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Abstract:

Wildfires pose a significant risk to human livelihoods and are a substantial health
hazard due to emissions of toxic smoke. It is widely believed that climate change,
through increasing the frequency of hot weather conditions, will also lead to an
increase in wildfire activity. More recently, however, new research has shown that
trends in population growth and urbanisation can be as important for fire prediction as
changes in climate and atmospheric CO», and that under certain scenarios, fire activity
may continue to decline through most of the 21* century. The present study re-
examines these results from the perspective of air pollution risk, focussing on
emissions of airborne particulate matter (PM2.5). We combine an existing ensemble
of simulations using a coupled fire-dynamic vegetation model with current

observation-based estimates of wildfire emissions to predict future trends. Currently,
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wildfires PM2.5 emissions exceed those from anthropogenic sources in large parts of
the world, while emissions from deforestation or peat fires constitute minor sources.
We find that for Sub-Saharan Africa and southern China predictions of wildfire
pollution risks depend almost entirely on population dynamics, whereas for North
Australia and South America, it is mainly determined by climate change, with
Southeast Asia lying somewhere in-between. Under a scenario of current legislation
of anthropogenic emissions, global high population growth and slow urbanisation,
wildfires may seize to be the dominant source in large parts of Sub-Saharan Africa.
However, if anthropogenic emissions are strongly reduced, wildfires may both
become the dominant source and lie above critical levels for health impacts in large
parts of Australia, Africa, Latin America and Russia, and parts of southern China and
southern Europe. This implies that controlling anthropogenic emissions will not

suffice for attaining the World Health Organization air quality targets.

1 Introduction

Wildfires are a major natural hazard (Bowman et al. 2009) and an important source of
air pollutants (Langmann 2009). Of these, emissions of fine aerosol particles, i.e.
particulate matter up to a size of 2.5 microns (PM2.5), are of particular health
concern, with no known safe levels of PM2.5 concentration in air, as noted by the
World Health Organization (WHO 2005). While globally, most PM2.5 emissions
come from human activities, wildfires can be an important source in large, more
remote areas (Granier et al. 2011, van der Werf et al. 2010). There is an expectation
that such emissions will become more important in the future (Kloster et al. 2010,
Knorr et al. 2016a), because of a widely held view among both the general public and

members of the research community that wildfire occurrence and severity have been
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increasing in recent decades, and will continue to increase due to climate change
(Doerr and Santin 2016) and efforts to reduce anthropogenic emissions (EEA 2014).

Climate warming has already led to frequent hot and dry weather around the
globe, increasing the probability of wildfires (Flannigan et al. 2012), and this is
expected to continue into the future. Studies based on predicted fire severity indices
from climate argue for large increases in burned area as a result of climate warming
(Flannigan et al. 2005, Amatulli et al. 2013). However, a long-term increase in the
length of the fire season or in weather conditions conducive of wildfires does not
necessarily lead to increases in burned area (Doerr and Santin 2016). This is because
at longer time scales, vegetation also responds to climate change, as well as directly to
rising atmospheric CO, levels (Buitenwerf et al. 2012, Donohue et al. 2013). While
CO, fertilization will lead to increased fuel load, enhancing emissions, it also leads to
an increase in woody as opposed to herbaceous vegetation, with lower emissions due
to decreased fire spread in shrublands (Kelley et al. 2014, Knorr et al. 2016b). Indeed,
simulations with coupled fire-vegetation or statistical climate-envelope models
generally show less increase in fire activity until 2100 when accounting not only for
climate, but also for these vegetation factors (Krwachuk et al. 2009, Kloster et al.
2010, Knorr et al. 2016c¢).

Another factor that has so far received less attention are changes in human
population density. Contrary to common perception, higher population density tends
to be associated with lower burned area (Archibald et al. 2009, 2010, Lehsten et al.
2010, Knorr et al. 2014, Bistinas et al. 2014), even though more humans tend to lead
to more, but smaller fires (Archibald et al. 2009, 2010). This can be explained by the
concept of the ignition-saturated fire regime, which is reached at very low levels of

population density. Above this level, human impact is less manifested as enhancing
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burned area by providing ignitions, but more by creating barriers to and suppressing
fire spread, thus reducing area burned (Guyette et al. 2002). Indeed, coupled
vegetation-fire models that include human effects suggest a reduced rate of increase
of fire activity during the 21* century compared to simulations not accounting for
demographic changes (Kloster et al. 2010), or even a decline in burned area (Knorr et
al. 2016¢) or emissions (Knorr et al. 2016b) for moderate levels of climate change
combined with slow urbanisation and fast population growth. It was found that
differences between demographic scenarios can be more important than differences
between climate scenarios or climate models. There is also observational evidence for
a long-term declining trend in past fire activity or emissions from wildfires (Marlon et
al. 2008, Wang et al. 2010, van der Werf et al. 2013), and more recent negative trends
in Africa have been related to the expansion of cropland, that is itself a result of
increasing population density (Andela and van der Werf 2014).

The question is therefore not only how climate and vegetation change in the
future will impact on wildfire hazards, but also what the role of total population
growth and changes in spatial population distribution is for those predictions.
Following a similar study for Europe (Knorr et al. 2016a), we will use PM2.5
emissions from wildfires as an example fire hazard to illustrate the relative effects of
climate, vegetation and demographics, and base our projections on observation-based
wildfire emissions, using vegetation-fire model simulations to project relative
changes. The results are meant to be indicative of the importance of demographic and
climatic changes for the expected future development of wildfire hazards. All this,
however, needs to be seen against a background of considerable uncertainties
surrounding future projections of wildfire emissions (Knorr et al. 2016a, Doerr and

Santin 2016).
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100 2 Methods

101 2.1 Models and driving data

102 We use the LPJ-GUESS global dynamic vegetation model (Smith et al. 2001,

103 Ahlstrom et al. 2012) coupled to the global semi-empirical fire model SIMFIRE

104 (Knorr et al. 2014). A detailed description of the coupling between SIMFIRE and

105 LPJ-GUESS and of methods used to compute wildfire emissions in terms of biomass
106  can be found in Knorr et al. (2016b). LPJ-GUESS is a patch-scale dynamic vegetation
107 model that represents age cohorts and computes vegetation establishment and growth,
108 allocation of carbon pools in living plants, and turnover of carbon in plant litter and
109 soils. SIMFIRE provides burned area to LPJ-GUESS on an annual basis, which then
110 evokes plant mortality according to a plant-functional-type (PFT) dependent

111 probability. Specified fractions of plant litter and live leaf biomass are burnt and

112 emitted into the air in a fire, while the remaining biomass of the killed vegetation is
113 transferred to the litter pool (see Knorr et al. 2012). Population data needed to drive
114 SIMFIRE are based on gridded data from HYDE 3.1 (Klein-Goldewijk et al. 2010) up
115 to 2005, and then re-scaled using per-country relative growth in population and

116  urbanisation rates, retaining the urban masks of the HYDE data. Grid cells with more
117 than 50% past or future cropland area (in either the RCP6.0 or 4.5 land use scenarios
118 of Hurtt et al. 2011) were also excluded (see Knorr et al. 2016b, ¢ for details).

