
 

 

Author’s comments in reply to the editor for “Decadal changes in global surface NOx emissions 

from multi-constituent satellite data assimilation” by K. Miyazaki et al. 

 

 We want to thank the editor for the helpful comments. We have revised the manuscript according to 

the comments, and hope that the revised version is now suitable for publication. Below are the referee 

comments in italics with our replies in normal font.  

 

Reply to the editor 

 

After thorough consideration of revision 2 of the MS, I believe that you have addressed the reviewer's 

concerns. However, I feel that the sentence in response to the second major concern, dealing with the 

diurnal cycle, could be worded stronger or, at least, better explained. 

 

 The sentences have been revised as follows: 

“Large negative values of Etc are also found over northern China including Inner Mongolia, northern 

India, and the Middle East, where various emission sources (not only mobile sources with morning 

peaks) could be important. For instance, over Inner Mongolia, the estimated emissions show a positive 

trend over the past decade (around 110E, 41N in Fig 12), which could be associated with increased 

emissions by power plants and industries without morning peaks. These results suggest a larger negative 

bias in simulated tropospheric NO2 column in the morning than in the afternoon, associated with errors 

in the chemical lifetime and atmospheric transports (e.g., boundary layer development) and also 

associated with biases between the different NO2 retrievals. Thus, the model errors could artificially 

affect the diurnal emission variability.” 
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Decadal changes in global surface NOx emissions from multi-constituent 1 

satellite data assimilation 2 

 3 

\begin{abstract} 4 

 5 

Global surface emissions of nitrogen oxides (\chem{NO_x}) over a ten-year period (2005--6 

2014) are estimated from an assimilation of multiple satellite datasets: tropospheric 7 

\chem{NO_2} columns from OMI, GOME-2, and SCIAMACHY; \chem{O_3} profiles from 8 

TES; CO profiles from MOPITT; and \chem{O_3} and \chem{HNO_3} profiles from MLS 9 

using an ensemble Kalman filter technique. Chemical concentrations of various species and 10 

emission sources of several precursors are simultaneously optimized. This is expected to 11 

improve the emission inversion because the emission estimates are influenced by biases in the 12 

modelled tropospheric chemistry, which can be partly corrected by also optimizing the 13 

concentrations. We present detailed distributions of the estimated emission distributions for 14 

all major regions, the diurnal and seasonal variability, and the evolution of these emissions 15 

over the ten-year period. The estimated regional total emissions show a strong positive trend 16 

over India (+29 \%/decade), China (+26 \%/decade), and the Middle East (+20 \%/decade), 17 

and a negative trend over the United States (-38 \%/decade), Southern Africa (-8.2 \%/decade), 18 

and western Europe (-8.8 \%/decade). The negative trends in the United States and western 19 

Europe are larger during 2005--2010 relative to 2011--2014, whereas the trend in China 20 

becomes negative after 2011. The data assimilation also suggests a large uncertainty in 21 

anthropogenic and fire-related emission factors and an important underestimation of soil 22 

\chem{NO_x} sources in the emission inventories. Despite the large trends observed for 23 

individual regions, the global total emission is almost constant between 2005 (47.9 24 

\unit{Tg\,N\,yr^{-1}}) and 2014 (47.5 \unit{Tg\,N\,yr^{-1}}). 25 

 26 

\end{abstract} 27 

 28 

\introduction 29 

 30 
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Nitrogen oxides (\chem{NO_x}=\chem{NO}+\chem{NO_2}) play an important role in air 1 

quality, tropospheric chemistry, and climate. Tropospheric \chem{NO_x} concentrations are 2 

highly variable in both space and time, reflecting its short chemical lifetime in the atmosphere 3 

and the heterogeneous distribution of its sources and sinks. Emission sources are important in 4 

determining the amount and distribution of \chem{NO_x}. Natural \chem{NO_x} sources 5 

include biogenic emissions from bacteria in soils, biomass burning, and lightning. 6 

Anthropogenic \chem{NO_x} sources include fossil fuel and biofuel combustion, emissions 7 

from vehicle transport, and industrial emissions. Bottom-up inventories from different sources 8 

and regions contain large uncertainties, which result from inaccurate emission factors and 9 

activity rates for each source category. Examples include traffic rush hours, economic activity, 10 

biomass-burning activity, wintertime-heating of buildings, and rain-induced emission pulses 11 

of \chem{NO_x} (e.g., Velders et al., 2001; Jaegl\'{e} et al., 2005; Wang et al., 2007; Xiao et 12 

al., 2010; Streets et al., 2013; Castellanos et al., 2014; Reuter et al., 2014; Vinken et al., 2014; 13 

Oikawa et al., 2015). As a result, bottom-up inventories generally do poorly at representing 14 

the spatial and temporal variability at multiple scales (i.e., diurnal, daily, seasonal, and 15 

interannual). Large uncertainties in biomass burning emissions mainly reflect a relative lack 16 

of observations for characterizing the large spatial and temporal variations of burning 17 

conditions (Castellanos et al., 2014). The wide range in soil \chem{NO_x} emission estimates 18 

in previous studies reflect incomplete knowledge of the emission factors and processes 19 

driving these emissions (Oikawa et al., 2015). Recent studies (e.g., Steinkamp and Lawrence, 20 

2011, Hudman et al., 2012, Vinken et al., 2014) suggest that soil \chem{NO_x} emissions are 21 

likely around 10 \unit{Tg\,N\,yr^{-1}}, a considerable increase relative to earlier studies that 22 

assumed about 5 \unit{Tg\,N\,yr^{-1}} soil \chem{NO_x} emissions (Yienger and Levy, 23 

1995). Large uncertainties are also in lightning \chem{NO_x} (\chem{LNO_x}) source 24 

estimates. Schumann and Huntrieser (2007) provided a best estimate of 5$\pm$3 25 

\unit{Tg\,N\,yr^{-1}} for the annual global \chem{LNO_x} source. More recently, Murray et 26 

al. (2012), Stavrakou et al. (2013), and Miyazaki et al. (2014) estimated at 6$\pm$0.5, 3.3--27 

5.9, and 6.3$\pm$1.4 \unit{Tg\,N\,yr^{-1}}, respectively. 28 

 29 

 30 

Tropospheric \chem{NO_2} columns retrieved from satellite measurements, including the 31 

Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer 32 



 3 

for Atmospheric Cartography (SCIAMACHY), GOME-2, and the Ozone Monitoring 1 

Instrument (OMI), have been used to infer \chem{NO_x} emissions using top-down 2 

approaches (e.g., Martin et al., 2003; Richter, 2004; Jaegl\'{e} et al., 2005; van der A et al., 3 

2006; Zhang et al., 2007; Boersma et al., 2008a; Stavrakou et al., 2008; van der A et al., 2008; 4 

Kurokawa et al., 2009; Zhao and Wang, 2009; Lamsal et al., 2010; Lin et al., 2010; Miyazaki 5 

et al., 2012a; Gu et al., 2013; Mijling et al., 2013; Vinken et al., 2014; Ding et al., 2015; Lu et 6 

al., 2015). Long-term tropospheric \chem{NO_2} column records have allowed us to 7 

investigate changes in the atmospheric environment over the past decade as a result of 8 

economic growth and emission controls over major polluted regions (Castellanos and 9 

Boersma, 2012; Hilboll et al., 2013; Cui et al., 2015; Lelieveld et al., 2015; Wang et al., 2015; 10 

Duncan et al., 2016; Krotkov et al. 2016).  11 

 12 

Advanced data assimilation techniques such as four-dimensional variational assimilation (4D-13 

VAR) (M\"{u}ller and Stavrakou, 2005; Kurokawa et al., 2009; Chai et al., 2009) and 14 

ensemble Kalman filter (EnKF) (Miyazaki et al., 2012a, 2012b, 2014, 2015) have been 15 

employed to take full advantage of the chemical transport model (CTM) and satellite 16 

retrievals in top-down emission estimates. These advanced techniques consider flow-17 

dependent forecast error covariance and take errors from both the model and retrievals into 18 

account. These advantages are considered essential for improving long-term global emission 19 

estimates, as dominant atmospheric processes, the emission--concentration relationships, and 20 

observational sampling and errors must be incorporated into the analysis. These advanced 21 

methodologies can readily assimilate multiple-species. The additional observations of 22 

\chem{O_3} and \chem{CO} constrain surface \chem{NO_x} emissions through their 23 

indirect impact on \chem{NO_2} concentrations through tropospheric chemistry. These 24 

species directly influence \chem{OH} concentrations, which control the \chem{NO_x} 25 

variability and lifetime, and indirectly the accuracy of the emission estimates. Chemically 26 

consistent, multi--constituent assimilation is an advance over conventional approaches, which 27 

assume \chem{NO_2} observations are uniquely controlled by \chem{NO_x} emissions. 28 

 29 

Various sources of error in current chemical transport models (CTMs) impact the simulated 30 

\chem{NO_x} lifetime and the accuracy of \chem{NO_x} emission inversions (Lin et al., 31 

2012a; Miyazaki et al., 2012a; Stavrakou et al., 2013). Stavrakou et al. (2013) showed the 32 
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strong effect of chemical \chem{NO_x} loss uncertainties on top-down \chem{NO_x} source 1 

inversions. \chem{OH} is the main radical responsible for the removal of atmospheric 2 

pollution and for determining the lifetime of many chemicals including \chem{NO_x} (Levy, 3 

1971; Logan et al., 1981; Thompson, 1992), but its concentrations in CTMs are considered to 4 

have large uncertainties (Naik et al., 2013; Miyazaki et al., 2015; Patra et al., 2015). 5 

Meanwhile, representations of \chem{LNO_x} sources are essential for realistic 6 

representations of tropospheric \chem{NO_2} columns, but current parameterizations contain 7 

large uncertainties (Martin et al., 2007; Schumann and Huntrieser, 2007; Miyazaki et al., 8 

2014). Errors in representing these natural sources of \chem{NO_2} can directly propagate 9 

into surface \chem{NO_x} emissions estimates. 10 

 11 

Increasing attention has been paid to combining observations of multiple-species to improve 12 

the analysis of tropospheric chemistry, including for \chem{NO_x} emission estimates. 13 

Measurements of species other than \chem{NO_2} (e.g., \chem{O_3} and \chem{HNO_3}) 14 

could improve the representation of \chem{NO_x} in models through their chemical 15 

interactions with \chem{NO_x} (e.g., Hamer et al., 2015). Advanced data assimilation 16 

techniques such as 4D-VAR and EnKF propagate observational information from a limited 17 

number of observed species to a wide range of chemical components. Miyazaki et al. (2012b, 18 

2014, 2015) and Miyazaki and Eskes (2013) demonstrated that the assimilation of multiple-19 

species observations, taking their complex chemical interactions into account using an EnKF 20 

technique, can provide comprehensive constraints on both concentration and emissions, and 21 

this approach has the potential to improve emission inversions by accounting for confounding 22 

factors in the relationship between \chem{NO_x} emissions and \chem{NO_2} 23 

concentrations. Because of the simultaneous assimilation of multiple-species data with 24 

optimisation of both the concentrations and emission fields, the global distribution of 25 

\chem{OH} was modified considerably, decreasing the \chem{OH} gradient between NH and 26 

SH (Miyazaki et al., 2015). The changes in \chem{OH} are the important chemical pathway 27 

for propagating observational information between various species and for modulating the 28 

chemical lifetimes among these species. 29 

 30 

In this study, we estimate global surface \chem{NO_x} emissions between 2005 and 2014 31 

using the assimilation of multiple-species data from OMI \chem{NO_2}, GOME-2 32 
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\chem{NO_2}, SCIAMACHY \chem{NO_2}, Tropospheric Emission Spectrometer (TES) 1 

\chem{O_3}, Measurement of Pollution in the Troposphere (MOPITT) \chem{CO}, and 2 

Microwave Limb Sounder (MLS) \chem{O_3} and \chem{HNO_3} retrievals using an EnKF 3 

technique. We attempted to optimize the diurnal variations in surface \chem{NO_x} 4 

emissions, while updating daily, seasonal, and interannual emission variations, based on a 5 

combination of three \chem{NO_2} retrievals obtained at different overpass times. The 6 

assimilation of multiple chemical data sets with different vertical sensitivity profiles provides 7 

comprehensive constraints on the global \chem{NO_x} emissions while improving the 8 

representations of the entire chemical system affecting tropospheric \chem{NO_2} column 9 

variations, including \chem{LNO_x} sources. Based on the EnKF estimations, this study 10 

presents detailed distributions of the surface \chem{NO_x} emissions for all major regions, 11 

the diurnal and seasonal variability, and the development over the ten-year period. 12 

 13 

\section{Methodology} 14 

 15 

The data assimilation system is constructed based on the global CTM MIROC-Chem 16 

(Watanabe et al. 2011) and on a variance of the EnKF technique. The basic framework is 17 

similar to the system used to produce tropospheric chemistry reanalysis data 18 

(http://www.jamstec.go.jp{\slash}res{\slash}ress{\slash}kmiyazaki{\slash}reanalysis{\slash}19 

) in our previous study (Miyazaki et al., 2015); however, some updates to the data 20 

assimilation framework have been made and the calculation has been extended to cover the 21 

ten years from 2005 to 2014, as described below. 22 

 23 

\subsection{MIROC-Chem model and a priori emissions}  24 

 25 

The original forecast model used in our previous study (CHASER ; Sudo et al. 2002) is 26 

replaced by the newer MIROC-Chem model (Watanabe et al., 2011). MIROC-Chem 27 

represents the chemistry part of the MIROC-ESM Earth system model. It considers detailed 28 

photochemistry in the troposphere and stratosphere by simulating tracer transport, wet and dry 29 

deposition, and emissions, and calculates the concentrations of 92 chemical species and 262 30 

chemical reactions (58 photolytic, 183 kinetic, and 21 heterogeneous reactions). Its 31 
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tropospheric chemistry was developed based on the CHASER model, with many updates to 1 

chemical reactions and emissions, considering the fundamental chemical cycle of Ox-2 

\chem{\chem{NO_x}}-HOx-\chem{CH_4}-CO along with oxidation of NMVOCs (ethane, 3 

ethane, propane, propene, butane, acetone, methanol, isoprene, and terpenes) to properly 4 

represent ozone chemistry in the troposphere. Its stratospheric chemistry was developed based 5 

on the CCSR/NIES stratospheric chemistry model (Akiyoshi et al., 2004), which calculates 6 

chlorine and bromine containing compounds, CFCs, HFCs, OCS, \chem{N_2O}, and the 7 

formation of PSCs and associated heterogeneous reactions on their surfaces. 8 

 9 

MIROC-Chem has a T42 horizontal resolution (approximately 2.8$^\circ\times$2.8$^\circ$) 10 

and uses the hybrid terrain-following pressure vertical coordinate system with 32 vertical 11 

levels from the surface to 4.4 hPa. It is coupled to the atmospheric general circulation model 12 

