N–38° N). Meteorological initial and boundary conditions are driven5

by the North American Regional Reanalysis (NARR) dataset. Anthropogenic emissions are taken from the National Emissions

Inventory 2011 (NEI11) and scaled to 88.9% to account for 2011–2013 NOx reductions (EPA, 2016); total emissions of NO

for the domain are approximately 3.1× 106 kg NO day−1. The MEGAN model (Guenther et al., 2006) is used to determine

biogenic emissions. Chemical initial and boundary conditions for the domain are obtained from the MOZART chemical model

(Emmons et al., 2010). The RACM2 (Goliff et al., 2013) and MADE-SORGAM schemes are used to simulate gas-phase and10

aerosol chemistry respectively; the RACM2 scheme is customized to reflect recent advancements in understanding of alkyl

nitrate chemistry using Browne et al. (2014) and Schwantes et al. (2015) as a basis. Lightning NOx emissions were inactive.

The model is run from 27 May to 30 August, 2013. Similar to Browne et al. (2014), the five day period 27–31 May is treated

as a spin up period, thus we use 1 June to 30 August as our study time period. Model output is sampled every half hour; the

two output files from the same hour (e.g. UTC 1900 and 1930) are averaged to give a single hourly set of profiles. These hourly15

NO2 profiles are used as the a priori NO2 profiles in the BEHR retrieval (Section 2.2). To produce monthly average profiles,

each hourly profile is weighted according to Eq. (7), where l is the longitude of the profile and h is the hour (in UTC) that WRF

calculated the profile for. The weights are clamped to the range [0,1]. These are used as the weights in a temporal average over

the month in question. This weighting scheme gives higher weights to profiles closest to the OMI overpass time around 1330

local standard time.20

wl = 1− |13.5− (l/15)−h| (6)

wl ∈ [0,1]

The weighting scheme in Eq. (7) was chosen over simply using the model output for 1400 local standard time for each

longitude to create smooth transitions between adjoining time zones. This attempts to account for the day-to-day variability in

OMI overpass tracks as well as the fact that pixels on the edge of a swath can be observed in two consecutive overpasses at25

different local times. More detail is given in the supplement.

A spatial resolution of 12 km is used as the high spatial resolution a priori. To determine the effect of coarser spatial

resolution, the model is also run at 108 km resolution. At 12 km resolution, profiles are spatially matched to OMI pixels by

averaging all profiles that fall within the pixel bounds. At 108 km resolution, the profile closest to the pixel is used. When using
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daily profiles, they are temporally matched by identifying those closest to the scan time defined in the Time field of the NASA30

SP v2 data product.

2.4 Implementation of daily profiles

Two retrievals are used to study the effects of incorporating daily a priori profiles in the BEHR algorithm. The first is what we

term a “pseudo-retrieval.” To create this retrieval, an 11× 19 (across × along track) subset of pixels from OMI orbit 47335

centered on the pixel at 84.2513◦ W and 33.7720◦ N is used to provide the pixel corners, solar and viewing zenith and azimuth

angles, terrain pressure, and terrain reflectivity. This swath places Atlanta near the nadir view of the OMI instrument (therefore5

providing pixels with good spatial resolution) while also remaining outside the row anomaly. This same subset of pixels is

used for all days in the pseudo-retrieval. Cloud fractions are set to 0 for all pixels to consider clear-sky AMFs and simplify the

pseudo-retrieval. AMFs are calculated for this subset of pixels with WRF-Chem NO2 profiles from 1 June to 30 Aug 2013 in

Eq. (2). This pseudo-retrieval will allow a simplified discussion of the effects of daily a priori profiles by:

1. Using a fixed set of OMI pixels. Because OMI pixels do not align day-to-day, using each day’s true pixels makes a10

day-to-day comparison more difficult to see. In this pseudo-retrieval, that is alleviated.

2. Using a fixed set of OMI pixels also keeps the scattering weights (w(p) in Eq. 2) constant as the parameters that the

scattering weights depend on (solar and viewing zenith angles, relative azimuth angles, terrain albedo, and terrain height)

are fixed.

3. Setting cloud fractions to 0 ensures that the AMF for every pixel is calculated with the full a priori profile, rather than15

just the above cloud part. Day-to-day variations in cloud fraction also lead to large changes in AMF because the presence

of clouds changes both the scattering weights (due to high assumed reflectivity of clouds and smaller effective surface

pressure compared to ground) while also obscuring the NO2 profile below the cloud.

Essentially, the pseudo-retrieval is a idealized experiment in which we hold all other variables except the a priori profile

constant to compute the theoretical magnitude of the effect of using daily a priori profiles on the AMF. It will be used in Sect.20

3.1 to demonstrate the effect of incorporating daily a priori profiles. The daily a priori profiles are also implemented in the full

BEHR retrieval (no longer using a fixed set of pixels or forcing cloud fractions to 0) to determine the impact of including daily

a priori profiles on the VCDs in a realistic case. When averaging in time, all pixels are oversampled to a 0.05◦× 0.05◦ grid.

The contribution of each pixel is weighted by the inverse of its area.