119 In order to compute emissions of chemical species, we use the emission factors of
120 the Global Fire Emissions Database version 4 (GFED 4, Van der Werf et al. 2010,

121 based mainly on Akagi et al. 2011, see http://www.falw.vu/~gwerf/GFED/GFEDA4),
122 which are fixed ratios between emission rates of various pollutant species and rates of
123 combustion of dry biomass differentiated between fires in (1) savannas and

124  grasslands, (2) tropical, (3) boreal and (4) temperate forests. We assign a grid cell to
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(1) if the dominant PFT (the one with the largest leaf area index at full leaf
development) is a grass, to (2) if it is a tropical, to (3) a boreal and to (4) a temperate

woody plant (see Knorr et al. 2012 for list of PFTs).

2.2 Simulations and scenarios

Simulations are driven by output from an ensemble of eight global climate models
from the Climate Model Intercomparison Project 5 (CMIP5, Taylor et al. 2012) for
two RCP (Representative Concentration Pathway, van Vuuren et al. 2011) climate
scenarios: 4.5 (moderate) and 8.5 (high degree of climate change). Simulations for
1901 to 2100 are carried out on a global equal-area grid with one by one degree
spatial resolution at the equator, but constant east-west spacing of the grid cells when
moving towards the poles in order to keep the grid cell area constant (Knorr et al.

2016b).

Population projections follow the Shared Socioeconomic Pathways (SSPs, Jiang
2014). The SSPs are based on qualitative narratives following five different
development pathways which have been translated into quantitative projections of a
range of socio-economic and biophysical factors. Globally, SSP2 reflects an
intermediate case (medium population and economic growth and a central
urbanisation case), SSP3 high population growth and slow urbanisation with slow
economic development, and SSP5 rapid but fossil-fuel driven economic growth with
slow population growth and fast urbanisation. However, there are regional variations
in demographic trends under each SSP. In contrast to developing countries and the
world as a whole, high-income countries have low population growth for SSP3 but
high population growth for SSP5. We did not consider the SSP1 scenario because its
sustainability assumptions lead to low emissions and the scenario is therefore not

compatible with the RCP8.5 climate scenario, nor did we use SSP4, since it is similar
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to SSP2 in its population projections. The matrix of three SSPs and two RCP

scenarios represents a wide range of future climate and socio-economic conditions.

In addition to the emission fields simulated by LPJ-GUESS-SIMFIRE, we also use
the GFED4.1s observation-based emissions fields for wildfires (van der Werf et al.
2010, updated using Randerson et al. 2012 and Giglio et al. 2013) aggregated to 0.5
by 0.5 degrees resolution and then re-scaled in time by country or groups of countries
in some cases (following the methodology of Knorr et al. 2016a). For larger countries,
scaling is done by sub-national regions, which were chosen in such a way as to isolate
major fire areas found in GFED4.1s. For a list of regions/countries, see Table Al in
the Appendix. The use of countries accounts for the high degree of policy or cultural
impact on fire regime (Bowman et al. 2011). In order to account for demographic
effects at the grid-cell scale, we combine a scalar accounting for climate and
vegetation effects, f;,, which is uniform in space across each region, with a scalar
accounting for demographic effects, f,, which is applied at each grid cell separately:

E@,0) = fel R(),0) * folp(x,1) * Egrn(x) M

with E the re-scaled emissions, x the geographic location on the 0.5 by 0.5 degree grid
used for the analysis, ¢ time, R the region/country found at location x, Egrep the
annual emissions climatology from GFED 4.1s (average for 1997 to 2014). The
population effect, f, , is equal to the population multiplier of SIMFIRE (Knorr et al.

2016b):

Jpp) = exp(-0.0168*p(p)). 2
p' here is the minimum of population density p and 100 inhabitants per km?, i.e. the
function is constant for values of p above 100 inhabitants per km? (Fig. A1). We have

introduced this cap, which is only used for scaling observation-based inventories by

LPJ-GUESS-SIMFIRE output but not by SIMFIRE itself, in order to prevent large
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relative increases in emissions during the scaling procedure, when population density
decreases from high values. We thus consider areas with higher population density
than 100 per km” to be essentially wildfire free. The combined climate and vegetation
effect is defined as

JelR,1) = Zg E(x',0) | [Er E(x't9) * Zr fp(p(x".0))]- 3)

Here, the sums are over all grid cells x’ of the LPJ-GUESS 1-degree equal-area
grid that belong to region/country R. For countries where 90% or more of the grid
cells of the LPJ-GUESS grid have been excluded because they have a current or
future cropland fractions of 50% or higher (highly agricultural regions: Moldavia and
Bangladesh), or for which LPJ-GUESS simulates zero current emissions in at least
one simulation (Greenland), we set f.,(R,f) =1. Gridded population data is based on
HYDE 3.1 (Klein-Goldewijk et al. 2010), and future population patterns are re-scaled
from 2005 population data using per-country population increases and changes in
urbanization level, retaining the urban masks of the HYDE data (see Knorr et al.

2016c¢ for details).
2.3 Analytical Framework

In our analysis, we focus on four time windows: current, 2030, 2050 and 2090. For
current, we use 2010 population fields and annual anthropogenic emission data, as
well as the mean annual emissions of GFED4.1s, which span the period 1997-2014.
For the future time windows, we again use population fields and anthropogenic
emissions from that year, but average emissions simulated by LPJ-GUESS-SIMFIRE
spanning a period of 21 years centered on each of these years (i.e. 2020 to 2040 for
the 2030 time window, etc.). While LPJ-GUESS-SIMFIRE simulations are carried
out on a 1-degree equal-area grid, all spatially explicit analysis is carried out on a

global 0.5 by 0.5 degree grid.
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To assess the relevance of PM2.5 emission rates, we both compare them to those
from anthropogenic sources, and consider an approximate threshold above which they
can be considered relevant for human health and air quality policy. The World Health
Organization has adopted an air quality policy target of 10 pg/m’ on an annual
average, pointing out that there is no established safe upper limit and that the target
was set considering background concentrations of 3-5 pg m™ in North America and
Western Europe. We follow here Knorr et al. (2016a) and assume a typical boundary
height of 1000 m and a life time of 1/50 years (about 7 days). Pollutants from
wildfires are inject into the atmosphere from large plumes, which have a global
average height of around 1400 m, but only about 4-5% of wildfire emissions are
emitted into the free troposphere, the rest into the boundary layer (Veira et al. 2015).
Here, we assume that after about one week, most of PM2.5 is either deposited or
effectively mixed into the free troposphere. We also neglect horizontal transport
between 0.5 by 0.5 degree grid cells and compute an annual budget based on annual
mean emissions and pollutant life time. Using these idealized conditions, which are
meant as a first guidance, we arrive at a threshold of 0.5 g m™ yr' for PM2.5
emissions corresponding to a mean annual concentration of 10 pg m™. In this
analysis, we use 0.2, 0.5 and 1 g m™ yr' as alternative thresholds spanning a critical
range for health and air-quality policy purposes.

