
Multi-model dynamic climate emulator for solar
geoengineering
Douglas G. MacMartin1 and Ben Kravitz 2

1Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY, USA and
Computing + Mathematical Sciences, California Institute of Technology, Pasadena CA, USA
2Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory,
Richland, WA, USA

Correspondence to: D. G. MacMartin (dgm224@cornell.edu)

Abstract. Climate emulators trained on existing simulations can be used to project the climate ef-

fects that would result from different possible future pathways of anthropogenic forcing, without

relying on general circulation model (GCM) simulations for every possible pathway. We extend this

idea to include different amounts of solar geoengineering in addition to different pathways of green-

house gas concentrations by training emulators from a multi-model ensemble of simulations from5

the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt

4×CO2 and a compensating solar reduction simulation (G1), and evaluated by comparing predic-

tions against a simulated 1% per year CO2 increase and a similarly smaller solar reduction (G2).

We find reasonable agreement in most models for predicting changes in temperature and precipi-

tation (including regional effects), and annual-mean Northern hemisphere sea ice extent, with the10

difference between simulation and prediction typically smaller than natural variability. This verifies

that the linearity assumption used in constructing the emulator is sufficient for these variables over

the range of forcing considered. Annual-minimum Northern hemisphere sea ice extent is less-well

predicted, indicating the limits of the linearity assumption. For future pathways involving relatively

small forcing from solar geoengineering, the errors introduced from nonlinear effects may be smaller15

than the uncertainty due to natural variability, and the emulator prediction may be a more accurate

estimate of the forced component of the models’ response than an actual simulation would be.

1 Introduction

Climate emulators have been used extensively to provide projections of climate changes for differ-

ent anthropogenic forcing trajectories. These are trained based on a limited number of simulations20

with General Circulation Models (GCMs) and allow interpolation of climate response for a much

broader set of trajectories, trading the fidelity of a GCM simulation for computational efficiency. A

similar approach could in principle be undertaken for projections of the climate effects from solar

geoengineering. Various solar geoengineering approaches have been suggested for intentionally in-
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fluencing Earth’s radiation budget, such as the injection of aerosols into the stratosphere (see, e.g.,25

National Academy of Sciences, 2015). It is possible that such approaches may be considered in

the future for reducing some amount of climate damages. However, any climate model simulation

of geoengineering necessarily corresponds to some specific scenario, such as offsetting all of the

global-mean-temperature change from other anthropogenic forcing, (as in GeoMIP; Kravitz et al.,

2011). It is therefore useful to develop emulators that can use existing simulations in order to pre-30

dict climate consequences both for different future trajectories of greenhouse gas forcing and for

different possible choices regarding the level of geoengineering.

The simplest emulator approach is pattern scaling (Santer et al., 1990; Mitchell, 2003; Tebaldi

and Arblaster, 2014), where a predictive dynamic model is used only for the time-evolution of the

global mean temperature (either from energy balance approaches or estimated directly from GCM35

simulations), and the temperature at every spatial location is assumed to vary with the same time

evolution as the global mean – that is, that the pattern of temperature change is not itself a function

of time. Other variables, such as precipitation changes, are also assumed to scale with the global

mean temperature, so that the only “memory” in the emulator is embedded in the dynamics of the

global mean temperature response. Of course, not all of the climate system responds to forcing with40

the same time-constants. Pattern scaling can be improved upon by introducing additional dynamic

variables, such as land-sea temperature contrast (Joshi et al., 2013), multiple empirical orthogonal

functions (EOFs) of temperature (Holden and Edwards, 2010; Herger et al., 2015), or by including

many more spatial degrees of freedom to better predict regional effects (Castruccio et al., 2014).

