
Response to Anonymous Referee #1 
 

Thanks again for your careful review; our responses are in blue below.  We uploaded a response 
shortly after this review, but waited until the other reviews were complete before revising the paper; 
this comment is mostly redundant with our original response, but is now also updated based on the 
revisions made. 

 
The authors propose a nonparametric emulator aimed at reproducing geoengineering scenarios. Using 
dynamical linear models, they propose a formulation of the emulator as a convolution of the forcing and the 
impulse responses, and test this approach for two geoMIP scenarios for some variables of interests. 
 
The manuscript is overall well written and presents an interesting problem, but I believe that in its present form 
is not suitable for publication and, in order to be reconsidered, needs to be considerably improved in many 
parts. The proposed method would have considerable limitations if it is to be expanded beyond the narrow 
context of this work, e.g. annual averages for two model runs. Further, the validation setting is extremely 
limited, not based on any metric, and completely ignores the emulation uncertainty. 
 

We agree that quantifying emulator accuracy (i.e., evaluating based on specific metrics) is essential; 
Table 1 now includes a comparison for each model and each variable of the root-mean-square 
difference between the emulator prediction and the simulation, compared with the natural variability. 
 
The description in the paper of how to extend results to cover sub-annual time-scales was poorly 
worded and thus quite misleading.  The case of evaluating sub-annual variables in response to annual-
mean forcing is already covered by the method.  Indeed we considered one such variable but did not 
include a plot in the original paper,.  It has now been included both because it makes this point, and 
because it also illustrates a breakdown of linearity (these two are unrelated).  The description in the 
paper regarding sub-annual scales was intended to refer to the case where the forcing varies at sub-
annual time-scales.  Conceptually this is a trivial extension, but would require additional training data; 
this is not a limitation of our method per se, but only a limitation that information cannot be invented 
from nothing.  (You cannot infer the response to seasonally-varying forcing from a simulation where 
the forcing was constant, no matter what method you apply.) 
 
Also note that our formalism for capturing the linear forced response is intentionally provided in a more 
general fashion than most previous research. The key distinction relative to the existing literature 
aimed at the similar problem for non-geoengineering forcing is that we only assume linearity, and do 
not choose to make additional ad hoc (and apparently unnecessary) assumptions regarding the form 
of the dynamics; in doing so it helps clarify the additional assumptions made elsewhere.  We clarified 
this in the introduction to better articulate the relationship with existing approaches. 
 
We disagree regarding the limitation of the validation setting, as described in more detail below.  The 
perceived limitation regarding annual averages is not a limitation but simply poor wording on our part.  
Validation on one forcing scenario is sufficient to demonstrate that linearity is a sufficiently useful 
approximation for the variables that we consider here.  Since that is the only assumption we make, 
additional validation scenarios would not add any further value.  (If the reviewer is used to dealing with 
nonlinear emulators, for example as used in model tuning, then it would be absolutely true that you can 
neither tune nor validate such an emulator from single simulations.) 

 
General comments 
• The validation setting is extremely limited: the proposed approach is fit for the G1 scenario, and then used to 
extrapolate G2. Also, for the G1 scenario the emulator is likely to work well, since it consists of impulse 
functions. A considerable amount of work is needed to perform more tests under different forcing scenarios. 
While the geoMIP is limited in size, the CMIP5 or other large multi-model ensembles could be used to validate 
the forcing part of this emulator. 
 

We demonstrated that a linear emulator trained on one scenario successfully follows the behaviour of 
another.  Since linearity is the only assumption we make, then (i) the emulator can be uniquely 
specified from a single forcing simulation such as G1, and (ii) no value would be added by validating it 
on additional forcing scenarios.  By demonstrating that linearity holds for forcing levels up to 4xCO2 



and for levels of solar reduction sufficient to compensate this, it will clearly also hold for any other 
smaller-amplitude forcing scenario.  We reworded the paper to clarify this.   

 
• The present version puts very little emphasis of the uncertainty of the scenario estimation. The validation 
essentially consists in eyeballing many plots of the emulator against the original computer model, with no 
attempt to quantify the fit or, most importantly, to assess how the internal variability of the model is reproduced 
by the emulator. The definition itself of ‘climate variability’ ni(t) is unclear.  Are the authors assuming a white 
noise? Also, I would assume that this noise is independent for different variables, but it should be clearly 
stated. 
 

We added a quantification of the fit; we agree that not doing so was an oversight in the original 
manuscript. 
 
We also clarify that the emulator is intended to only capture the forced response, and is not intended to 
reproduce internal variability.  Insofar as we are only interested in capturing the forced response, we 
do not need to make any assumptions about the nature of the climate variability as it enters only as 
“noise” in our ability to estimate the forced response.  This has been clarified in the manuscript. 

 
• This approach will have significant limitations at finer temporal scales. The authors briefly discuss this when 
they mention how we can impose h = h(_,m).  This solution is not straightforward, as a nonparametric 
estimation of 12 different impulse responses will require more scenarios (surely more than two) to have reliable 
estimates. The authors somewhat acknowledge it when they state that additional simulations would be 
required, but in an off-the-shelf ensemble such as geoMIP, where no more scenarios are readily available, this 
is a strong limit of this approach. This will be become even more evident for finer temporal scales, e.g. weekly 
or daily data. 
 

As noted above, we apologize for badly worded text here that was misleading.  To clarify, if the forcing 
does not vary significantly over the course of the year, then emulating GCM response at finer temporal 
scales is not intrinsically more difficult for this or any other emulator, although the signal to noise ratio 
(SNR) will likely be poorer (a limitation that is intrinsic to the information contained in the training data, 
and has nothing to do with the method itself). 
 
If the intent is to capture the response to seasonally-varying forcing, then unless arbitrary assumptions 
are made regarding the seasonal dependence of the impulse response, one would need at least as 
many independent forcing scenarios as degrees of freedom of the seasonal response (i.e., 12 if one 
wants to distinguish how the response depends on monthly-varying forcing).  This is not a limitation of 
the formulation we use (it would be a trivial extension), rather it is an intrinsic limitation on the 
knowledge of the response that holds for any such approach.  Of course, for evaluating climate change 
in response to different pathways of greenhouse gas forcing and solar geoengineering, the forcing 
varies only slowly from year to year, so that the additional training data is not needed. 
 
We did a poor job of articulating the distinction between these two cases, and have corrected this.   
 
We focused on information about annual-average behaviour because it is indeed useful, both for 
geoengineering and more general climate science applications.  We have added one sub-annual 
variable in revision; the annual-minimum sea ice extent.  This is provided not to illustrate the ability to 
project sub-annual variables, but because it illustrates a case where nonlinearity is significant and the 
emulator does not perform well.  (That this particular variable happens to be nonlinear is unrelated to 
the fact that this particular variable is at a sub-annual time scale.) 

 
• The results and the discussion do not mention model differences, and most importantly what do they mean. 
Does the emulator estimate different impulse responses for different models? I would expect so, and I would 
expect these differences to convey information on how the models differ. For example, HadCM3 and 
HadGEM2-ES will likely display similar responses as both models are released from the Hadley Centre. 
 

Our intent was to develop an approach for emulating climate models, not for describing the differences 
between them, for which there is already an abundant literature.  We added some text to this effect 
and appropriate references. 

 



• The part on grid-scale emulation must be extended. Firstly, the methodology is unclear: a clear explanation of 
how were the EOFs selected must be presented, either in the main text or in the supplement. Secondly, as 
before, a more formal assessment of the pattern similarity is needed, as eyeballing figure 5 is not enough to 
convince that the emulator is performing well. 
 

We agree that this section was too terse.  We added both a more complete description, and a more 
formal pattern similarity assessment (rms differences). 

 
Specific comments 
• Title: what the authors present is not a multi-model emulator, in the sense that it independently fits each 
model and does not assume interdependencies. 

 
We agree that there are multiple ways of interpreting the phrase “multi-model”.  We meant it only in the 
sense that the end result is a set of emulators (i.e., in the same sense that CMIP or GeoMIP are “multi-
model” ensembles.)  This is a not uncommon usage of the adjective, nonetheless we removed it from 
the title (shorter is better). 

 
• pag. 1 l.16-17. The claim that the ‘emulator prediction may be a more accurate estimate [...] of the models’ 
response than an actual simulation’ is very questionable.  The emulator is not meant to replace a climate 
model, it’s just a faster approximation that is used to explore the input space in a computationally efficient 
manner. While emulators are arguably a useful tool for calibration and, as in this case, scenario extrapolation, 
they cannot replace the physics of the climate model and they are useful only as long as the training set from 
the climate model is meaningful. 
 

This point was not well worded in the original manuscript, and we have endeavoured to clarify what we 
meant, both here and in the text. 
 
And, of course the climate model is needed to generate training data for the emulator, and does not 
replace climate models.  We also agree that the emulator is only useful so long as the training set is 
meaningful.   
 
As to whether the emulator prediction is a more accurate estimate for some specific scenario, that 
depends on the purpose.  If the goal is to estimate the forced component of the response, isolated 
from natural variability, then it may well be true that simulating at a higher forcing amplitude, to give a 
higher SNR, and then scaling the response, would indeed give a better estimate for a given amount of 
computation.  (If the system were perfectly linear in its response to forcing, this is self-evident.)  If 
computational power is unlimited, then of course the best answer for the forced response would come 
from a sufficiently large ensemble of GCM simulations of the specific scenario. 
 
Fundamentally one is simply trading off the uncertainty in the forced response that comes from 
superimposed natural variability from the uncertainty that comes from nonlinearity.  Given sufficient 
computation to conduct only one single simulation, then it is not a priori clear whether the best 
estimate of the forced response in a particular scenario is obtained by simulating that particular 
scenario, or simulating a higher SNR scenario and using an emulator to “scale” it. 

