
We thank the referee for their comments and time, which have improved our manuscript in many 
ways, as detailed below: 
 
This manuscript presents an overview of a city-scale CO2 monitoring network, based on low-cost 
instruments. The manuscript is concise and well written and presents an interesting experiment. 
The instrumentation described appears to be well designed and mostly well tested. My primary 
concerns center on the setup of the network as a whole, the uncertainty quantification and the 
interpretation of what is or is not possible with a network of this nature. 
 
1. In an urban network such as this, the details of how the instruments are situated is likely to be 
critical. However, only a very cursory explanation is given in the text (P5, L28: 2 to 111 m above 
ground level. . .). I find it a little concerning that the instruments appear to be situated either very 
close to the ground (2m), or on rooftops. In urban areas, flows will be significantly influenced by 
near-by obstacles within the “roughness sublayer”. It is typically assumed that this layer extends 
at least 2 building heights into the atmosphere (Roth et al., 2000). This is important for emissions 
verification, because: a) in order to calculate fluxes from concentration measurements, we need 
to be able to accurately simulate flows from source to receptor; b) measurements within the 
roughness sublayer, or worse, within the urban canopy layer, will be representative of only a very 
small area around them, rather than the wider region. If the BEACON instruments are all within 
the roughness sublayer, I suspect that the network will not be able to meet its aim of monitoring 
changes in city-scale fluxes, because changes will be representative of only very localized areas, 
and the modelling requirements of simulating complex flows around buildings, etc., will be too 
demanding (see comment regarding Figure 12). The authors need to provide much more detail on 
how they plan to deal with these issues, and whether the instruments have already been situated 
to account for these factors. 
 
We understand the concern regarding the representativeness of sensors located within the 
roughness sublayer. However, a strong sensitivity to local phenomena does not necessarily 
preclude a given sensor’s ability to provide information about the larger domain. As this network 
is the first of its kind with such a high quantity and density of sensors, more investigation is 
certainly required to definitively describe the relationship between local and citywide sensitivity, 
a full exploration of which is beyond the scope of this paper. In the meantime, we have added and 
revised language in several places throughout the paper (see below) to clarify the degree of 
uncertainty surrounding the potential capabilities and applications of these sensors, and look 
forward to providing more quantitative evidence in future publications. 
 
“This largely opportunistic siting approach avoids the logistical and financial obstacles associated 
with tall tower sampling mechanisms, although it does present additional challenges for the 
quantification of network-wide phenomena in that no low-lying instrument can singlehandedly 
provide sensitivity to the entire domain. Installing sensors near the surface and/or built 
environment does ensure heightened sensitivity to individual, ground-level emissions phenomena, 
but it is currently unknown whether a well-reasoned combination of these locally sensitive signals 
from a high volume of sensors could nonetheless yield reliable information about the integrated 
region. A full exploration of this possibility is beyond the scope of this study; the following 
analyses focus instead on establishing BEACO2N as a viable platform for investigating such 
hypotheses.”  



 
“Although BEACO2N demonstrates sensitivity to both highly local fluctuations as well as slowly-
varying hemispheric cycles, how best to bootstrap the network’s measurements into the analysis 
of intermediary mesoscale phenomena remains to be determined. Future work will focus on 
constructing inferred emissions patterns and trends at this scale from the body of observations. In 
an initial effort in this regard…” 
 
2. I think that the discussion of uncertainties in the instrumentation could be expanded upon 
further. In particular, I would like to see further characterization of instrumental drift. More 
details are given below 
 
We have added a more thorough characterization of the uncertainties associated with our 
instrumentation throughout the text; see our responses to specific comments below for details. 
 
3. A network such as this is an exciting and important development. However, I think the authors 
should be a little more self-critical about the potential limitations. In particular, claims such as a 
2% potential accuracy on emissions estimates seem overly optimistic to me for reasons given 
below. 
 
We have revised language throughout the text to clarify the limitations of our original claims; see 
our response to general comment #1 above and to the specific comment pertaining to the 2% 
emissions accuracy claim in particular. 
 