2.5 Evaluation of exponentially-modified Gaussian (EMG) fits25

Lu et al. (2015) and Valin et al. (2013) used NO2 data from the DOMINO retrieval to study NOx emissions and lifetime from

space, accounting for the effects of wind speed variation. To evaluate the impact of the a priori resolution on methods such as

these, a similar procedure to fit an exponentially modified Gaussian function to NO2 line densities is used. The surface wind

direction and speed are calculated as the average of the first five layers (∼ 500 m) of the 9 WRF 12 km grid cells closest to
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Atlanta at 1400 local standard time for each day. WRF wind fields are given relative to the model grid; however, the x and

y coordinates of the grid do not correspond directly to longitude and latitude. Therefore, the wind fields must be transformed

from grid-relative to earth-relative (http://www2.mmm.ucar.edu/wrf/users/FAQ_files/Miscellaneous.html) as:

Uearth = Umodel× cos(α)−Vmodel× sin(α) (7)

Vearth = Vmodel× cos(α)+Umodel× sin(α) (8)5

where U and V are the longitudinal and latitudinal wind fields, and cos(α) and sin(α) are outputs from WRF as the variables

COSALPHA and SINALPHA.

As in Valin et al. (2013), the satellite pixels are rotated so that wind direction (and therefore NO2 plumes) for each day lie

along the x-axis. Pixels affected by the row anomaly or with a cloud fraction > 20% are removed. Pixels within 1◦ upwind and

2◦ downwind are gridded to 0.05◦× 0.05◦ and integrated across 1◦ perpendicular to the x-axis. This produces line densities,10

which are a one-dimensional representation of the NO2 concentration at various distances downwind of the city. Three a priori

sets are used to create the retrievals used in this section: coarse (108 km) monthly average, fine (12 km) monthly average, and

fine (12 km) daily profiles.

We use the form of the EMG function described in Lu et al. (2015) to fit the calculated NO2 line densities, after expanding

the definition of the cumulative distribution function:15

F (x|a,x0,µx,σx,B) =
a

2x0
exp

(
µx

x0
+
σ2
x

2x2
0

− x

x0

)
erfc

(
− 1√

2

[
x−µx

σx
− σx
x0

])
+B (9)

where erfc is the error function complement, i.e. erfc(x) = 1−erf(x). F (x|a,x0,µx,σx,B) serves as an analytical function

that can be fitted to the observed line densities. We find the values of a, x0, µx, σx, and B that minimize the sum of squared

residuals between F (x|a,x0,µx,σx,B) and the line densities, NO2(x):

Resid(a,x0,µx,σx,B) =
∑
x

(F (x|a,x0,µx,σx,B)−NO2(x))
2 (10)20

Eq. (10) is minimized using an interior-point algorithm, finding the values of a, x0, µx, σx, and B that best fit the line

densities. The values of a, x0, µx, σx, andB have physical significance and so their optimum values yield information about the

NOx emission and chemistry occurring within the plume (Beirle et al., 2011; de Foy et al., 2014; Lu et al., 2015). Specifically:

– a describes the total amount of NO2 in the plume (referred to as the burden)

– x0 is the distance the plume travels in one lifetime, τ . It relates to τ by x0 = τ ×w, where w is wind speed.25

– ux describes the effective center of the emission source. In the supplement to Beirle et al. (2011), it is represented by X

which is the point at which exponential decay of the NO2 plume begins.
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– σx is the standard deviation of the Gaussian component of the EMG function. Lu et al. (2015) terms this a “smoothing

length scale,” which describes smoothing of the data due to the spatial resolution and overlap of OMI pixels (Boersma

et al., 2011). It can also be thought of as capturing effects of both the spatial extent of emissions and the turbulent wind30

field.

– B is the background line density.

For each parameter, uncertainty from the fitting process itself is computed as the 95% confidence interval calculated using

the standard deviation obtained from the fitting process. This is combined in quadrature with 10% uncertainty due to across

wind integration distance, 10% uncertainty due to the choice of wind fields, and 25% uncertainty from the VCDs, similar

to Beirle et al. (2011) and Lu et al. (2015). Technical details of the EMG fitting and uncertainty calculation are given in the5

supplement.

3 Results

3.1 Daily variations

Fig. 2 shows the average wind and modeled NO2 columns for June 2013, and the AMF values for the psuedo-retrieval around

Atlanta, GA, USA. Atlanta was chosen as the focus of this study because it represents a strong NOx source relatively isolated10

from other equally large sources. This ensures that changes to the a priori profiles on a daily basis can be attributed to a local

cause. The prevailing wind pattern advects NO2 to the northeast of Atlanta (the location of Atlanta is marked by the star), as

can be seen in the wind field shown in Fig. 2b and the WRF-Chem NO2 columns in Fig. 2c. The average surface wind speed

over Atlanta for June is 5.0 m/s. This distribution of NO2 leads directly to the lower AMFs seen to the northeast of Atlanta in

Fig. 2d through Eq. (2).15

To illustrate the effect of incorporating daily a priori profiles into the retrieval, we consider two days: 18 and 22 June 2013.

These provide an illustration of the effect of changes in both wind speed and direction. Figure 3a–c shows the result from im-

plementing the daily profiles for 22 June. On this day, the winds over Atlanta blow out of Atlanta to the northwest, with a speed

at the surface of 4.5 m/s. This is similar to the monthly average speed (5.0 m s−1) but are rotated 90◦ counterclockwise com-

pared with the monthly average. The change in direction results in much greater near-surface NO2 to the northwest compared20

to the monthly average (Fig. 3b) as the wind direction advects NO2 into an area with low NO2 in the monthly average.