 
• pag 1. l.19-20. Actually, emulators are much more popular in model calibration and local sensitivity analysis of 
physical parameters then in projections of anthropogenic forcings. Only very recently this methodology have 
been extended to deal with forcings. This introductory part must be rewritten with a more extensive literature 
review on traditional emulators. 
 

We added a comment and reference to acknowledge the breadth of application of emulators. 
However, it is only the use of emulators to deal with forcings that is directly relevant to the case here.  
(As a side note, 1990 probably doesn’t count as “very recently” any more!) 

 
• pag. 4, eq (1) and onwards. It is somewhat inappropriate to represent the emulator as a convolution given that 
the authors are effectively using just annual averages. A reformulation in terms of discrete sums is necessary. 
 

Agreed.  The emulator is now given in terms of discrete sums; the continuous-time is still introduced in 
case some readers are more comfortable with it, and in particular, we motivate the influence of the 



climate variability spectrum through Laplace transforms of the continuous-time convolution equation; 
readers are undoubtedly more comfortable with them than Z-transforms that would otherwise be 
needed. 

 
• pag. 4, line 101. h(_ ) was never defined. 
• pag. 6, line 161. Poor choice of pedix in ft(t), please reformulate. 
 
 Thanks; fixed. 
 
• Figures. What is the unit measure of precipitation? Also, are the all figures expressed as anomaly with respect 
to a reference value? If so, what is it? 
 

Oops; fixed.  Sorry, final version of figures were generated but didn’t get included!  Not sure how that 
happened or passed final proof-reading.  Units are in mm/day, and are all in anomalies with respect to 
the preindustrial control values. 



Response to Anonymous Referee #2 
 
Thanks for the comments; our responses are in blue below. 
 
The authors used model results from Geoengineering Model Intercomparison Project (GeoMIP) 
to test the linearity of the climate response to external forcings. The authors first constructed a 
climate emulator based on a convolution of impulse response function using results from 
GeoMIP G1 simulations involving abrupt changes in atmospheric CO2 and solar irradiance. 
Then the authors used the climate emulator to predict climate consequences of the GeoMIP G2 
simulations involving gradual change in atmospheric CO2 and solar irradiance. For climate 
variables including temperature, precipitation, and annual mean Northern Hemisphere sea ice 
extent, the emulator does a good job in reproducing climate model simulated temporal evolution 
and spatial distribution.  
 
The use of impulse response function to emulate climate model results is not new. The novelty 
of this study is that it extends the application of impulse response function to the simulations 
involving both CO2 and solar forcing. This extension advances our understanding of climate 
response to external forcing, and in particular, climate response to solar geoengineering. The 
ms is well written. I recommend publication after the following issues are addressed: 
 
1. The GeoMIP simulations are limited to a period of 50 years. Over longer timescales (several 
centuries), response from deep ocean dynamics would become important. Many aspects of 
ocean dynamics response (e.g., thermohaline circulation) are nonlinear. So the question is: To 
what extend the linear emulator would be valid in reproducing long-term climate response 
involving feedbacks from deep ocean dynamics?  
 

Agreed; we have added a comment to the manuscript regarding this point, including both 
a citation to the literature on AMOC nonlinearity (acknowledging the limitation in using 
50-year training simulations), and to one study indicating that the net response 
(combining CO2 forcing and solar reduction) does not drift (which at least gives some 
confidence that the long-term climate response would not be radically different from the 
short-term, at least in one model). 

 
2. A large part of the residual response of the hydrological cycle over land to solar 
geoengineering is due to the direct effect of increasing atmospheric CO2 on vegetation 
(stomatal, leaf area index, etc.), which cannot be offset by reduced solar forcing. Assumedly, 
this part of hydrological cycle response is nonlinear. This issue should be discussed. 
 

The reviewer raises an important distinction here, between whether the overall 
processes involved are nonlinear, versus whether the perturbation in the response is 
approximately proportional to a perturbation in the forcing (so double the forcing doubles 
the perturbation).  As long as the nonlinear relationships in question are differentiable at 
the current equilibrium point, then by definition there is a linear first-order response, 
although the size of perturbation for which that is relevant is not a priori clear.  We have 
endeavoured to clarify the wording regarding linearity in a few places, both at the 
beginning of section 2, and with a more thorough discussion of which variables have an 
apparently nonlinear response in which simulations (since the difference between 
emulated and simulated responses indicates nonlinearity, if for example G2 precipitation 
(suppressing the slow response) is well predicted but not the 1%CO2 simulation, then 
one can conclude that the fast response is relatively linear, but that nonlinearities arise in 
the slow response to precipitation.) 



 
3. The method used to emulate spatial pattern of temperature and precipitation is not clear. How 
EOFs were constructed, selected, and applied to generate the spatial pattern of climate 
change? These should be elaborated. 
 

Agreed; we have added section 2b to describe the spatial EOF analysis. 



Response to Anonymous Referee #3 
 

Thanks for the detailed review!  This is very helpful; our comments are in blue below. 
 
The paper entitled “Multi-model dynamic climate emulator for solar geoengineering” by 
MacMartin & Kravitz presents a simple numerical emulator of the complex GeoMIP models 
which could be used to discuss Geoengineering scenarios. This paper is well written, fairly 
straightforward, and is interesting – I believe – for the community.  

One could wonder, however, if ACP is the best journal for publication, as a lot of technical detail 
regarding the modeling (i.e. establishing the response functions) is given, whereas the more 
physical aspects remain (maybe too) brief. Maybe GMD would have been a better choice. But 
that is ultimately an editorial issue. And I don’t think this point alone prevents publication in ACP, 
especially as the physics is well understood and already published elsewhere. It goes in favor, 
however, of improving the narrative so that the reader can grasp both the modeling approach 
and the modeled physical processes.   

We have added some text regarding physical processes (particularly with regards to fast and 

slow responses, and some comments regarding what the difference between observed 

nonlinear effects between G2 and 1%CO2 simulations implies about nonlinearities in fast and 

slow responses). 

Ultimately, I do recommend publication, but provided the few points below are answered.  

Major points:  

1. As mentioned: the end of the paper can be improve. Specifically, while the beginning (the 
methods, mostly) is well documented, the last part (the results) appears too short. This creates 
a sort of frustration, as the reader realizes the emulator performs well but is not always sure 
what physical behavior/process is actually well emulated. A couple of sentences, here and 
there, to remind the reader of the main conclusion of already cited studies (e.g. Kravitz et al., 
2015; Andrews et al., 2010) would help.  

We agree with this comment and have added both references to previous literature and 
a more detailed description of the results and their physical interpretation. 

2. The paper lacks an introduction to EOFs! There is a quite lengthy explanation of what IRFs 
are and how they are obtained, but almost nothing about EOFs in the methods section. This 
should be re-balanced as EOFs are presented at the end of the paper. Maybe the part on IRFs 
could be shortened a little so as to avoid a too lengthy methods section.  

Agreed; we have added section 2b in the methods to discuss EOFs; insofar as EOF 
analysis is standard (in contrast to IRFs) in climate science, this section is shorter.  As 
the IRFs are crucial to the paper, we have not shortened. 

3. The analysis of the performance of the emulators is limited to looking at some plots. It would 
be better to have at least a few quantitative metrics, to better understand the emulators’ 
performance. Metrics could be provided in a table, both for the IRFs (timeseries) and EOFs 
(spatial patterns).  



Agreed; we have added a table with calculation of the root-mean-square deviation 
between predicted and simulated results for each model and each variable, compared 
with the rms of climate variability. 

4. This is more of a request, but it is maybe the most important point of my review. I believe the 
IRFs calculated by the authors should be provided as supplementary material. The paper would 
strongly benefit from it, as it would have much more impact on the modelers’ community (and, 
therefore, it would be much more cited). This is especially true as the rationale behind the study 
is presented as being using those emulators in future studies of geoengineering scenarios. An 
Excel spreadsheet with one time-series per model and global variable should do it.  

An excellent suggestion; we have included these in supplementary material. 

Minor points:  

l. 3: I suggest adding “further” to “without relying *further* on GCMs” and removing “for every 
possible pathway”.  

 Good!  Done. 

l. 15: I find “be a more accurate estimate” than GCMs too strong. I would rather say “more cost-
effective”, especially as for GCMs the multi-model approach, as well as the multiple realizations, 
do compensate for the possible bias induced by natural variability. In the end, it is an issue of 
computation time requirement, not of accuracy.  

This sentence has been deleted from the abstract, as putting in the appropriate caveats 
is too long for an abstract; we add the extra phrasing later in the text.  We agree that if 
there was no computation time limit, then the GCM would be more accurate.  However, 
given a finite amount of computation time, then it is possible that the emulator is indeed 
more accurate; this is too subtle for the abstract. 

l. 21: I don’t like the word “interpolation” here.  

 Agreed, changed. 

l. 22: Change “fidelity” for something like: “spatial and temporal resolution”.  

The emulator in principle is capable of the same spatial and temporal resolution as the 
GCM, and even debating their relative accuracy as predictors of the forced-response 
would require a lengthy discussion.  We haven’t come up with a better word that is an 
accurate description of the advantages of the GCM. 

l. 29: Define GeoMIP and explain briefly.  

The definition and explanation are expanded towards the end of this section when the 
GeoMIP simulations are being explicitly referred to (this also benefits from your 
suggestion of moving figure S1 into the main text). 

l. 38: Other variables such as precipitations are not always assumed to be strictly proportional to 
global mean temperature by simple models. E.g. some simple models use the relationship to 
GMT and RF by Andrews et al. (2010) for precipitations. Overall, I suggest being slightly less 
categorical.  



Thanks for correcting our error; reworded. 

l. 46-48: That sentence referring to Cao et al. (2015) should either be developed or removed. I 
found it incomprehensible.  

Thanks – completely reworded to clarify. 

l. 71: I suggest removing NPP of that study. See point below about figure S5.  