Additional spatial patterns can also be included to capture other forcing agents including aerosols45

(Schlesinger et al., 2000; Frieler et al., 2012). Cao et al. (2015) include the climate response to a

solar reduction in a dynamic emulator, with global-mean-temperature as the sole dynamic predictor

(in addition to instantaneous forcing). The use of only one or a few dynamic variables (or predictors)

is ultimately constrained by the difficulty in estimating the dynamic response of additional variables

in the presence of climate variability due to low signal-to-noise ratio.50

The primary assumption typically made in developing a climate emulator is that the climate re-

sponse is sufficiently linear and time-invariant (LTI). (We are explicit about our usage of the terms

linear and non-linear in Section 2 below.) Success with emulators illustrates that linearity can be a

reasonable approximation, although the accuracy of this assumption will depend on the variable and

the level of applied forcing (e.g., Tebaldi and Arblaster, 2014). The response of any LTI system to55

any time-varying forcing can be described by a convolution between the impulse response function

that describes the system dynamics and the exogenous forcing; see equation (1) in Section 2 below,

and also Åström and Murray (2008, Sec. 5.3) or Ragone et al. (2015, eq. 2). “Training” the emulator

amounts to estimating the impulse response from one or more simulations.

We start from the same LTI assumption here as in the references above, but extended to include60

solar geoengineering. The spatial patterns of the responses to solar and greenhouse gas forcing will
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not be the same, leading to regional differences in outcomes (Ricke et al., 2010; Kravitz et al., 2014,

2015), nor are the precipitation responses the same (Bala et al., 2010), nor necessarily the time-

evolution of the responses (Cao et al., 2015). All of these factors are important to capture if the

emulator is to be useful in understanding climate effects of strategies that include solar geoengineer-65

ing. We therefore do not start with any a priori assumptions on the form of the dynamics, and begin

by considering independent predictors for each variable. For estimating the spatial temperature and

precipitation response, we employ an EOF-based approach (as in Herger et al., 2015) with a common

set of EOFs constructed from both CO2-forced and geoengineering simulations. In addition to tem-

perature and precipitation, we also consider Northern hemisphere sea-ice extent (see Supplementary70

Material for net primary productivity; NPP).

We use simulations from the Geoengineering Model Intercomparison Study (GeoMIP, Kravitz

et al., 2011) where solar reduction is used as a proxy for any approach that reduces incoming short-

wave radiation. By training the emulator on one set of simulations and validating on a second, we

can evaluate the fundamental assumption of linearity. Section 2 describes the methodology and sim-75

ulations used, and the resulting emulator and validation are given in Section 3.

2 Approach

The expectation that an emulator calibrated to match the GCM response to one climate forcing path-

way can also do so for a different pathway is typically based on the assumption that the response to

forcing can be reasonably approximated as linear and time-invariant (LTI). Consider a system forced80

by both time-dependent forcing f(t) from changes in atmospheric greenhouse gas concentrations

and time-dependent forcing g(t) from solar geoengineering. For any variable zi(t), define zf
i (t) as

the response to forcing f(t) with g(t) = 0 and zg
i (t) as the response to forcing g(t) with f(t) = 0,

where the response is defined in each case as the difference relative to the initial state, and neglect-

ing natural variability. The system is linear if for any scalars α and β, the response to the combined85

forcing αf(t) +βg(t) is the same linear combination of the individual responses, αzf
i (t) +βzg

i (t).

Note that in general, even if the system is linear, the ratio of any two variables will vary with time

simply because different variables respond at different rates; that is, for any forcing scenario, there

is not in general some constant µ such that zi(t) = µzj(t) for all time (a plot of zi(t) against zj(t)

will not be a straight line if these variables respond with different time constants). The usage of the90

word nonlinear to express this latter idea is distinct from the concept of the dynamic system itself

being linear or nonlinear. By a dynamic system we simply mean that z(t) depends on past values of

the forcing f(t) or g(t) in addition to the current values. A linear system can be characterized purely

by its response to a Dirac delta function; this is the impulse response.