MIROC-AGCM version 4 (Watanabe et al., 2011). The radiative transfer scheme considers 13 

absorption within 37 bands, scattering by gases, aerosols, and clouds, and the effect of surface 14 

albedo. Detailed radiation calculations are used for photolysis calculation. The MIROC-15 

AGCM fields were nudged toward the 6-hourly ERA-Interim (Dee et al., 2011) at every 16 

model time step to reproduce past meteorological fields and to simulate short-term (i.e., less 17 

than 6 hours) meteorological variability and sub-grid scale transport effects.  18 

 19 

The forecast model update from CHASER to MIROC-Chem improved the simulated profiles 20 

of various tropospheric species (not shown). The inclusion of stratospheric chemistry in 21 

MIROC-Chem allowed us to provide reasonable estimates of a priori profiles and their 22 

ensemble spread in the stratosphere. Since TES \chem{O_3} and MOPITT CO retrievals in 23 

the troposphere, together with MLS retrievals, have sensitivity to the lower stratospheric 24 

concentration to some degree, the improved representation of background error covariance in 25 

the stratosphere, as estimated from ensemble model simulations, meant that satellite retrievals 26 

are more effectively assimilated into the updated system throughout the troposphere and 27 

stratosphere through the use of observation operator (c.f., Sec. 2.3). 28 

 29 

The a priori values for surface emissions of \chem{NO_x} and \chem{CO} were obtained 30 

from bottom-up emission inventories. Annual total anthropogenic \chem{NO_x} and 31 
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\chem{CO} emissions were obtained from the Emission Database for Global Atmospheric 1 

Research (EDGAR) version 4.2 (EC JRC/PBL, 2012) for 2005--2008. Emissions from 2 

biomass burning were based on the monthly Global Fire Emissions Database (GFED) version 3 

3.1 (van der Werf et al., 2010) for 2005--2011. Emissions from soils were based on monthly 4 

mean Global Emissions Inventory Activity (GEIA) (Yienger and Levy, 1995). To cover data 5 

limitations during 2005--2014, EDGAR emissions for 2008 were used in the calculations for 6 

2009--2014, and GFED emissions averaged over 2005--2011 were used in the 2012--2014 7 

calculation. The global total a priori \chem{NO_x} emissions averaged over the 2005-2014 8 

period from anthropogenic sources, biomass burning, and soils are 28.7, 4.3, and 5.4 9 

\unit{Tg\,N\,yr^{-1}}, respectively. The total aircraft \chem{\chem{NO_x}} emission is 0.55 10 

\unit{Tg\,N\,yr^{-1}}, which is obtained from the EDGAR inventory.  11 

 12 

Following the settings of Lotos-Euros (Schaap et al., 2008) and Boersma et al. (2008b), we 13 

applied anthropogenic-type diurnal variations for total emissions with maxima in morning and 14 

in evening with a factor of about 1.5 (black dotted line in Fig. 1, for which the daily mean 15 

hourly emission value is 1) in Europe, eastern China, South Korea, Japan, India, and North 16 

America; biomass burning-type variations with a rapid increase in morning and maximal 17 

emissions in the mid-day with a maximum factor of about 4 in North and central Africa, 18 

southeast Asia, and northern and central South America; and soil-type diurnal variations with 19 

maximal emissions in afternoon with a factor of about 1.2 in Australia, Sahara, western China, 20 

and Mongolia. 21 

 22 

\chem{LNO_x} sources in MIROC-Chem were calculated in conjunction with the convection 23 

scheme of MIROC-AGCM. The global distribution of the flash rate was parameterised for 24 

convective clouds based on the relationship between lightning activity and cloud top height 25 

(Price and Rind, 1992). The vertical profiles of the \chem{LNO_x} sources are determined on 26 

the basis of the C-shaped profile given by Pickering et al. (1998). The mean yearly global 27 

flash rate obtained for 2005--2014 was 42.4 \unit{flashes\,s^{-1}}, which is close to 28 

climatological estimates of 46 \unit{flashes\,s^{-1}} derived from Lightning Imaging Sensor 29 

(LIS) and Optical Transient Detector (OTD) measurements (Cecil et al., 2014). The 30 

\chem{LNO_x} sources were optimized in the data assimilation runs, following the method 31 

of Miyazaki et al. (2014). 32 
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 1 

\subsection{Emission estimates from EnKF data assimilation} 2 

 3 

Data assimilation is based on an ensemble square root filter (SRF) EnKF approach (i.e., a 4 

local ensemble transform Kalman filter; LETKF; Hunt et al., 2007). As in other EnKF 5 

approaches, the background error covariance is estimated from ensemble model forecasts 6 

based on the assumption that background ensemble perturbations sample the forecast errors. 7 

Using the covariance matrices of observation error and background error, the data 8 

assimilation determines the relative weights given to the observation and the background, and 9 

then transforms a background ensemble into an analysis ensemble. Unlike standard EnKF 10 

analyses, the LETKF analysis is performed locally in space and time, which reduces sampling 11 

errors caused by limited ensemble size. Furthermore, the analysis is performed independently 12 

for different grid points, which reduces the computational cost through parallel computations. 13 

More details on the data assimilation technique are given in Miyazaki e al. (2015). 14 

 15 

The emission estimation is based on a state augmentation technique, which was employed in 16 

our previous studies (Miyazaki et al., 2012a; 2012b; 2013; 2014; 2015). In this approach, the 17 

background error correlations, estimated from the ensemble model simulations at each 18 

analysis step, determine the relationship between the concentrations and emissions of related 19 

species for each grid point. This approach allows us to reflect temporal and geographical 20 

variations in transport and chemical reactions in the emission estimates. The state vector in 21 

this study is optimized following Miyazaki et al. (2015), which includes several emission 22 

sources (surface emissions of \chem{NO_x} and \chem{CO}, and \chem{LNO_x} sources) 23 

as well as the concentrations of 35 chemical species. In order to improve the filter 24 

performance, the covariance among non- or weakly related variables in the state vector is set 25 

to zero, as in Miyazaki et al (2012b) and Miyazaki et al (2015). The emissions in the state 26 

vector are represented by scaling factors for each surface grid cell for the total \chem{NO_x} 27 

and \chem{CO} emissions, and for each production rate profile of the \chem{LNO_x} 28 

sources. For surface \chem{NO_x} emissions, only the combined total emission is optimized 29 

in data assimilation. This is to reduce the degree of freedom in the analysis and to avoid the 30 

difficulty associated with estimating spatiotemporal variations in background errors for each 31 

category source separately.  32 
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 1 

In the MIROC-Chem simulations, an emission diurnal variability function 2 

($Et$ ($t=1,...,24$)) was applied following the approach of Miyazaki et al. (2012a). Its 3 

application generally improved the model simulation performance; however, because 4 

$Et$ was constructed based on simple assumptions, and because it does not change with 5 

season and location within an area of the same dominant category, its application can cause 6 

large uncertainties in simulated \chem{NO_2} variations. Multiple satellite \chem{NO_2} 7 

retrievals obtained at different overpass times have a potential to constrain diurnal emission 8 

variability (e.g., Lin et al., 2010), although differences between the different \chem{NO_2} 9 

retrievals and errors in model processes could introduce artificial corrections (see also Section 10 

5.2). Note that the retrievals from different instruments used are all based on the same 11 

retrieval method (DOMINO v2, TM4NO2A v2) and largely consistent ancillary data, which 12 

limits the discrepancies between the data sets to large degree (Boersma et al., 2008) (see 13 

Section 2.3.1). We also acknowledge that differences between the surface reflectivity and 14 

cloud data used may lead to some structural uncertainty between the morning and afternoon 15 

sensors, although numerous validation studies pointed out that the three \chem{NO_2} 16 

column retrievals agree well with independent reference data (e.g., Irie et al., 2011; Ma et al., 17 

2013). 18 

 19 

We attempt to optimize $Et$ using data assimilation of OMI, SCIAMACHY, and GOME-2 20 

retrievals, with local equator overpass time of 13:45, 10:00 and 9:30, in order to improve the 21 

representation of diurnal emission variability. In our approach, a correction factor for 22 

emission diurnal variability ($Etc$) and an emission scaling factor ($Es$) for surface 23 

\chem{NO_x} emissions are simultaneously optimized in the analysis step using multiple 24 

\chem{NO_2} retrievals, by adding them to the state vector together with other variables such 25 

as predicted concentrations. The background error correlation between $Es$ and $Etc$ is not 26 

considered; the two emission parameters are independently optimized using measurements 27 

from instruments with different overpass times. As in Miyazaki et al. (2012a), we apply 28 

covariance inflation to the emission factors to prevent covariance underestimation caused by 29 

the application of a persistent forecast model, by inflating the spread to a minimum 30 

predefined value (i.e., 30 \% of the initial standard deviation) at each analysis step for both 31 

$Es$ and $Etc$. The initial error is set to 40 \% for both $Es$ and $Etc$. For concentrations, 32 
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multiplication factors (5 \%) are applied to prevent an underestimation of background error 1 

covariance. The emission factors are analyzed and updated at every analysis step (i.e., two 2 

hours). Because of the lack of any applicable model, a persistent forecast model is used for 3 

the emission factors. When there is no observational information available in the analysis step, 4 

previously analyzed emission factors are used in the next forecast step. 5 

 6 

Figure 1 depicts a schematic diagram of the emission correction scheme for anthropogenic 7 

emissions. First, we obtain optimal values of $Es$ and $Etc$ from the data assimilation 8 

analysis. Second, $Es$ is applied to scale up/down daily total emissions while maintaining the 9 

a priori diurnal variability shape (black solid line). Third, optimized $Etc$ is applied to 10 

modify the diurnal variability shape (red line). Considering the overpass time of the satellite 11 

retrievals and the typical daytime lifetime of \chem{NO_x} (i.e. 2--3 hours), a square-wave 12 

with amplitude of $Etc$ and a wavelength of six hours was applied. This assumes that 13 

GOME-2 and SCIAMACHY measurements constrain emissions in the 07:30--10:30 window, 14 

and OMI measurements constrain the 10:30-13:30 window. Consequently, an analysis of the 15 

emission diurnal variability function is obtained as $Et^{a} = Et^{b}\times Es - Etc$ for 16 

07:30--10:30, and $Et^{a}= Et^{b}\times Es + Etc$ for 10:30--13:30), where $a$ and 17 

$b$ represent the analysis and background states, respectively. $Etc$ is set to zero (i.e., 18 

$Et^{a}=Et^{b}\times Es$) from 13:30 to 07:30. The optimized emission factors are used as 19 

initial conditions in the next forecast step of ensemble model simulations. 20 

 21 

\subsection{Measurements used in the assimilation} 22 

 23 

Trace gas concentrations were obtained from OMI, SCIAMACHY, and GOME-2 satellite 24 

measurements of \chem{NO_2}, from TES of \chem{O_3}, from MOPITT measurements of 25 

\chem{CO}, and from MLS of \chem{O_3} and \chem{HNO_3}. The retrieved concentration 26 

and observation error information were obtained for each retrieval, where the observation 27 

error included contributions from smoothing errors, model parameter errors, forward model 28 

errors, geophysical noise, and instrument errors. These combined errors, together with a 29 

representativeness error for super observations (Miyazaki et al., 2012a), were considered in 30 

the observation error matrix ($\mathbf{R}$) for data assimilation. 31 
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 1 

For the assimilation of the satellite retrievals, observation operators ($\mathrm{H}$) were 2 

developed, consisting of the spatial interpolation operator ($S$), a priori profile in the satellite 3 

retrievals ($\vec{x}_{\text{apriori}} $), and an averaging kernel ($\mathbf{A}$). This 4 

operator mapped the model fields ($\vec{x}_{i}^{\mathrm{b}}$) into retrieval space 5 

($\vec{y}_i^{\mathrm{b}}$), as follows:  6 

\begin{align} 7 

 & 8 

\vec{y}_i^{\mathrm{b}}= H( 9 

\vec{x}_{i}^{\mathrm{b}} 10 

) = \vec{x}_{\text{apriori}} + \vec{A} (S(\vec{x}_i^{\mathrm{b}})-11 

\vec{x}_{\text{apriori}}), 12 

\end{align} 13 

where $i$ indicates the ensemble member. The use of the averaging kernel $A$ removes the 14 

dependence of the analysis or of the relative model retrieval comparison 15 

($\vec{y}_i^{\mathrm{b}}-\vec{y}^{\mathrm{o}}$)/$\vec{y}_i^{\mathrm{b}}$ on the 16 

retrieval a priori profile (Eskes and Boersma, 2003; Jones et al., 2003).  17 

 18 

We employed the super-observation approach to produce representative data with a horizontal 19 

resolution of MIROC-Chem (T42) for OMI, SCIAMACHY, GOME-2, and MOPITT 20 

observations. Super observations were generated by averaging all data located within a super 21 

observation grid cell, following the approach of Miyazaki et al. (2012a). Super observation 22 

measurement error was estimated by considering an error correlation of 15 \% among the data, 23 

although there is no evidence for this value. Representativeness error was introduced when 24 

the super-observation grid was not fully covered by observation pixels. The super-observation 25 

approach generally provided more representative data with reduced random error and resulted 26 

in more stable analysis increments than did the individual observations (Miyazaki et al., 27 

2012a). Another popular approach in data assimilation is to apply data thinning. However, 28 

individual observations are much more noisy than super observations, and the representativity 29 

error is large. Note that, in our previous studies (Miyazaki et al., 2012a, 2012b, 2013, 2014, 30 
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2015), the super observation was produced with a resolution of $2.5^\circ \times 2.5^\circ $, 1 

which was similar but not equivalent to the model grid size (T42). In this study, the super 2 

observation was set to be equivalent to the model grid size (T42), which generally led to 3 

larger adjustments in the estimated emissions over industrial areas, and resulted in better data 4 

assimilation performance for most cases (e.g., reduced OmF). 5 

 6 

\subsubsection{Tropospheric \chem{NO_2} columns from OMI, SCIAMACHY, and 7 

GOME-2} 8 

 9 

The tropospheric \chem{NO_2} column retrievals used are from the version-2 DOMINO data 10 

product for OMI (Boersma et al., 2011) and version 2.3 TM4NO2A data products for 11 

SCIAMACHY and GOME-2 (Boersma et al., 2004) obtained through the TEMIS website 12 