P1 L30: I think it’s a bit of an exaggeration to say that national monitoring networks “give no 
information” on urban emissions. A network of instruments in rural areas can still see integrated 
signals from nearby cities.  
 
We have revised the original language as follows to provide a more nuanced description of the 
capabilities of national monitoring networks: 
 
“Traditional strategies for assessing greenhouse gas emissions are limited to a small handful of 
monitoring instruments scattered sparsely across remote areas, mostly in developed nations (e.g., 
Worthy et al., 2003; Thompson et al., 2009; Andrews et al., 2014). These stations are capable of 
measuring regional average and some integrated urban concentrations with extreme accuracy and 
precision, but are purposefully distanced from and experience reduced sensitivity to urban signals, 
thus giving little to no spatially resolved information on emissions in the precise areas that the 
majority of greenhouse gas rules aim to regulate.” 
 
P3 L17: With the assertion that uncertainties scale with sqrt(N), the authors are making the 
assumption that each sensor is an independent estimate of the city-wide concentration. Whilst I 
agree with the sentiment that an increased number of (well sited and modelled) instruments would 
lead to a decrease in uncertainty, I suspect that the uncertainty reduction on the urban scale will 
be nowhere near sqrt(N), which must be considered a theoretical limit. In reality, each instrument 
will see a footprint around it on the order of a few km, superimposed on some signal from the 
wider region. Even in a somewhat more “box-model”-like limit, the sqrt(N) argument would 
assume that all sensors “see” the entire integrated signal of the city, whereas in reality, they would 



only see everything upstream. Therefore, at any one time, only some subset of the network will be 
seeing anything close to the “whole” city. 
 
We agree that a sqrt(N) improvement in uncertainty is a perhaps unreasonable theoretical limit, 
and have revised the text as follows: 
 
“If the goal is verification of regional inter-annual emissions targets, we would therefore require 
𝑁 instruments of sufficient individual sensitivity and spatial representativeness such that their 
combined signals allow us to detect annual changes of ~65 ppb year-1 with confidence.” 
 
Section 1.4 and Section 3.4: I’m not sure if the term “bias” is the most appropriate here. It appears 
from Rigby et al. (2008) and section 3.4 that in addition to potential offsets (which I would class 
as a bias), these instruments can also drift on a range of timescales. Perhaps “systematic 
uncertainties” would be more appropriate? Furthermore, I think that the assertion that the 
instruments can be considered “unbiased” if any systematic uncertainty is smaller than the 
precision is a little difficult. In practice, any systematic offsets could be much more critical than 
the repeatability. Even relatively small values could have a major impact on an inversion. I think 
that the paper would benefit from a more nuanced approach in which the uncertainties are more 
fully characterized. In particular, I think a discussion of the potential “uncorrected” instrumental 
drift should be shown (i.e. the authors present a method for correcting ∼weekly drifts. However, 
to compare the data to a model, one would still need to know what the magnitude of potential sub-
weekly drift is likely to be).  
 
We have revised language throughout the original text to characterize temporal drift as a 
“systematic uncertainty” rather than a “bias” and avoid spurious comparisons between the 
magnitude of these systematic uncertainties and that of the precision. We have also added more 
detailed accounting of uncertainties throughout the text, including an exploration of sub-weekly 
drift, as follows: 
 
“…the standard deviation of their differences is tightened from ±1.5 ppm to ±1.4 ppm. This still 
exceeds the ±1.0 ppm precision one would expect under average conditions given the form of Eq. 
(1) and (2) and the manufacturer’s specifications for the meteorological sensors (see Sect. 3.5), the 
CarboCap, and the Picarro (Sect. 3.3), suggesting that the combined effect of the lingering 
temperature and water biases with any unknown factors is ±0.4 ppm.” 
 