 Agreed, good point.   

l. 93-94: I find that last sentence too brief: please develop.  

We moved the important aspects of the sentence further down after the equations, 
where it is better motivated. 

l. 113-114: I think a reminder that when the difference is done between these two simulations, 
you’re assuming the system is linear. 

 Good call!  

l. 144-150: The drawback of training over lower forcings would be a reduced domain of validity 
of the emulators, wouldn’t it?  

Not necessarily.  Basically it’s a trade-off between signal-to-noise ratio and nonlinearity; 
we reworded this paragraph to clarify. 

l. 191-193: This drifting issue makes one wonder about the results of the study: : : Maybe this 
should be slightly expended. Can the drift be actually explained? How significant is it?  

We are quite certain that the drift is due to initialization (that is, a few of the models were 
not fully spun up and continued to drift).  If the starting conditions had been well 
documented, so that we could download the control run, this could be fixed; 
unfortunately this is not true and so we simply discarded those models where the drift 
was significant.  (As a result, this is no longer an issue for this study.) 

l. 202: Example of where one or two sentences could improve the paper. Explain/recall why 
there is a difference in the fast response.  

Done! 

l. 230-233: That sentence is a bit obscure. Is this a property of the IRFs or the GCMs? Develop.  

Yeah, that was a pretty badly worded sentence.  We clarified. 

l. 234: Change “indicate” to “provide”?  

Agreed! 

l. 239-242: I honestly don’t understand how the authors can claim that there is “no evidence of 
non-linearity”. What would be the evidence? Do you mean that the nonlinearity is negligible, and 
therefore captured by the IRF?  

Sentence is completely reworded in order to clarify.  (If the nonlinearity was non-
negligible, then the emulator based off a linear assumption and trained at one forcing 



level would not have matched the response to a different forcing.  We therefore conclude 
that nonlinearity is not too large, at least for these variables.) 

l. 242-245: As in the abstract, I find this statement far too strong. It should be moderated. I 
would basically remove the sentence, unless actual proof can be provided: : :  

The paragraph is reworded to better clarify exactly what we meant.  Note that the 
observation is trivially true if indeed the model were perfectly linear; in general there is a 
trade-off between uncertainty introduced from natural variability, and errors introduced 
due to nonlinearity.  Without conducting a large ensemble of G2 to provide a “truth” for 
the forced-response, it is not possible to separate these two errors and determine 
whether the emulated response actually does provide a better estimate of the forced 
response, or whether it is simply possible that it does (and again, the potential is trivially 
true, and that is the only statement made here, so we disagree that the statement is “too 
strong” though agree that it was badly worded!) 

l. 256: Change “metrics” to “impacts”?  

The word “impacts” is often associated with a specific meaning in some of the climate 
change literature, as the actual things humans care about; while there is often overlap 
with climate variables in a GCM, there might not be (e.g. vector-borne diseases), and so 
we consciously avoided the term “impacts”. 

l. 260: Again, moderate a little bit: more insight *on some aspects*. Maybe recall the computing-
efficiency of the emulators. I believe this is definitely their most significant strength.  

 Agreed, changed. 

l. 267: I fear the use of the word “moments” here may be confusing for the majority of the 
community. Maybe write “*statistical* moments”, or expend or rephrase.  

On reflection, including “statistical moments” was unnecessary to convey the point; we 
condensed to simply refer to extremes. 

l. 281: It is always possible to develop emulators, except that they have to be nonlinear. So 
basically, the next step is to build box models with non-linear coefficients.  

Reworded to clarify that one can always develop nonlinear emulators, although they 
would require either a priori assumptions or multiple forcing scenarios for training. 

Fig.1: Check units. For this specific plot, the IRF units should be e.g. _C/[W/m2] I think. Check 
also units for precipitations.  

Actually, not quite; the units here should be degrees C for a 4xCO2 (which is not the 
same radiative forcing in every model).  We added this to the caption. 

Fig.3: Units.  

Thanks!  (Oops.) 

Fig.5: Needs a title over each map.  

 Thanks, done. 



Fig. S1: Could be in main text. 

 Agreed, moved.  

Fig. S5: Units are likely wrong. NPP should be tens of PgC/yr. But more importantly I suggest 
removing that plot on NPP. NPP is not a variable of the climate system stricto sensu, it is a 
variable of the carbon-cycle. NPP responds firstly to changes in atmospheric CO2, then to 
changes in climate and incoming radiation (at least in currentgeneration ESMs). The response 
to CO2 is strongly non-linear in intensity (can be captured with a simple log function, at global 
scale) and it is virtually instantaneous at the yearly time-scale. So here there is virtually no 
difference between the two simulations because NPP is basically responding to the annual 
atmospheric CO2. In short: the IRF approach is *not* the right approach for NPP: wrong driving 
variables, and wrong time-scale.  

  Agreed, NPP removed. 
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Abstract. Climate emulators trained on existing simulations can be used to project the climate ef-

fects that would result from different possible future pathways of anthropogenic forcing, without

relying
::::::
further on general circulation model (GCM) simulationsfor every possible pathway. We ex-

tend this idea to include different amounts of solar geoengineering in addition to different pathways

of greenhouse gas concentrations by training emulators from a multi-model ensemble of simulations5

from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the

abrupt 4×CO2 and a compensating solar reduction simulation (G1), and evaluated by comparing

predictions against a simulated 1% per year CO2 increase and a similarly smaller solar reduction

(G2). We find reasonable agreement in most models for predicting changes in temperature and pre-

cipitation (including regional effects), and annual-mean Northern hemisphere sea ice extent, with the10

difference between simulation and prediction typically smaller than natural variability. This verifies

that the linearity assumption used in constructing the emulator is sufficient for these variables over

the range of forcing considered. Annual-minimum Northern hemisphere sea ice extent is less-well

predicted, indicating the limits
:
a

::::
limit

:
of the linearity assumption. For future pathways involving

relatively small forcing from solar geoengineering, the errors introduced from nonlinear effects may15

be smaller than the uncertainty due to natural variability, and the emulator prediction may be a more

accurate estimate of the forced component of the models’ response than an actual simulation would

be.

1 Introduction

Climate emulators have been used extensively to provide projections of climate changes for dif-20

ferent anthropogenic forcing trajectories. These are trained based on a limited number of simula-

tions with General Circulation Models (GCMs) and allow interpolation
::::::::
prediction of climate re-

sponse for a much broader set of trajectories, trading the fidelity of a GCM simulation for com-

putational efficiency. A similar approach could in principle be undertaken for projections of the

1



climate effects from solar geoengineering. Various solar geoengineering approaches have been sug-25

gested for intentionally influencing Earth’s radiation budget, such as the injection of aerosols into

the stratosphere (see, e.g., National Academy of Sciences, 2015). It is possible that such approaches

may be considered in the future for reducing some amount of climate damages. However, any

climate model simulation of geoengineering necessarily corresponds to some specific scenario,

such as offsetting all of the global-mean-temperature change from other anthropogenic forcing,30

(as in GeoMIP; Kravitz et al., 2011)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(as in GeoMIP; Kravitz et al., 2011, described in more detail below) .

It is therefore useful to develop emulators that can use existing simulations in order to predict cli-

mate consequences both for different future trajectories of greenhouse gas forcing and for different

possible choices regarding the level of geoengineering.

The simplest emulator approach is pattern scaling (Santer et al., 1990; Mitchell, 2003; Tebaldi and35

Arblaster, 2014), where a predictive dynamic model is used only for the time-evolution of the global

mean temperature (either from energy balance approaches or estimated directly from GCM simula-

tions), and the temperature at every spatial location is assumed to vary with the same time evolution

as the global mean – that is, that the pattern of temperature change is not itself a function of time.

Other variables, such as precipitation changes, are also assumed to scale with
::::::
depend

::::
only

:::
on the40

global mean temperature , so that
::
and

:::
on

::::::::
radiative

::::::
forcing

:::::::::::::::::::
(Andrews et al., 2010) ;

:
the only “mem-

ory” in the emulator is
:
in
::::
this

::::
case

::::::
remains

:
embedded in the dynamics of the global mean temperature

response.
::::::::
Extending

::::
this,

::::::::::::::::::::
Cao et al. (2015) assume

:::::::::::
precipitation

:::::::
depends

::
on

::::::::::::::::::::
global-mean-temperature

:::
and

:::
not

::::
just

::::::::::::
instantaneous

::::
CO2:::::::::::::

concentrations
:::
but

::::
also

:::::
solar

::::::::
reduction,

::::::::
allowing

:::
for

::
a
::::::::
different

:::::
“fast”

:::::::
response

:::
to

::::
these

::::::::
different

::::::::
forcings,

:::
but

:::::
again

::::::::::
maintaining

::::::
global

:::::
mean

::::::::::
temperature

:::
as

:::
the45

:::
sole

::::::::
dynamic

::::::::
predictor.

::::::::::
Additional

:::::
spatial

::::::::
patterns

:::
can

::::
also

:::
be

:::::::
included

:::
to

::::::
capture

:::::
other

:::::::
forcing

:::::
agents

::::::::
including

:::::::
aerosols

::::::::::::::::::::::::::::::::::::::
(Schlesinger et al., 2000; Frieler et al., 2012) .

Of course, not all of the climate system responds to forcing with the same time-constants. Pattern

scaling can be improved upon by introducing additional dynamic variables, such as land-sea tem-

perature contrast (Joshi et al., 2013), multiple empirical orthogonal functions (EOFs) of temperature50

(Holden and Edwards, 2010; Herger et al., 2015), or by including many more spatial degrees of free-

dom to better predict regional effects (Castruccio et al., 2014). Additional spatial patterns can also be

included to capture other forcing agents including aerosols (Schlesinger et al., 2000; Frieler et al., 2012) .