Figure 3c shows that the greater near-surface NO2 to the northwest results in lower AMFs than average (red), while the

opposite is true to the east (blue). The greater near-surface NO2 in profiles to the northwest weights S(p) in Eq. (2) more

heavily towards lower altitudes, where w(p) is less, thus decreasing the overall AMF by ∼15%. The increase in AMFs to the

east reflects the inflow of cleaner air from the shift in winds. This reduces near-surface NO2 and increases the weight of higher25

altitudes of S(p), increasing the AMFs by ∼10–35% (the colorbar saturates at ±25% to make the decrease to the northwest

easier to see).
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Wind speed also plays an important role in determining the a priori profile shape through transport and chemistry. Fig. 3d–f

shows results from 18 June, where the wind speed over Atlanta averaged 9.1 m/s. This results in faster advection away from

emission sources, with 10–15% increases in modeled NO2 columns to the west as the plume is driven east more strongly. The

greatest decreases in AMF (and thus increases in VCD) are as much as −13% and occur between 84◦ and 83◦ W where the

increased wind speed has advected the NO2 plume farther than the average. There is also a 2–13% increase along the east edge

of Atlanta, resulting from the shift of the plume center east.5

When the change in AMF from using the hybrid daily a priori profiles is averaged over the full time period studied (1 June–

30 Aug), the percent change in AMF is on average +3.6% throughout the domain with a maximum of +9.8%. All pixels show a

positive change. This occurs because 77% of the daily profiles have less NO2 than the corresponding monthly average profile,

as most pixels will be upwind from the city on any given day and will see a decrease in NO2 when upwind and downwind days

are no longer averaged together. This reduces the denominator in Eq. (3) and increases the contribution of upper tropospheric10

scattering weights to the AMF. Scattering weights increase with altitude; therefore, this results in a systematic increase of the

AMF throughout the domain for the pseudo-retrieval.

We also consider the relative importance of day-to-day changes in the boundary layer of the a priori profiles versus day-to-

day changes in the free troposphere of the a priori profiles by running the pseudo-retrieval with a set of hybrid daily profiles

that only include day-to-day variability below 750 hPa and use a monthly average profile above that. The changes in AMFs15

using these hybrid profiles versus monthly average profiles are very similar to those observed when using the full daily profiles.

In general, the hybrid profiles has a slightly greater average increase in AMFs (+3.2% vs. +2.7%) and slightly less extreme

changes, but the overall distribution of changes in AMFs is very similar. From this, we can conclude that changes in the

boundary layer of the a priori profiles are the dominant reason for changes to the AMFs. However, the WRF-Chem simulations

used to produce the a priori profiles did not include lightning NOx, so this should be considered a lower bound for the effect20

of day-to-day changes in the free troposphere. The detailed comparison is described in the supplement.

3.2 Effects on retrieved vertical column densities in full retrieval

To determine the effect the inclusion of daily a priori profiles has on the final retrieved vertical column densities (VCDs), the

daily profiles were implemented in the full BEHR retrieval. Effects on individual days and multi-month average VCDs are

presented here. The cities of Birmingham, AL, USA and Montgomery, AL, USA are included to demonstrate that this effect25

is significant for cities of various sizes. Atlanta, GA, USA is the largest with approximately 5.7 million people, followed by

Birmingham, AL, USA with 1.1 million, and Montgomery, AL, USA with 374,000 (United States Census Bureau).

Table 1 describes how frequently significant changes in the retrieved VCD occur for pixels within 50 km of Atlanta, Birm-

ingham, and Montgomery. Changes are considered significant by two different criteria. First, we consider the global mean

clear-sky uncertainty from Bucsela et al. (2013). As we are modifying the a priori profiles, and thus potentially the uncertainty30

associated with the choice of profiles, this gives us a fixed value to compare against. Second, we use the quadrature sum of

uncertainties from spectral fitting (0.7× 1015 molec. cm−2, Boersma et al. 2007, 2011), stratospheric separation (0.2× 1015

molec. cm−2, Bucsela et al. 2013), and AMF calculation (20%, Bucsela et al. 2013), assuming that these are independent
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and so can be added in quadrature (Boersma et al., 2004). We consider the fraction of days with at least one pixel exhibiting

a significant change in VCD (rather than the fraction of pixels) because the main NO2 plume may only fall within a small

number of pixels. Up to 54% of days exhibit changes in the VCDs greater than 1× 1015 molec. cm−2, and up to 43% exhibit5

changes greater than the quadrature sum of uncertainties. This indicates that when considering individual daily measurements,

a considerable fraction of days with any valid pixels would have biases in the retrieved VCDs above the uncertainty due to the

temporal resolution of the a priori NO2 profiles.