(www.temis.nl). The ground pixel size of the OMI retrievals is 13--24 km with daily global 13 

coverage. Since December 2009, approximately half of the pixels have been compromised by 14 

the so-called row anomaly, which reduced the daily coverage of the instrument. GOME-2 15 

retrievals have 80 km $\times$ 40 km ground pixel size with a global coverage within 1.5 16 

days. SCIAMACHY retrievals have 60 km $\times$ 30 km ground pixel size with a global 17 

coverage once every 6 days. OMI measurements were assimilated throughout the analysis 18 

period during 2005--2014. In contrast, because of the data limitations, SCIAMACHY 19 

retrievals were assimilated before February 2012, and the GOME-2 measurements were 20 

assimilated after January 2007. Low-quality data were excluded before assimilation following 21 

the recommendations of the products' specification document (Boersma et al., 2011). We 22 

employed clear-sky data for surface \chem{NO_x} emission estimations and both clear-sky 23 

data and cloud-scene data for \chem{LNO_x} estimations, following the method of Miyazaki 24 

et al. (2014). The analysis increments in the assimilation of the \chem{NO_2} retrievals were 25 

limited to adjusting only the surface emissions of \chem{NO_x}, \chem{LNO_x} sources, 26 

and concentrations of \chem{NO_y} species using the estimated inter-species error 27 

correlations. 28 

 29 

Boersma et al. (2011) summarized the general error characteristics of tropospheric 30 

\chem{NO_2} retrievals. More recently, Maasakkers (2013) presented the possibility for 31 
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improving the tropospheric \chem{NO_2} column retrievals algorithm; for example, in the a 1 

priori profiles, the effective surface pressure calculation, and in the cloud retrieval. 2 

Maasakkers (2013) presented an improved error parameterization for the tropospheric 3 

\chem{NO_2} column, which reduced errors in high tropospheric columns by up to 41 \% 4 

and in the mean global error by 13 \%. Following this result, we modified the version-2 5 

DOMINO and version 2.3 TM4NO2A data products (Boersma et al., 2004; 2011) used in data 6 

assimilation; we reduced retrieval errors of individual \chem{NO_2} retrievals by 30 \% over 7 

polluted areas (for columns > $1.1 \times 10^{15}$\,\unit{molec\,cm^{-2}}) before 8 

producing super observation for all the \chem{NO_2} retrievals. The assimilation of 9 

\chem{NO_2} retrievals with reduced error increased the effective use of observational 10 

information (i.e., larger emission adjustments) and improved the chi-square statistics (not 11 

shown). The obtained super observation error is typically about 20--50 \%, 30--60 \%, and 25-12 

-50 \% of the \chem{NO_2} columns over polluted areas for OMI, SCIAMACHY, and 13 

GOME-2 retrievals, respectively (Fig. S1). The differences between the instruments mainly 14 

reflect the differences in coverage and pixel size. 15 

 16 

\subsubsection{TES \chem{O_3}} 17 

 18 

The Tropospheric Emission Spectrometer (TES) is a Fourier Transform Spectrometer (FTS) 19 

that measures spectrally-resolved outgoing longwave radiation of the Earth's surface and 20 

atmosphere. The TES \chem{O_3} data used are version 6 level 2 nadir data obtained from 21 

the global survey mode (Herman and Kulawik, 2013). This data set consists of 16 daily orbits 22 

with a spatial resolution of 5--8 km along the orbit track, with an equator crossing time of 23 

13:40 and 02:29 local mean solar time. Retrievals of atmospheric parameters and their error 24 

characterization are based upon optimal estimation (Worden et al., 2004; Bowman et al., 25 

2006; Kulawik et al., 2006) which provide the diagnostics (a priori, averaging kernels, and 26 

error covariances) needed to construct the observation operator. The standard quality flags 27 

were used to exclude low-quality data. The data assimilation of the TES \chem{O_3} 28 

retrievals was performed based on the logarithm of the mixing ratio following the retrieval 29 

product specification (Bowman et al., 2006).  30 

 31 
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\subsubsection{MLS \chem{O_3} and \chem{HNO_3}} 1 

 2 

The MLS data used are the version 4.2 \chem{O_3} and \chem{HNO_3} level 2 products 3 

(Livesey et al., 2011). We excluded low quality data, following the recommendations of 4 

Livesey et al. (2011). We used data for pressures of less than 215 hPa for \chem{O_3} and 5 

150 hPa for \chem{HNO_3}. The accuracy and precision of the measurement error, described 6 

in Livesey et al. (2011), were included as the diagonal element of the observation error 7 

covariance matrix.  8 

 9 

\subsubsection{MOPITT CO} 10 

 11 

The MOPITT CO data used are version 6 level 2 TIR products (Deeter et al., 2013). The 12 

MOPITT instrument is mainly sensitive to free-tropospheric CO, especially in the middle 13 

troposphere, with degrees of freedom for signals (DOFs) typically much larger than 0.5. 14 

Owing to data quality problems, we excluded data poleward of 65$^\circ$ and night-time data. 15 

Data at 700 hPa were used for constraining surface CO emissions.  16 

 17 

\subsection{Measurements used in the validation} 18 

 19 

We use vertical \chem{NO_2} profiles observed from in-situ and aircraft measurements to 20 

validate the simulated \chem{NO_2} distributions. The model simulation and assimilation 21 

fields were interpolated to the time and location of each measurement, and then compared 22 

with the measurements. 23 

 24 

\subsubsection{DANDELIONS} 25 

 26 

Vertical \chem{NO_2} profiles were measured using the Netherlands National Institute for 27 

Public Health and the Environment (RIVM) NO2 lidar during the Dutch Aerosol and 28 

Nitrogen Dioxide Experiments for Validation of OMI and SCIAMACHY (DANDELIONS) 29 
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campaign in September 2006 (Volten et al., 2009). The lidar data have a spatial representation 1 

of 2 km in the viewing direction and approximately 12 km in the direction of the wind, which 2 

is much finer than the model resolution (approximately 2.8$^\circ$). The model grid points 3 

used for the interpolation around Cabauw are located in Belgium, northeastern Netherlands, 4 

western Germany, and on the North Sea. Boundary layer conditions are different among the 5 

grid points, especially between land and ocean. To avoid a possibly large error of 6 

representativeness in the validation, particularly under the different boundary layer condition, 7 

the profiles obtained in the morning (before 12:00 p.m.) were used because the differences 8 

between land and sea mixing layer depths are then still relatively small, following Miyazaki et 9 

al. (2012a). 10 

 11 

\subsubsection{INTEX-B} 12 

 13 

During the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign, 14 

vertical \chem{NO_2} profiles were obtained using the UC Berkeley Laser-Induced 15 

Fluorescence (TD-LIF) instrument on a DC-8 over the Gulf of Mexico in March 2006 (Singh 16 

et al., 2009). We removed data collected over highly polluted areas over Mexico City and 17 

Houston from the comparison to avoid a serious spatial representativeness error, as applied in 18 

Miyazaki et al. (2015).   19 

 20 

\subsubsection{ARCTAS} 21 

 22 

The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites 23 

(ARCTAS) campaign (Jacob et al., 2010) was conducted over Alaska (between 60--24 

90$^\circ$N) in April 2008 (ARCTAS-A) and over western Canada (between 50--25 

70$^\circ$N) in June--July 2008 (ARCTAS-B). Since the data assimilation impact is limited 26 

in polar regions, the profile data obtained during ARCTAS-B were used in the comparison. 27 

Note that Browne et al. (2011) investigated that the observed \chem{NO_2} concentrations 28 

could be too high in the upper troposphere. 29 

 30 



 16 

\subsubsection{DC3} 1 

 2 

The Deep Convective Clouds and Chemistry (DC3) experiment field campaign was 3 

conducted over northeastern Colorado, western Texas to central Oklahoma, and northern 4 

Alabama during May and June 2012 (Barth et al., 2015). The observations obtained from the 5 

DC-8 by the UC Berkeley measurement were used in the validation.  6 

 7 

\subsubsection{SEAC$^4$RS} 8 

 9 

The Studies of Emissions and Atmospheric Composition, Clouds and Climate C oupling by 10 

Regional Surveys (SEAC$^4$RS) aircraft campaign was conducted over the southeast US in 11 

August--September 2013 (Travis et al., 2016). The observations obtained from the DC-8 by 12 

the UC Berkeley measurement were used in the validation. 13 

 14 

\section{Simulated and retrieved tropospheric \chem{NO_2} columns} 15 

 16 

Tropospheric \chem{NO_2} columns obtained from data assimilation and model simulation 17 

(without any assimilation) are compared with satellite observations. For these comparisons, 18 

concentrations were interpolated for the retrieval pixels to the overpass time of the satellite, 19 

while applying the averaging kernel of each retrieval, and both the retrieved and simulated 20 

concentrations were mapped on the horizontal grid of the super observation (i.e., T42). 21 

 22 

\subsection{Global distribution} 23 

 24 

Figure 2 compares global distributions of annual mean tropospheric \chem{NO_2} columns 25 

obtained from the three satellite retrievals (OMI for 2005-2014, SCIAMACHY for 2005--26 

2011, and GOME-2 for 2007--2014), the MIROC-chem simulation, and the data assimilation. 27 

The three satellite measurements commonly reveal high tropospheric \chem{NO_2} 28 

concentrations over large industrial regions: eastern China, Europe, and the United States. 29 
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High concentrations are also found over the Southern and Central Africa, India, Middle East, 1 

Japan, South Korea, and Southeast Asia. Tropospheric \chem{NO_2} concentrations are 2 

generally lower in OMI retrievals compared to GOME-2 and SCIAMACHY retrievals over 3 

polluted areas, reflecting the diurnal cycle of emissions and chemistry, with faster chemical 4 

loss of \chem{NO_2} at noon compared to early morning (e.g. Boersma et al., 2009). All of 5 

the retrievals are produced using the same retrieval approach (Boersma et al., 2011). 6 

Therefore, the differences in overpass time and also in pixel size could be the main cause of 7 

the differences between the three different satellite retrievals, although the use of super 8 

observations for all the sensors reduces the influence of different pixel sizes. 9 

 10 

The MIROC model reproduces the general features of observed tropospheric \chem{NO_2}, 11 

with a global spatial correlation of 0.86--0.94 for the annual mean concentration during the 12 

ten-year period between 2005--2014 (Fig. 2 and Table 1). However, the simulated regional 13 

mean tropospheric \chem{NO_2} columns are generally too low over most industrial areas 14 

and major biomass-burning areas and too high over remote areas. In the global mean, the 15 

model is negatively biased relative to the three retrievals (i.e., -0.04$-$-0.18$\times 16 

10^{15}$\,\unit{molec\,cm^{-2}} compared with the three retrievals). Data assimilation 17 

improves agreements with the satellite retrievals for most industrial and biomass-burning 18 

areas mainly because of the optimized surface \chem{NO_x} emissions, with great reductions 19 

in the ten-year global mean negative bias (i.e., -0.02--+0.03$\times 20 

10^{15}$\,\unit{molec\,cm^{-2}}) (Table 1). Improvements can also be found in the 21 

improved spatial correlation (from 0.86--0.94 to 0.95--0.98) and the reduced global root mean 22 

square error (RMSE: reduced by about 40, 30, and 50 \% compared with OMI, SCIAMACHY, 23 

and GOME-2, respectively). The annual mean analysis--observation differences show similar 24 

spatial distributions between SCIAMACHY and GOME-2 (r=0.93) and differed somewhat 25 

between OMI and other sensors (r=0.55--0.60). 26 

 27 

\subsection{Regional distribution} 28 

 29 

The regional mean tropospheric \chem{NO_2} columns are compared in Table 2. The data 30 

assimilation reduced the ten-year mean negative bias of the model by 40--62 \% over China 31 
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and 48--50 \% over the United States compared to the three retrieval. The data assimilation 1 

also reduced the almost constant negative bias over Australia by 20--76 \%, over India by 57--2 

60 \%, and over Southern Africa by 35--64 \%. The error reduction over China and southern 3 

Africa is generally smaller for the SCIAMACHY and GOME-2 retrievals compared with the 4 

OMI retrievals.  5 

 6 

Improvements are also found over biomass burning areas. The ten-year mean negative model 7 

bias over Southeast Asia is reduced by 57--77 \%, which is mainly attributed to the positive 8 

adjustments in the biomass burning season (i.e., in boreal winter-spring). The persistent 9 

negative biases throughout the year over central and North Africa are also reduced, with a ten-10 

year mean reduction of 66-80 \% and 78--86 \%, respectively. These improvements over the 11 

tropical regions are mostly commonly found in comparisons with the three retrievals. 12 

Considering the short lifetime and rapid diurnal variation of biomass burning activity at low 13 

latitudes, these improvements suggest that the assimilation of multiple-species and multiple 14 

\chem{NO_2} measurements effectively corrected the temporal changes in the tropospheric 15 

\chem{NO_2} column between the different overpass times. 16 

 17 

Despite the general improvement by data assimilation, disagreements remain between the 18 

simulated and observed \chem{NO_2} concentrations over polluted regions, such as Europe, 19 

Southern Africa, and China. The inadequacies of the improvements can be partly attributed to 20 

the small number of observations and large observation errors for highly polluted cases. The 21 

quality and abundance of the retrievals varies largely with season and area (Fig. S1), 22 

reflecting observation conditions (e.g., clouds, aerosols, and surface albedo), which have great 23 

impacts on the magnitude of data assimilation improvement. For instance, over Europe in 24 

winter, the number of observations is relatively small, and the observation error is relatively 25 

large. The remaining errors may also result from model errors such as too short lifetime of 26 

\chem{NO_x} through processes such as the \chem{NO_2}+\chem{OH} reactions and the 27 

reactive uptake of \chem{NO_2} and \chem{N_2O_5} by aerosols (e.g., Lin et al., 2012b; 28 

Stavrakou et al. 2013). This will further be discussed in Section 5.3. 29 

 30 

\subsection{Seasonal and interannual variation} 31 
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 1 

The underestimation in the simulated concentrations is most obvious in winter over most of 2 

the industrial regions, such as China, Europe, the United States, and Southern Africa. Data 3 

assimilation greatly reduced the wintertime low bias by 50-70 \% over China, by about 50--90 4 

\% over the United States, and by 50--70 \% over Southern Africa, as summarized in Table 2. 5 

Over Europe, the model's negative bias is reduced by about 10--80 \% in summer, but the 6 

negative bias compared with the OMI retrievals mostly remains in winter (c.f., Section 5.3). 7 