Cao et al. (2015) include the climate response to a solar reduction in a dynamic emulator, with

global-mean-temperature as the sole dynamic predictor (in addition to instantaneous forcing). The55

use of only one or a few dynamic variables (or predictors) is ultimately constrained by the difficulty

in estimating the dynamic response of additional variables in the presence of climate variability due

to low signal-to-noise ratio.

The primary assumption typically made in developing a climate emulator
::
for

:::::::::
predicting

:::::::
climate

:::::::
response

:
is that the climate response is sufficiently linear and time-invariant (LTI). (We are explicit60

about our usage of the terms linear and non-linear in Section 2 below.) Success with emulators

2



illustrates that linearity can be a reasonable approximation, although the accuracy of this assumption

will depend on the variable and the level of applied forcing (e.g., Tebaldi and Arblaster, 2014). The

response of any LTI system to any time-varying forcing can be described by a convolution between

the impulse response function that describes the system dynamics and the exogenous forcing; see65

equation (1) in Section 2 below, and also Åström and Murray (2008, Sec. 5.3) or Ragone et al. (2015,

eq. 2). “Training” the
:
a
:::::
linear emulator amounts to estimating the impulse response from one or more

simulations.
::::::::
Nonlinear

::::::::::
approaches

::
to

::::::::
emulators

:::
are

::::
used

::
in
:::::
other

::::::
aspects

:::
of

::::::
climate

::::::::
modeling,

:::::
such

::
as

:::::
model

::::::
tuning

::::
and

:::::::::
parametric

::::::::::
uncertainty

:::::::
analysis

:::::::::::::::::
(Neelin et al., 2010) ,

::::
but

::::
such

::::::::::::
investigations

::
are

:::::::
beyond

:::
the

:::::
scope

::
of

:::
this

::::::::::
manuscript.

:
70

We start from the same LTI assumption here as in the references above, but extended to include

solar geoengineering. The spatial patterns of the responses to solar and greenhouse gas forcing will

not be the same, leading to regional differences in outcomes (Ricke et al., 2010; Kravitz et al., 2014,

2015), nor are the precipitation responses the same (Bala et al., 2010)
:::::::::::::::::::::::::::::::::
(Bala et al., 2010; Andrews et al., 2010) ,

nor necessarily the time-evolution of the responses (Cao et al., 2015). All of these factors are im-75

portant to capture if the emulator is to be useful in understanding climate effects of strategies that

include solar geoengineering. We therefore
::::
only

::::
make

:::
an

:::
LTI

::::::::::
assumption,

::::
and do not start with any

::::::::
additional

:
a priori assumptions on the form of the dynamics, and begin by considering .

::::
We

::::
thus

:::::::
consider independent predictors for each variable. For estimating the spatial temperature and precip-

itation response, we employ an EOF-based approach (as in Herger et al., 2015) with a common set of80

EOFs constructed from both CO2-forced and geoengineering simulations. In addition to temperature

and precipitation, we also consider Northern hemisphere sea-ice extent(see Supplementary Material

for net primary productivity; NPP)
:
;
:::
the

::::::::
minimum

::::::
extent

::::
over

:::
the

::::
year

:::::::
provides

:::
an

:::::::
example

::::::
where

:::::::
linearity

:
is
::::

not
:
a
::::
good

::::::::::
assumption.

We use simulations from the Geoengineering Model Intercomparison Study (GeoMIP, Kravitz85

et al., 2011) where solar reduction is used as a proxy for any approach that reduces incoming short-

wave radiation. By training the emulator on one set of simulations and validating on a second ,

we can evaluate the fundamental assumption of linearity
:::::::
Linearity

::::
and

:::::::::::::
time-invariance

:::
are

:::
the

::::
only

::::::::::
assumptions

:::
we

:::::
make

::
in

:::::::::
developing

:::
the

::::::::
emulator.

::::
The

:::::::
emulator

:::
can

::::::::
therefore

:::
be

:::::::
uniquely

::::::::
specified

:::::
based

::
on

::
a

:::::
single

:::::::::
simulation

:::
for

::::
each

::::::
model.

::::
The

::::::::::
assumption

::
of

:::::::
linearity

:::
can

::::
then

:::
be

::::::::
evaluated

:::
by90

:::::::::
comparing

:::::::::
predictions

::::
with

:
a
::::::
second

:::::::::
simulation

:::
for

:
a
:::::::
different

::::::
forcing

:::::::::
trajectory;

:::::::::
deviations

:::::::
between

::::
these

:::::
result

:::::
from

:::::::::::
nonlinearity,

::::
and

::::::::::
conversely,

:::::::::
agreement

::::::::
validates

:::::::
linearity

::::::
being

:
a
::::::::::

reasonable

::::::::::::
approximation. Section 2 describes the methodology and simulations used, and the resulting em-

ulator and validation are given in Section 3.
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2 Approach95

The expectation that an emulator calibrated to match the GCM response to one climate forcing

pathway can also do so for a different pathway is typically based on the assumption that the response

to forcing can be reasonably approximated as linear and time-invariant (LTI). Consider a system

forced by both time-dependent forcing
::::::
forcing

:
f(t) from changes in atmospheric greenhouse gas

concentrations and time-dependent forcing g(t) from solar geoengineering
::::::::::::
geoengineering. For any100

variable zi(t), define zfi (t) as the response to forcing f(t) with g(t) = 0 and zgi (t) as the response

to forcing g(t) with f(t) = 0, where the response is defined in each case as the difference relative

to the initial state, and neglecting natural variability. The system is linear if for any scalars α and β,

the response to the combined forcing αf(t)+βg(t) is the same linear combination of the individual

responses, αzfi (t) +βzgi (t). Note that in general, even if the system is linear, the ratio of any two105

variables will vary with time simply because different variables respond at different rates; that is, for

any forcing scenario, there is not in general some constant µ such that zi(t) = µzj(t) for all time

(a plot of zi(t) against zj(t) will not be a straight line if these variables respond with different time

constants). The usage of the word nonlinear to express this latter idea is distinct from the concept of

the dynamic system itself being linear or nonlinear. By a dynamic system we simply mean that z(t)110

depends on past values of the forcing f(t) or g(t) in addition to the current values. A linear system

can be characterized purely by its

:::
The

::::::
climate

::::::
system

::
as

::
a

:::::
whole

::
is

:::::
highly

::::::::
nonlinear.

:::::::::
However,

::
the

:
response to a Dirac delta function;

this is the impulse response
:::::::::
perturbation

:::::
about

:::
the

::::::
current

::::
state

::::
may

::
be

:::::
close

::
to

:::::
linear;

::
if

::
the

:::::::::::
perturbation

:
is
::::::::::
sufficiently

:::::
small

::::
then

:::::::
linearity

:::
will

:::
be

:
a
:::::
good

::::::::::::
approximation.115

2.1
::::::
Impulse

:::::::::
Response

For an LTI system forced by both time-dependent f(t) and g(t), the response of any variable zi(t)

can be expressed in terms of a convolution between the input time-series and the system impulse

response functions as

zi(t) =

t∫
0

hfi (τ)f(t− τ)dτ +

t∫
0

hgi (τ)g(t− τ)dτ +ni(t) (1)

where hfi (t) is the impulse response due to greenhouse gas forcing and hgi (t) the impulse response120

due to solar reductions; these will not in general be identical, nor in general the same for any choice

of output variable zi. The variable ni(t) is included to denote
::::::
capture

:::
the

::::::
effects

::
of

:
climate variabil-

ity.
:::::::
Because

:::
the

::::::::
emulator

::
is

:::::::
designed

:::
to

::::::
capture

:::
the

::::::
forced

::::::::
response,

:::
the

::::::
actual

::::::::
character

::
of

:::::
ni(t)

:
is
:::::::::::

unimportant
::
in

:::::::
defining

:::
the

:::::::::
emulator. The system is time-invariant if h(τ)

::::
hfi (τ)

::::
and

:::::
hgi (τ)

:
in

equation (1) does
::
do

:
not depend explicitly on the current time t; some possible exceptions are noted125

in Section 4. Herein we consider only annual-mean variables. The same formalism as in equation (1)

also applies for predicting the seasonal-dependence of the
::::
Note

::::
that

:::
the

:
response of a linear (but
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time-periodic) system , where
::::::
system

:::
can

:::
be

:::::::::
completely

::::::::::::
characterized

::
by

:
the impulse responsein

general also depends on the time of year (e. g., h= h(τ,m) for monthm) and
:
;
:::::::
knowing

:::
the

:::::::
impulse

:::::::
response

::
is

::::
thus

::::::::
sufficient

:::
to

::::::
predict

:::
the

::::::::
response

::
to

::::
any

::::::
forcing

:::::::::
trajectory.

::::
The

:::::
same

:::::::::
formalism130

:::::
would

::::
also

:::::
apply

:::
for

:::::::::
predicting

:::
the

:::::::
response

:::
to

::::::::::::::::::
seasonally-dependent

:::::::
forcing,

:::
but

::
of

::::::
course

:
addi-

tional training simulations would be requiredto estimate the seasonal-dependence of h. .
:

If the climate system were indeed LTI, then equation (1) would hold for any variable (temperature,

precipitation, etc) either at any one location or projected onto any particular spatial pattern.
::
.),

::
at

:::::
global

::
or

::::::::
regional

:::::
scale,

:::
and

:::::::
whether

:::::::::::
annual-mean

:::
or

::
at

:
a
:::::::
shorter

:::::::::
time-scale,

::::::::
although

:::
the

::::::
degree135

::
to

:::::
which

:::
the

::::::
forced

:::::::
response

::::
can

::
be

:::::::::
estimated

::
in

:::
the

:::::::
presence

:::
of

::::::
natural

:::::::::
variability

:::
will

:::::
vary

::::
with

:::::
spatial

::::
and

:::::::
temporal

::::::
scale,

::
as

::::
will

:::
the

::::::::
influence

::
of

::::::::::::
nonlinearities.