For an LTI system forced by both time-dependent f(t) and g(t), the response of any variable zi(t)95

can be expressed in terms of a convolution between the input time-series and the system impulse
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response functions as

zi(t) =

t∫

0

hf
i (τ)f(t− τ)dτ +

t∫

0

hg
i (τ)g(t− τ)dτ +ni(t) (1)

where hf
i (t) is the impulse response due to greenhouse gas forcing and hg

i (t) the impulse response

due to solar reductions; these will not in general be identical, nor in general the same for any choice

of output variable zi. The variable ni(t) is included to denote climate variability. The system is100

time-invariant if h(τ) in equation (1) does not depend explicitly on the current time t; some pos-

sible exceptions are noted in Section 4. Herein we consider only annual-mean variables. The same

formalism as in equation (1) also applies for predicting the seasonal-dependence of the response

of a linear (but time-periodic) system, where the impulse response in general also depends on the

time of year (e.g., h= h(τ,m) for month m) and additional training simulations would be required105

to estimate the seasonal-dependence of h. If the climate system were indeed LTI, then equation (1)

would hold for any variable (temperature, precipitation, etc) either at any one location or projected

onto any particular spatial pattern.

To estimate the impulse response for CO2 forcing, we use the difference between the abrupt

4×CO2 simulation and pre-industrial simulation for each of the models participating in GeoMIP.110

To estimate the impulse response for solar reduction, we use the G1 simulation from GeoMIP, in

which the CO2 concentration was quadrupled and insolation decreased to approximately maintain

radiative balance and hence global mean temperature (see Figure S1). The difference between G1

and the 4×CO2 simulations thus gives the response to an abrupt change in solar forcing. Note that

each model separately chose the level of solar reduction g4× required to balance the forcing from115

increased atmospheric CO2, so that the percent solar reduction in G1 varies from model to model

based on the efficacy of solar forcing in that model; see Table S1. Define

f(t) = log2

(
CO2(t)
CO2,ref

)
÷ 2 (2)

g(t) =−
(

Solar(t)−Solarref
Solarref

)
÷ g4× (3)

where CO2(t) is the time-varying atmospheric CO2 concentration and Solar(t) is the solar irradi-

ance. The 4×CO2 experiment then corresponds to forcing f(t) = 1, t≥ 0 and f(t) = 0, t < 0 with

g(t) = 0, while the GeoMIP G1 simulation uses the same f(t) but with g(t) = 1, t≥ 0.120

Substituting into Equation (1) then for any variable zi(t), the difference z4×
i (t) between its value

in 4×CO2 and preindustrial is given by

z4×
i (t) =

t∫

0

hf
i (τ)dτ +ni(t) (4)
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and the difference zG1
i (t) between its value in G1 relative to 4×CO2 is

zG1
i (t) =

t∫

0

hg
i (τ)dτ +ni(t) (5)125

from which we can estimate

ĥf
i (t) =

d

dt
z4×
i (t) and ĥg

i (t) =
d

dt
zG1
i (t) (6)

The impulse responses hf,g
i (t) could be estimated from the time-series of any forced simulation, but

take particularly simple form from these step response simulations. (A linearly increasing forcing

scenario such as a 1% per year increase in CO2 also leads to a simple form, with the impulse response

proportional to the second derivative of the 1%CO2 response.)130

These impulse response estimates are “noisy” due to natural variability. Various approaches could

be used to reduce the influence of natural variability, such as

1. Using multiple ensemble members or multiple forcing scenarios (as in Castruccio et al., 2014,

for example),

2. Only considering spatial averages by computing the global mean as in pattern scaling, pro-135

jecting onto EOFs as in Herger et al. (2015), or averaging over specific spatial regions as in

Castruccio et al. (2014),

3. Applying temporal filtering to smooth high-frequency noise in ĥ or fitting h(t) to some esti-

mated functional form such as semi-infinite diffusion for global mean temperature (Caldeira

and Myhrvold, 2013) or a multiple-exponential (Castruccio et al., 2014) or140

4. Finding some less-noisy predictive variable, such as global mean temperature, to use as the

predictor of other, noisier variables (effectively what is done in predicting the regional precip-

itation or temperature response in any pattern scaling analysis).