Despite the persistent wintertime bias over Europe, the improved temporal correlation (from 8 

0.64--0.89 in the model simulation to 0.90--0.95 in the data assimilation) confirms improved 9 

seasonality and year-to-year variation. Over India, the \chem{NO_2} columns in the model 10 

simulation do not reveal clear seasonal variation, whereas a significant seasonal variation is 11 

introduced by data assimilation, reflecting the observed high concentration in boreal winter-12 

spring. The temporal correlation is largely improved over India (from -0.47--0.06 in the 13 

model simulation to 0.76--0.95 in the data assimilation).  14 

 15 

The observed concentrations reveal large year-to-year variations over the industrial regions, 16 

which are generally underestimated in the model simulation (Fig. 3). Over China, the 17 

difference between the model simulation and the observations becomes significant after 2010, 18 

suggesting a larger underestimation in the a priori inventories in that time period, relative to 19 

the period before 2010. The observed concentrations reveal positive trends over China, with 20 

an exceptional decrease in 2009, followed by a rapid increase in 2010, and a decrease in 2014, 21 

as found by Cui et al. (2015), Duncan et al. (2016), and Krotkov et al. (2016). The data 22 

assimilation better captures the observed variations, as indicated by the better agreement in 23 

the linear trend (+40 \%/decade in the OMI observation, +13 \%/decade in the model 24 

simulation, and +28 \%/decade in the data assimilation) and by the improved temporal 25 

correlation (from 0.85--0.94 to 0.95--0.99). Over the United States, the data assimilation 26 

removes most of the model's negative bias in 2005--2007 and reproduces the observed 27 

downward trend for the ten-year periods. These improved agreements suggest that the a 28 

posteriori emissions from data assimilation capture the actual anthropogenic emission 29 

variability. 30 

  31 
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The seasonal and year-to-year variations over Southeast Asia, and North and Central Africa 1 

are associated with changes in the biomass burning activity. Data assimilation improves the 2 

temporal variability, as confirmed by the improved temporal correlations (by 0.10--0.14 over 3 

North Africa, by 0.03--0.04 over Central Africa, and by 0.15--0.21 over Southeast Asia). Over 4 

Southeast Asia, the negative bias in the biomass burning season is largely removed by data 5 

assimilation. The systematic adjustments for North and Central Africa throughout the year 6 

suggests that the a priori emissions reasonably represent the seasonality of biomass burning 7 

activity, but emission factors might be underestimated in the a priori setting, as discussed in 8 

Section 4. 9 

 10 

\subsection{Vertical profiles} 11 

 12 

Figure 4 compares the vertical profiles with the aircraft observations during the INTEX-B, 13 

ARCTAS, DC3, and SEAC$^4$RS campaigns and with the ground-based lidar observations 14 

obtained during the DANDELIONS campaign. For all the profiles, the observed 15 

\chem{NO_2} concentrations are high in the boundary layer and decrease with height above 16 

the boundary layer in the troposphere. Both the model simulation and data assimilation 17 

reproduced these observed general features.  18 

 19 

For the ARCTAS profile, the data assimilation has only a small effect on the lower and 20 

middle tropospheric \chem{NO_2} profiles, because of the large observational error of the 21 

\chem{NO_2} measurements at high latitudes. In contrast, the data assimilation mostly 22 

removed the model negative bias in the upper troposphere and lower stratosphere, mainly 23 

because of the MLS \chem{O_3} and \chem{HNO_3} data assimilation and through the use 24 

of the inter-species correlation that was determined using background error covariances 25 

estimated from ensemble model simulations (c.f., Section 2.2). An estimated inter-species 26 

correlation is demonstrated in Miyazaki et al. (2012b) in Fig. 3, which shows a strong positive 27 

correlation between the concentrations of \chem{NO_2} with those of \chem{O_3} and 28 

\chem{HNO_3}, reflecting complex tropospheric chemical processes. The data assimilation 29 

widely influences the \chem{NO_x} and \chem{NO_y} species in both analysis and forecast 30 

steps. This improvement cannot be achieved using the \chem{NO_2} measurements only.  31 
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 1 

Compared with the INTEX-B and DC3 profiles, both the model and assimilation are too low 2 

in the middle/upper troposphere, whereas in the lower troposphere these are too high 3 

compared with the DC3 profile and too low compared with the INTEX-B profile. Compared 4 

with the SEAC$^4$RS profile, both the model and assimilation are too high in the lower 5 

troposphere. Because of the coarse model resolution (approximately 2.8$^\circ$), the model 6 

has difficulty in representing the spatial footprint of the measurement, and this could cause 7 

large differences near the surface for comparisons at urban sites. The near-surface 8 

concentration will be sensitive to the model resolution owing to fine-scale emission 9 

distribution and transport, as well as non-linear chemical processes, as discussed in Valin et al 10 

(2011) and Miyazaki et al (2012a). The coarse model resolution may also make the 11 

improvements by data assimilation obscure.  12 

 13 

During the DANDELIONS and aircraft campaigns, large variations in individual 14 

measurements along the flights were observed. Therefore we evaluate the variability as well 15 

as mean profiles using scatter plots. The right four panels in Fig. 4 show the scatter plots for 16 

an INTEX-B profile on March 9 in 2006 as an example and for the DANDELIONS 17 

measurements. For the INTEX-B profile, the data assimilation improves the agreement (i.e., 18 

the correlation and slope) with the observations in the lower and middle troposphere, except 19 

within the boundary layer (i.e., below 900 hPa). The correlation (from 0.324 to 0.455) and the 20 

slope (from 0.26 to 0.53) increased in the lower troposphere (900--750 hPa) by data 21 

assimilation. The improvements are also found for higher levels (750--600 hPa) and for other 22 

flights (not shown). The assimilation does not obviously change the model profile in the 23 

upper troposphere (600--300 hPa); the remaining negative bias could be attributed to errors in 24 

the model, such as in the chemical loss, \chem{NO_y} species partitioning, and atmospheric 25 

transport. For the DANDELIONS profiles, the data assimilation improves the agreement in 26 

the lower troposphere (e.g., the correlation and slope are increased from 0.14 to 0.46 and from 27 

0.11 to 0.90, respectively, for 150--500 m), except near the surface (i.e., below 150 m). 28 

 29 

 30 

\section{Estimated surface \chem{NO_x} emissions} 31 
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 1 

The a posteriori emissions were compared against the a priori emissions for the 2005--2014 2 

period and against an independent emission inventory from EDGAR-HTAP v2 (Janssens-3 

Maenhout et al., 2015) for the years 2008 and 2010. EDGAR-HTAP v2 was produced using 4 

nationally reported emissions combined with regional scientific inventories from the 5 

European Monitoring and Evaluation Programme (EMEP), Environmental Protection Agency 6 

(EPA), Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS), and Regional 7 

Emission Inventory in Asia (REAS). For the comparison against EDGAR-HTAP v2, 8 

emissions from biomass burning and soils were obtained based on GFED version 3.1 and 9 

GEIA inventories; they were used in the a priori emissions. 10 

 11 

\subsection{Top-down vs. a priori global surface \chem{NO_x} emissions} 12 

 13 

The global distributions of the estimated emission sources are depicted in Fig. 5. As 14 

summarized in Table 3, the ten-year mean global total surface \chem{NO_x} emissions after 15 

data assimilation is 48.4 \unit{Tg\,N\,yr^{-1}}, which is about 26 \% higher than the a priori 16 

emissions (38.4 \unit{Tg\,N\,yr^{-1}}). The positive analysis increment in global total 17 

emissions is attributable to an approximate +21 \% increment in the Northern Hemisphere 18 

(NH, 20--90$^\circ$N), a +35 \% increment in the tropics (20$^\circ$S-20$^\circ$N), and a 19 

42 \% increment in the Southern Hemisphere (SH, 20--90$^\circ$S). Strong positive 20 

increments are found over China (+39 \%), the United States (+10 \%), India (+22 \%), and 21 

Southern Africa (+50 \%). There are also positive increments in emissions over the biomass 22 

burning areas of Central Africa (+53 \%) and Southeast Asia (+39 \%). The a posteriori 23 

regional total emissions are clearly closer to the EDGAR-HTAP v2 emissions than the a priori 24 

emissions over China, the United States, and India. Since the same biomass burning and soil 25 

emission inventories are used in producing the total a priori and EDGAR-HTAP v2 emission 26 

data sets in this study, the emissions are similar between the two data sets over biomass 27 

burning and remote areas. 28 

 29 

Fig. 6 depicts the global distribution of the linear trend during the ten-year period. The trend 30 

is negative over most of the United States, Europe, some parts of eastern China, South Korea, 31 
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Japan, central and Southern Africa, Northern South America, with strong negative trends over 1 

the eastern United States, some parts of Europe (e.g., Northwest Europe, Po valley, and 2 

northern Spain), and Japan. Strong positive trends are found over China, India, Middle East, 3 

around Sao Paulo in Brazil, and around Jakarta in Indonesia.  4 

 5 

Data assimilation reveals significant temporal variations (Fig. 7), including seasonal (Fig. 8) 6 

and interannual (Fig. 9) variations, in the emissions over major polluted regions. In northern 7 

mid-latitudes, the emissions are strongly enhanced in summer, and the timing of the 8 

summertime peak from data assimilation is earlier by 1--2 months over North America, 9 

Europe, and China (Fig. 8), as similarly found in our previous study (Miyazaki and Eskes, 10 

2013). Applying the ratio of different emission categories within the a priori emissions for 11 

each grid point to the estimated emissions after data assimilation (only the total emission is 12 

optimized in our estimates), global total \chem{NO_x} emissions from soils are 7.9 13 

\unit{Tg\,N\,yr^{-1}} for the a posteriori emissions in contrast to 5.4 \unit{Tg\,N\,yr^{-1}} 14 

yr$^{-1}$ for the a priori emissions. In line with recent studies by Hudman et al. (2012) and 15 

Vinken et al. (2014), our results suggest that the a priori emissions underestimate those by 16 

soils and misrepresent the seasonality. 17 

 18 

Over biomass-burning areas, the time of the peak emissions does not change for most cases, 19 

suggesting that the a priori emissions describe the seasonality reasonably, but the systematic 20 

adjustment indicates large uncertainties in emission factors and biomass burnt estimates used 21 

in the inventories. The weak year-to-year variations in the a priori emissions are partly 22 

attributable to the use of climatology after 2011 (c.f., Sec. 2.1).  23 

 24 

Despite the large year-to-year variations over many regions (c.f., Figs. 6 and 7), the global 25 

total emission is almost constant between 2005 (47.9 \unit{Tg\,N\,yr^{-1}}) and 2014 (47.5 26 

\unit{Tg\,N\,yr^{-1}}), with a maximum in 2012 (50.9 \unit{Tg\,N\,yr^{-1}}) and a 27 

minimum in 2008 (46.7 \unit{Tg\,N\,yr^{-1}}). Over the ten-year period, the large emission 28 

increases over China, India, and the Middle East mostly compensate for the large emission 29 

decreases over the United State, western Europe, and Japan. 30 

 31 
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\subsection{Top-down vs. a priori regional surface \chem{NO_x} emissions and their trends} 1 

 2 

\subsubsection{East Asia} 3 

 4 

Data assimilation adjusts the total annual emissions from 4.47 to 6.21 \unit{Tg\,N\,yr^{-1}} 5 

over China for the 2005--2014 period (Table 3), whereas the a posteriori emissions show 6 

good agreement with the EDGAR-HTAP v2 emissions (6.19 \unit{Tg\,N\,yr^{-1}} in the a 7 

posteriori emissions and 6.25 \unit{Tg\,N\,yr^{-1}} in the EDGAR-HTAP v2 for 2008 and 8 

2010). Our a priori inventory is too low over China, by about 40 \%. The seasonal variation is 9 

largely corrected by data assimilation (Fig. 8), exhibiting maximum emissions in January and 10 

June. 11 

 12 

At the grid scale, the estimated emissions are higher than the a priori emissions over northern 13 

and eastern China, such as Beijing (+58 \% at the nearest grid point), Tianjin (+97 \%), 14 

Nanjing (+30 \%), and around Guangzhou (+78 \%), whereas they are lower around Chengdu 15 

and Chongqing (Fig. 10). In terms of the regional mean, the EDGAR-HTAP v2 is closer to 16 

the a posteriori emissions for China. However, there are disagreements at grid-scale around 17 

large cities, such as Shanghai (the a posteriori minus EDGAR-HTAP v2 is -25 \%), 18 

Guangzhou (+46 \%), and Chongqing (-19 \%), and also in South Korea around Seoul (+37 19 

\%) and in Japan around Tokyo (+13 \%).  20 

 21 

Our estimate of 12.5 TgN for July 2007 over East Asia (80-150$^\circ$E, 10--50$^\circ$N) is 22 

slightly larger than that of 11.0 TgN estimated using OMI observations (Zhao and Wang, 23 

2009). The 6.6 TgN (8.0 TgN) estimated for July 2008 (January 2009) over east China 24 

(103.75--123.75$^\circ$E, 19--45$^\circ$N) from OMI and GOME-2 observations by Lin 25 

and McElroy (2010) is slightly smaller than (larger than) our estimates of 7.4 TgN (7.4 TgN). 26 

We emphasize that the estimated emissions are strongly constrained by the assimilation of 27 

non-\chem{NO_2} measurements in our estimates. The estimated emissions for July 2008 28 

over east China for the above-mentioned case from a \chem{NO_2}-only assimilation  (8.2 29 

TgN) is 11 \% larger than the estimate using multiple-species (7.4 TgN). The importance of 30 

multiple-species assimilation is further discussed in Sect. 5.1. 31 
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 1 

The estimated emission for China does not follow a simple linear increase, but rather 2 

increasing from 2005 to 2011 with a slightly negative trend afterwards, as shown by Fig 9 and 3 

Fig. 11. The ten-year linear trend slope is estimated at +26 \%/decade (Table 4). The 4 

difference in the estimated emission trend between the two time periods (2005--2010 and 5 

2011--2014) are most commonly found across the country, which can be attributed to the 6 

competing influences of economic growth and emission controls (Cui et al., 2015). The 7 

temporal strong decrease in the estimated emissions in 2008 summer (Fig. 7) could be 8 

associated with the Beijing Olympic games, as suggested by Mijling et al. (2009), Witte et al. 9 

(2009), and Worden et al. (2012). The trend for 2005--2010 over China is estimated at +3.0 10 

\%/year in our estimate, which is slightly smaller than the +4.0 \%/year estimate using OMI 11 

measurements by Gu et al. (2013). The increase from 2008 to 2010 for China is larger in the a 12 

posteriori emissions (+0.73 \unit{Tg\,N\,yr^{-1}}) than in EDGAR-HTAP v2 (+0.49 13 