“Also presented in Fig. 5 is a time series of the running 1 hour means of the differences between 
the minute-averaged CarboCap and Picarro observations, demonstrating a short-term drift incurred 
on approximately hourly timescales found to range between 0.01 and 2.9 ppm during any given 6 
hour period of the co-location. The upper bound exceeds the ±1 ppm manufacturer–specified 6 
hour short-term stability as well as the 1.5 ppm maximum short-term drift observed by Rigby et 
al. (2008), but in many cases longer averaging times can be used to reduce the influence of short-
term drift to below 1 ppm. Some modelling studies, for example, utilize time steps of 6 hours or 
more (e.g. Bréon et al., 2015; Wu et al., 2016), and average diurnal cycles can often be assessed 
across several days. Although some applications require finer temporal resolution, these are 
typically plume-based analyses that rely on rapidly-varying enhancements above recent 
background concentrations, essentially eliminating concerns about short-term drift.” 



 
“Uncertainties in U#$%&'()* and U)#$%&'()* shown in Table 3 are calculated given ±1.4 ppm random 
error in the 1 minute averages, ±2.9 ppm short-term drift, and ±2 ppm agreement with the reference 
site’s weekly minima, assumed to add in quadrature. Mapped onto the observations, these 
uncertainties result in a mean 1 minute error of ±4 ppm. This is the assumed cumulative error used 
in this study, although longer averaging times could be used to reduce this figure.” 
 
Figure 5 and Table 3 have also been updated accordingly. 
 
P5 L14: Following from the discussion above, I think that this comparison would benefit from a 
plot of the time-varying difference between the two instruments to assess the magnitude of the drift 
that one would expect in the field. 
 
We have added such a subplot to Fig. 5 in the revised manuscript to aid in the more detailed 
discussion of instrumental uncertainties described above.  
 
P6 L16: The running costs for a CRDS seem very high here. Furthermore, the sentence sounds 
like pumps, data loggers, etc are “annual” running costs, which seems erroneous to me. 
 
The characterization of pumps, data loggers, etc. as “annual” costs is indeed erroneous, and the 
original language has been revised accordingly: 
 
“For comparison, a single commercial cavity ring-down analyzer is priced around $60,000 USD 
and the total equipment cost can exceed $85,000 USD after accounting for pumps, data loggers, 
etc.” 
 
P7 L4: How has the influence of wind speed and boundary layer height been isolated from other 
factors? Surely boundary layer height will be strongly correlated with e.g. an emissions diurnal 
cycle?  
 
We agree that the existing analysis does not allow us to discriminate between wind speed/boundary 
layer height fluctuations and other diurnal patterns (e.g. in emissions); and have revised the 
original language as follows: 
 
“The two sensors nonetheless demonstrate remarkable agreement; while typical diurnal CO2 
variations during the same period are on the order of 20–60 ppm, the CarboCaps simultaneously 
detect CO2 events as small as 8 ppm, providing preliminary evidence of the suitability of these 
sensors for high-density urban deployment.” 
 
P7 L31: As I understand it, the correction for weekly drift makes the implicit assumption that all 
sites see the same minimum CO2 concentration as the reference sites. Can the authors comment 
on how robust this assumption is likely to be? I’m particularly concerned that, with a vertical 
difference of 500masl between the sensors, this procedure could add biases into the network due 
to persistent vertical gradients within the network in a particular week.  
 