Choosing simulations with high forcing levels to train the emulator (4×CO2 and GeoMIP G1)

allows us to make useful predictions at lower forcing levels without the need for introducing arbitrary145

a priori assumptions on the functional form of the dynamics, such as that every field simply scales

with global mean temperature. The penalty for this choice is that the high forcing will exacerbate any

nonlinear effects; this precludes, for example, useful predictions of the Northern hemisphere annual-

minimum sea ice extent, which would require that a lower-forcing simulation be used to train the

emulator.150

A frequency-domain perspective is useful to understand how the “noise” due to climate variability

affects the emulator predictions. The Laplace transform of Equation (1) transforms the convolution

into multiplication:

L(zi) = L(hf
i )L(f) +L(hg

i )L(g) +L(ni) (7)

=Hf
i (s)F (s) +Hg

i (s)G(s) +N(s) (8)155

5

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-535, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 24 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



where the Laplace transform of the impulse response, Hi(s) = L(hi), is the transfer function be-

tween that input and that output; capital letters will denote the Laplace transform of h(t), f(t) and

g(t). The impulse response could thus equivalently be estimated by first taking the Laplace trans-

form of the input and output, computing the ratio, and computing the inverse transform. Consider for

example the response to increased CO2 (the estimation for solar reduction is analogous), where the160

emulator is trained on the input ft(t) and used to predict the response to forcing fp(t), with Laplace

transforms Ft(s) and Fp(s). The transfer function estimate used by the emulator is

Ĥg
i (s) =Hf

i (s) +
N(s)
Ft(s)

(9)

and hence in the frequency domain the response predicted by the emulator for input forcing Fp(s) is

165

Ẑi = Zi(s) +N(s)
Fp(s)
Ft(s)

(10)

That is, climate variability in the simulation used to train the emulator leads to an error in the pre-

diction that depends on the ratio of frequency content in the forcing signals between training and

prediction simulations. Because a “step” change in the input such as in the abrupt 4×CO2 simula-

tion has more signal energy at low frequencies than high (Laplace transform proportional to 1/s),170

it leads to a better estimate of the output response at low frequencies than at high frequencies; the

high-frequency estimation errors due to natural variability manifest as “noise” on the estimated im-

pulse response (see Figure 1 for an example). However, the smoothly varying radiative forcing input

due to a 1% per year increase in CO2 has even less energy at high temporal frequencies than the step

input (Laplace transform proportional to 1/s2). Thus training an emulator on a “step” input simu-175

lation and then using it to predict the results from a smoothly-varying forcing trajectory will result

in relatively noise-free emulator predictions, despite the apparent high-frequency “noise” in the im-

pulse response. Note that the GeoMIP G2 simulation (described at the beginning of the next section)

has an abrupt change in the solar forcing at year 50 (see Figure S1), and the emulated responses to

this “step” change in forcing are, as expected, noisier than those due to the smooth forcing changes180

over the first 50 years of G2.

3 Results and validation

The impulse responses hf
i (t) and hg

i (t) are estimated for a number of different variables from the

abrupt 4×CO2 and G1 simulations as described above. The impulse-response based emulator for

CO2 forcing without any solar reduction can be validated by comparing the predictions with the185

simulations for a 1% per year increase in CO2 (1%CO2). To validate the emulation of solar reduction,

we use the GeoMIP G2 scenario, in which CO2 levels increase at 1% per year, and for the first

50 years, the solar reduction is gradually increased to balance this forcing. This uses the same ratio
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of g(t) to f(t) as in G1 for each model. After 50 years, the solar reduction is returned to zero so

that only the radiative forcing from the CO2 remains (see Kravitz et al. (2011) and Supplementary190

Figure S1 for a schematic of the forcing in the G1 and G2 simulations). Several of the climate models

that conducted experiments G1 and G2 exhibit significant drift in the absence of net radiative forcing,

presumably due to initialization issues. These models are not considered further, leading to a total of

9 models considered here (Table S1).

The impulse response functions for predicting the global mean temperature and precipitation re-195

sponses to either CO2 or solar forcing are shown in Figure 1, averaged over all of these climate

models. As expected these are “noisy” estimates due to natural variability. Note that while the tem-

perature response characteristics are similar (aside from the sign) for increased CO2 and reduced

insolation, the precipitation response differs. The impulse response of precipitation clearly high-

lights that CO2 and solar reduction have different “fast” responses (rapid atmospheric adjustments200

in the climate system before temperature has time to adjust) related to different amounts of radiative

forcing absorbed by the atmosphere (e.g., Andrews et al., 2010).