\unit{Tg\,N\,yr^{-1}}). 14 

 15 

As shown by Fig. 12, strong positive trends are found over large cities such as Wuhan (+42 16 

\%/decade), Nanjing (+35 \%/decade), Tianjin (+35 \%/decade), Chengdu (+56 \%/decade), 17 

and over eastern China. A larger relative positive trend occurs over western China, especially 18 

over northwestern China (around 88--110$^\circ$E, 37--48$^\circ$N) where the rate of 19 

increase reaches +50--+110 \%/decade at grid scale. Despite the general large positive trend 20 

for the ten-year period, the three largest cities in China show a net reduction or a small 21 

increase during 2005--2014; Beijing (-0.6 \%/decade), Shanghai (-6.2 \%/decade), and 22 

Guangzhou (+4.5 \%/decade), as commonly found in the observed \chem{NO_2} 23 

concentrations (Wang et al., 2015). In East Asia, the estimated emissions also show strong 24 

negative trends over major cities in Japan and South Korea; Tokyo (-48 \%/decade), Osaka (-25 

38 \%/decade), and Seoul (-11 \%/decade). 26 

 27 

\subsubsection{Europe} 28 

 29 

The total emissions for Europe are about 5 \% higher in the a posteriori than in the a priori 30 

emissions (Table 3), which is attributed to positive increments over some parts of western 31 



 26 

Europe, such as Belgium (+67 \%), western Germany (+23 \%), northern Italy (+62 \%), and 1 

Istanbul (+40.3 \%) (Fig. 10). The a posteriori emissions for Europe are higher than the 2 

EDGAR-HTAP v2 inventory by 17 \% for 2008 and 2010, and the differences are large at the 3 

grid scale around London (+27 \%), Belgium (+87 \%), western Germany (+84 \%), Paris 4 

(+27 \%), Madrid (+55 \%), northern Italy (+90 \%), and Istanbul (+56 \%). Both the a priori 5 

and EDGAR-HTAP v2 emission inventories show maximum emissions in summer (i.e., July), 6 

whereas the timing of peak emission becomes earlier by 1 month after data assimilation (Fig. 7 

8). The estimated seasonal amplitude is larger over Eastern Europe than over Western Europe 8 

by about 40 \%, which suggests the possibility of more active summertime emissions from 9 

soil in Eastern Europe, as consistently revealed by Vinken et al. (2014). 10 

 11 

The estimated emissions for Europe show a slightly negative trend during 2005--2014, with a 12 

sharp decrease from 2009 to 2010 (Fig. 9). The estimated linear decrease for the ten-year 13 

period is small (-0.1 \%/decade) for Europe (10$^\circ$W--30$^\circ$E, 35--60$^\circ$N), 14 

but is much larger (-8.8 \%/decade) over Western Europe (10$^\circ$W--17$^\circ$E, 36--15 

54$^\circ$N), as summarized in Table 4. At the grid scale (Fig. 12), strong negative trends 16 

occur over large cities in Western Europe; Paris (-10 \%/decade), northwestern France (-57 17 

\%/decade), London (-11 \%/decade), Belgium (-24 \%/decade), Athens (-22 \%/decade), and 18 

over a region with many power plants in northern Spain (-45 \%/decade) and Po valley (-52 19 

\%/decade). These variations are considered to be the result of the global economic recession 20 

and emission controls, as pointed out by Castellanos and Boersma (2012). The negative trends 21 

are stronger during 2005--2010 than during 2011-2014 over some parts of western and 22 

southern Europe such as over northern Spain, northern Italy, and western Germany (Fig. 12). 23 

Strong negative emission trends over these regions were similarly found by Curier et al. 24 

(2014) for 2005--2010. Zhou et al. (2012) revealed that \chem{NO_x} emissions from 25 

Spanish Power plants have been strongly reduced for the 2004-2009 period because of 26 

emission abatement strategies, which is consistent with our estimates. 27 

 28 

\subsubsection{North America} 29 

 30 



 27 

The ten-year mean a posteriori emissions are higher than both the a priori (5.73 1 

\unit{Tg\,N\,yr^{-1}} v.s 5.23 \unit{Tg\,N\,yr^{-1}} for 2005--2014) and EDGAR-HTAP v2 2 

(5.26 \unit{Tg\,N\,yr^{-1}} v.s 4.84 \unit{Tg\,N\,yr^{-1}} for 2008 and 2010) emissions over 3 

the United States (Table 3). Positive increments are found over most remote areas and around 4 

the Southeast United States (e.g., +23 \% near Atlanta) and most of the Western United States 5 

(e.g., +26 \% near Denver), whereas negative increments are found around large cities such as 6 

New York (-28 \%), Toronto (-17 \%), Montreal (-19\%), Houston (-19 \%), and Los Angeles 7 

(-5 \%) (Fig. 10). Despite the small adjustment for the ten-year mean regional total emissions, 8 

the data assimilation analysis increments for the regional total emission are strongly positive 9 

during 2005-2008, producing a long-term negative trend (Fig. 7). The timing of maximum 10 

emissions becomes earlier by 2 months (from July to May) due to data assimilation (Fig. 8). 11 

The summertime peak enhancement is obvious over remote regions such as high temperature 12 

agricultural land over the East South Central and the Southwestern United States, which 13 

suggests that the a priori emissions underestimates emissions from soil, as suggested by 14 

Oikawa et al. (2015) for the western Unites States. The estimated emissions are larger than 15 

the EDGAR-HTAP v2 emissions around large cities such as New York (+24 \%), Chicago 16 

(+12 \%), Denver (+35 \%), Houston (+17 \%), San Francisco (+74 \%), and Los Angeles 17 

(+68 \%) but are smaller over remote areas in the eastern and central United States for 2008 18 

and 2010 (Fig. 10). The 0.73 \unit{Tg\,N} estimated over the United States (130--19 

70$^\circ$W, 25--50$^\circ$N) from ICARTT observations between 1 July and 15 August in 20 

2004 (Hudman et al., 2007) is close to our estimates of 0.82 TgN for 1 July to 15 August in 21 

2005. The 0.465 TgN estimated over the eastern United States (102--64$^\circ$W, 22--22 

50$^\circ$N) from the OMI observations for March 2006 (Boersma et al., 2008a) is slightly 23 

smaller than our estimate of 0.502 TgN. 24 

 25 

The a posteriori regional emissions for the United States show a strong negative trend during 26 

2005--2014 (-29.4\%/decade) (Table 4). The estimated trend for 2005--2012 (-32 \%) in this 27 

study is close to that reported by Tong et al. (2015) using OMI measurements (-35 \%). The 28 

ten-year linear trend is strongly negative over large cities such as New York (-48 \%/decade), 29 

Boston (-42 \%/decade), Chicago (-52 \%/decade), Atlanta (-47 \%/decade), Dallas (-19 30 

\%/decade), Houston (-25 \%/decade), Denver (-16 \%/decade), and Los Angeles (-46 31 

\%/decade) (Fig. 11). Lu et al. (2015) estimated that total OMI-derived \chem{NO_x} 32 
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emissions over selected urban areas decreased by 49 \% from 2005 to 2014, reflecting the 1 

success of \chem{NO_x} control programs for both mobile sources and power plants, with 2 

greater reductions before 2010 than after 2010. These variations are similarly found in our 3 

estimates (Fig. 12). Both the a posteriori and EDGAR-HTAP v2 emissions consistently reveal 4 

a decrease in the regional emissions for the United States from 2008 to 2010 (-0.34 and -0.51 5 

\unit{Tg\,N\,yr^{-1}}, respectively). 6 

 7 

\subsubsection{India} 8 

 9 

The ten-year total emissions from India are 22 \% higher in the a posteriori emissions than in 10 

the a priori emissions (Table 3). The positive adjustment for the country's total emissions is 11 

large in spring, resulting in a Mar--June/July--September ratio of about 1.55$\pm$0.1 (Fig. 8), 12 

which could be associated with the seasonality in open biomass burning (Venkataraman et al., 13 

2006). The seasonal variation is mostly absent in the a priori and EDGAR-HTAP v2 14 

inventories. The positive increment is large around large cities such as Lucknow (+110 \%), 15 

Patna (+25 \%), Mumbai (+50 \%), Hyderabad (+16 \%), and Madras (+21 \%) (Fig. 10). In 16 

contrast, the country's total emissions are about 10 \% smaller in the a posteriori emissions 17 

than in the EDGAR-HTAP v2, with large negative biases (i.e., the a posteriori is smaller) 18 

around Delhi (-49 \%) and southern India (-20$-$-70 \%) and large positive biases over 19 

Lucknow (+68 \%), Gwalior (+45 \%), Raipur (+41 \%), Mumbai (+12 \%), and Hyderabad 20 

(+14 \%) at grid scale (Fig. 10). These results suggest both EDGARv4 and EDGAR-HTAP v2 21 

inventories largely underestimate emissions over some parts of India such as around Lucknow, 22 

Raipur, Mumbai, and also in Thailand around Bangkok (+26 \% compared with the a priori 23 

emissions and +118 \% compared with the EDGAR-HTAP v2 emissions) and Chiang Mai 24 

(+54 \% and +66 \%, respectively). 25 

 26 

The a posteriori emissions for India increased continuously over the ten-year period, with a 27 

linear trend of +29 \%/decade (Fig. 9). The positive trend is large across the country, with 28 

particularly strong increases around Lucknow (+29 \%/decade), Kolkata (+47 \%/decade), 29 

Raipur (+67 \%/decade), and Madras (+40 \%/decade) (Fig. 12). The positive emissions trend 30 

could be associated with increased thermal power plants in India, as pointed out by Lu and 31 
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Streets (2013). In 2014, the regional total emissions for India (i.e., 3.46 \unit{Tg\,N\,yr^{-1 

1}}) are comparable to (about 83 \% of) the European-total emissions (i.e., 4.15 2 

\unit{Tg\,N\,yr^{-1}}) and about 67 \% of the United States-total emission (i.e., 5.17 3 

\unit{Tg\,N\,yr^{-1}}). In contrast, tropospheric \chem{NO_2} columns over India are much 4 

lower compared to those in northern midlatitude polluted areas, as a result of the high values 5 

of temperature, photolysis rates, and specific humidity, leading to shorter \chem{NO_2} 6 

lifetimes throughout the year (Beirle at al., 2011). 7 

 8 

\subsubsection{Southern Africa} 9 

 10 

A large adjustment in \chem{NO_x} emissions is apparent in the Highveld region of Southern 11 

Africa with a factor of about 1.5 (table 3). The positive adjustment is relatively large in the 12 

austral summer (Fig. 8). The emissions from Southern Africa show a slight negative trend (-8 13 

\%/decade), with a temporary increase in 2006--2007, followed by a rapid decrease in 2009, 14 

and almost constant emissions afterwards (Fig. 9). The difference in emissions between 2008 15 

and 2010 is small in EDGAR-HTAP v2 (+0.01 \unit{Tg\,N\,yr^{-1}}), whereas the a 16 

posteriori emissions show a negative trend (-0.09 \unit{Tg\,N\,yr^{-1}} (2010-2008)) (Table 17 

3). The ten-year linear trend reaches about -40 \%/decade at grid scale over highly polluted 18 

areas. Duncan et al. (2016) highlighted a complex mixture of different emissions sources over 19 

Southern Africa. The various emission sources may have experienced different variations, and 20 

high resolution emission analysis is required to understand the detailed spatial variation in 21 

these emissions and to obtain unbiased emission estimates (Valin et al., 2011). 22 

 23 

\subsubsection{North and central Africa} 24 

 25 

Over North Africa, the ten-year mean emission increased by 40 \% due to data assimilation 26 

from 2.07 to 2.90 \unit{Tg\,N\,yr^{-1}} (Table 3). The positive increment is large from boreal 27 

winter to summer, producing the second maximum in July that is absent in the a priori 28 

emission (Fig. 8). The enhanced emissions for July and August are found throughout the 29 

2005--2014 period and can mainly be attributed to emissions from the Sahel and Nigeria. This 30 

large positive increment may indicate an underestimation of soil \chem{NO_x} emissions in 31 
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the a priori inventory. The short summer dry season in Nigeria may also lead to enhanced 1 

biomass burning emissions. The data assimilation largely corrects the spatial distribution 2 

during the peak season in January, with larger positive adjustments over the western (by about 3 

+60--+120 \% at grid scale around 5W$^\circ$--15W$^\circ$) rather than the eastern parts of 4 

North Africa (Fig. 5). The data assimilation also introduced a distinct year-to-year variation, 5 

reflecting the observed concentration variations associated with changes in biomass burning 6 

activity. The estimated emissions are high in 2005, 2006, 2008, and 2009, and low in 2010 7 

(Fig. 7), which could be associated with drought events related to atmospheric variations such 8 

as ENSO (Janicot et al., 1996). 9 

 10 

Over central Africa, the ten-year mean a posteriori emissions are larger than the a priori 11 

emissions by about 53 \% (2.57 \unit{Tg\,N\,yr^{-1}} v.s 1.68 \unit{Tg\,N\,yr^{-1}}) (Table 12 

3). Large positive increments are found in the Congo region, with about +50--+150 \% 13 

increases for the ten-year mean emissions at the grid scale (Fig. 5). The relative adjustment 14 

for the regional total emissions during the biomass burning season is +30--+40 \% over 15 

central Africa and about +40 \% over North Africa. These numbers may indicate a possible 16 

underestimation of the magnitude of fire-related emission factors in GFED v3. Although 17 

variation in the seasonal emissions is different between North Africa and Central Africa 18 

(almost in opposite phase, reflecting the transition of the Intertropical Convergence Zone 19 

(ITCZ)), the year-to-year variation revealed by data assimilation is similar between the two 20 

regions. The temporal correlation of the annual total emission between North Africa and 21 

central Africa for the 2005-2011 period (when the GFED emissions are available) is estimated 22 

at 0.90 for the a posteriori emissions, and 0.01 for the a priori emissions. This result may 23 

suggest that year-to-year emission variations over the two regions are controlled in the same 24 

manner by long-lasting atmospheric variations (e.g., ENSO), for which the a priori emissions 25 

have large uncertainties. 26 

 27 

\subsubsection{Southeast Asia} 28 

 29 

Over Southeast Asia, the data assimilation increases the annual mean emission by 45 \% from 30 

0.47 to 0.68 \unit{Tg\,N\,yr^{-1}} (Table 3), with a large increase in boreal winter and spring 31 
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(Fig. 8). The regional emission increment is positive over peninsular Malaysia (+20--+40 \% 1 

for the ten-year mean emission), Borneo Island (+60--+100 \%), and central and northern 2 