For anthropogenic emissions, we use the GAINS 4a data (Amann et al., 2011)
developed as part of the ECLIPSE project (Granier et al. 2011, Klimont et al. 2013,
Stohl et al., 2015) for the years 2010 (for current conditions), 2030 and 2050. There
are two future scenarios: current legislation (CLE), and maximum feasible reductions
(MFR). MFR corresponds to a policy driven abatement scenario with the aim, among

others, to lower PM2.5 emissions to a level to minimize health impacts (Amann et al.
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2011). Following Knorr et al. (2016a), we estimate 2090 CLE emissions assuming
constant per capita emissions after 2050 but changing population according to the
SSP3 scenario. For MFR, 2090 emissions are assumed half of the corresponding 2050
levels. As the CLE and MFR scenarios do not account for CO, emissions, both are in
principal compatible with the CO, equivalent greenhouse gas emissions of both RCP
scenarios, even though the non-CO, greenhouse gas emissions may differ.

For a regional analysis, we use a global map of nine major world regions to
facilitate a global-scale analysis of our results (see Fig. A2). Of these, three belong to
the high-income group of countries of the SSP scenarios (see Jiang and O'Neill 2015):
High-income Europe, Australia & New Zealand, and North America. Countries of
Europe belonging to the middle-incoming group were assigned Eastern Europe and
Central Asia, which also includes Russia. Countries of the Middle East (Israel, oil-
rich states of the Persian Golf) or East Asia (Japan, South Korea) belonging to the
high-income group were excluded, which only account for a very small fraction of

wildfire emissions in their respective group.

3 Results

3.1 Current patterns of wildfire pollutant emissions

The analysis presented in this sub-section concerns exclusively observation-based
emission inventories. Currently 14 million km” of land area are affected by wildfire
PM2.5 emissions that exceed 0.5 g m™ yr”', used as an indicative threshold for serious
health impacts, mainly in Sub-Saharan Africa, North America, South Australia,
Southeast Asia, and the boreal zone (numbers are for the 0.5 by 0.5 degree grid: 23
million km? for a threshold of 0.2 and 8 million km? for a threshold of 1 g m™ yr™")
According to the GFEDA4.1s and ECLIPSE inventories (Fig. 1), PM2.5 emissions over

large parts of the globe are dominated by wildfires, in particular the boreal zone and
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the semi-arid tropics. Even in the humid tropics, such as the Amazon basin or
Southeast Asia, wildfires are prevalent and deforestation fires still play a
comparatively minor role. Only Indonesia is clearly dominated by deforestation and
peat fire emissions. Of the nine world regions, four (Sub-Saharan Africa, Latin
America & Caribbean, Eastern Europe-Russia-Central Asia and Australia & New
Zealand) have higher wildfire than anthropogenic emissions of PM2.5 on an annual
basis (Table 1).

There are large, remote areas where, despite low emission rates, wildfires are the
highest emissions source because anthropogenic emissions are even lower. This
applies for example to large parts of the boreal zone, central parts of Australia, much
of the western US, or the northern part of the Amazon. However, large regions also
have emissions above the upper critical range from 0.5 to 1 g m™ yr', mainly in the
boreal-forest areas (Alaska, Canada, Russia), the semi-arid tropics (the African
savannas, the areas south of the Amazon basin, Southeast Asia from Myanmar to
Cambodia and Northern Australia), and southeastern Australia in the temperate zone.

Other pollutants show a similar pattern of dominance (Fig. 2), but with some
important differences: for CO and NOy, anthropogenic sources are more important,
and only Sub-Saharan Africa and Australia & New Zealand have emissions of these
gases from wildfires close to or surpassing those from anthropogenic sources (Table
1). For NOy, deforestation fires in the Amazon are also of minor importance
compared to wildfires (Fig. 2b). For BC, Sub-Saharan Africa has very high but
Australia & New Zealand very low anthropogenic sources, which is reflected in the
dominance pattern shown in Fig. 2c. BC from wildfires is also important in temperate

North America and central Asia.
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A breakdown of PM2.5 emission patterns by population density is shown in Fig.
3. It shows current emissions per area averaged over all grid cells of a given region
that fall into a certain population-density range. Fig. 3 reveals the expected trend of
increasing anthropogenic emissions where more people live. By contrast, for Sub-
Saharan Africa, Latin America & Caribbean, Eastern Europe-Russia-Central Asia and
South & Southeast Asia, wildfires show peak values with maximum emissions in
regions of intermediate population density: Sub-Saharan Africa and Latin America &
Caribbean at 1 to 10, Eastern Europe-Russia-Central Asia at 0.1 to 1, and South &
Southeast Asia at 10 to 100 people km™. Deforestation fires are of minor importance
for air pollutant emissions, except for Latin America & Caribbean, where they occur
mainly in sparsely populated area, and for South & Southeast Asia, where they are as
important as wildfires and most significant in areas of high population density. It is
important to note that within South & Southeast Asia (Fig. A2), wildfires occur
mainly in South-East Asia proper, but deforestation fires in Indonesia (Fig. 1a).
Indonesia is also the only region where emissions from peat fires are relatively
important for air pollution. In High-Income Europe and Developing Middle East &
North Africa, wildfires show a similar increase with population density as
anthropogenic emissions with the consequence that they are much smaller than
anthropogenic emissions in all areas (for Developing Middle East & North Africa
their magnitude is also very low per se). For North America, wildfires have the
reverse trend compared to anthropogenic emissions, and for Australia & New Zealand
and Developing East Asia, wildfire emissions happen at a similar average rate across
all population density categories. These different trends between wildfires and
anthropogenic sources lead to a situation where the former become the dominant

source below a certain value of population density, which is 10 for Australia & New
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Zealand, and 1 inhabitant per km? for the other world regions. Developing East Asia
also has the highest per-area anthropogenic emissions, which makes wildfire
emissions appear to be generally of minor importance compared to current

anthropogenic-emission levels.