:::
We

::::::::
consider

:::::::
variables

:::::::::
evaluated

::::
once

:::
per

::::
year

:::::
(e.g.,

::::::::::::
annual-mean,

::
or

::::::::::
September

:::
sea

:::
ice

:::::::
extent),

:::
and

::::::::
equation

:::
(1)

::::
can

::
be

::::
cast

:::
in

::::::::::
discrete-time

::
to
:::::::
predict

::
the

::::::::
response

::
in

::::
year

::
k

::
as

zi(k) =

k∑
j=0

hfi (j)f(k− j) +

k∑
j=0

hgi (j)g(k− j) +ni(k)

:::::::::::::::::::::::::::::::::::::::::::::

(2)

To estimate the impulse response for CO2 forcing, we use the difference between the abrupt140

4×CO2 simulation and pre-industrial simulation for each of the models participating in GeoMIP.

To estimate the impulse response for solar reduction, we use the G1 simulation from GeoMIP, in

which the CO2 concentration was quadrupled and insolation decreased to approximately maintain

radiative balance and hence global mean temperature (see Figure S1
:
1). The difference between G1

and the 4×CO2 simulations thus gives the response to an abrupt change in solar forcing
:
,
::::::::
assuming145

:::::::
linearity. Note that each model separately chose the level of solar reduction g4× required to balance

the forcing from increased atmospheric CO2, so that the percent solar reduction in G1 varies from

model to model based on the efficacy of solar forcing in that model; see Table S1. Define

f(t) = log2

(
CO2(t)

CO2,ref

)
÷ 2 (3)

g(t) =−
(

Solar(t)−Solarref
Solarref

)
÷ g4× (4)

where CO2(t) is the time-varying atmospheric CO2 concentration and Solar(t) is the solar irradi-

ance. The 4×CO2 experiment then corresponds to forcing f(t) = 1, t≥ 0 and f(t) = 0, t < 0 with150

g(t) = 0, while the GeoMIP G1 simulation uses the same f(t) but with g(t) = 1, t≥ 0.

Substituting into Equation (1
:
2) then for any variable zi(t)::::

zi(k), the difference z4×i (t)
::::::
z4×i (k)

between its value in 4×CO2 and preindustrial is given by

z4×i (tk
:
) =

t∫
0

k∑
j=0
::

hfi (τj)dτ +ni(tk:) (5)
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and the difference zG1
i (t) between its value in G1 relative to 4×CO2 is155

zG1
i (tk

:
) =

t∫
0

k∑
j=0
::

hgi (τj)dτ +ni(tk:) (6)

from which we can estimate

ĥfi (tk
:
) =

d

dt
z4×i (tk

:
)−z4×i (k− 1)
::::::::::

and ĥgi (tk
:
) =

d

dt
zG1
i (tk

:
)−zG1

i (k− 1)
::::::::::

(7)

The impulse responses hf,gi (t)
::::::
hf,gi (k)

:
could be estimated from the time-series of any forced simu-

lation, but take particularly simple form from these step response simulations. (A linearly increas-

ing forcing scenario such as a 1% per year increase in CO2 also leads to a simple form, with the160

:::::::::::::
continuous-time impulse response proportional to the second derivative of the 1%CO2 response.)

These impulse response estimates are “noisy” due to natural variability. Various approaches could

be used to reduce the influence of natural variability, such as

1. Using multiple ensemble members or multiple forcing scenarios (as in Castruccio et al., 2014,

for example),165

2. Only considering spatial averages by computing the global mean as in pattern scaling, pro-

jecting onto EOFs as in Herger et al. (2015), or averaging over specific spatial regions as in

Castruccio et al. (2014),

3. Applying temporal filtering to smooth high-frequency noise in ĥ or fitting h(t) to some esti-

mated functional form such as semi-infinite diffusion for global mean temperature (Caldeira170

and Myhrvold, 2013) or a multiple-exponential (Castruccio et al., 2014) or

4. Finding some less-noisy predictive variable, such as global mean temperature, to use as the

predictor of other, noisier variables (effectively what is done in predicting the regional precip-

itation or temperature response in any pattern scaling analysis).

Choosing simulations with high forcing levels to train the emulator (4×CO2 and GeoMIP G1)175

:::::::
increases

:::
the

:::::::
“signal”

::
of

:::
the

:::::::::::::
forced-response

:::::::
relative

::
to

::
the

:::::::
“noise”

::
of

::::::
climate

:::::::::
variability.

::::
This

::::::
choice

allows us to make useful predictions at lower forcing levels without the need for introducing arbitrary

a priori
::::::::
additional

:
assumptions on the functional form of the dynamics, such as that every field

simply scales with global mean temperature. The penalty for this choice is that the high forcing

will exacerbate any nonlinear effects; this
::::::
choice precludes, for example, useful predictions of the180

Northern hemisphere annual-minimum sea ice extent
:::
(see

:::::::
Section

:
3
:::::::

below), which would require

that a lower-forcing simulation be used to train the emulator.

A frequency-domain perspective is useful to understand how the “noise” due to climate variability

affects the emulator predictions. The Laplace transform of Equation (1) transforms the convolution

6



into multiplication:185

L(zi) = L(hfi )L(f) +L(hgi )L(g) +L(ni) (8)

=Hf
i (s)F (s) +Hg

i (s)G(s) +N(s) (9)

where the Laplace transform of the impulse response, Hi(s) = L(hi), is the transfer function be-

tween that input and that output; capital letters will denote the Laplace transform of h(t), f(t)

and g(t). The
::::
(The

:::::::::::
discrete-time

:::::::::
formalism

:::
in

::::::::
equation

:::
(2)

:::::
could

::::::::
similarly

:::
be

::::::::
analyzed

::::
with

::
a190

:::::::::::
Z-transform;

::
we

::::
use

:::
the

:::::::::::::
continuous-time

::::::::::
formulation

::::
here

::
as

:::::::
readers

:::
are

::::
more

:::::
likely

::
to
:::
be

:::::::
familiar

::::
with

::
it.)

::::
The impulse response could thus equivalently be estimated by first taking the Laplace trans-

form of the input and output, computing the ratio, and computing the inverse transform. Consider

for example the response to increased CO2 (the estimation for solar reduction is analogous), where

the emulator is trained on the input ft(t) ::::
fe(t) and used to predict the response to forcing

:
a
::::::::
different195

::::::
forcing

:::::::::
time-series

:
fp(t), with Laplace transforms Ft(s) :::::

Fe(s):and Fp(s). The transfer function

estimate used by the emulator is

Ĥg
i (s) =Hf

i (s) +
N(s)

Ft(s)

N(s)

Fe(s)
:::::

(10)

and hence in the frequency domain the response predicted by the emulator for input forcing Fp(s) is

200

Ẑi = Zi(s) +N(s)
Fp(s)

Ft(s)

Fp(s)

Fe(s)
:::::

(11)

That is, climate variability in the simulation used to train the emulator leads to an error in the pre-

diction that depends on the ratio of frequency content in the forcing signals between training and

prediction simulations. Because a “step” change in the input such as in the abrupt 4×CO2 simula-

tion has more signal energy at low frequencies than high (Laplace transform proportional to 1/s),205

it leads to a better estimate of the output response at low frequencies than at high frequencies; the

high-frequency estimation errors due to natural variability manifest as “noise” on the estimated im-

pulse response (see Figure 2 for an example). However, the smoothly varying radiative forcing input

due to a 1% per year increase in CO2 has even less energy at high temporal frequencies than the step

input (Laplace transform proportional to 1/s2). Thus training an emulator on a “step” input simu-210

lation and then using it to predict the results from a smoothly-varying forcing trajectory will result

in relatively noise-free emulator predictions, despite the apparent high-frequency “noise” in the im-

pulse response. Note that the GeoMIP G2 simulation (described at the beginning of the next section)

has an abrupt change in the solar forcing at year 50 (see Figure S1
:
1), and the emulated responses to

this “step” change in forcing are, as expected, noisier than those due to the smooth forcing changes215

over the first 50 years of G2.
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2.2
::::::
Spatial

:::::::
analysis

:::
For

:::::::::
predicting

:::
the

::::::
spatial

::::::
pattern

:::
of

:::
the

::::::
forced

::::::::
response,

:::
we

::::::::
estimate

:::::::
impulse

::::::::
responses

::::
not

:::
for

::::
every

:::::::::
individual

::::
grid

:::
cell

::
in

::::
each

::::::
GCM,

:::
but

::::
only

:::
for

:::
the

:::::
spatial

::::::::
response

::::::::
projected

::::
onto

:::
the

:::
first

::::
few

::::::::
empirical

:::::::::
orthogonal

:::::::
functions

:::::::
(EOFs).

:::
For

::::
each

::::::
model,

:::::
EOFs

:::
are

::::::::::
constructed

::::
from

:::
the

:::::::::::
area-weighted220

:::::
spatial

:::::::::::
temperature

:::
and

:::::::::::
(separately)

:::
the

:::::::::::
precipitation

::::::::
response.

::::
For

::::
each

::::::::
variable,

::::
and

:::
for

:::::
each

::::::
model,

::
a
:::::
single

:::
set

::
of

:::::
EOFs

::
is
::::::::::
constructed

:::::
using

::::::
output

::::
from

::::
both

:::
the

:::::::
4×CO2:::

and
:::
G1

:::::::::::
simulations,

::::::
leading

::
to

:
a
::::::::::
description

::
of

:::
the

::::
form

:

T (x,y, t) =

m∑
i=1

Φi(x,y)ψi(t)

:::::::::::::::::::::::

(12)

:::::
where

:::
Φi :::

are
:::
the

::::::
spatial

:::::
basis

::::::::
functions

:::::::
(EOFs)

:::
and

:::
ψi:::

the
::::::::::::
corresponding

::::::::
principal

:::::::::::
components225

:::::::::
(projection

::
of

::::::::
T (x,y, t)

::::
onto

::::
each

:::
Φi:::

for
::::
any

::::::::
particular

::::::
forcing

:::::::::
scenario);

:::
the

::::
basis

:::
set

:::
Φi :::

are
::::
thus

:::::::::
unchanged

:::::
across

::::
the

:::::::
different

:::::::
forcing

::::::::::
mechanisms

::::
and

::::::::
temporal

::::::::::
trajectories.