For both significance criteria, Table 1 also indicates that Birmingham and its surrounding area exhibits the largest and most

frequent changes when using a daily a priori profile. Figure 4a shows the NO emissions throughout this domain. Birmingham10

has the second largest NOx emission rate, after Atlanta, while Montgomery has the smallest of the three cities considered. We

note that the largest changes are not associated with the city with the greatest NOx emissions. Both Atlanta and Birmingham

fall entirely within the NOx suppressed regime in the model, so the larger changes in Birmingham are not because NOx

chemistry transitions between the NOx suppressed and NOx limited regimes. Instead, the magnitude of these changes is due to

Birmingham’s intermediate size, where significant NO2 is present, but emission occurs over a small enough area that changes15

in wind direction can significantly affect NO2 concentration at a short distance from the source. When considering changes

to be significant if they exceed 1× 1015 molec. cm−2, Montgomery has the least frequent significant changes because it has

the smallest VCDs, so a change to the AMF needs to be rather large to produce a significant change in the VCD by this

metric, since the AMF is a multiplicative factor. When considering the quadrature sum of errors as the significance criterion,

Montgomery and Atlanta both demonstrate significant changes ∼ 20% of the time.20

Implementing the daily profiles also changes the average VCDs, in addition to the day-to-day changes in VCDs discussed

above. Figure 4b shows the changes in VCDs averaged over the period studied. The largest decrease around Atlanta is to the

northeast, along the direction that the monthly average model results placed the NO2 plume, but clear decreases can also be

seen to the northwest and southwest. In these directions, a systematic decrease of up to 8% (4×1014 molec. cm−2) is observed.

Although this change is small, it is expected to be systematic. Statistically, a pixel’s a priori profile is more likely to have less25

surface NO2 when different wind directions are no longer averaged in, thus decreases in the VCD when using a daily a priori

profile are more common.

Greater relative changes are observed around the smaller cities of Birmingham (down to −12.9%, 5× 10−14 molec. cm−2)

and Montgomery (down to −13%, 4× 10−14 molec. cm−2). This appears to be due primarily because the areas of emissions

are smaller which makes shifts in wind direction have a greater average relative effect on the plume shape.30

We also compare this average change to the measurement uncertainty. The uncertainty due to random errors in the retrieval

should reduce as the square root of the number of observations, but delineating random and systematic errors in the retrieval

is challenging (Boersma et al., 2004). The most optimistic approach assumes that the global average uncertainty of 1× 1015

molec. cm−2 (Bucsela et al., 2013) can be treated entirely as random error, and can be reduced by
√
40 for the number

of observations (not impacted by clouds or the row anomaly), to a lower bound of ∼ 1.6× 1014 molec. cm−2. Most of the

changes near the three cities exceed this lower limit. More realistically, the spectral fitting and stratospheric uncertainty may

be considered largely random, but only part of the error in the AMF calculation is random, due to spatial or temporal auto-
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correlation in the models or ancillary products (Boersma et al., 2004). For simplicity, we assume that the spectral fitting and

stratospheric subtraction errors are entirely random, while only half of the error in the AMF is random. This reduces the error5

from
√
(0.7× 1015)2 +(0.2× 1015)2 +(20%)2 to

√
(0.11× 1015)2 +(0.03× 1015)2 +(11.6%)2. Only the largest changes

near Birmingham and Montgomery exceed this threshold. This more conservative estimate suggests that the changes in av-

erages are primarily important for smaller or very geographically concentrated cities, where wind direction can have a large

effect. Nevertheless, larger cities may exhibit important changes as well.

Unlike the pseudo-retrieval, where we only allowed the a priori profiles to vary day-to-day and clouds were set to zero,10

there is a some spatial structure to these average changes. This is primarily a statistical phenomenon. We use only pixels with

cloud fraction < 20%, which reduces the number of pixels in the average. Within this subset, the wind blows to the southeast

out of Atlanta more frequently than other directions; so the increases due to properly accounting for the presence of surface

NO2 average with the more typical decreases to give a small average change. The other directions exhibit the expected average

decrease in VCDs due to the average increase in AMFs discussed in section 3.1. We expect that over longer periods of time all15

directions would see a 2–6% decrease in the average VCDs.

4 Discussion

4.1 Importance of model uncertainty

WRF-Chem has generally been found to reproduce wind fields, especially above 2 m s−1 (Tie et al., 2007; Zhang et al.,

2009), and spatial variability of trace gases (Follette-Cook et al., 2015) well. Nevertheless, a natural concern when modeling20

daily NO2 profiles for satellite retrievals is the accuracy of the plume location. We, however, note that the transition from

monthly average to daily profiles does not necessarily result in increased model uncertainty, but rather a change in the type of

uncertainty.

When using monthly average profiles, the uncertainty in the modeled NO2 concentrations compared to the true mean will be

reduced (assuming at least some component of the error is random in nature), but the true day-to-day variability not captured25

by the monthly average effectively becomes a new error term. In contrast, when using daily profiles, the random model error

is not reduced, but the day-to-day variability is also not averaged out. Ideally, the error in a set of daily profiles will manifest

as deviation from the true set of profiles for that day, rather than the monthly profiles’ smaller deviation from a mean set of

profiles that itself may not represent any single day.