3.2 Simulated changes in emissions

In this sub-section we present results from simulation with LPJ-GUESS-SIMFIRE.
These differ from those presented in the following sub-sections, where the relative
temporal changes from the LPJ-GUESS-SIMFIRE simulations are used to scale
current observed emissions (Equ. 1). The ensemble mean PM2.5 emission shows a
continuous declining trend for Sub-Saharan Africa across both the 20™ and the 21
centuries for the moderate climate change scenario (RCP4.5, Fig. 4). Only the two
ensembles with fast urbanisation show a slight increasing trend starting after 2050 for
the medium population projection (SSP2 with fast urbanisation), or around 2030 for
the low population growth scenario (SSP5). The range of predictions across climate
models is about as large as the range of predictions across demographic scenarios.
The result is surprisingly similar for the high climate change scenario (RCP8.5),
where the central SSP2 demographic scenario still shows no clear increase in
emissions even towards the end of the 21 century (Fig. 5). For Sub-Saharan Africa,
demographic trends are by far the dominant driver of changes in fire regime, while
differences between climate scenarios are minor. For the two scenarios with fast
urbanisation (with either SSP2 or SSP5 population trends), this region shows a
continuing decline in PM2.5 emissions from wildfires. The effect of changing only
the urbanisation scenario on emissions is approximately half compared to changing
both the urbanisation and population scenarios (i.e. changing SSP2 to SSP2 with fast

urbanisation vs. changing SSP2 to SSP5; or changing SSP2 to SSP2 with slow

13/56

Atmospheric



Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-533, 2016

Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Published: 6 July 2016 and Physics
(© Author(s) 2016. CC-BY 3.0 License. Discussions

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

347

urbanisation vs. changing SSP2 to SSP3). This region clearly stands out not only
because it has by far the largest share of global wildfire pollutant emissions (Table 1),
but also because of its large decline in fire activity driven by population trends.

The other two tropical regions, Latin America & Caribbean and South &
Southeast Asia, differ from Sub-Saharan Africa in that the simulated historical decline
is less steep, and that the future scenarios show an upward trend that is only slight for
RCP4.5, but steep for RCP8.5. The range of predictions for only the central SSP2
scenario (ensemble ranges for the medium population and central urbanisation
scenario, dark grey area in Fig. 4 and 5) is almost as large as that for the entire
ensemble, indicating a reduced role for demographic change, with climate change as
the main driver. For Latin America & Caribbean, the effect of urbanisation is
negligible, whereas urbanisation plays an important role for South & Southeast Asia.
However, in the case of moderate climate change (RCP4.5) combined with SSP3 high
population growth and slow urbanisation, even in these regions wildfire activity may
not increase during the 21* century. The arid Developing Middle East & North Africa
region has a similar declining trend, with a reversal around the middle of the 21
century that is strongly dependent of climate scenario.

Two northern regions that belong to the middle-income group and therefore have
lower population growth with SSP5 than with SSP3 (as have the tropical regions
discussed so far) are Eastern Europe-Russia-Central Asia and Developing East Asia.
For both, LPJ-GUESS-SIMFIRE simulates no trend during the historical period,
except for an increasing upward trend beginning late in the 20" century. The climate
scenario has a strong impact on both regions’ predictions, and demographics a small,

albeit still discernable one. In both regions, urbanisation plays an important role as
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seen in the difference between SSP2 with central and SSP2 with slow/fast
urbanisation.

North America and High-Income Europe have a similar temporal profile as
Eastern Europe-Russia-Central Asia, but with the order of demographic scenarios
reversed. For North America, demographics are predicted to play only a minor role
compared to climate change, but for High-Income Europe, there is still a marked
influence even though changing the demographic scenario does not change the
general trend in predictions. Here, differences between urbanisation scenarios are
unimportant, but SSP5, which here has the highest population growth, leads to
markedly higher predictions compared to SSP3 with low population growth. Another
region that belongs to the high-income group but where most wildfire emissions are
from the tropics (Australia & New Zealand, cf. Fig. 1) stands out as showing almost
no change in fire activity across both centuries. Only for RCP8.5 there is a very slight
increase, and difference between demographic scenarios have almost no impact on the
results.

We also note that simulations with LPJ-GUESS-SIMFIRE sometimes differ
substantially from GFED4.1s (Fig. 4, 5, Table 1), and show in particular higher
emissions in the boreal zone (e.g. higher for Eastern Europe-Russia-Central Asia than
for Latin America & Caribbean, and also high emissions for North America). We
attribute this to differences in the assumed litter load and combustion completeness
between GFED (van der Werf et al. 2010) and SIMFIRE (Knorr et al. 2012). These
quantities are generally not well constrained, as noted by Knorr et al. (2012). We
expect, however, that the relative change in emissions, which we compute by country
(Table A1), is much less affected by those differences. In Fig. 6, we show this relative

change from current conditions to 2090 by country/region for the two scenarios that
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lead to the lowest (SSP3 with RCP4.5) or highest (SSP5 with RCP8.5) end-century
global emissions.

For SSP3/RCP4.5, there is again a very pronounced decline in fire activity in
most but not all countries of Africa. South Africa, Namibia and in particular
Botswana show a relative increase in emissions of up to 50%. The strongest decline is
found in parts of West Africa, in particular Nigeria, where wildfires in this scenario
almost completely disappear. By contrast, central Europe, which has a pronounced
population decline under SSP3, shows a strong increase, albeit from a low base (Fig.
1). An arch of countries spanning from Turkey to Southeast Asia also show either a
strong decline or only a small increase in fire activity. Western boreal North America
(ALK, CAN-W, Table A1) and eastern boreal Russia (RUS-NW) show moderate to
strong increases, which are much higher for SSP5/RCPS.5, driven mainly by climate
change given the low population density in these regions. A very large increase with
SSP5/RCP8.5 by around 150% is found for eastern and southern China (CHN-E),
driven by reduced population size, fast urbanization, and climate change. A
pronounced increase is found mainly for the northern part of the Amazon basin
(BRA-N). For Australia, we find a decline in the north (AUS-N) for both climate
scenarios, but a slight to pronounced increase for the remaining areas (demographics

in this region play almost no role).

3.3 Predicted changes in emissions by population density

The strongest change in the distribution of wildfire emissions against population
density (cf. Fig. A3) is found for Sub-Saharan Africa under the SSP3 and RCP4.5
scenarios, where the 0.1 to 1 and 1 to 10 people per km? categories see a decline by
around a factor of 10 between 2010 and 2090 (Fig. 7). As the area extent of these

categories hardly changes (dotted lines) and the decline is absent for SSP5/RCPS.5,
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the decrease is mainly because population density within a given category increases,
which leads to more fire suppression. (Figs. 1, A2). Woody encroachment, which also
leads to a decline in fire activity, would respond strongly to the higher CO; levels of
RCP8.5 (Buitenwerf et al. 2012, Knorr et al. 2016b, c¢). Conversely, areas with more
than 100 people per km® see an increase in both extent and emissions per area, as
more people move into fire-prone area in this slow-urbanisation scenario. For the
CLE anthropogenic-emissions scenario, we expect most changes in the relative
dominance of wildfire vs. anthropogenic emissions to happen in the 10 to 100 people
per km? category.