:::::::::
Truncating

::::
the

:::
set

::
of

:::::
EOFs

::::::::
provides

:
a
::::::::::

maximally
:::::::
efficient

:::::
basis

:::
for

:::::::::
describing

:::
the

::::::
spatial

:::::::
pattern

::
of

:::
the

:::::::::
response,

::::::::
capturing

:::
any

::::::
pattern

:::::::
strongly

::::::
excited

::
by

:::::
either

::::
one

::
or

::::
both

::::::
forcing

:::::::::::
mechanisms.

::
In

:::::::
general,

::::
only

:::
the

:::
first

::::
few

:::::::
principal

:::::::::::
components

:::
are

::::::::::::
distinguishable

:::::
from

::::::
climate

:::::::::
variability

:::
and

:::::
have

:::
any

:::::::::
predictive230

::::::::
capability

::::::
(Figure

:::
S4)

::::
and

::
we

:::::
retain

::::::
m= 4

:::::::::
throughout.

::::
The

:::
first

:::::::
pattern,

::::::::::::
corresponding

::
to

:::
the

::::::
highest

:::::::
variance

::
in

:::
the

::::::::::
simulations,

::
is

::::::
similar

::
to
:::
the

:::::::::
long-term

::::::
pattern

::
of

::::::
global

::::::::
warming;

::::::::
choosing

::::::
m= 1

:::::
would

::::
thus

::
be

:::::::::
analogous

::
to

::::::
pattern

:::::::
scaling.

::::::::
Including

::::::::
additional

:::::
EOFs

:::::::
captures

::::
both

:::
the

::::::::::
differences

::
in

:::
how

:::
the

::::::
climate

::::::::
responds

::
to

::::
solar

::::::
versus

::::
CO2 ::::::

forcing,
::
as

::::
well

::
as

:::::::::
differences

::::::::
between

::
the

:::::
short-

::::
and

::::::::
long-term

::::::
pattern

::
of

::::::::
response

:::
for

:::::
either

::::::
forcing

::::
(i.e.,

::::
that

:::
not

:::::::::
everything

:::::::
responds

::
at
:::
the

:::::
same

:::::
rate).235

::::::::::
Temperature

:::::
EOFs

:::
for

:::
one

::::::
model

::
are

::::::
shown

::
in

:::::::::::::
Supplementary

:::::::
Material

:::::
Figure

:::
S1,

::::::
where

:::
the

::::::
second

::::
EOF

:::::::
captures

:::
the

:::::::::::::
equator-to-pole

:::::::::
differential

::::::::
warming

::::
that

:
is
::
a
:::::
robust

::::::::
signature

:::
of

:::::::::::
compensating

::
a

:::::::::::
CO2-induced

:::::
global

::::::
mean

::::::::::
temperature

::::
rise

::::
with

::
a

::::
solar

:::::::::
reduction,

:::::
while

::::::
EOFs

::
3

:::
and

::
4
:::::::
capture

:::::::
Northern

::::::::::
hemisphere

:::
and

::::::
global

::::::
patterns

::
of

::::
land

:::::::::::
temperature,

:::::
which

::::::
change

:::::
more

::::::
rapidly

::::
than

:::::
ocean

::::::::::
temperatures

::
in
::::::::
response

::
to

:::::::
forcing.240

:::
The

:::::::
impulse

::::::::
responses

::::
can

::::
then

::
be

:::::::::
separately

::::::::
estimated

:::
for

::::
each

::::::::
principal

::::::::::
component

::
as

::::::
before

::::
from

:::
the

:::::::
4×CO2::::

and
:::
G1

:::::::::::
simulations,

:::
and

::::
the

::::
time

::::::
series

::
of

:::
ψi :::

for
::::
any

:::::
other

::::::
forcing

::::::::
scenario

::::::::
estimated.

::::::::
Equation

::
12

::
is
::::
then

::::
used

::
to
::::::::
construct

:::
the

:::::::
estimate

::
of
:::
the

::::::
spatial

::::::::
response.

:

3 Results and validation

The impulse responses hfi (t) and hgi (t) are estimated for a number of different variables from the245

abrupt 4×CO2 and G1 simulations as described above. The impulse-response based emulator for

CO2 forcing without any solar reduction can be validated by comparing the predictions with the

simulations for a 1% per year increase in CO2 (1%CO2). To validate the emulation of solar reduction,

we use the GeoMIP G2 scenario, in which CO2 levels increase at 1% per year, and for the first

8



50 years, the solar reduction is gradually increased to balance this forcing. This uses the same ratio250

of g(t) to f(t) as in G1 for each model. After 50 years, the solar reduction is returned to zero so

that only the radiative forcing from the CO2 remains (see Kravitz et al. (2011) and Supplementary

Figure S1
:::::
Figure

::
1 for a schematic of the forcing in the G1 and G2 simulations). Several of the

climate models that conducted experiments G1 and G2 exhibit significant drift in the absence of net

radiative forcing, presumably due to initialization issues
:::
due

::
to

:::
the

:::::::::::
initialization

::::
state

:::
not

:::::
being

:::
in255

:::::::::
equilibrium. These models are not considered further, leading to a total of 9 models considered here

(Table S1).

The impulse response functions for predicting the global mean temperature and precipitation re-

sponses to either CO2 or solar forcing are shown in Figure 2, averaged over all of these climate mod-

els
:::
(see

::::::::::::
Supplementary

::::::::
Material

::
for

:::::::::
tabulation

::
of

::::
these

::::
and

::::
other

:::::::
impulse

::::::::
responses

:::
for

::::
each

::::::
model).260

As expected these are “noisy” estimates due to natural variability. Note that while the temperature

response characteristics are similar (aside from the sign) for increased CO2 and reduced insolation,

the precipitation response differs. The impulse response of precipitation clearly highlights that
:::::
while

CO2 and solar reduction have
:
a
::::::
similar

::::::
“slow”

::::::::
response

:::::::
(changes

:::
in

::::::::::
precipitation

::::
that

:::::
result

:::::
from

::::::
changes

:::
in

:::::::::::
temperature),

::::
they

::::
have

:::::
quite different “fast” responses (rapid atmospheric adjustments265

in the climate system before temperature has time to adjust).
::::

The
::::
fast

::::::::
response

::
is related to dif-

ferent amounts of radiative forcing absorbed by the atmosphere (e.g., Andrews et al., 2010) .
:::
that

:::::
affect

:::::::
stability

:::
and

:::::::::
convection

::::::::::::::::::::::::
(e.g., Andrews et al., 2010) .

:::
For

:::::::::::
CO2-forcing

:::
this

:::::
leads

::
to

::
an

::::::
initial

::::::::::
precipitation

::::::::
response

::
of

:::
the

::::::::
opposite

::::
sign

::
to

:::
the

::::::::
long-term

:::::
slow

::::::::
response;

:::::
while

:::::
solar

:::::::::
reductions

:::::
might

::::::
largely

:::::::::
compensate

:::
for

:::
the

::::
slow

:::::::
response

:::::
there

:::
will

:::
be

::::::
residual

:::::::::
differences

::::
due

::
to

:::
the

:::::::::
differential270

:::
fast

::::::::
response.

:::::::::
Comparing

:::::::
impulse

::::::::
response

:::::::
functions

::::::::
between

::::::
models

::::
may

:::
also

:::
be

:::::
useful

::
to

:::::::
identify

:::::::::
differences

::
in

::::::::
dynamics

::::::
(Figure

::::
S1).

:

Figure 3 validates the ability of the impulse response formulation in equation (1) tuned from the

4×CO2 and G1 simulations to correctly predict the global mean temperature response from the

1%CO2 and G2 simulations. Figure 4 shows the corresponding plots for global mean precipitation.275

Similar results are shown in the supplementary material (Figures S2–S3) for the temperature or

precipitation difference between land and ocean. Linearity has previously been argued as a reason-

able assumption for temperature and precipitation responses (Kravitz et al., 2014, and references

therein)and since .
:::::
Since

:
that is the only assumption made in constructing the emulator,

::
the

:::::
error

::
in

:::::::::
estimating

:::
the

::::::
forced

:::::::
response

::::::
arises

::::
only

:::::
from

::::::
natural

:::::::::
variability

:::
and

:::::
from

:::::::::::
nonlinearity.

::::
The280

::::::::
difference

:::::::
between

::::::::::::::
GCM-simulated

::::
and

::::::::::::::::
emulator-predicted

:::::::::
trajectories

::
is
:::::::

similar
::
to

:::
the

::::::::
standard

:::::::
deviation

::
of

::::::
natural

:::::::::
variability

::
in

:::::
many

:::::::
models;

::
see

:::::
Table

::
1.

:::::
Cases

::::::
where

::
the

::::::::
predicted

:::
and

:::::::::
simulated

::::::::
responses

:::::
agree

::
to

::::::
within

:::
the

:::::
limit

:::::::
imposed

:::
by

::::::
natural

:::::::::
variability

::::::::
indicates

:::
that

:::::::::
nonlinear

::::::
effects

::
are

::::::
small

::::::
relative

:::
to

:::::::::
variability,

::::
and

:::::
hence

:
this analysis also validates that assumption for these

variables and
::::::::
illustrates

:::
the

::::::
utility

::
of

::
a
:::::::
linearity

::::::::::
assumption

:
at these forcing levels. Note that the285
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difference between GCM-simulated and emulator-predicted trajectories is typically less than the

standard deviation of natural variability.