An important step in managing the uncertainty in the daily profiles is to constrain the modeled meteorology with obser-30

vations or reanalysis datasets. By default, meteorology in WRF is constrained via initial and boundary conditions only. With

larger domains and longer runs, further constraints using four-dimensional data assimilation (FDDA, Liu et al. 2006) and/or

objective analysis (Follette-Cook et al., 2015; Wang et al., 2014; Yegorova et al., 2011), possibly combined with periodic model

reinitialization (Otte, 2008) are strongly recommended.
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4.2 Effects on space-based lifetime and emissions constraints

Recently several authors have used wind-sorted satellite NO2 observations to probe NOx chemistry and emissions from space

(Beirle et al., 2011; Valin et al., 2013; de Foy et al., 2014; Lu et al., 2015; Liu et al., 2016). We apply the EMG fitting method

of Lu et al. (2015) to NO2 line densities derived from NO2 columns retrieved using the daily and monthly average a priori

profiles, as well as a monthly average profile simulated at 108 km resolution for both Atlanta and Birmingham. To match the5

method of Lu et al. (2015) as closely as possible, we use 3 m s−1 as the division between slow and fast winds.

We acknowledge that a 91 day averaging period is significantly shorter than those used in Beirle et al. (2011), Valin et al.

(2013), or Lu et al. (2015) (5 years, summer half-year for 7 years, and summer half-year for 3 year periods, respectively).

However, since the goal of this section is to compare the results obtained using three different sets of a priori profiles with all

other variables equal, we believe that 91 days is sufficient for this purpose.10

Additionally, we do not include days around Atlanta in which the wind blows towards the southeast (specifically 0◦ to

-112.5◦, 0◦ is defined as east, negative values are clockwise from east). Significant suburban NO2 columns near 83.5◦ W, 33◦

N add a secondary maximum to the line densities which can erroneously lengthen the decay time of the fit. All wind directions

are used for Birmingham.

Accounting for the spatial and temporal variability of NO2 in the a priori profiles leads to several notable changes in the line15

densities and the resulting EMG fits. Figure 5 shows the line densities and the corresponding EMG fits around Atlanta for the

average over the 91 day study period. Table 2 enumerates the values obtained for the fitting parameters in Eq. (9) for the fits of

the Atlanta NO2 plume in Fig. 5 and fits for the Birmingham NO2 plume (not shown).

The spatial scale of the a priori makes the greatest difference to the maximum value of the line density, causing a significant

increase in a when the spatial resolution of the a priori profiles increases from 108 km to 12 km. This reflects the impact of the20

blurring of urban and rural profiles described in Russell et al. (2011).

Both the spatial and temporal resolution impact the determination of x0, the distance traveled in one lifetime. This parameter

is determined at fast wind speeds (Lu et al., 2015; Valin et al., 2013), so we consider only the results for wind speed ≥ 3.0 m

s−1. For Atlanta, using a daily a priori results in an x0 value 30% greater than that obtained using a monthly average profile at

the same spatial resolution (12 km). The same comparison for Birmingham shows a 66% increase in x0 between the monthly25

and daily 12 km a priori.

µx represents the apparent center of the NO2 plume relative to the geographic center of the city. This moves downwind

(positive) when changing from the monthly average 12 km or 108 km a priori to the daily 12 km a priori. This reflects the

ability of the daily a priori to capture how the wind distorts the plume shape.

σx is the Gaussian smoothing length scale, representing both the width of the upwind Gaussian plume and smoothing of30

the NO2 signal due to the physical extent of the source, the averaging of NO2 within one OMI pixel, and daily variability in

the overpass track (Beirle et al., 2011). There is a slight decrease when going from a monthly average to daily profiles, which

reflects the general increase in upwind AMFs (i.e. compare Fig. 1a and 1b), but because this is outside of the main NO2 plume,

the effect is small.
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Finally,B is the background line density. Ideally, it is derived sufficiently far from any NOx sources that spatial and temporal

variability should be minimal. Indeed, in both fast wind cases no change is observed. When considering slow winds there is a

∼ 25% increase when improving the spatial resolution of the a priori profiles. This is likely attributable to the general increase

in urban signal discussed several times so far pulling the edges of the line density upward. However, a greater selection of cities5

is necessary to demonstrate this more conclusively.

Ultimately, the goal of this method is to extract information about chemically relevant quantities such as emission rate and

lifetime. Since de Foy et al. (2014) and Valin et al. (2013) showed that choice of wind speed bins affects the values obtained,

we also consider if the effect of implementing the daily a priori profile changes if the observations are binned by different wind

speed criteria. Table 3 compares the values of the NOx emission rate, E, and effective lifetime, τeff , derived from different10

wind speed bins for Atlanta and Birmingham. Restricting the analysis to days with wind speed greater than 5 m s−1 results in

too few days for a meaningful analysis around Atlanta (due to the need to remove days with winds to the southeast), so results

for Atlanta are restricted to ≥ 3 m s−1 and ≥ 4 m s−1 only.

τeff and E are each computed from several of the EMG fitting parameters. τeff depends on x0 and w (the mean wind speed)

through Eq. (11):15

τeff =
x0

w
(11)

E depends on a, x0, and w through Eq. (12):

E = 1.32× a×w
x0

= 1.32× a

τeff
(12)

where the factor of 1.32 accounts for the NOx:NO2 ratio throughout the tropospheric column (Beirle et al., 2011).