This pattern of increasing emissions in the most densely populated areas is seen
for all middle to lower-income regions (all but Australia & New Zealand, North
America and High-Income Europe). Of these, Latin America & Caribbean, Eastern
Europe-Russia-Central Asia and Developing Middle East & North Africa show
relatively small changes in emissions, while for South & Southeast Asia and
Developing East Asia, a decline in emissions in sparsely populated regions is
accompanied by a similar decline in anthropogenic emissions, so that no significant
changes in the relative importance of the two emission sources are expected for this
particular scenario. For High-Income Europe, wildfire emissions are projected to
remain well below anthropogenic emissions in all categories, while for Australia &
New Zealand, a continuing decrease in emissions in the most densely populated
category will make wildfire emissions increasingly relevant in such areas. For North
America simulated changes in wildfire are also minor and wildfires will continue to
be the dominant source mainly in remote areas.

The situation of relative importance changes drastically if we consider the MFR

anthropogenic scenario (Fig. 8). According to this scenario combined with RCP8.5
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climate and SSP5 demographic change (rapid urbanisation, low population growth in
low to middle income countries), wildfires could become the dominant emission
source in Sub-Saharan Africa and Australia & New Zealand in all population-density
categories as early as 2030, and be at least of comparable magnitude as anthropogenic
emissions for Latin America & Caribbean and to a lesser extent South & Southeast
Asia and Eastern Europe-Russia-Central Asia. High-Income Europe and Developing
Middle East & North Africa, who both have the same increasing relationship between
emissions and population density for both sources, wildfires will continue to be minor
in all categories despite strong reductions in anthropogenic emissions. For Developing
East Asia, there is an approximately fourfold increase predicted for wildfire emissions
in the 10 to 100 inhabitants per km?” category, with the result that they might become
comparable to anthropogenic emissions in areas that comprise a rather large

population.

3.4 Future patterns of pollutant exposure

The previous analysis only compared wildfire and anthropogenic emissions, but in
some areas, both might be so low that they do not constitute a relevant health hazard.
A further analysis therefore considers if wildfire emissions exceed a threshold of 0.5 g
m? yr' (Fig. 9; see Fig. A4 and A5 for thresholds of 0.2 and 1 g m™ yr'"). Large areas
in the boreal zone, South America, Central Asia and Australia where wildfires
dominate do not reach this level. However, the analysis also reveals the demographic
scenario as the main driver of change for Africa. For SSP3, with high population
growth and slow urbanisation, many areas drop below this threshold in the future,
independent of climate scenario, but not for SSP5 (low population growth and fast
urbanisation). For northern Australia, the result is independent of demographic

scenario, while RCP4.5 sees a small contraction of high-emission areas, but RCP8.5 a
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much larger one with an additional zone with high emissions emerging further south.
Changes in the boreal zone and South America are slight but new high-emissions
areas appear for RCP8.5 (light and dark blue). Larger new high-emission areas are
found in southern China, mainly driven by demographic and to a lesser extent climate
change. The same result is found for Portugal, but with the opposite demographic
scenario as this is a high-income region where SSP5 has low population growth and
leads to the extension of high-emission areas. Other temperate areas in North America
and Australia see little change in any of the scenarios.

If we consider the number of people living in areas exceeding a certain wildfire-
emissions threshold, we find an almost universal increase in both the absolute
numbers, and the percentage of global population independent of climate and
demographic scenario (Table 2). Currently, between 7.9 and 1.8% of world
population is affected, depending on where the threshold is set (3.6% for the 0.5 g m™
yr! threshold used with Fig. 10). Only for the 1 g m™ yr' threshold and SSP5/RCP4.5
scenario, this percentage will very slightly decrease to 1.7% by 2030, but the absolute
number still increase from 126 to 146 Million people affected by dangerously high
levels of wildfire air pollution. For all other scenarios and for SSP5/RCP4.5 from
2050 there will be an increase both in the absolute and relative numbers of affected
population. The demographic scenario is also more important than the degree of
climate change. For the 0.5 g m™ yr' threshold, changing the RCP scenario changes
the percentage by between 0.1 for 2030 and 0.4 for 2090, but changing from SSP5
(low growth, fast urbanisation) to SSP3 (high growth, slow urbanisation) changes the
percentage of affected population by between 0.4 for 2030 and 1.2 for 2090. This

difference is even more pronounced for the 0.2 g m™ yr' threshold, while for the 1 g
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m yr’' threshold, both climate and demographic change have about the same
importance.

Absolute numbers of people affected by the intermediate 0.5 g m™ yr™' threshold
can reach as high as 973 Million for SSP3 with high population growth and slow
urbanisation combined with RCP8.5 climate change, from currently 256 Million, i.e.
almost four times the current estimate. Finally, the spatial exceedance patterns are
predicted to change very little for 0.2 g m™ yr’' (Fig. A4), but are similar between the
0.2 and 0.5 g m™ yr' cases (Fig. A5). This stands in contrast to the percentage of
affected population (Table 2), and can be explained by a change in the geographic
location of areas that are either added or subtracted (cf. China in Fig. A4 vs. Africa in
Fig. AS).

Using the idealized conditions that have led us to the 0.5 g m™ yr™' threshold, i.e.
1000 m boundary layer height and 1/50 yr life time of PM2.5, we can calculate a
mean annual concentration value for every grid cell and from there a population-
weighted average for each of the nine world regions. For six of those regions, the
resulting concentration is below 1 pg m™ for all years and scenarios and therefore not
considered relevant. For the other three, results are shown in Table 3. For Latin
America & Caribbean, we only find a small increase, mainly for RCP8.5. For
Australia & New Zealand, the increase is more substantial and much higher for
RCPS8.5, and the results for both regions are almost the same across all demographic
scenarios. Both findings are in accordance with Fig. 10. For Sub-Saharan Africa,
however, we find a universal decrease in exposure estimates from currently 7.7 to as
low as 5.3 pg m™ by 2090 for SSP3 with high population growth, slow urbanisation
and RCP8.5. Differences between RCP scenarios amount to about 0.1 pg m?, but

between demographic scenarios to between 0.3 for RCP4.5 by 2030, and 1.3 for
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RCP4.5 by 2090. There is also a reversal of the order compared to the population
affected by the 0.5 g m™ yr”' threshold, which we assume is dominated by Sub-
Saharan Africa (Table 1). Here, the idealized exposure in Sub-Saharan Africa is
higher for the fast-urbanisation/low population growth scenario (SSP5) than for those
with slow-urbanisation/high population growth (SSP3), but the reverse is true for both
relative and absolute population in high-emission areas. For both measure of human
risk from PM2.5 exposure (Tables 1 and 2), changing only the urbanisation scenarios
(with the same SSP2 population scenario) has a markedly smaller impact than
changing only the population scenario (and keeping either fast or slow urbanisation).