Figure 2 validates the ability of the impulse response formulation in equation (1) tuned from the

4×CO2 and G1 simulations to correctly predict the global mean temperature response from the

1%CO2 and G2 simulations. Figure 3 shows the corresponding plots for global mean precipitation.205

Similar results are shown in the supplementary material (Figures S2–S3) for the temperature or pre-

cipitation difference between land and ocean. Linearity has previously been argued as a reasonable

assumption for temperature and precipitation responses (Kravitz et al., 2014, and references therein)

and since that is the only assumption made in constructing the emulator, this analysis also validates

that assumption for these variables and at these forcing levels. Note that the difference between210

GCM-simulated and emulator-predicted trajectories is typically less than the standard deviation of

natural variability.

Northern hemisphere sea ice extent is an example of a variable that is both highly relevant for

assessing possible future scenarios, yet one in which a nonlinear response to forcing might be ex-

pected. The 4×CO2 forcing is large enough that September sea ice is nearly lost in all models, and215

thus an emulator trained off of this simulation will do a relatively poor job at predicting the reduction

in annual-minimum sea ice extent from smaller forcing. However, despite the obvious nonlinearity

in the annual-minimum extent, the annual-mean sea ice extent does behave sufficiently linearly in

most models, even at this large a forcing level, so that the 4×CO2 simulation can be used to train a

useful emulator. This is illustrated in Figure 4.220

Finally, Figure 5 illustrates the ability to capture the spatial response. One of the concerns raised

regarding the use of solar geoengineering is that the response from turning down the sun does not

perfectly compensate that from increased CO2, resulting in some regional differences in temperature

and precipitation responses (Ricke et al., 2010; Kravitz et al., 2014). It is therefore valuable to assess

whether the emulator can capture some of the regional variation in the response between CO2 and so-225
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Figure 1. Estimated impulse response for CO2 and solar forcing, for global mean temperature and precipitation,

averaged over all 9 models (table S1); the inter-model standard deviation is shown by the shaded bands. While

these impulse response functions are “noisy”, predictions made using them are less so, particularly for forcing

levels much smaller than those used in estimating these functions. Note for precipitation the robust “fast”

response to increased CO2 has the opposite sign as the “slow” response.

lar forcing. For each model, EOFs are constructed from the spatial temperature response using both

4×CO2 and G1 simulations to construct a single set of combined EOFs. In general, only the first few

principal components are distinguishable from climate variability and have any predictive capability

(Figure S4). Figure 5 plots the model-mean temperature and precipitation responses averaged over

years 41-50 of the G2 simulation for both the simulation and the emulator prediction. Note that only230

after averaging over 10 years and 9 climate models are the temperature and precipitation changes

due to G2 – which is designed to have near-zero top-of-atmosphere radiative forcing – statistically

significant at the grid-cell level. The differences here between the simulated and emulated responses

are not significant at the grid cell level, although greater spatial averaging may indicate some sta-

tistically significant regional differences. In particular, the emulator appears to slightly underpredict235

the amount of residual Arctic warming in G2, likely due to the nonlinearity associated with sea ice

albedo feedback at the 4×CO2 forcing used in training the emulator. Beyond this feature, it is dif-

ficult to assess with certainty to what extent the differences between the simulated and emulated

regional responses are due to nonlinearities or simply due to natural variability. There is no evidence

of nonlinearity in either the ability of the emulator to capture differences between land and ocean240

temperatures or precipitation (Figure S2 and S3), nor in capturing the first few principal components

of the response (Figure S4). Because the emulated response is based on simulations with roughly

three times higher radiative forcing, and because the process of its construction suppresses high-

frequency natural variability, it is potentially a more accurate representation of the forced-response

to G2 in the models than that obtained from the actual G2 simulation.245
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Figure 2. Simulated and predicted global mean temperature, both for a 1% per year increase in CO2 (blue

curves) and for GeoMIP experiment G2 (red), for each of the climate models considered here. The predicted

response using the emulator is given by black lines, solid for the 1% CO2 case and dashed for G2.