Thailand (+50--+80 \%) (Fig. 10). Because of the large adjustment in boreal winter and spring, 3 

the peak-to-peak seasonal variation for southeast Asia is enhanced by 20 \% by data 4 

assimilation (Fig. 8). The a priori inventories reveal enhanced emissions in 2005, 2007, and 5 

2010, reflecting year-to-year changes in biomass burning emissions, whereas data 6 

assimilation further increased them by up to 30 \% (Fig. 7). The relative adjustment in other 7 

years (i.e. years with weaker biomass-burning activity) is even higher during the boreal winter 8 

and spring (with a factor of more than 2), which can largely be attributed to large positive 9 

increments over central and northern Thailand. The Southeast Asia emissions can be 10 

characterized as a combination of various sources. Using the ratio between different emission 11 

categories in the a priori emission inventories at each grid point, the regional total emissions 12 

from anthropogenic sources, biomass burning, and soils are estimated at 0.51, 0.11, and 0.06 13 

\unit{Tg\,N\,yr^{-1}}, respectively, which is 47, 32, and 58 \% higher than the a priori 14 

emissions. 15 

 16 

\subsubsection{South America} 17 

 18 

Over South America, the ten-year mean regional total emissions are comparable between the 19 

a priori and a posteriori emissions, whereas the spatial distribution is largely corrected, with 20 

large positive increments over eastern Brazil (+50--+110 \% at grid scale) and Peru (+90--21 

+140 \%) and negative increments over the central Amazon (up to -30 \%) (Fig. 5). The 22 

seasonal variation of the regional total emission for South America is largely corrected by 23 

data assimilation (Fig. 8). A large decrease (by -30 \%) occurs in the biomass burning season 24 

in August-September in all of the years, which might be the result of an overestimation of 25 

emissions by forest (i.e., deforestation) fires in dry conditions in the emissions inventory, as 26 

similarly investigated by Castellanos et al. (2014) using GFED v3. This is in contrast to the 27 

increased emissions over central Africa in the biomass burning season (c.f., Section 4.2.6). In 28 

contrast to the negative increments in the biomass-burning season, the emissions in the 29 

biomass burning off-season are increased by 30--60 \% by data assimilation. Consequently, 30 

data assimilation decreased the seasonal amplitudes by 40 \%. The year-to-year variations are 31 

similar between the a priori and a posteriori emissions (Fig. 7). As an exception, a large 32 
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decrease in 2010 (with a 50 \% decrease from 6.9 \unit{Tg\,N} to 3.5 \unit{Tg\,N} in August 1 

by data assimilation) suggests large uncertainty in fire-related emission factors in the major 2 

fire year (Bloom et al., 2015). 3 

 4 

\subsubsection{Other remote regions} 5 

 6 

The data assimilation may capture signals related to soil emissions, for which the inventories 7 

may have large uncertainties. For instance, the regional mean emissions over Australia are 8 

higher by about 40 \%, with a large increase in boreal spring-early summer. The emissions are 9 

also higher over the central Eurasian continent, including eastern Europe and western China, 10 

and over the Sahel (Fig. 5), as was similarly found by Vinken et al. (2014). The global total 11 

\chem{NO_x} emissions by soils for the ten-year period are estimated at 7.9 12 

\unit{Tg\,N\,yr^{-1}} yr$^{-1}$, in contrast to 5.4 \unit{Tg\,N\,yr^{-1}} yr$^{-1}$ for the a 13 

priori emissions. The results indicate large underestimates in the soil emission inventories 14 

over these regions. For instance, the nonlinear relationships between soil \chem{NO_x} 15 

emissions and time since fertilization, soil temperature, and soil moisture, are not properly 16 

considered in current inventories, as pointed out by Oikawa et al. (2015) for agricultural 17 

regions. Note that our estimate of 7.9 \unit{Tg\,N\,yr^{-1}} is smaller than other recent 18 

estimates (8.9 \unit{Tg\,N\,yr^{-1}} in Jaegl\'{e} et al. (2005), 8.6 \unit{Tg\,N\,yr^{-1}} in 19 

Steinkamp and Lawrence (2011), 10.7 \unit{Tg\,N\,yr^{-1}} in Hudman et al. (2012), and 20 

$12.9 \pm 3.9$ \unit{Tg\,N\,yr^{-1}} in Vinken et al. (2014)), which could partly be 21 

attributed to the assumed emission ratio between different categories for each model grid 22 

point, which is based on the a priori inventories and was not modified by the data assimilation 23 

in this study. 24 

 25 

Among major industrialized areas, the Middle East has experienced a rapid increase in 26 

\chem{NO_2} levels (Lelieveld et al., 2015). Our estimates reveal a linear trend of +20 27 

\%/decade in \chem{NO_x} emissions and a 45 \% positive adjustment from the a priori 28 

emissions for the Middle East (32--65$^\circ$E, 12--40$^\circ$N) during the ten-year period. 29 

Strong positive trends are found over major cities, such as Kuwait (+47 \%/decade), Cairo 30 

(+29 \%/decade), and Tehran (+37 \%/decade). In contrast, the trend in the estimated emission 31 
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over Dubai is negative (-6 \%/decade). The rate of increase becomes larger after 2010 for 1 

many areas (Fig. 11), as found in observed \chem{NO_2} levels (Lelieveld et al., 2015). 2 

Lelieveld et al. (2015) suggested that a combination of air quality control and political factors 3 

has drastically altered the emission landscape of \chem{NO_x} in the Middle East. 4 

 5 

Over the oceans, the data assimilation decreases the ten-year mean global total emissions 6 

from ships. In contrast, at the regional scale, data assimilation increments are positive over the 7 

oceans around Europe (Fig. 12), and a positive trend during 2005--2010 is introduced by data 8 

assimilation (Fig. 11, note that the estimated positive trend is more pronounced during 2005--9 

2008, as commonly found by Boersma et al. (2015)). The overall negative increment as well 10 

as the positive increment around Europe may indicate an overestimate and an underestimation 11 

around Europe of ship emissions in the a priori inventories and errors in modelled chemical 12 

processes in the exhaust plumes (Vinken et al., 2011), which occur at fine scales relative to 13 

the model grid. The overall negative increment can also be influenced by possible negative 14 

bias in \chem{NO_2} retrievals. Boersma et al. (2008a) showed negative bias over the ocean 15 

in \chem{NO_2} retrievals in version-1 DOMINO \chem{NO_2} retrievals, and the negative 16 

bias could not be fully removed in the version-2 DOMINO \chem{NO_2} retrievals (Boersma 17 

et al., 2011a). 18 

 19 

\section{Discussion} 20 

 21 

\subsection{Importance of assimilating multiple trace gases} 22 

 23 

The differences between our \chem{NO_x} emissions estimates and previous studies, as 24 

discussed in Section 4, may be attributed to differences in the assimilated data, forecast model, 25 

and data assimilation approach. In particular, the use of non-\chem{NO_2} measurements is 26 

expected to improve emission estimates in our approach, as these affect the \chem{NO_x} 27 

chemistry and reduce model errors unrelated to surface emissions.  28 

 29 
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Table 5 compares the estimated emissions between the multiple-species data assimilation and 1 

a \chem{NO_2}-only data assimilation. The estimated emissions differ in many regions if 2 

non-\chem{NO_2} data assimilation is considered because the ratio of predicted 3 

\chem{NO_x} emission and \chem{NO_2} column has been modified by non-\chem{NO_2} 4 

observations. The assimilation of non-\chem{NO_2} measurements leads to changes of up to 5 

about 70 \% in the regional monthly-mean emissions. The estimated ten-year total regional 6 

emissions for South America and Australia are about 10 \% lower in the multiple-species 7 

assimilation than in the \chem{NO_2}-only assimilation. The RMSE between the two 8 

estimates for the monthly total regional emissions is 15.5 \% for central Africa, 16.5 \% for 9 

Australia, and about 5--8 \% for major polluted regions during the ten-year period. The 10 

estimated monthly mean emissions are mostly smaller in the multiple-species assimilation 11 

than in the \chem{NO_2}-only assimilation, especially over the tropical and southern 12 

subtropical regions such as South America, central Africa, and Australia, suggesting that 13 

\chem{NO_2}-only data assimilation tends to overcorrect the emissions from the a priori. The 14 

monthly total global emissions decrease by up to 6 TgN (in boreal summer) if non-15 

\chem{NO_2} data assimilation is considered.  16 

 17 

We conducted Observing System Experiments (OSEs), and confirmed that the assimilation of 18 

individual data sets results in a strong influence on the estimated emissions. For instance, in 19 

January 2008, the TES \chem{O_3} assimilation led to substantial changes in the regional 20 

emissions over India (3.50 TgN in the \chem{NO_2}-only assimilation and 3.15 TgN in the 21 

\chem{NO_2} and TES \chem{O_3} assimilation, in contrast to 3.16 TgN in the multi-22 

species assimilation and 2.45 TgN in the a priori emissions), whereas other non-23 

\chem{NO_2} measurements (i.e., MOPITT and MLS) have less impact. Similar important 24 

contributions of TES \chem{O_3} measurements are found for South America in January 25 

2008 (1.09 TgN in the \chem{NO_2}-only assimilation and 0.91 TgN in the \chem{NO_2} 26 

and TES \chem{O_3} assimilation, in contrast to 0.90 TgN in the multi-species assimilation 27 

and 0.46 TgN in the a priori emissions). These changes in \chem{NO_x} emissions are 28 

associated with negative adjustments of \chem{O_3} by the TES assimilation over South 29 

America throughout the troposphere and positive adjustments of \chem{O_3} over India in 30 

the middle troposphere, and their influence on \chem{NO_x}-\chem{OH}-\chem{O_3} 31 

chemical reactions and the \chem{LNO_x} source optimization, as discussed below.  32 
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 1 

The ten-year linear trend is also different over most industrial areas (Table 4). For instance, 2 

the positive trend for India is 34.3 \%/decade in the \chem{NO_2}-only assimilation, which is 3 

larger than the 29.2 \%/decade in the multiple-species assimilation. For the United States, the 4 

negative trend is larger in the multiple-species assimilation (-29.4 \%/decade) than in the 5 

\chem{NO_2}-only assimilation (-23.9 \%/decade). These results confirm that the 6 

assimilation of measurements for species other than \chem{NO_2} provides additional 7 

constraints on the \chem{NO_x} emissions over both anthropogenic and biomass burning 8 

regions. 9 

 10 

The improved representation of \chem{NO_x} emissions is confirmed by the better 11 

agreement of simulated \chem{O_3} concentrations with independent ozonesonde 12 

observations using \chem{NO_x} emissions from multiple-species assimilation than those 13 

using \chem{NO_x} emissions from \chem{NO_2}-only data assimilation, which was also 14 

demonstrated by Miyazaki and Eskes (2013). After 2010, TES \chem{O_3} retrievals were 15 

not assimilated because of the lack of standard observations. Even so, the optimized surface 16 

\chem{NO_x} emissions from the multiple-species assimilation improved agreements with 17 

TES \chem{O_3} ver. 6 special observations during 2011--2014 for most locations (Table S1). 18 

These results indicate that multiple-species measurements provide important information for 19 

improving surface \chem{NO_x} source estimations and improve the chemical consistency 20 

including the relation between concentrations and the estimated emissions. Note that the 21 

emissions of \chem{O_3} precursors other than \chem{NO_x}, such as \chem{VOCs}, and 22 

various model processes in atmospheric transport and chemistry influence the model 23 

performance. The impact of using the optimized \chem{NO_x} emissions may vary with 24 

models (e.g., given different forecast errors of \chem{NO_2} and \chem{O_3}). The 25 

optimization of additional precursors emissions and the improvement of the forecast model could 26 

be important for improving \chem{O_3} simulations, as discussed in our previous studies 27 

(Miyazaki et al., 2012b; 2015). 28 

 29 

\chem{LNO_x} sources are important for a realistic representation of tropospheric 30 

\chem{NO_2} columns, which are optimized from data assimilation in our framework. Using 31 

the multiple-species data assimilation, the ten-year mean global \chem{LNO_x} source 32 
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amount was estimated at 5.8 \unit{Tg\,N\,yr^{-1}}, in contrast to 5.3 \unit{Tg\,N\,yr^{-1}} 1 

estimated from the model simulation and 6.3$\pm$1.4 \unit{Tg\,N\,yr^{-1}} in our previous 2 

data assimilation estimate (Miyazaki et al., 2014). The data assimilation increments for 3 

\chem{LNO_x} sources are large and mostly positive in the middle and upper troposphere in 4 

the NH and the TR, in which non-\chem{NO_2} measurements with different vertical 5 

sensitivities provided important constraints. Through its influence on simulated tropospheric 6 

\chem{NO_2} columns, for instance, the inclusion of the \chem{LNO_x} source optimisation 7 

altered the surface \chem{NO_x} emission estimates over eastern China by up to 12\% in 8 

summer. Moreover, surface CO emissions increased by 10 \% in the NH by the assimilation 9 

of MOPITT CO measurements in our system. Both optimised \chem{LNO_x} sources and 10 

CO emissions reveal enhanced seasonal and interannual variations over many regions after 11 

data assimilation, providing important constraints on long-term estimates of surface 12 

\chem{NO_x} emissions, through their influence on OH and thus the \chem{NO_x} chemical 13 

lifetime.  14 

 15 

Figure 13 shows changes in OH concentrations ($\Delta$\chem{OH}) in the lower 16 

troposphere in the boreal summer (averaged over June--August) due to data assimilation. The 17 

multiple-species assimilation changes the global OH distribution, increasing OH globally. As 18 

summarised in Table 6, the regional impact is large (greater than +20 \%) in tropical regions 19 

such as over the Middle East, Southeast Asia, and Central and North Africa, and over 20 

industrial areas (greater than +10 \%), such as over China, the United States, and India. These 21 

changes in OH concentrations are influenced by changes in \chem{NO_x} emissions through 22 

the assimilation of \chem{NO_2} measurements, but the assimilation of non-\chem{NO_2} 23 

measurements is also important. Fig. S2 demonstrates that the assimilation of non-24 

\chem{NO_2} measurements acts to decrease the \chem{OH} concentration in the lower and 25 

middle troposphere for most regions in June 2008. The TES assimilation mostly reduces the 26 

\chem{O_3} concentration in the tropics, which leads to a decrease of \chem{OH} 27 

concentrations. In contrast, the TES assimilation acts to increase the \chem{OH} 28 

concentration in the NH extratropics in the lower and middle troposphere. The assimilation of 29 