Both Valin et al. (2013) and de Foy et al. (2014) show that lifetime should decrease at faster wind speeds. We see this trend20

for Birmingham but not Atlanta. de Foy et al. (2014) also saw that, for a chemical lifetime of 1 h, greater derived emissions

were found at faster wind speeds. This is also better seen in our results for Birmingham than Atlanta. Previous measurements

of NOx lifetime in urban plumes average 3.8 h and range from 2-6 h (Beirle et al., 2011; Ialongo et al., 2014; Nunnermacker

et al., 1998; Spicer, 1982), and, using the EMG method, Lu et al. (2015) saw effective lifetimes between 1.2 and 6.8 h. The

lifetimes we calculate are at the low end of the previously observed ranges. However, this is similar to the instantaneous lifetime25

of 1.2± 0.5 h and 0.8± 0.4 h calculated from the WRF-Chem model for days in June 2013 with wind speed ≥ 3 m s−1 and

grid cells within 50 km of Atlanta and Birmingham, respectively (see the supplement for the calculation details).

The differences in the lifetimes and emissions derived using the daily and monthly 12 km a priori profiles are systematic.

In all cases, the lifetime derived using the daily profiles is 30–50% longer. When using monthly average a priori profiles,

profiles resulting from different wind directions are averaged together. The AMFs calculated from these profiles thus reflect30

the average distance from the city the plume reaches in a given direction, e.g. east of the city, with smaller AMFs near the city

and greater AMFs more distant (Fig. 1). In this hypothetical example, when the wind blows to the east, the spatial extent of

15



the plume is underestimated because the average AMFs towards the end of the plume will be too large, so the VCDs will be

too small by Eq. (1). On days when the wind does not blow east, the reverse is true: the plume extent is overestimated because

the AMFs nearer to the city are too small (Fig. 1d). If one considers a simple average change in the VCDs, these two errors

will partially cancel and we will see the average change from Sect. 3.2. However, in the EMG fitting approach, these errors do

not cancel at all because the EMG method both rotates the NO2 plumes so that the wind directions align before calculating

the line densities and systematically selects fast winds to determine τeff , so we are always dealing with the first case and the

plume extent is always underestimated. In the EMG fit, this manifests as a too short lifetime. As the emissions are inversely5

proportional to lifetime (Eq. 12), emissions derived using the monthly 12 km a priori profiles will be too great. Therefore, when

using a retrieval with a priori profile at fine spatial resolution, daily temporal resolution of the a priori profiles is necessary to

prevent underestimating the lifetime. Further, the spatial resolution of the a priori profiles has a large impact on the magnitude

of the derived emissions. To reduce the systematic biases in emissions and lifetime from the choice of a priori profile, it is

necessary to simulate these profiles at fine spatial and daily temporal resolution.10

We also use 2-sample t-tests at the 95% confidence level (Harris, 2010) to determine if differences in emissions and lifetimes

given in Table 3 are significantly different among the results derived from using the three different a priori profile sets for a

given city and wind speed bin (i.e. we compare the three values of emissions derived using different a priori profiles for

Atlanta and wind speeds ≥ 3 m s−1). This found that, for emissions, the choice of a priori leads to statistically different

emissions for all five cases. For the derived lifetimes, in all cases the monthly 108 km and daily 12 km a priori are statistically15

indistinguishable, but the monthly 12 km a priori is statistically different. We note that a Durbin-Watson test indicates some

spatial autocorrelation remains, and so the uncertainty may be underestimated and the t-tests may be incorrectly identifying

the differences as significant in this case (Chatterjee and Hadi, 2012). Even if this is true, with a longer averaging period such

as those in Beirle et al. (2011), Valin et al. (2013), and Lu et al. (2015), we would expect the random uncertainties to reduce

while the systematic difference from the choice of a priori profile remains. Therefore, the choice of a priori profiles does have20

an important effect on derived emissions and lifetimes.

We also compare the derived emissions rates to the emissions in a 12 km WRF-Chem model driven by the NEI 11 emission

inventory with NOx emissions scaled to 88.9% of the 2011 values to account for the decrease between 2011 and 2013 (EPA,

2016). WRF-Chem emissions are calculated as the sum of all grid cells within a 50 km radius of the city. 50 km was chosen as

the line densities were integrated for ∼ 50 km to either side perpendicular to the wind direction. The coarse monthly a priori25

are 43–61% lower than the NEI-driven emissions, while emissions derived using daily 12 km a priori are within 5–24% (both

greater and less than the NEI emissions). Recent work (e.g. Travis et al. 2016 and references within) suggests that the NEI

inventory is overestimated by ∼ 50% using both satellite and in situ observations. Emissions derived using daily 12 km show

the best agreement to the current NEI inventory, and emissions derived using monthly 108 km a priori profile agree with the

NEI inventory reduced by 50%. Therefore, we cannot say which a priori profiles provide the best measurement of emissions30

by comparing to NEI. It is likely that emissions derived using the monthly 12 km a priori profiles are an overestimate, because

the systematically low lifetimes discussed above increase E through Eq. (12); that these emissions are consistently higher than

the NEI emission reinforces this likelihood. Conversely, we expect that emissions derived using the coarse monthly a priori
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profiles are biased low due to the known underestimate of urban NOx signals using coarse a priori (Russell et al., 2011). From

this, it is clear the choice of a priori profiles has a substantial impact on emissions derived from satellite observations, and that

both spatial and temporal resolution of the a priori profiles contribute to that difference. This explains why the OMI derived5

emissions from Lu et al. (2015) are lower that the bottom up NEI inventory, but needs to be reconciled with work by Travis

et al. (2016) which indicates that NEI is overestimated.