4 Discussion

An important question is whether past climate change has already led to increases in
wildfire activity and related pollutant emissions. The many uncertainties associated
with modelling wildfire emissions are discussed in detail by Knorr et al. (2012,
2016a). This study simulates an increase from around 1980 to 1990 for Russia and
North America, which seems to agree with the observation of a climate-driven
increase in fire activity in the western U.S. based on data from 1982 to 2012
(Westerling, 2016). However, our simulated relative increase is only very slight for
the western U.S. region (Fig. A6), and only reaches about 20% by 2090 for RCP8.5
(Fig. 6). Doerr and Santin (2016) argue that this increase may be regional and highly
policy dependent. Ironically, there is the possibility that the increase has been driven
by increased fire suppression, which has led to fewer but more intense fires and more
area burned. While past climate-driven increases in fire activity remain debatable, this
study shows a general picture of climate-driven increases that may be overridden by

demographic changes only in Sub-Saharan Africa.
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A particularly large relative increase in wildfire emissions is projected for China
and the boreal areas of North America and Russia for the RCP8.5 climate scenario.
Southern China is also identified as a new area of high risk from wildfire air pollution.
While forest fires in China may have received less attention, they can still be
substantial, with 670,000 ha area burnt annually between 1950 and 1999 (Shu et al.
2003).

The present study broadly re-confirms the results of a previous analysis that was
based on burned area as a measure of wildfire risk (Knorr et al. 2016c¢). Sub-Saharan
Africa, currently by far the most fire-prone region, is projected to see a
demographically driven decline in fire activity, except for a scenario of low
population growth and rapid urbanisation. This decline is in agreement with
observations of declining burned area linked to demographic trends for northern part
of Sub-Saharan Africa (Andela and van der Werf, 2014). At the same time, wildfire
risk to humans will broadly increase for almost all scenarios considered. For
developing countries, differences between the high and low population growth
scenarios tend to be more important for the projected changes in fire hazard than
differences between the two climate scenarios. For the developed world and northern
wildfire regions, climate and vegetation change appear to be the main drivers.

There are some noteworthy differences between the approaches. Fire risk in
Knorr et al. (2016c¢) is based on the probability of a point in space to be affected by
wildfire, while the present study focuses on emissions-related hazards and uses PM2.5
emissions as an indicator, taking into account the amount of fuel burnt and its
efficiency at producing PM2.5. Both aspects are important for how human societies
are impacted by fire but represent different types of hazard, as the former relates

mainly to potential loss of property, whereas the latter affects human health. While
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the burned-area study uses output from LPJ-GUESS-SIMFIRE directly, the present
one uses observation-based estimated and re-scales them based on smaller regions
according to LPJ-GUESS-SIMFIRE projections. This approach has been used before
by Knorr et al. (2016a) and accounts for the importance of policy on wildfire
occurrence by scaling emissions mostly by country. The importance of policy is
evident for example when comparing observed burned area in Scandinavia to adjacent
areas of Russia (Giglio et al. 2013). There is also an underlying assumption in both
studies that the impact of population density on area burnt within each country is
invariant over time. The present study also confirms the important role of PM2.5
emissions for wildfire air pollution risks, as other pollutants tend to have a larger
relative contribution from anthropogenic sources (Knorr et al. 2016a).

LPJ-GUESS-SIMFIRE only simulates wildfires. The predictions presented in this
study therefore leave out the possibility of significant increases in deforestation or
peat fire sources. Therefore, peat and deforestation fires have been excluded from the
predictive part of the present study. Peat fires can be associated with considerable
emissions (Page et al. 2002, Kajii et al. 2002), and forest conversion is often
accompanied by burning (van der Werf et al. 2010). The comparative analysis shown
here, however, shows that globally both are of minor importance except for Southeast
Asia. The south-east Asian deforestation and peat fires occur mainly in Indonesia
(Field et al. 2009), where they are the dominant pollution source and occur even in
more densely populated areas. In other world regions, including Russia, peat fires are
of minor importance.

Whether or not future land-use change will lead to an increase or a decrease in
deforestation, is unknown. Based on four integrated-assessment model realisations of

the four RCPs, Hurtt et al. (2011) projected little increase, and if any, then in future
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crop and pasture areas. However, in studies that examined land-use change from a
broader perspective, a much larger range of crop and pasture changes emerged
(Eitelberg et al. 2015, Prestele et al. 2016), which makes the relative change of
deforestation and wildfires highly uncertain. In the present analysis, declining wildfire
emissions are only predicted for Sub-Saharan Africa, where it appears to be related to
conversion of savanna to cropland (Andela and van der Werf 2014). Interestingly,
increased fire activity is predicted for southern Africa for both climate scenarios, in
accordance with the result of Andela and van der Werf, who found a recent increase
for that region driven by declining precipitation. We therefore believe that the results
of the present study are broadly representative of possible future changes in wildfire
risk, even though one needs to take into account that in certain areas, deforestation
may remain the main driver of air pollution for a while.

Demographic trends will be an important and often the main factor driving
changes in wildfire hazards. One factor is that higher population density in rural areas
means lower burned area and emissions, but also more people exposed, and vice
versa. In the analysis of burned area patterns by Knorr et al. (2016a), there was a large
impact of urbanisation (using the same SSP2 per-country population scenario), with
more people living in fire prone areas at slow than at fast urbanisation, but with a
relatively minor affect due to overall population change. The average fractional
surface area burned in densely populated areas was also higher for slower
urbanisation. This is because the suppression of fire by higher population density was
over-compensated by a higher number of people living in rural, fire-prone areas. In
the present analysis, we find a much smaller impact of urbanisation on the number of
people living in areas with high wildfire emissions, but a large impact of total

population change. Even though more people tend to suppress fire, the percentage of
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people living in high-emission areas increases when the overall population is higher.
This is the opposite of what we find for the average pollutant concentration levels
experienced by the population: For Sub-Saharan Africa, fast urbanisation or high
population growth lead to higher emissions in rural areas and overall higher exposure
to wildfire pollutants even though people move away from areas with high wildfire
activity.

While any additional emission source of PM2.5 poses a health risk (WHO 2005),
in practice wildfires are likely to be ignored by air quality policy if they emit
considerably less than anthropogenic sources, in particular as their occurrence tends to
be sporadic and of short-term nature. One factor is that wildfire emissions are much
more difficult to legislate given the sometimes unexpected results of fire suppression
policies (Donovan and Brown 2007). However, we find that in large parts of the
world, wildfires are the main air pollutant source. While in many of those regions,
wildfires dominate by absence of large anthropogenic sources, Sub-Saharan Africa,
Brazil, northern Australia, Southeast Asia and the boreal zone are regions where they
not only emit more PM2.5 than anthropogenic sources, but emissions are higher than
some approximate threshold of health relevance in the region of 0.5 to 1 g m?yr™,
This implies that even controlling all anthropogenic sources, the WHO air quality
goals can not be attained.