:::::
Figure

::
4
::::::
shows

:::
the

::::::::::::
corresponding

:::::
plots

:::
for

::::::
global

:::::
mean

:::::::::::
precipitation.

::::
The

::::::::
deviation

::::::::
between

:::::::
emulated

::::
and

::::::::
simulated

::::::::
responses

:::
are

::::::
higher

:::
for

::::
some

:::::::
models

:::
here

::::
than

:::
for

:::::::::::
temperature,

::::::
though

:::
the

::::::::
estimation

:::::
errors

:::
are

:::::
close

::
to

:::
the

::::
limit

:::
due

::
to
::::::
natural

:::::::::
variability

:::
for

:::::
many

::::::
models.

:::::
Note

:::
that

:::::
since

:::
G2290

:::::::::
suppresses

:::::
global

:::::
mean

::::::::::
temperature

:::::::
changes,

::
it

::::::
largely

::::::::
suppresses

:::
the

::::
slow

:::::::::::::::::::::
(temperature-dependent)

::::::::::
precipitation

::::::::
response

:::::
(there

::::
will

::::
still

:::
be

:::::
some

:::::
effect

:::::
from

:::::::
regional

:::::::::::
temperature

::::::::
changes).

:::::
This

:::::::
suggests

:::
that

::
in
:::::::
models

::::
such

::
as

::::::::::
GISS-E2-R,

:::::::::
HadCM3,

::
or

::::::::::::
MIROC-ESM

:::::
where

:::
the

:::
G2

:::::::::
emulation

::
is

::::::
notably

:::::
better

::::
than

:::
the

::::::::
emulation

::
of

:::
the

::
1%

:::
CO2::::::::::

simulation,
:::::
larger

:::::::::::
nonlinearities

::
in

:::
the

:::::::::::
precipitation

:::::::
response

::::
arise

::
in

:::
the

:::::
slow

:::::
rather

::::
than

:::
fast

:::::::
response

:::
to

:::::::::::
precipitation.295

::::::
Similar

::::::
results

:::
are

::::::
shown

:::
in

:::
the

::::::::::::
supplementary

::::::::
material

:::::::
(Figures

:::::::
S2–S3)

:::
for

:::
the

:::::::::::
temperature

::
or

:::::::::::
precipitation

::::::::
difference

::::::::
between

::::
land

::::
and

::::::
ocean;

:::
the

::::
only

:::::::
notable

::::
case

::::::
where

:::
the

:::::
error

:::::
from

::::::::::
nonlinearity

:::::::
exceeds

::::::
natural

:::::::::
variability

::
is
:::

in
:::
the

::::::::::
GISS-E2-R

:::::::::
prediction

::
of

::::::::
land-sea

:::::::::::
precipitation

:::::::::
differences

::
in

::::
the

:
1%

::::
CO2 :::::::::

simulation.
::::::

While
::

it
::

is
::::

not
:::
our

::::::::
purpose

::
to

:::::::
evaluate

:::::::::::
mechanisms

:::
of

::::::::::
nonlinearity

::
in

:::
the

:::::::
climate

:::::::
models,

:::
this

:::::
type

::
of

:::::::
analysis

::::
may

:::
be

::::::
useful

:::::
input

:::
into

:::::
such

::::::::
research.300

Northern hemisphere sea ice extent is an example of a variable that is both highly relevant for

assessing possible future scenarios, yet one in which a nonlinear response to forcing might be ex-

pected. The 4×CO2 forcing is large enough that September sea ice is nearly lost in all models, and

thus an emulator trained off of this simulation will do a relatively poor job at predicting the reduction305

in annual-minimum sea ice extent from smaller forcing
:
;
:::
see

::::::
Figure

:
5. However, despite the obvious

nonlinearity in the annual-minimum extent, the annual-mean sea ice extent does behave sufficiently

linearly in most models, even at this large a forcing level, so that the 4×CO2 simulation can be used

to train a useful emulator. This is illustrated in Figure 6.

Finally, Figure 7 illustrates the ability to capture the spatial response. One of the concerns raised310

regarding the use of solar geoengineering is that the response from turning down the sun
::::
solar

::::::::
reduction does not perfectly compensate that from increased CO2, resulting in some regional dif-

ferences in temperature and precipitation responses (Ricke et al., 2010; Kravitz et al., 2014). It is

therefore valuable to assess whether the emulator can capture some of the regional variation in the

response between CO2 and solar forcing. For each model, EOFs are constructed from the spatial315

temperature response using both 4×CO2 and G1 simulations to construct a single set of combined

EOFs. In general, only the
::
As

::::::::
described

::::::
earlier,

:::
the

:::::::
regional

:::::::
response

::
is

::::::::
predicted

:::::
using

::::
EOF

:::::::
analysis

:::
and

:::::::::
estimating

:::
the

:::::::::::::
forced-response

:::
for

:::
the

:
first few principal componentsare distinguishable from

climate variability and have any predictive capability (Figure S4). Figure 7 plots the model-mean

temperature and precipitation responses averaged over years 41-50 of the G2 simulation for both320

the simulation and the emulator prediction. Note that only after averaging over 10years and 9

climate models are the temperature and precipitation changes due to
:::
The G2 – which is designed

10



to have near-zero top-of-atmosphere radiative forcing – statistically significant at the grid-cell level.

The differences here between the simulated and emulated responses are not significant at the grid

cell level, although greater spatial averaging may indicate some statistically significant regional325

differences. In particular, the emulator appears to slightly underpredict the amount of
:::::::::
simulation,

:::
like

::::
G1,

:::::
results

:::
in

::::::::::
overcooling

::
of

:::
the

::::::
tropics

::::
and

:::::::::::
undercooling

::
of

:::
the

::::::
poles.

:::
The

::::::::
emulator

:::::::
slightly

:::::::::::
underpredicts

:::
the residual Arctic warming in G2, likely due to the nonlinearity associated with sea

ice albedo feedback at the 4×CO2 forcing used in training the emulator. Beyond this feature, it is

difficult to assess with certainty to what extent the differences between the simulated and emulated330

regional responses are due to nonlinearities or simply due to natural variability. There is no evidence

of nonlinearity in either the ability of the emulator to capture differences between land and ocean

temperatures or precipitation (Figure S2 and S3), nor in capturing the first few principal components

of the response (Figure S4).
:::
The

::::::::::::
area-weighted

::::::
spatial

::::
root

:::::
mean

::::::
square

:::::
(rms)

:::
of

:::
the

:::::::::
difference

:::::::
between

:::::::
emulated

::::
and

::::::::
simulated

::::::::
responses

::
is
::::
also

::::::
shown

::
in

:::::
Table

::
1,

:::::::::
normalized

::
at

::::
each

::::
grid

:::
cell

:::
by335

::
the

::::::::
standard

:::::::
deviation

::
of

::::::::::
interannual

::::::
climate

:::::::::
variability.

::::::
Where

:::
the

:::
rms

:::::
value

:
is
:::::
close

::
to

::::
unity

:::::::
implies

:::
that

:::
the

:::::
errors

:::::::::
introduced

:::
by

::::::::
assuming

:::::::
linearity

:::
are

:::
not

:::::::
limiting

:::
the

:::::::
emulator

::::::::::
predictions;

:::
the

::::::
Arctic

::::::::::
nonlinearity

:::::::::
contributes

::
to

:::
the

:::::
larger

::::
rms

:::::
errors

::
in

::::::::::
temperature

:::::::::
prediction

::
for

:::::
many

:::::::
models.

:

::::
This

:::::
raises

::
an

:::::::::
interesting

:::::::::::
observation.

::
If

:
it
::

is
::::::

purely
:::
the

::::::::::::::
forced-response

:::
that

::
is
:::
of

:::::::
interest,

::::
then

:
a
:::::
single

:::::
GCM

:::::::::
simulation

:::
of

:
a
::::::::::
low-forcing

:::::::
scenario

:::::
such

::
as

:::
G2

:::::
leads

::
to

:::::::::
uncertainty

::
in
:::
the

::::::::
estimate340

:::
due

::
to

::::::
natural

::::::::::
variability.

:::::
While

:::
the

:::::
most

:::::::
accurate

::::::::
estimate

:::::
would

:::
be

:::::::
obtained

:::
by

::::::::
averaging

:::::
over

:
a
:::::::::
sufficiently

:::::
large

:::::::::
ensemble,

:::
this

::::
may

:::
not

:::
be

:::::::::
achievable

:::
for

::::::::::::
computational

:::::::
reasons.

::::
The

::::::::
emulator

:::::::
provides

:
a
:::::::::::::::::::::
computationally-efficient

:::::::::
alternative.

:
Because the emulated response is based on simula-

tions with roughly three times higher radiative forcing, and because the process of its construction

suppresses high-frequency natural variability , it is potentially a
:::::::
(equation

::::
11),

:::
the

:::::::
estimate

:::
of

:::
the345

:::::::::::::
forced-response

:::
that

::
it

:::::::
provides

:::
has

::::
less

:::::::::
uncertainty

:::
due

::
to

::::::
natural

:::::::::
variability,

::
at

:::
the

::::
cost

::
of

::::::::
increased

:::::
errors

::::
from

::::::::::
nonlinearity.

::
It
::
is

::::
thus

:::::::
possible

:::
that,

:::::
given

::::
only

::::::::
sufficient

::::::::::
computation

::
to
:::::::
conduct

:
a
::::::
single

:::::::::
simulation,

:::
the

::::::::
emulated

::::::::
response

:::::
based

:::
off

::
of

:::
G1

:::::
could

:::
be

:
a
:
more accurate representation of the

forced-response to G2 in the models than that obtained from the actual G2 simulation.
:::
This

::
is

:::::::
trivially

:::
true

::
if

::::::
indeed

:::
the

:::::::
response

::::
was

:::::::
perfectly

::::::
linear;

::
in

:::::::
general

::::
there

::
is

:
a
::::::::
trade-off

:::::::
between

:::::
errors

::::
due

::
to350

::::::::
nonlinear

:::::
effects

::::
and

:::
the

:::::::::
uncertainty

:::::::::
introduced

:::
by

:::::::::
variability.