In summary, the two most important parameters (a and x0) and values derived from them (E, τeff ) are significantly affected

by the spatial and temporal resolution of the a priori. a is most affected by increasing the spatial resolution of the a priori, while

using daily profiles corrects a systematic bias in x0 when the profiles are simulated at high spatial resolution. E is affected10

by both the spatial and temporal resolution of the a priori profiles, increasing by ∼ 100% between the retrievals using coarse

monthly and fine daily a priori profiles. Therefore the use of daily a priori NO2 profiles at high spatial resolution significantly

alters the results obtained from fitting wind aligned retrieved NO2 columns with an analytical function.

5 Conclusions

We have demonstrated that incorporating daily NO2 a priori profiles simulated at sufficiently fine spatial scales to capture the15

spatial variation of an NO2 plume leads to significant changes in the final VCDs when compared to monthly average profiles

at the same spatial resolution. Changes to VCDs on a single day are up to 50% (relative) and 4×1015 molec. cm−2 (absolute).

This is attributable to changes in the direction of the NO2 plume. Up to 59% of days with valid observations exhibit changes in

VCDs > 1×1015 molec. cm−2 in at least one pixel. Additionally, the inclusion of daily profiles affects a systematic change in

time-averaged VCDs around Atlanta, GA, USA. Pixels downwind in the average exhibited VCD decreases up to 8% (4×101420

molec. cm−2). Larger relative changes of as much as −13% were found around the nearby cities of Birmingham, AL and

Montgomery, AL. Day-to-day variations in the free troposphere have a smaller impact on the value of the AMF, and average

out to no net change over the period studied. These results were obtained using WRF-Chem without lightning NOx emissions;

it is likely that the inclusion of lightning NOx would increase the magnitude of positive changes to the AMF due to the presence

of NO2 at altitude to which OMI is highly sensitive.25

When the methods of Lu et al. (2015) are applied to these prototype retrievals, significant changes in derived NOx emissions

are found, increasing by as much as 100% for Atlanta compared to emissions derived from a retrieval using coarse a priori

profiles. Using high spatial resolution, monthly average a priori profiles results in the highest derived emissions rates, followed

by high spatial resolution, daily a priori, with spatially coarse a priori leading to the lowest derived emissions. Emissions

derived using the fine daily a priori are within 25% of the bottom up number from the NEI inventory, a smaller reduction30

than that suggested by Travis et al. (2016). Future work will aim to resolve this difference. Lifetimes derived from satellite

observations using a spatially fine but monthly averaged a priori are systematically biased low due to the spatial pattern of

AMF imposed by such a priori; consequently, emissions derived using these a priori profiles are likely biased high. The use of

daily profiles at fine spatial resolution corrects this systematic bias.
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Having shown that the use of daily a priori NO2 profiles in the retrieval algorithm significantly alters emissions and lifetimes35

derived from this retrieval, we plan to implement such profiles for several years at the beginning and current end of the OMI

data record to investigate how NOx lifetimes have changed in urban plumes over the past decade. Such work can provide a

greater understanding of the most effective means of improving air quality in years to come, as it will allow us to determine

whether reductions in NOx or VOC emissions will provide the most benefit in ozone reduction.
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Figure 1. An illustration of the central issues that will be discussed in this paper. (a) The monthly average a priori profiles, shown as the

grayscale plumes. (b) A case when the daily wind is similar to the monthly average wind. (c) A case where the daily wind is significantly

faster than average, but blows in the same direction. (d) A case where the daily wind direction is different than average. The text below each

panel describes how the AMF derived from the daily profile would compare with those derived from the monthly a priori.
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Figure 2. Average conditions for June 2013. (a) The red box indicates the part of the SE US being considered. (b) Surface wind directions

from the WRF model; average wind speed is 5.0 m s−1 (min 1.7 m s−1, max 12.7 m s−1). (c) WRF-Chem tropospheric NO2 columns. (d)

AMFs for the pseudo-retrieval calculated using the average monthly NO2 a priori. The direction of the colorbar is reversed in (d), as small

AMFs correspond to high modeled VCDs. In all panels, the star (F) indicates the position of Atlanta. Longitude and latitude are marked on

the x- and y- axes, respectively.
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Figure 3. Results from 22 June (a–c) and 18 June (d–f). (a,d) WRF-Chem tropospheric NO2 columns for 1900 UTC. (b,e) The percent

difference in WRF-Chem tropospheric NO2 columns at 1900 UTC for that day vs. the monthly average. (c,f) Percent difference in AMFs

using hybrid daily profiles vs. the monthly average profiles in the pseudo-retrieval. In all panels, the star (F) indicates the position of Atlanta,

and the wind direction around Atlanta is shown by the arrow in the lower four panels. Longitude and latitude are marked on the x- and y-

axes, respectively.
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Figure 4. (a) 24 h average NO emissions from WRF-Chem at 12 km resolution. (b) The change in retrieved VCDs averaged over 1 June

to 30 Aug. Pixels with a cloud fraction > 20% or that are affected by the row anomaly are excluded from the average. The color scale is

reversed from Fig. 3c,f to reflect the inverse relationship between VCD and AMF. Longitude and latitude are marked on the x- and y- axes,

respectively, for both panels.
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Figure 5. Line densities around Atlanta, GA, USA averaged over the study period when using monthly average and daily a priori (open

circles), and the corresponding fits of exponentially-modified Gaussian functions (dashed lines). Black series are derived from a retrieval

using a monthly average a priori at 108 km resolution; red series from a monthly average a priori at 12 km resolution, and blue from the daily

profiles at 12 km resolution. (a) Average of days with wind speed ≥ 3.0 m/s. (b) Average of days with wind speed < 3.0 m/s.
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Percent of days with Percent of days with Min. change Max. change