We developed this assumption after preliminary analyses revealed that the weekly minima 
measured at each site roughly tracked the three-dimensional Pacific boundary “curtain” mentioned 
in the text. If each site (including the reference) samples background air approximately once a 
week, the sites’ weekly minima should agree with one another as well. Such comparison with the 
boundary curtain is of course complicated by the very drift and biases that the subsequent 
correction procedure aims to remove, so it is not possible to quantify the influence of vertical 
gradients independently of systematic uncertainties via this method. We did, however, perform a 
similar comparison using measurements from the sea level LI-COR LI-820 maintained by the 
Pacific Marine Environmental Laboratory. As mentioned in the text, this instrument is calibrated 
against a reference gas prior to every measurement, and so is assumed here to be free of drift and/or 
bias. Although the LI-820’s weekly minima do not agree precisely with the boundary curtain’s 
(residuals ranged from 0–12.7 ppm, with a mean of 1.8 ppm), the deviations from the curtain 
values were not significantly autocorrelated on timescales greater than one week. From this we 
conclude that, while the assumption of agreement with a reference site may not be guaranteed for 
any particular week, the deviations are not in fact persistent across multiple weeks, even for 
instruments sited well within the roughness sublayer. Because we require at least three months of 
comparison with the reference for drift correction, the influence of anomalous weeks is minimized, 
and we are confident that, on these timescales, network-wide weekly minima agree to within 
approximately ±2 ppm. We have added an explanation of the preceding comments to the text as 
follows: 
 
“BEACO2N’s unique location near the Pacific coast results in a relatively consistent wind direction 
from largely unpolluted over-ocean origins, such that the weekly minima can be assumed to reflect 
both the seasonal and synoptic variations in network-wide baseline CO2 concentrations while 
avoiding the influence of shorter term variability in local sources and sinks. This assumption is 
supported by preliminary analyses comparing observations from a LI-COR LI-820 non-dispersive 
infrared CO2 gas analyzer with a smoothed, three-dimensional “curtain” of surface CO2 Pacific 
boundary conditions produced by NOAA’s Global Greenhouse Gas Reference Network (Jeong et 
al., 2013). The LI-COR, positioned at sea level between the EXB and EXE nodes (see Fig. 1), is 
maintained by NOAA’s Pacific Marine Environmental Laboratory and calibrated against 
compressed gas (400–500 ppm CO2) prior to every hourly measurement and is assumed to have 
negligible bias. Despite a proximity to local surface-level emissions and complex boundary layer 
dynamics, the LI-COR’s weekly minima are found to generally follow variations in the Pacific 
curtain, with an average residual of ~2 ppm.” 
 
P1, first paragraph: The discussion of uncertainty reduction largely focuses on another paper 
under review (Turner et al., 2016). However, I suspect that the estimate that the “accuracy” of 
Oakland emissions could be reduced to less than 2% (or even 18%) is wildly optimistic for the 
following reasons: a) Synthetic data studies of this nature make heavy assumptions of Gaussian 
PDFs and unbiased statistics; b) systematic model errors are largely ignored. In reality, my 
suspicion is that models will have a very tough job of accurately simulating flows at these scales. 
I do not agree with the assertion that “These combined error budgets are typically dominated by 
transport (model) error, which potentially explains why models based on BEACO2N-like networks 
perform comparably to or better than those based on sparser networks of higher quality sensors, 
for which instrument error may be reduced but accurately representing transport between 
observation sites is of greater importance.” I suspect that, given the resolution of the flows 



involved, it may be even more difficult for a model to accurately simulate concentrations for dense 
urban monitoring network at present (such difficulties would be impossible to discern in a 
synthetic data experiment). Furthermore, uncertainties in inversions such as this are likely to be 
very non-Gaussian, and I suspect that the uncertainty budget is likely to be dominated by 
systematic factors in both the observations and the model.  
 
The referee raises multiple important points:  
 
Turner et al. (2016) do assume Gaussian PDFs and the error statistics may not in fact be Gaussian.  
However, the true form of the distribution is typically unknown.  Additionally, the assumption of 
Gaussian prior and likelihood distributions has the benefit of the posterior and prior being 
conjugate distributions. This means that we have a closed-form expression for the posterior 
distribution and we can decompose the prior covariance matrix with a Kronecker product (e.g., 
Yadav & Michalak, 2013; Sect. S2 in Turner et al., 2016).  All of this allows us to construct high-
dimensional state vectors with fully populated covariance matrices that will give us a better 
representation of the true statistics than assuming, say, uncorrelated errors. In the absence of 
knowledge of the true distribution, Gaussian distribution seem to be a fair assumption. 
 