4 Discussion

Climate emulators provide a powerful tool for assessing any proposed future pathway of mitigation

choices (including carbon dioxide removal) and different levels of geoengineering. For example, so-

lar geoengineering could be used only to limit peak warming as part of an “overshoot” scenario in355

which atmospheric CO2 concentrations peak and subsequently decline as net-negative carbon emis-

sions reduce concentrations (Long and Shepherd, 2014; Tilmes et al., 2016). A limited, temporary
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Figure 1.
::::::::
Schematic

::
of

::::::
GeoMIP

:::
G1

:::
and

:::
G2

:::::::::
simulations,

::::
from

::::::::::::::::
Kravitz et al. (2011) .
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Figure 2. Estimated impulse response for CO2 and solar forcing, for global mean temperature and precipitation,

averaged over all 9 models (table S1); the inter-model standard deviation is shown by the shaded bands. While

these impulse response functions are “noisy”, predictions made using them are less so, particularly for forcing

levels much smaller than those used in estimating these functions. Note for precipitation the robust “fast”

response to increased CO2 has the opposite sign as the “slow” response.
::::::::::
Temperature

:::
and

::::::::::
precipitation

::::
units

::
are

:::::
given

::
as

:::
the

:::::::
response

:::
for

:
a
::::::::::
quadrupling

::
of

::::
CO2.

::::
(See

::::::::::::
Supplementary

::::::
Material

::::::::
including

:::::
Figure

:::
S1

:::
for

:::::::
individual

:::::
model

::::::
impulse

:::::::
respones

::::::::
functions.)

deployment has also been described as a way to reduce the rate of warming (Keith and MacMartin,

2015; MacMartin et al., 2014). These types of limited-deployment scenarios are motivated in part by

recognizing that solar geoengineering sufficient to reduce global mean temperature to preindustrial360

levels could lead to significant regional disparities and other risks, while a deployment that only par-

tially reduces global mean temperature might decrease some metrics of climate change everywhere

(Kravitz et al., 2014).

By training emulators on a standard set of simulations, such as GeoMIP, that have been conducted

by multiple modeling centers, any future
:::::::
proposed

:
scenario such as these can be readily evaluated365

with multiple models. This can provide more
:::::
yields

:
a
::::::::::::::::::::
computationally-efficient

:::::::
method

:::
for

::::::::
providing

insight into the robustness of conclusionsthan detailed simulations with any single model. (Of course,

any collection of models is an ensemble of opportunity, with interpretation challenges as a statisti-
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Figure 3. Simulated and predicted global mean temperature, both for a 1% per year increase in CO2 (blue

curves) and for GeoMIP experiment G2 (red), for each of the climate models considered here. The predicted

response using the emulator is given by black lines, solid for the 1% CO2 case and dashed for G2.

cal sample; see, e.g., Collins et al. (2013), Section 12.2, for a thorough discussion.) The emulator

used here assumes that the climate system response can be sufficiently well approximated over the370

range of forcing levels of interest by the output of a linear system. For many variables, the analysis

here indicates that this is a sufficiently good assumption, with the difference between simulated and

emulated responses smaller than
::::::
similar

::
to

:
the standard deviation of natural variability. There are

many more variables that may be of interest, including higher moments to predict extremes; simi-

lar analysis as here could be used to assess whether a linear assumption is or is not sufficient for375

projecting the response of any variable beyond those considered here.
::::
The

:::::::
GeoMIP

::::::::::
simulations

:::
are

:::
also

::
of

:::::::
limited

:::::::
duration,

::::
and

:::::::::::
nonlinearities

::::
may

:::::
arise

::
at

:::::
longer

::::::::::
time-scales

:::
due

::
to

:::::::
changes

::
in
::::::

ocean

::::::::
dynamics,

:::
for

:::::::
example

:::::::::::::::::::
(Bouttes et al., 2015) .

Finally, note that the results herein were obtained using simulations that reduce the solar constant

as a proxy for any solar geoengineering approach. The
:::::
While

::::
this

:
is
:::::::

clearly
:
a
::::::
useful

:::
first

:::::
step,

:::
the380
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Figure 4. As in Figure 3 but for global mean precipitation. Simulated and emulated response are shown for 1%

per year increase in CO2 and GeoMIP experiment G2 for each of the climate models considered here.
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Figure 5.
::
As

::
in

:::::
Figure

:
3
:::
but

:::
for

:::::::
Northern

:::::::::
Hemisphere

::::::::::::
annual-minimum

:::
sea

:::
ice

:::::
extent.

::::::::
Simulated

:::
and

:::::::
emulated

::::::
response

:::
are

:::::
shown

:::
for

:
1%

::
per

::::
year

::::::
increase

::
in
::::

CO2:::
and

:::::::
GeoMIP

:::::::::
experiment

::
G2

:::
for

:::
one

::::::
model,

::::
GISS

::::
E2-R

:
.

:::
The

:::::
dotted

:::
line

:::::
shows

::
the

:::::::
response

:::
for

::
the

:::::
abrupt

::::::
4×CO2:::::::::

simulation.
:::
The

:::::::
relatively

:::::
poorer

:::::::
emulator

::::::::
prediction

::
for

:::
the

:
1%

:::
CO2::::

case
::
in

:::::::
particular

::::::::
illustrates

:::
that

:::
the

::::::
linearity

:::::::::
assumption

:::
does

:::
not

::::
hold

::
for

:::
all

::::::
relevant

::::::
climate

:::::::
variables.
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Figure 6. As in Figure 3 but for Northern Hemisphere annual-mean sea ice extent. Simulated and emulated

response are shown for 1% per year increase in CO2 and GeoMIP experiment G2 for several of the climate

models considered here; the dotted line shows the response for the abrupt 4×CO2 simulation.

Figure 7. Temperature (left) and precipitation (right) averaged over years 41-50 of G2 simulation and aver-

aged over all 9 models. The upper row shows the simulated results; the lower row shows the prediction based

on a spatial emulator developed using 4 EOFs for each model. As noted elsewhere, the robust response to in-

creasing CO2 and reducing insolation to maintain zero global mean temperature difference is a net reduction

(overcompensation) of global mean precipitation (Bala et al., 2010), and an overcooling of the tropics and an

undercooling of the poles (Kravitz et al., 2013). The latter is an artifact of a latitudinally-uniform reduction in

sunlight, and could be better managed by increasing the forcing at high latitudes relative to low (Kravitz et al.,

2016).
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:
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::
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: ::
3.0

:::
2.0

::
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::
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2.2

::
1.8

: ::
2.2

::
1.3

:::::::
HadCM3

::
1.3

::
1.3

: ::
3.2

::
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:
-
: :
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::
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::
1.9

: ::
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::
1.2

:::::::::::
HadGEM2-ES
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::
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::
2.1

::::::::::
MIROC-ESM
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::
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: ::
1.3

::
1.1

: ::
2.2

::
1.3

: ::
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::
1.5

: ::
2.4

::
1.4

:::::::::::
MPI-ESM-LR

::
1.7

::
0.8

: ::
1.3

::
0.9

:
-
: :

-
::
2.6

::
1.2

: ::
1.5

::
1.1

:::::::::::::
CSIRO-Mk3L-1.2

: ::
1.4
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1.7

: ::
1.2
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-
: :

-
::
4.1
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1.3

: ::
3.7

::
0.8

Table 1.
::::::::::::::
Root-mean-square

::::
(rms)

:::::::
deviation

:::::::
between

::::::::
simulation

:::
and

::::::
emulator

:::::::::
prediction.

:::
For

:::
first

::::
three

::::::
(scalar)

:::::::
variables,

:::::::
temporal

:::
rms

::
is
::::::::
computed

::::
over

::::
years

::::::
31–50,

::::::::
normalized

:::
by

:::
the

::::::
standard

::::::::
deviation

::
of

:::::::::
interannual

:::::
natural

::::::::
variability.

:::
For

:::::
spatial

::::::::
response,

::
the

:::::::::::
area-weighted

:::
rms

::
is
::::::::
computed

:::
after

::::::::::
normalizing

::
by

::::::::
variability

::
at

:::
each

::::
grid

:::
cell

:::
(that

::
is,
:::

the
:::::
spatial

:::
rms

::
of
:::
the

:::::::
deviation

::
as

:::::::
measured

::
in

:::::::
standard

:::::::
deviations

::
of
::::::
natural

:::::::::
variability).

climate effects from any specific technology, such as stratospheric aerosol injection (SAI)
::
or

::::::
marine

::::
cloud

::::::::::
brightening

::::::
(MCB)

:
will differ (e.g., Ferraro et al., 2015) both due to the different mechanism

of radiative forcing, and the different spatial pattern of radiative forcing (the latter being at least

partially a design choice; Kravitz et al., 2016). Further, while linearity appears to be a reasonable

assumption in these climate models for predicting the response of many climate variables to an385

imposed solar reduction, it may be a poorer approximation for SAI, for example. Nonlinearities will

occur in aerosol size distribution (Heckendorn et al., 2009; Niemeier and Timmreck, 2015), as well as

due to changes in the stratospheric circulation that result from the aerosols (Aquila et al., 2014); time-

invariance might also not hold if, for example, time-varying stratospheric chlorine concentrations

(which affects the aerosol impact on ozone) are considered part of the “system” rather than a forcing.390

It is unclear how significantly these will affect the ability to develop emulators for this technology.
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