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Abstract 1 

Forecasts from chemical weather models are subject to uncertainties in the input data (e.g. 2 

emission inventory, initial and boundary conditions) as well as the model itself (e.g. physical 3 

parameterization, chemical mechanism). Multi-model ensemble forecasts can improve the 4 

forecast skill provided that certain mathematical conditions are fulfilled. We demonstrate 5 

through an intercomparison of two dissimilar air quality ensembles that unconditional raw 6 

forecast averaging, although generally successful, is far from optimum. One way to achieve 7 

an optimum ensemble is also presented. The basic idea is to either add optimum weights to 8 

members or constrain the ensemble to those members that meet certain conditions in time or 9 

frequency domain. The methods are evaluated against ground level observations collected 10 

from the EMEP and Airbase databases.  11 

The two ensembles were created for the first and second phase of the Air Quality Model 12 

Evaluation International Initiative (AQMEII). Verification statistics shows that the 13 

deterministic models simulate better O3 than NO2 and PM10, linked to different levels of 14 

complexity in the represented processes. The ensemble mean achieves higher skill compared 15 

to each station’s best deterministic model at 39%-63% of the sites. The skill gained from the 16 

favourable ensemble averaging has at least double the forecast skill compared to using the full 17 

ensemble. The method proved robust for the 3-monthly examined time-series if the training 18 

phase comprises 60 days. Further development of the method is discussed in the conclusion.   19 

Keywords: AQMEII, multi-model ensembles, air quality model, error decomposition, 20 

verification. 21 

1 Introduction 22 

Uncertainties in atmospheric models such as the chemical weather models, whether due to the 23 

input data or the model itself, limit the predictive skill. The incorporation of data assimilation 24 

techniques and the unceasing improvement in the understanding of the physical, chemical and 25 

dynamical processes result in better forecasts (Zhang et al., 2012). In addition, mathematical 26 

tools such as ensemble forecasting provide an extra channel for uncertainty quantification and 27 

eventually reduction. Such method seems similar to the Monte Carlo approach; in practice, 28 

the similarity is only phenomenological since the probability density function of the 29 

uncertainty is not sampled in any statistical context like random, latin-hypercube, etc. The 30 
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benefits from ensemble forecasting arise from the averaging out of the unpredictable 1 

components (Kalnay, 2003).  2 

ECMWF reports an increase in forecast skill of 1 day per decade for meteorological variables, 3 

evaluated on the geopotential height anomaly (Simmons, 2011). The air quality modelling and 4 

monitoring has a shorter history that does not allow a similar adequate estimation of such 5 

trend for the numerous species being modelled. Moreover, the skill changes dramatically from 6 

species to species. Recent results for ozone suggest that medium range forecasts can be 7 

performed with a quality similar to the geopotential height anomaly forecasts (Eskes et al., 8 

2002). Besides the continuous increase in skill due to the enlarged scientific understanding, 9 

more accurate and denser observations as well as ensemble forecasting, an extra gain of 10 

similar magnitude can be achieved for ensemble-based deterministic forecasting using 11 

conditional averaging (e.g., Galmarini et al., 2013; Mallet et al., 2009; Solazzo et al., 2013).  12 

Ideally, for continuous and unbiased variables, the multi-model ensemble mean outscores the 13 

skill of the deterministic models provided that the members have similar skill and 14 

independent errors (Potempski and Galmarini, 2009; Weigel et al., 2010). Practically, the 15 

multi-model ensemble mean usually outscores the skill of the deterministic models if the 16 

evaluation is performed over multiple observation sites and times. This occurs because over a 17 

network of stations, there are some where the essential conditions (e.g. the skill difference 18 

between the models is not too large) for the ensemble members are fulfilled, favouring the 19 

ensemble mean; for the rest, where the conditions are not accomplished, local verification 20 

highlights one or another atmospheric model but none particularly. Hence, although the skill 21 

of the numerical models varies in space (latitude, longitude, altitude) and time (e.g., hour of 22 

the day, month, season), the ensemble mean is usually the most accurate spatio-temporal 23 

representation. 24 

One of the challenges in ensemble forecasting is the processing of the deterministic models 25 

datasets prior to averaging in order to construct another dataset where its members ideally 26 

constitute an independent and identically distributed (i.i.d.) sample (Kioutsioukis and 27 