With regards to the effect of systematic errors, these are not ignored, but discussed in Sections 6.1 
and S6.2 of Turner et al. (2016). 
 
In terms of the error budget in general and transport error in particular, we agree that the flows will 
be more difficult to correctly simulate at high resolution in an urban region and will induce a large 
uncertainty. This term is probably the largest uncertainty, as stated in the text. However, the referee 
speculates that it would be more difficult to simulate concentrations for a dense network 
(presumably, compared to a sparse network). This is a point that is discussed in Section 6.3 in 
Turner et al. (2016): 
 
“In this work we have treated transport error and the number of measurement sites as independent.  
However, in practice, there would be a relationship between the transport error and measurement 
network density. This can be understood with a thought experiment using two different observing 
systems to estimate emissions: a sparse network with a single site and an infinitely dense network 
(sites at each grid cell in our domain). Estimating emissions with the sparse network would require 
us to simulate the atmospheric transport with high fidelity if we are to reliably say anything about 
emissions upwind of our site. This is especially true for point sources. Any errors in the simulated 
atmospheric transport would adversely impact the estimated emissions, whereas the infinitely 
dense network could potentially neglect atmospheric transport and use data from only the local 
grid cell to estimate emissions. This is because the differential signal at each site would be largely 
governed by the local emissions.” 
 
Figure 11: This figure appears to show model simulations at three sites. However, no details of 
the model are given in the text. Either the model setup should be explained, or the model runs 
should be removed from the figure.  
 
Additional details regarding the model setup have been added to the text as follows: 
 



“We simulate hourly CO2 concentrations (𝒚) at each site in the network using the Stochastic Time-
Inverted Lagrangian Transport model (STILT; Lin et al., 2003) coupled to the Weather Research 
and Forecasting model (WRF; Skamarock et al., 2008).  The coupled model is known as “WRF-
STILT” (Nehrkorn et al. 2010) and the setup used here follows that of Turner et al. (2016; see their 
Sect. S1 for details of the WRF setup). WRF-STILT advects an ensemble of 500 particles 3 days 
backwards in time, each with a small random perturbation, from the spatio-temporal locations of 
the BEACO2N observations using the meteorological fields from WRF. The trajectories of these 
500 particles are then used to construct “footprints” for each observation that represent the 
sensitivity of the observation to a perturbation in emissions from a given location. The footprints 
can be represented in matrix form (𝑯) and multiplied by a set of gridded emissions (𝒙, from the 
high-resolution bottom-up CO2 inventory in Turner et al. 2016) to compute the CO2 enhancement 
at each site due to local emissions: 
∆𝒚 = 𝑯𝒙           (5) 
We then add this local enhancement to a background concentration (𝒚𝑩, from the aforementioned 
Pacific boundary curtain) to obtain a model estimate of the BEACO2N observations shown as 
black squares in Fig. 11: 
𝒚 	= ∆𝒚 + 𝒚𝑩 = 𝑯𝒙 +	𝒚𝑩         (6)” 
 
Figure 12: To me, this figure of a site in a school suggests that representation issues in the current 
network could be severe. The authors show that concentrations were substantially lower on a day 
when the school was closed. The magnitude of the signal (∼50ppm) shows that this sensor must be 
completely dominated by the school. Therefore, can we not conclude that the sensor sees little of 
the wider city, and any long-term changes in concentration at this location will be indicative 
primarily of change in the school’s emissions? Certainly, separating a city-wide 65ppb decrease 
from this signal (1000x smaller) would seem highly challenging. 
 
This figure does demonstrate one sensor’s strong sensitivity to its local environment, however, as 
mentioned earlier in our response, there is not yet any evidence to suggest that a sensor’s local 
sensitivity is necessarily mutually exclusive with its utility in assessing domain-wide phenomena, 
although further investigation is clearly needed in this area. We hope that our aforementioned 
revisions describing the uncertainties surrounding this issue of sensitivity will help to assuage 
concerns about this figure in particular. 
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