MOPITT \chem{CO} acts to decrease the \chem{OH} concentration in the NH, because of 30 

the increased surface \chem{CO} emissions. The ten-year mean NH/SH OH ratio is estimated 31 

at 1.19 in the multiple-species assimilation, in contrast to 1.27 in the MIROC model 32 
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simulation and 1.22 in the \chem{NO_2}-only assimilation, which is closer to 0.97$\pm$0.12 1 

estimated based with the help of methyl chloroform observations (a proxy for OH 2 

concentrations) by Patra et al. (2014). 3 

 4 

To elucidate the changes in the \chem{NO_x} chemical lifetime, Table 6 compares the lower 5 

tropospheric \chem{OH} concentration and the ratio of the regional mean surface 6 

\chem{NO_x} emissions and lower tropospheric \chem{NO_2} concentrations (averaged 7 

from the surface to 790 hPa) between the multiple-species data assimilation and the model 8 

simulation ($\Delta$\chem{NO_x}-emi/\chem{NO_2}) in the boreal summer. The multiple-9 

species assimilation leads to an increase in the \chem{OH} concentration in the troposphere.  10 

Meanwhile, the increased ratio of \chem{NO_x} to \chem{NO_2} (i.e. increased fraction of 11 

\chem{NO}) in the multiple-species assimilation compared to the model simulation indicates 12 

that the $\chem{HO_2}+\chem{NO} \to \chem{NO_2}+\chem{OH}$ reaction, which is the 13 

source of \chem{OH}, is enhanced in the multiple-species assimilation. It is also found that 14 

the assimilation of non-\chem{NO_2} measurements suppress these changes for most regions 15 

in both the \chem{OH} concentration (c.f., Fig. S2) and the \chem{NO_x}-16 

emi/\chem{NO_2} ratio. For instance, the ten-year mean ratio over Central Africa is 17 

increased by 16.5 \% in the multiple-species assimilation, in contrast to the 19.3 \% increase 18 

in the \chem{NO_2}-only assimilation.  19 

 20 

These results suggest that \chem{NO_x} chemical lifetime is decreased because of increased 21 

\chem{OH} concentrations (through the \chem{NO_2}+\chem{OH} reaction, which acts as 22 

the main sink of \chem{NO_x}) in the multiple-species data assimilation (and also in the 23 

\chem{NO_2}-only assimilation) than in the model simulation over most industrial and 24 

biomass burning areas. It is also suggested for many regions \chem{NO_x} chemical lifetime 25 

is longer in the multiple-species assimilation than in the \chem{NO_2}-only assimilation, 26 

because of decreased \chem{OH} concentrations by the assimilation of non-\chem{NO2} 27 

measurements. These changes, together with the increased \chem{LNO_x} sources, could 28 

explain the smaller \chem{NO_x} emissions in the multiple-species assimilation than in the 29 

\chem{NO_2}-only assimilation in many cases (c.f., Table 5). These results demonstrate the 30 

utility of the multiple-species assimilation to constrain the tropospheric chemistry (i.e., 31 
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chemical regime) controlling \chem{NO_x} variations and to improve surface \chem{NO_x} 1 

emission inversions.  2 

 3 

\subsection{Impact of assimilating \chem{NO_2} observations from multiple instruments} 4 

 5 

Unlike most previous studies that used \chem{NO_2} retrievals from a single sensor, we 6 

assimilated multiple \chem{NO_2} measurements to constrain surface \chem{NO_x} 7 

emissions. When assimilating OMI retrievals only, the larger discrepancies with respect to the 8 

SCIAMACHY and GOME-2 retrievals for some regions may be attributed to errors in the 9 

simulated diurnal \chem{NO_2} variations, since both emission factors and tropospheric 10 

concentrations of \chem{NO_x} are constrained only in the early afternoon in this case. When 11 

assimilating multiple \chem{NO_2} measurements, the application of the correction factor 12 

($Etc$) for the emission diurnal variability function ($Et$) modified the shape of the diurnal 13 

emission variability (Fig. 1), which improved the agreement with multiple \chem{NO_2} 14 

retrievals in both the morning and afternoon for many cases. The global RMSE for monthly 15 

mean tropospheric \chem{NO_2} column is reduced by 8 \% compared to the OMI retrievals 16 

and by 13 \% compared to the SCIAMACHY in January 2005 by assimilating multiple 17 

\chem{NO_2} measurements with applying $Etc$, compared to the case with the OMI 18 

retrievals only. The estimated monthly regional emissions constrained by the three retrievals 19 

deceased by 18 \% over Europe and by 9 \% over Australia in January 2005 compared to 20 

those from the OMI retrievals only.  21 

 22 

As shown in Fig. 14 and Table 7, the estimated $Etc$ is negative for most industrial regions 23 

such as Europe and North America, and over biomass burning areas, such as southeast Asia. 24 

The large adjustments ($Etc$=-0.3$-$-0.4, for which the daily mean hourly emission value is 25 

1) for the industrialized areas suggest that a positive adjustment to the assumed diurnal 26 

emission variability is required between 7:30--10:30 (and then a negative adjustment for 27 

emissions between 10:30--13:30), probably due to larger underestimations of emissions (e.g., 28 

morning traffic rush). Large negative values of $Etc$ are also found over northern China 29 

including Inner Mongolia, northern India, and the Middle East, where various emission 30 

sources (not only mobile sources with morning peaks) could be important. For instance, over 31 
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Inner Mongolia, the estimated emissions show a positive trend over the past decade (around 1 

110$^\circ$E, 41$^\circ$N in Fig 12), which could be associated with increased emissions by 2 

power plants and industries without morning peaks. These results also suggest a larger 3 

negative bias in simulated tropospheric \chem{NO_2} column in the morning than in the 4 

afternoon, associated with errors in the chemical lifetime and atmospheric transports (e.g., 5 

boundary layer development) and also associated with biases between the different 6 

\chem{NO_2} retrievals. Thus, the model errors could artificially affect the diurnal emission 7 

variability. The optimized $Etc$ for biomass-burning and soil emission dominant regions are 8 

mostly slightly negative, which may suggest that the applied diurnal emission variability with 9 

an afternoon maximum (see Section 2.1) was inappropriate for some regions. In contrast, they 10 

are positive for most of the ocean. These results suggest the need to not only correct diurnal 11 

\chem{NO_2} variations, but also account for the differences in the sampling and bias 12 

between OMI and other instruments as well as the influences of model errors. Future 13 

geostationary satellite missions such as Sentinel-4, GEMS, and TEMPO will be able to 14 

provide dramatically more systematic constraints on diurnal emission variability and 15 

observational information. 16 

 17 

 18 

\subsection{Possible error sources} 19 

 20 

Biases in satellite retrievals and modeling affect the magnitude of estimated emissions. 21 

Miyazaki et al. (2012a) demonstrated that possible biases (up to 40 \%) in the \chem{NO_2} 22 

retrieval alter regional \chem{NO_x} emissions by 5--45 \%. The emission estimates may 23 

also be sensitive to measurement biases for species other than \chem{NO_2}. For example, a 24 

bias correction for the positive bias in the TES \chem{O_3} profiles altered monthly 25 

\chem{NO_x} emissions by 1--11 \% at the regional scale (Miyazaki and Eskes, 2013). 26 

Discontinuities in the assimilated measurements (e.g., lack of most TES retrievals after 2010, 27 

OMI row anomaly since January 2009, and the limited data coverage of SCIAMACHY 28 

(before February 2012) and GOME-2 (after January 2007)) may also affect long-term 29 

emission estimates. 30 

 31 
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Estimated emissions are sensitive to the choice of forecast model and its resolution. Our 1 

analysis using a different forecast model (CHASER versus MIROC-Chem) showed up to 20 2 

\% difference in monthly \chem{NO_x} emissions at the regional scale. Meanwhile, negative 3 

biases remain in tropospheric \chem{NO_2} columns over industrial regions, such as China, 4 

Europe, the United States, and Southern Africa, using either model and data assimilation. The 5 

inadequacies of the improvements in simulated tropospheric \chem{NO_2} columns could be 6 

related to model biases in the \chem{NO_x} chemical lifetime (e.g., Stavarakou et al., 2013) 7 

and may also be partly attributed to the small number of observations and large observation 8 

errors for highly polluted cases (Fig. S1). Over polluted areas, observation errors increase 9 

almost linearly with the retrieved concentrations for most cases, and large observation errors 10 

may lead to the insufficient improvements by data assimilation for highly polluted cases. The 11 

remaining error may indicate a possible bias in the estimated emissions. 12 

 13 

For example, over Europe, the increased wintertime negative bias against OMI retrievals (in 14 

contrast to the reduced bias against SCIAMACHY retrievals) in 2009 and 2010 could also be 15 

associated with difficulties in correcting the diurnal emission variation. For that time period 16 

over northern Europe, the number of OMI observations used for data assimilation is greatly 17 

reduced and observation errors are significantly increased, whereas those of SCIAMACHY 18 

vary differently (Fig. S1). More observational data (e.g., from ground-based measurements) 19 

may be required to further constrain surface \chem{NO_x} emissions for cloudy and snow-20 

covered conditions and for high latitudes. Meanwhile, the diurnal variability correction 21 

scheme may need to be refined to further improve the agreement with various overpass time 22 

measurements. 23 

 24 

Meanwhile, coarse resolution models are known to have negative biases in \chem{NO_2} 25 

over large sources (Valin et al., 2011). The emissions estimated at the T42 resolution in this 26 

study could potentially be overestimated over polluted areas, whereas the contrast between 27 

rural and urban areas could be underestimated. A high-resolution forecast model is important 28 

to accurately simulate nonlinear effects in \chem{NO_2} loss rate, while also providing 29 

insights into individual emission sources, such as power plants (e.g., de Foy et al., 2015). 30 

 31 
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Although the assimilation of multiple-species data influences the representation of the entire 1 

chemical system (Miyazaki et al., 2012b, 2015), the influence of model and observation errors 2 

remains a concern. In the multiple-species data assimilation, model performance is critical for 3 

the correct propagation of observational information between chemical species and to 4 

improve the emission estimation, whereas biases in any of the measurement data sets 5 

(including non-\chem{NO_2} measurements) may seriously degrade the emission estimation 6 

(Miyazaki et al., 2013). Improvements in the model, data assimilation scheme, and retrieved 7 

observations are essential to reduce the uncertainty on the emission estimates from the 8 

multiple-species data assimilation. 9 

 10 

\subsection{Trends in \chem{NO_2} concentrations and \chem{NO_x} emissions} 11 

 12 

We emphasize that the observed concentration variations do not necessarily correlate linearly 13 

with surface emissions, as similarly investigated by other inversion studies (e.g., Lamsal et al., 14 

2011; Castellanos et al., 2012; Turner et al., 2012; Vinken et al., 2014). As summarised in 15 

Table 4, linear trends are significantly different between the observed concentrations and 16 

estimated emissions. The positive trend is larger in the observed \chem{NO_2} concentration 17 

(+39.6 \%/decade) than in the emission estimates (+26.0 \%/decade) for China, whereas the 18 

negative trend is larger in the emission estimates (-29.4 \%/decade) than in the observed 19 

\chem{NO_2} concentration (-6.3 \%/decade) for the United States. The relation between 20 

observed \chem{NO_2} concentration and estimated \chem{NO_x} emissions varies 21 

seasonally, as similarly expressed by Zhang et al. (2007), and the differences can be much 22 

larger at the grid scale. The results indicate that an accurate estimation of the long-term 23 

emission trends requires an emission-concentration relationship that explicitly accounts for 24 

tropospheric chemistry and non-\chem{NO_2} concentrations afforded by advanced data 25 

assimilation techniques (see Section 5.1). These year-to-year variations in the observed 26 

\chem{NO_2} concentrations have previously been reported by Duncan et al. (2016) and 27 

Krotkov et al. (2016). 28 

 29 

These results also suggest that the tropospheric chemical regime may have changed over the 30 

ten-year period. For instance, over Europe, the linear trend is positive for the observed 31 
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\chem{NO_2} concentration (+13.6 \%/decade for all of Europe and +7.5 \%/decade for 1 

western Europe in OMI) and is negative for the emission estimates (-0.1 \%/decade and -8.8 2 

\%/decade, respectively). This suggests that \chem{NO_2} may have become longer-lived or 3 

has become a larger fraction of \chem{NO_x} over Europe over the past decade. In fact, the 4 

lower tropospheric \chem{OH} concentrations show slight negative trends (by up to -5 5 

\%/decade) over most of Western Europe over the past decade (figure not shown). Another 6 

possible explanation is that a shift in \chem{NO_2}:\chem{NO_x} emission ratios related to 7 

the increasing share of European diesel cars could have occurred. Further efforts are required 8 

to explain the long-term variations of the tropospheric chemical regime and its causal 9 

mechanisms. Note that the linear trend in the observed concentration is different between the 10 

instruments over Europe (c.f., Fig. 3). 11 

 12 

\conclusions 13 

 14 

Global surface nitrogen oxides (\chem{NO_x}) emissions are estimated for the ten-year 15 

period between 2005--2014 from the assimilation of multiple satellite datasets: tropospheric 16 

\chem{NO_2} columns from OMI, GOME-2, and SCIAMACHY; \chem{O_3} profiles from 17 

TES; \chem{CO} profiles from MOPITT; and \chem{O_3} and \chem{HNO_3} profiles 18 

from MLS. The daily emission inversion is performed based on the ensemble Kalman filter 19 

data assimilation, which simultaneously optimises chemical concentrations of various species 20 

and emission sources of several precursors. Within the simultaneous emission and 21 

concentration optimisation framework, the analysis increment directly produced via chemical 22 

concentrations plays an important role in reducing model--observation mismatches arising 23 

from model errors unrelated to emissions, which can be expected to improve emission 24 

inversion. The assimilation of measurements for species other than \chem{NO_2} provides 25 

additional constraints on the \chem{NO_x} emissions over both anthropogenic and biomass 26 

burning regions, leading to changes in the regional monthly-mean emissions of up to 70 \%. 27 

The impact of non-\chem{NO_2} measurements varied largely with season, year, and region. 28 

In addition to daily emission factors, the diurnal emission variability function was optimised 29 

using multiple \chem{NO_2} retrievals, obtained in the morning (SCIAMACHY and GOME-30 

2) and afternoon (OMI). The emission correction largely improved the agreement with 31 
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observed tropospheric \chem{NO_2} columns, at both the seasonal and interannual time 1 

scales. 2 

 3 

The ten-year mean global total surface \chem{NO_x} emissions after data assimilation is 48.4 4 