∆VCD> 1× 1015 molec. cm−2 ∆VCD>
[∑

iσi

]1/2 (molec. cm−2) (molec. cm−2)

Atlanta 39% 23% −2.4× 1015 +2.5× 1015

Birmingham 54% 43% −3.8× 1015 +3.9× 1015

Montgomery 27% 20% −2.2× 1015 +1.9× 1015

Table 1. Statistics on the frequency and magnitude of changes in the retrieved VCDs using a daily vs. monthly average profile for pixels

with centers within 50 km of Atlanta, GA, USA (84.39◦ W, 33.775◦ N), Birmingham, AL, USA (86.80◦ W, 33.52◦ N) and Montgomery, AL,

USA (86.30◦ W, 32.37◦ N). The “percent of days” values are calculated as the number of days with at least one pixel in that subset with a

change greater than the given uncertainty divided by the number of days with at least one pixel unobscured by clouds or the row anomaly.

The uncertainty represented by
[∑

iσi

]1/2 is the quadrature sum of uncertainties from spectral fitting (0.7× 1015 molec. cm−2, Boersma

et al. 2007, 2011), stratospheric separation (0.2× 1015 molec. cm−2, Bucsela et al. 2013), and AMF calculation (20%, Bucsela et al. 2013).
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Wind ≥ 3.0 m/s Wind < 3.0 m/s

Monthly

108 km

Monthly

12 km

Daily

12 km

Monthly

108 km

Monthly

12 km

Daily

12 km

A
tla

nt
a

a (mol NO2) 1.8± 0.7× 105 4.± 2× 105 3.± 1× 105 1.5± 0.6× 105 4.± 1× 105 3.± 1× 105

x0 (km) 32± 13 26± 11 33± 14 23± 10 24± 10 24± 10

µx (km) −22.± 9 −20.± 8 −15.± 6 −20.± 8 −18.± 7 −17.± 7

σx (km) 23.± 9 30± 10 22.± 9 14.± 6 15.± 6 13.± 5

B (mol NO2 km−1) 4.± 2× 103 4.± 2× 103 4.± 2× 103 4.± 2× 103 5.± 2× 103 5.± 2× 103

B
ir

m
in

gh
am

a (mol NO2) 1.6± 0.5× 105 3.± 1× 105 4.± 1× 105 4.± 1× 105 3.± 1× 105 4.± 1× 105

x0 (km) 50± 20 30± 10 50± 20 220± 80 40± 10 70± 20

µx (km) −21.± 7 −24.± 8 −14.± 5 −50± 20 −27.± 9 −26.± 9

σx (km) 24.± 8 27.± 9 23.± 8 21.± 7 25.± 8 22.± 8

B (mol NO2 km−1) 4.± 1× 103 4.± 1× 103 4.± 1× 103 4.± 1× 103 5.± 2× 103 5.± 2× 103

Table 2. Values of the five fitting parameters for the EMG functions (Eq. 9) used to fit the distributions of line densities around Atlanta and

Birmingham. a represents the total NOx burden, x0 is the distance the plume travels in one lifetime, µx is the center of emissions relative to

the city center, σx describes the Gaussian smoothing, and B the background line density.
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Atlanta Birmingham

Wind speed bin Monthly

108 km

Monthly

12 km

Daily

12 km

Monthly

108 km

Monthly

12 km

Daily

12 km

E (Mg NOx h−1)

WRF-Chem NEI 13.74 10.49

≥ 3.0 6.± 4 16.± 9 11.± 7 4.± 2 10.± 6 8.± 5

≥ 4.0 6.± 3 17± 11 11.± 6 4.± 2 13.± 7 9.± 5

≥ 5.0 - - - 6.± 3 15.± 9 11.± 6

τ (h)

≥ 3.0 1.6± 0.7 1.3± 0.5 1.7± 0.7 2.5± 1.0 1.8± 0.7 2.6± 1.0

≥ 4.0 1.8± 0.7 1.2± 0.5 1.8± 0.7 2.1± 0.9 1.5± 0.6 2.2± 0.9

≥ 5.0 - - - 1.8± 0.7 1.3± 0.5 1.8± 0.7

Table 3. Values of the emission rates (E) and effective lifetime (τ ) obtained when the separation between slow and fast winds is set at 3,

4, and 5 m s−1. For comparison, the total NOx emission for all 12 km WRF-Chem grid cells within 50 km of each city is given. These

emissions are derived from NEI 11 and scaled to 88.9% to account for 2011–2013 reductions. Uncertainties calculated as described in the

supplement.
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