It will therefore of critical importance whether future air quality policy objectives
in the various regions will converge to the current WHO guidelines, in which case in
these regions fire management will become increasingly important. At current
legislation, wildfires will seize to be important for large parts of Africa and
considerable parts of South America. If, however, anthropogenic emissions are

aggressively curtailed (MFR scenario), wildfires in both regions are predicted to
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decline less than anthropogenic sources, and climate change will even lead to new
areas with wildfire emission levels relevant for air quality policy. Such reductions in
anthropogenic emissions would bring those down to levels similar to those of
wildfires even in the most densely populated areas, making wildfires the most
important pollution source in many regions (Sub-Saharan Africa, Latin America &
Caribbean, and to a lesser degree Australia & New Zealand, Eastern Europe-Russia-
Central Asia). Because past efforts aimed at a lasting reduction in wildfire activity
have largely failed despite high costs (Doerr and Santin 2016), it is questionable
whether it is even possible to devise policy measure aimed at bringing down wildfire
emissions to meet WHO guidelines. Because wildfires are an essential part of many
ecosystems (Bowman et al. 2009), it may therefore better to discount for wildfire
emissions as a natural phenomenon and rather adapt urban and suburban planning
accordingly (Moritz et al. 2014).

This study has some important limitations. It does not consider atmospheric
transport or injection height (Gonzi et al. 2015, Sofiev et al. 2012), nor horizontal
advection of pollutants, and predictions are based on a single fire and vegetation
model. Demographic scenarios do not currently account for changes in the urban
mask. It only considers climatological annual emissions during specified time
windows, even though wildfires impacts on air quality can have large interannual
(Jaffe et al. 2008) and intra-seasonal variations, caused in part by long-range transport
(Niemi et al. 2005), which is also not accounted for. It also does not account for
relevant secondary emission products, such as ozone from wildfires, which can reach
policy relevant levels (Jaffe and Wigder 2012). This contrasts with previous studies
on the possible impact of climate change on wildfire-related air pollution hazards

have concentrated on changes in meteorological conditions (Jacob and Winner 2008,
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Tai et al. 2010) instead of emissions. The study by Kaiser et al. (2012) focuses on
current conditions and includes atmospheric transport, using satellite-observed fire
radiative energy (Wooster et al. 2005) as well as satellite-derived aerosol optical
depth data to constrain wildfire emissions (Kaiser et al. 2012), as opposed to satellite-
derived burned area as used by GFED (van der Werf et al. 2010, Giglio et al. 2013).
There is also recent progress in the incorporation of injection height (Sofiev et al.
2012) into chemistry-enabled atmospheric general circulation models (Veira et al.
2015).

By contrast, the present study focuses on changes in emissions, and is the first
global-scale study to consider changes both climate and demographic drivers of air
pollutant emissions from wildfires. Future work should aim at using general
circulation models with realistic plume heights for a series of dedicated present and
future time slices at combining observed plume height information, fire radiative
energy data (for their finer temporal resolution), satellite-derived burned area (for
better spatial coverage), projected emission changes from coupled dynamic
vegetation-fire models (as the present study), and improved demographic scenarios
accounting for changes in urban population density. Such studies would then not only
account for long-range transport pollutants and secondary products such as ozone, but
also simulate the temporal statistics of pollution events on a daily time scale. Such
results could then be used, for example, to assess for how many days the WHO 24-

hour PM2.5 limit (WHO 2005) is a exceeded as a result of wildfire emissions.

5 Summary and conclusions

* So far, there does not seem to be compelling evidence for a long-term trend
towards increased pollutant emissions from wildfires due to climate warming.

While in the Western U.S. burned area from wildfires seems to have increased
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and the increase may be linked to climate, the present study simulates only
very small relative increase for the region. Most of the predicted increase for
North America concerns the boreal forest zone.

Demographic changes appear to be the main driver for the expected changes in
wildfire emissions in Sub-Saharan Africa. For a scenario of high population
growth and slow urbanisation, there will be large decreases in emissions in
many parts of the continent, often dropping below thresholds that make them
relevant for air quality policy. The decrease will be much smaller or turn into
an increase for a scenario of low population growth and fast urbanisation.
Exposure of humans to PM2.5 in Sub-Saharan Africa is expected to drop for
all demographic scenarios, but mostly for high population growth and slow
urbanisation. Stronger fire suppression by higher rural population outweighs
the effect of larger populations in rural areas.

Globally, both the number of people and the percentage of world population
exposed to dangerously high PM2.5 emissions from wildfires is expected to
increase in all scenarios considered. Both relative and absolute increase are
highest for high population growth, while the degree of urbanisation plays
only a minor role. This is opposite to the average fractional burned area in
densely populated regions — a measure of fire risk to properties and lives —
where the projected increase was earlier found to depend mostly on the degree
of urbanisation.

The goal of reducing PM2.5 emissions globally such that the WHO guidelines
for PM2.5 concentrations are met everywhere may not be attainable because in
many regions wildfire emissions will remain above critical thresholds. So far,

there is no generally accepted method for wildfire management that has been
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shown to lead to lasting reductions in fire activity or emissions. The still
widely used approach of aggressive fire suppression is not only costly, but
may even have led to increased overall fire activity. It may therefore be
prudent to accept the existence of wildfires as a natural phenomenon with

important ecosystem function and adapt urban planning accordingly.
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906 Figures

9

O wildfires
O Deforestation fires

W Peatfires

[ T

907

908  Figure 1: a) Largest current source of PM2.5 emissions, including anthropogenic
909 sources (dark blue areas); b) wildfires emissions in g PM2.5 m” yr”'. Average annual
910  PM2.5 emissions 1997 to 2014 are from to GFEDA4.1s, or ECLIPSE GAINS 4a for

911 2010 (anthropogenic).
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3 Deforestation fires:

_- Peatfires

912

913 Figure 2: Largest current source of annual air pollutant emissions. Dark blue areas:

914  dominant source anthropogenic, or zero emissions. a) CO, b) NO,, c¢) black carbon.
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916  Figure 3: Comparison of current anthropogenic, wildfire, deforestation fire and peat
917  fire PM2.5 emissions by region and range population density, constructed by relating
918  emission rates to the population density found for the same grid box on a 0.5 by 0.5
919  degree grid. Emissions are from ECLIPSE GAINS 4a (anthropogenic source for

920  2010) and GFEDA4.1s (average of 1997-2014).
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Figure 4. Annual PM2.5 emissions from ensemble of LPJ-GUESS-SIMFIRE
simulations for nine world regions 1901 to 2100. Ensemble ranges and impact of

population and urbanisation scenarios. Climate scenario: RCP4.5.
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Figure 5. Same as previous figure, but for climate scenario RCP8.5.
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Figure 6: Relative change in annual PM2.5 emissions from current (1997-2014 mean)
to 2090 (2080 to 2100 mean) by country/region. a) SSP3 globally high population
growth (high-income countries: low population growth) with slow urbanisation and
RCPA4.5 climate scenario, b) SSP5 globally low population growth (high-income

countries: high population growth) with slow urbanisation, RCP8.5 climate scenario.
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Figure 7: Predicted changes of annual PM2.5 emissions against ranges of population density from

wildfires and anthropogenic sources, as well as changes in area extent of the population-density

categories, for the nine world regions, based on re-scaled GFEDA4. s wildfire emissions. SSP3

demographic scenario, RCP4.5 climate change and Current-Legislation (CLE) anthropogenic

emissions scenario.
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944 Figure 8: As previous figure, but for SSP5 demographic scenario, RCP8.5 climate change and