4 Discussion

Climate emulators provide a powerful tool for assessing any proposed future pathway of mitigation

choices (including carbon dioxide removal) and different levels of geoengineering. For example, so-

lar geoengineering could be used only to limit peak warming as part of an “overshoot” scenario in

which atmospheric CO2 concentrations peak and subsequently decline as net-negative carbon emis-250

sions reduce concentrations (Long and Shepherd, 2014; Tilmes et al., 2016). A limited, temporary

deployment has also been described as a way to reduce the rate of warming (Keith and MacMartin,

2015; MacMartin et al., 2014). These types of limited-deployment scenarios are motivated in part by

recognizing that solar geoengineering sufficient to reduce global mean temperature to preindustrial

levels could lead to significant regional disparities and other risks, while a deployment that only par-255

tially reduces global mean temperature might decrease some metrics of climate change everywhere

(Kravitz et al., 2014).
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Figure 3. As in Figure 2 but for global mean precipitation. Simulated and emulated response are shown for 1%

per year increase in CO2 and GeoMIP experiment G2 for each of the climate models considered here.

By training emulators on a standard set of simulations, such as GeoMIP, that have been con-

ducted by multiple modeling centers, any future scenario such as these can be readily evaluated with

multiple models. This can provide more insight into the robustness of conclusions than detailed sim-260

ulations with any single model. (Of course, any collection of models is an ensemble of opportunity,

with interpretation challenges as a statistical sample; see, e.g., Collins et al. (2013), Section 12.2,

for a thorough discussion.) The emulator used here assumes that the climate system response can be

sufficiently well approximated over the range of forcing levels of interest by the output of a linear

system. For many variables, the analysis here indicates that this is a sufficiently good assumption,265

with the difference between simulated and emulated responses smaller than the standard deviation of

natural variability. There are many more variables that may be of interest, including higher moments

to predict extremes; similar analysis as here could be used to assess whether a linear assumption is

or is not sufficient for projecting the response of any variable beyond those considered here.
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Figure 4. As in Figure 2 but for Northern Hemisphere annual-mean sea ice extent. Simulated and emulated

response are shown for 1% per year increase in CO2 and GeoMIP experiment G2 for several of the climate

models considered here; the dotted line shows the response for the abrupt 4×CO2 simulation.

Finally, note that the results herein were obtained using simulations that reduce the solar constant270

as a proxy for any solar geoengineering approach. The climate effects from any specific technology,

such as stratospheric aerosol injection (SAI) will differ (e.g., Ferraro et al., 2015) both due to the dif-

ferent mechanism of radiative forcing, and the different spatial pattern of radiative forcing (the latter

being at least partially a design choice; Kravitz et al., 2016). Further, while linearity appears to be a

reasonable assumption in these climate models for predicting the response of many climate variables275

to an imposed solar reduction, it may be a poorer approximation for SAI, for example. Nonlinearities

will occur in aerosol size distribution (Heckendorn et al., 2009; Niemeier and Timmreck, 2015), as

well as due to changes in the stratospheric circulation that result from the aerosols (Aquila et al.,

2014); time-invariance might also not hold if, for example, time-varying stratospheric chlorine con-

centrations (which affects the aerosol impact on ozone) are considered part of the “system” rather280

than a forcing. It is unclear how significantly these will affect the ability to develop emulators for

this technology.
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Figure 5. Temperature (left) and precipitation (right) averaged over years 41-50 of G2 simulation and aver-

aged over all 9 models. The upper row shows the simulated results; the lower row shows the prediction based

on a spatial emulator developed using 4 EOFs for each model. As noted elsewhere, the robust response to in-

creasing CO2 and reducing insolation to maintain zero global mean temperature difference is a net reduction

(overcompensation) of global mean precipitation (Bala et al., 2010), and an overcooling of the tropics and an

undercooling of the poles (Kravitz et al., 2013). The latter is an artifact of a latitudinally-uniform reduction in

sunlight, and could be better managed by increasing the forcing at high latitudes relative to low (Kravitz et al.,

2016).
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