\unit{Tg\,N\,yr^{-1}}, which is 26 \% higher than a priori emissions based on bottom-up 5 

inventories. The optimised ten-year mean emissions are higher over most industrialised areas. 6 

The data assimilation corrected the timing and strength of emissions from biomass burning, 7 

such as over central Africa (the ten-year mean regional emission is 1.68 \unit{Tg\,N\,yr^{-1}} 8 

in the a priori emissions and 2.57 \unit{Tg\,N\,yr^{-1}} in the a posteriori emissions), North 9 

Africa (2.07 \unit{Tg\,N\,yr^{-1}} v.s 2.90 \unit{Tg\,N\,yr^{-1}}), Southeast Asia (0.47 10 

\unit{Tg\,N\,yr^{-1}} v.s 0.68 \unit{Tg\,N\,yr^{-1}}), and South America (1.00 11 

\unit{Tg\,N\,yr^{-1}} v.s 1.04 \unit{Tg\,N\,yr^{-1}}), suggesting a large uncertainty in fire-12 

related emission factors in the emission inventories. At northern mid-latitudes and over 13 

Australia, the emissions are largely enhanced during summer, suggesting an important 14 

underestimation of soil sources in the a priori inventory. Using the emission ratio between 15 

different categories in the a priori emission inventories, the global total soil \chem{NO_x} 16 

emission for the 2005--2014 period is estimated at 7.9 \unit{Tg\,N\,yr^{-1}} yr$^{-1}$, 17 

which is much higher than the a priori estimate of 5.4 \unit{Tg\,N\,yr^{-1}} yr$^{-1}$. This 18 

soil \chem{NO_x} emission estimate may nevertheless be conservative, because the ratio 19 

between the source categories is kept fixed in our approach. 20 

 21 

The estimated regional total emissions show strong positive trends over India (+29 22 

\%/decade), China (+26 \%/decade), and the Middle East (+20 \%/decade), and negative 23 

trends over the United States (-29.4 \%/decade), Southern Africa (-8.2 \%/decade), and 24 

western Europe (-8.8 \%/decade). At the grid scale, strong positive trends are found over large 25 

cities in China (e.g., Wuhan (+42 \%/decade), Chengdu (+56 \%/decade), northwestern China 26 

(+50--+110 \%/decade)), India (e.g., Kolkata (+47 \%/decade), Raipur (+67 \%/decade), 27 

Madras (+40 \%/decade)), the Middle East (e.g., Kuwait (+47 \%/decade), Tehran (+37 28 

\%/decade)), and Brazil (Sao Paulo (+40 \%/decade)), whereas large negative trends are found 29 

in Europe (e.g., northern Spain (-45 \%/decade), Po Valley (-52 \%/decade)), the United 30 

States (e.g., New York (-48 \%/decade), Boston (-42 \%/decade), Chicago (-52 \%/decade), 31 

Atlanta (-47 \%/decade), Los Angeles (-46 \%/decade)), and Japan (e.g., Tokyo (-48 32 
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\%/decade), Osaka (-38 \%/decade)). The yearly mean emissions for China reveal a large 1 

positive trend from 2005 to 2011, subsequently decreasing through 2014. For the United 2 

States and some parts of Europe, the negative trends are larger during 2005--2010 than 2011--3 

2014. These changes are more variable as a result of the global economic recession and 4 

emission controls. Despite the large year-to-year variations over many regions, the global 5 

total emission is almost constant between 2005 (47.9 TgN) and 2014 (47.5 TgN). 6 

 7 

The estimated emissions have great potential to contribute to better understanding of 8 

precursor variability influences on observed air quality (e.g., tropospheric \chem{O_3}) 9 

variations and associated climate impacts. The obtained emission data is also crucial to 10 

evaluate bottom-up inventories. The consistent data set comprising emissions and 11 

concentrations of various species, which were obtained from our simultaneous data 12 

assimilation framework, provides comprehensive information on atmospheric environmental 13 

variations, associated with both human and natural activity. Meanwhile, our results suggested 14 

that more observational constraints would be required to improve the global emission 15 

estimates. Observational information from future satellite missions such as TROPOMI and 16 

sensors on board geostationary satellites (Sentinel-4, GEMS, and TEMPO) in conjunction 17 

with exploitation of existing sounders, e.g., IASI and CrIS, can be expected to add constraints 18 

on more detailed spatiotemporal variability in surface \chem{NO_x} emissions and its impact 19 

on air quality (Bowman, 2013). 20 

 21 
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Table 1: Comparisons of tropospheric \chem{NO_2} columns between data assimilation and 1 

satellite retrievals: OMI for the period 2005--2014, SCIAMACHY for the period 2005--2011, 2 

and GOME-2 for the period 2007--2014. Shown are the global spatial correlation (S-Corr), 3 

the mean bias (BIAS: the data assimilation minus the satellite retrievals) and the root-mean-4 

square error (RMSE) in $10^{15}$\,\unit{molec\,cm^{-2}}. The model simulation results 5 

(without data assimilation) are also shown in brackets. 6 

 7 

Table 2: The monthly mean bias and temporal correlation of regional mean tropospheric 8 

\chem{NO_2} columns: the data assimilation minus the satellite retrievals from OMI for the 9 

period 2005--2014, SCIAMACHY for the period 2005--2011, and GOME-2 for the period 10 

2007--2014 in $10^{15}$\,\unit{molec\,cm^{-2}}. The results of the model simulation 11 

(without data assimilation) are also shown in brackets. 12 

 13 

Table 3: The regional ten-year mean \chem{NO_x} emissions (in \unit{Tg\,N\,yr^{-1}}) 14 

obtained from the a priori emissions, a posteriori emissions, and the relative difference 15 

between these two emissions (in \%) for the period 2005-2014 (left columns). The results are 16 

also shown for EDGAR-HTAP v2 emissions (as a reference) averaged over the years 2008 17 

and 2010, the a posteriori emissions (the same results as in the left columns, but averaged 18 

over the years 2008 and 2010), and the relative difference between these two estimates (in \%) 19 

(central columns), and for their difference from 2008 to 2010 (right columns). The results are 20 

also shown for the Northern Hemisphere (NH, 20--90$^\circ$N), the tropics (TR, 21 

20$^\circ$S--20$^\circ$N), the Southern Hemisphere (SH, 90--20$^\circ$S), and the globe 22 

(GL, 90$^\circ$S--90$^\circ$N). 23 

 24 

Table 4: Linear trend (in \% per decade) of the regional a posteriori \chem{NO_x} emissions 25 

from the multiple-species assimilation (left column) and \chem{NO_2}-only assimilation 26 

(central column), and of the regional mean tropospheric \chem{NO_2} columns from OMI 27 

(right column) for the period 2005-2014.  28 

 29 

Table 5: Difference between the a posteriori emissions from the multiple-species assimilation 30 

and \chem{NO_2}-only assimilation. Relative difference for the regional ten-year mean 31 
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emissions (left column), RMSE for the monthly regional emissions (central column), and 1 

range of relative difference for the monthly regional emissions (right column) are shown.  2 

 3 

Table 6: Regional and ten-year mean difference in lower tropospheric OH concentration 4 

averaged below 790 hPa ($\Delta$ \chem{OH}) and the ratio of surface \chem{NO_x} 5 

emission and lower tropospheric \chem{NO_2} concentration averaged below 790 hPa 6 

($\Delta$\chem{NO_x}-emi/\chem{NO_2}) between the data assimilation run and the model 7 

simulation in the boreal summer (averaged over June--August) over the 2005--2014 period. 8 

 9 

Table 7: Regional and ten-year mean correction factor for the emission diurnal variability 10 

($Etc$) for 2005--2014. 11 

 12 

Figure 1: Schematic diagram of the correction scheme for the emission diurnal variation for a 13 

case with $Etc=-0.3$. The black dotted time represents the a priori emission diurnal 14 

variability function ($Et$) for anthropogenic emissions. The black solid line represents the a 15 

posteriori emission variation after applying the daily emission scaling factor ($Et \times Es$). 16 

The blue line represents the correction factor for the emission diurnal variability ($Etc$). The 17 

red line represents the a posteriori emission variation after applying the daily emission scaling 18 

factor and the correction factor for the emission diurnal variability ($Et \times Es - Etc$ for 19 

07:30--10:30, and $Et \times Es + Etc$ for 10:30--13:30). 20 

 21 

Figure 2: Global distributions of the tropospheric \chem{NO_2} columns (in 22 

$10^{15}$\,\unit{molec\,cm^{-2}}). The results are shown for OMI (left columns, sampling 23 

time $\approx$13:00 hrs) for 2005--2014, SCIAMACHY (middle columns, 10:00 hrs) for 24 

2005--2011, and GOME-2 (right columns, 09:30 hrs) for 2007--2014. Upper rows show the 25 

tropospheric \chem{NO_2} columns obtained from the satellite retrievals (OBS); centre 26 

shows the difference between the model simulation and the satellite retrievals (Model-OBS); 27 

and lower rows show the difference between the data assimilation and the satellite retrievals 28 

(Assim-OBS).  29 

 30 
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Figure 3: Time series of regional monthly mean tropospheric \chem{NO_2} columns (in 1 

$10^{15}$\,\unit{molec\,cm^{-2}}) averaged over China (110--123$^\circ$E, 30--2 

40$^\circ$N), Europe (10$^\circ$W--30$^\circ$E, 35--60$^\circ$N), the United States (70--3 

125$^\circ$W, 28--50$^\circ$N), South America (50--70$^\circ$W, 20$^\circ$S--Equator), 4 

North Africa (20$^\circ$W--40$^\circ$E, Equator--20$^\circ$N), Central Africa (10--5 

40$^\circ$E, Equator--20$^\circ$S), Southern Africa (25--34$^\circ$E, 22--31$^\circ$S), 6 

Southeast Asia (96--105$^\circ$E, 10--20$^\circ$N), Australia (113--155$^\circ$E, 11--7 

44$^\circ$S), and India (68--89$^\circ$E, 8--33$^\circ$N) obtained from the satellite 8 

retrievals (black), model simulation (blue), and the data assimilation (red). The model 9 

simulation and data assimilation results were obtained at the local overpass time of the 10 

retrievals with applying the averaging kernel. 11 

 12 

Figure 4: (Left panels) Mean vertical \chem{NO_2} profiles obtained during the ARCTAS 13 

campaign in June--July 2009; the ARCTAS campaign in June--July 2006; the DC3 campaign 14 

in May 2012; and the SEAC$^4$RS campaign in August--September 2013. The black line 15 

represents the observation; the blue line represents the model simulation; and the red line 16 

represents the data assimilation. The error bars represent the standard deviation. (Right 17 

panels) Scatter plots of \chem{NO_2} concentrations for the data assimilation (top) and the 18 

model simulation (bottom) during the DANDELIONS campaign ($\mu g m^{-3}$) in 19 

September 2006 and during the INTEX-B campaign (in \unit{pptv}) on March 9, 2006. The 20 

straight lines represent linear regression lines for each level. Each line represents a linear fit to 21 

the points of the same colour, and the colours represent the altitude level.  22 

 23 

Figure 5: Global distributions of surface \chem{NO_x} emissions (in $10^{-13}\unit{kg 24 

m^{-2} s^{-1}}$) averaged over 2005--2014. The a priori emissions (top), a posteriori 25 

emissions from the data assimilation run (middle), and analysis increment (bottom) are shown.  26 

 27 

Figure 6: Global distribution of linear trend of the a posteriori surface \chem{NO_x} 28 

emissions (in $10^{-13}\unit{kg m^{-2} s^{-1}}$ per decade) for the period 2005--2014. 29 

The red (blue) colour indicates positive (negative) trends. 30 

 31 
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Figure 7: Time series of monthly total regional surface \chem{NO_x} emissions (in 1 

\unit{Tg\,N\,yr^{-1}} ) obtained from the a priori emissions (black lines) and the a posteriori 2 

emissions (red lines) for the period 2005--2014. The results are also shown for EDGAR-3 

HTAP v2 emissions (green lines) for the years 2008 and 2010. 4 

 5 

Figure 8: Seasonal variations of the regional surface \chem{NO_x} emissions (in 6 

\unit{Tg\,N\,yr^{-1}}) obtained from the a priori emissions (black line) and the a posteriori 7 

emissions (red line) averaged over the period 2005--2014. The results are also shown for the a 8 

posteriori emissions for individual years during 2005--2014 (yellow lines).  9 

 10 

Figure 9: Time series of the difference (in \%) of the annual mean a posteriori surface 11 

\chem{NO_x} emissions relative to the 2005 emissions in the period 2005--2014 for India 12 

(yellow), China (blue), Europe (light blue), western Europe (light blue dashed line), Southern 13 

Africa (red), and the United States (green). 14 

 15 

Figure 10: The regional distribution of ten-year mean surface \chem{NO_x} emissions (in 16 

$10^{-13}\unit{kg m^{-2} s^{-1}}$) over East Asia (upper panels), Europe (upper middle 17 

panels), the United States (lower middle panels), and Southeast Asia (lower panels) obtained 18 

from the a posteriori emissions in the period 2005--2014 (left panels), and the difference 19 

between the a posteriori emissions and a priori emissions in the period 2005-2014 (centre 20 

panels), and between the a posteriori emissions and EDGAR-HTAP v2 emissions for the 21 

years 2008 and 2010 (right panels). The black square line represents the region used for the 22 

regional mean analysis. 23 

 24 

Figure 11: Global distribution of linear trend of the a posteriori surface \chem{NO_x} 25 

emissions for the period 2005--2010 (left) and 2011--2014 (right). The red (blue) colour 26 

indicates positive (negative) trends. 27 

 28 

Figure 12: The regional distribution of the linear trend in surface \chem{NO_x} emissions (in 29 

$10^{-13}\unit{kg m^{-2} s^{-1}}$ per decade) during 2005--2014 over East Asia (upper 30 
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left), Europe (upper right), the United States (bottom left), and Southeast Asia (bottom right), 1 

obtained from the a posteriori emissions. The black square line represents the region used for 2 

the regional mean analysis. 3 

 4 

Figure 13: Global distribution of the ten-year mean \chem{OH} concentration (in 5 

$10^6$ \unit{molecules cm^{-3}}) in the data assimilation run (top) and its difference 6 

between the data assimilation run and the model simulation (bottom) averaged over June, July, 7 

and August over the 2005--2014 period at 850 hPa. 8 

 9 

Figure 14: Global distribution of the annual mean correction factor for the emission diurnal 10 

variability ($Etc$) for the period 2005--2014. 11 

 12 
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