945  Maximum Feasible Reduction (MFR) anthropogenic-emissions scenario.
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949  Appendix
950  Table Al: Countries/regions used for scaling GFEDA4. Is wildfire emissions.
grid cells on grid cells
World 1-degree non-crop World on1- non-crop  longitude  latitude
Code Country name __region grid cells’ Code Country name region __degree grid cells range range
AGO Angola 100 100 ARM Armenia 4 4
BEN Benin 10 6 AZE Azerbaijan 7 6
BWA Botswana 46 46 GEO Georgia 6 6
BFA Burkina Faso 23 21 KAZ Kazakstan 213 206
BDI Burundi 3 3 KGZ Kyrgyzstan 16 16
CMR Cameroon 37 35 TIK Tajikistan 8 8
CAF Central African 49 46 TKM Turkmenistan 35 35
Republic 100 100 uzs Uzbekistan 35 32
TCD Chad BLR Belarus Eastern 16 14
coG Congo 24 24 BGR Bulgaria Europe, 10 8
Congo, Dem. L Latvia and Lithunania Russia and 10 5
AR Republic 176 176 ROM Romania Central Asia 19 10
av Cote d'lvoire 25 24 RUS-sW 78 32 Wof60°E  Sof52°N
ERI Eritrea 12 12 RUS-NW 212 150 WofS5°E  Nof52°N
ETH Ethiopia 90 89 RUS-C Russian Federation 553 506 not in other RUS
GAB Gabon 20 20 RUS-SE 232 232 Eof 110°E  Sof 60°N
GHA Ghana 18 13 RUS-NE 327 327 Eof 110°E  Nof 60°N
GIN Guinea 20 20 UKR Ukraine a7 5
GNB Guinea-Bissau 1 1 Serbia, Montenegro,
KEN Kenya Sashual:-an 41 40 YUA Bosnia, Macedonia B u
Lso Lesotho Africa 1 1 CHN-W 348 342 W of 105°E
LBR Liberia 5 5 CHN-E China Developing 283 211 Eof 105°  Sof43°N
MDG Madagascar 43 43 CHN-N East Asia 122 103 Nof 43°N
Mwi Malawi 10 10 PRK North Korea 10 8
MLl Mali 106 106 MNG Mongolia 131 131
MRT Mauritania 80 80 BTN Bhutan 4 2
Moz Mozambique 61 60 KHM Cambodia 14 13
NAM Namibia 66 66 IND India 256 50
NER Niger 94 80 IDN Indonesia 125 116
NGA Nigeria 74 40 LAO Laos 18 18
SEN Senegal 17 16 MYS Malaysia 23 23
SLE Sierra Leone 5 5 MMR Myanmar SS::::_::; 44 36
SOM Somalia 55 55 NPL Nepal Asia 12 8
ZAF South Africa 99 98 PAK Pakistan 58 44
SDN Sudan 207 199 PHL Philippines 16 14
TGO Togo 2 1 LKA Sri Lanka 4 4
UGA Uganda 16 13 THA Thailand 42 30
TZA Tanzania 73 72 VNM Viet Nam 27 22
ZMB Zambia 63 63 PNG Papua New Guinea 31 31
ZWE i 30 30 AUS-SW 18 16 Wof 120°e  Sof 30°S
DzA Algeria 189 184 AUS-E Australia Australia 200 178 Eof 140°E  Sof 18°S
EGY Egypt 77 76 AUS-C and New 317 316 not in other AUS
LBY Libya 131 131 AUS-N Zealand 76 76 N of 18°S
MAR Morocco 56 49 NzL New Zealand 22 22
TUN Tunisia Developing 14 11 CAN-W 385 341 W of 100°W
AFG Afghanistan Middle East 53 52 CAN-C Canada 192 185 100..80°'W
IRN Iran and North 134 129 CAN-E North 176 176 Eof 80°W
IRQ Iraq Africa 37 31 USA-wW United States of America 314 294 W of 100°W
JOR Jordan 6 6 USA-E America 372 222 Eof 100°W
SAU Saudi Arabia 154 154 ALK 116 116 N of SO°N
SYR Syria 15 9 CRI Costa Rica 3 3
TUR Turkey 57 44 cus Cuba 7 5
YEM Yemen 31 31 DOM Dominican Republic 4 4
AUT Austria 7 7 GT™M Guatemala 15 15
BNL Benelux 5 3 HTI Haiti 2 2
RS Croatia and 3 2 HND Honduras 9 9
Slovenia MEX-W Mexico 120 115 W of 95°W
Cze Czech Republic 5 3 MEX-SE 19 19 Eof 95°W
DNK Denmark 6 3 NIC Nicaragua 8 8
EST Estonia 4 4 PAN Panama 6 6
FIN Finland 28 27 ARG Argentina 230 207
FRA France 41 24 BOL Bolivia Latina 88 88
DEU Germany 32 29 BRA-W America and 197 192 Wof 49°W  Sof5°S
GRC Greece High- 10 9 BRA-E Brazil Caribbean 316 294 Eof49°'W
HUN Hungary income 7 2 BRA-N 161 161 Nof 5°S
IsL Iceland Europe 7 7 CHL Chile 61 60
IRL Ireland 5 4 coL Colombia 88 88
ITA Italy 23 11 ECU Ecuador 19 19
NOR Norway 31 31 GUF French Guiana 6 6
POL Poland 25 11 GUY Guyana 15 15
PRT Portugal 6 5 PRY Paraguay 28 28
SVK Slovakia 6 2 PER Peru 100 100
ESP Spain 40 24 SUR Suriname 11 11
SWE Sweden 39 39 URY Uruguay 15 15
CHE Switzerland 2 2 VEN Venezuela 73 73
United ISR Israel 4 4
GBR Kingdom 19 13 JPN Japan 28 28
KOR South Korea 6 6
OMN Oman 26 26
ARE United Arab Emirates ) 8 8
MDA Republic of Moldova’ 4 Y
BGD Bangladesh’ 10 1
GRL Greenland’ 31 31

"Cells with less than 50% cropland fraction in past or future scenarios
’Constant emissions assumed because dominated by croplands

3Conslam emissions assumed because zero current wildfire emissions in some simulations
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952 i

953 Figure Al: Relative change in wildfire emissions due to changes in population density from 2010 to
954 2090 according to Equ. 2. a) SSP3, b) SSP5 demographic scenario.
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957  Figure A2: World regions used in the analysis. Dark blue: not included
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959  Figure A3: Population density categories for current (2010) and future (2090) conditions for the SSP3

960  and SSP3 demographic scenarios.
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