Galmarini, 2014; Bishop and Abramowitz, 2013). This statistical process favours the 28 

ensemble mean at each observation site. Two basic pathways exist to achieve this goal: model 29 

weighting or model sub-selecting. There are several methods to assign weights to ensemble 30 

members such as the singular value decomposition (Pagowski et al., 2005), the dynamic linear 31 

regression (Pagowski et al., 2006; Djalalova et al., 2010), the Kalman filtering (Delle 32 
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Monache et al., 2011), the Bayesian model averaging (Riccio et al., 2007) and the analytical 1 

optimization (Potempski and Galmarini, 2009) while model selection usually relies on the 2 

quadratic error or its proxies (e.g. Solazzo et al., 2013; Kioutsioukis and Galmarini., 2014). In 3 

this work, we apply both approaches in an inter-comparison study of two air quality ensemble 4 

systems (hereafter, Phase I and Phase II), generated within the Air Quality Model Evaluation 5 

International Initiative (AQMEII). The differences between the ensembles of Phase I and 6 

Phase II originate from many sources, related to both the input data and the models: (a) the 7 

year is different (2006 vs. 2010), therefore the meteorological conditions are different; (b) 8 

emission methodologies have changed (see Table 3 in Pouliot et al. 2015); (c) boundary 9 

conditions are very different (obtained from GEMS in Phase I, MACC in Phase II); (d) the 10 

composition of the ensembles is different; (e) the models in Phase II use on-line coupling 11 

between meteorology and chemistry; (f) the models may have been updated with new science 12 

processes apart from feedback processes. Recent studies with regional air quality models 13 

yielded that the full variability of the ensemble can be retained with only an effective number 14 

of models (NEFF) on the order of 5-6 (e.g. Solazzo et al., 2013; Kioutsioukis and Galmarini, 15 

2014; Marecal et al., 2015). The minimum number of ensemble members to sample the 16 

uncertainty should be well above NEFF; for this reason, we focus on the European domain due 17 

to its sufficient number of models to form the ensemble. The uncertainties arising from 18 

observational errors are not taken into consideration.  19 

The objectives of the paper are (a) to interpret the skill of the unconditional multi-model mean 20 

within the phase I and II of AQMEII, (b) to calculate the maximum expectations in the skill of 21 

alternative ensemble estimators and (c) to evaluate the operational implementation of the 22 

approach using cross-validation. The paper is structured as follows: section 2 provides a brief 23 

description of the ensemble’s basic properties through a series of conditions expressed by 24 

mathematical equations. In Section 3, a comparison of the skill of the deterministic models 25 

and the unconditional ensemble mean across phase I and phase II is performed. In Section 4, 26 

the skill of the alternative ensemble estimators is demonstrated. Conclusions are given in 27 

Section 5.  28 

2 Minimization of the ensemble error   29 

The notation conventions used in this section are briefly presented in the following. Assuming 30 

an ensemble composed of M members (i.e. output of modelling systems) denoted as 𝑓!, 31 
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i=1,2,…,M, the multi-model ensemble mean can be evaluated from 𝑓 = 𝑤!𝑓!!
!!! , 𝑤! = 1. The 1 

weights (wi) sum up to one and can be either equal (uniform ensemble) or unequal 2 

(nonuniform ensemble). The desired value (measurement) is 𝜇.  3 

Assuming a uniform ensemble, the squared error (MSE) of the multi-model ensemble mean 4 

can be broken down into three components, namely, bias, error variance and error covariance 5 

(Ueda and Nakano, 1996): 6 

𝑴𝑺𝑬 𝒇 = 𝒃"𝒂𝒔𝟐 +
𝟏
𝑴𝒗𝒂𝒓+ 𝟏−

𝟏
𝑴 𝒄𝒐𝒗

 

Eq.1 

The decomposition provides the reasoning behind ensemble averaging: as we include more 7 

ensemble members, the variance factor is monotonically decreasing and the MSE converges 8 

towards the covariance factor. Covariance, unlike the other two positive definite factors, can 9 

be either positive or negative; its minimization requires an ensemble composed by 10 

independent or even better, negatively correlated members. In addition, bias correction should 11 

be a necessary step prior to any ensemble manipulation. More details regarding this 12 

decomposition within the air quality ensembles context can be found in Kioutsioukis and 13 

Galmarini, 2014.  14 

In similar fashion, the squared error of the multi-model ensemble mean can be decomposed 15 

into the difference of two positive-definite components, with their expectations characterized 16 

as accuracy and diversity (Krogh and Vedelsby, 1995):  17 

𝑴𝑺𝑬 𝒇 = 𝐸
1
𝑀 𝑓! − 𝜇 !

!

!!!

− 𝐸
1
𝑀 𝑓! − 𝑓

!
!

!!!
 

Eq.2 

This decomposition proves that the error of the ensemble mean is guaranteed to be less than 18 

or equal to the average quadratic error of the component models. The ideal ensemble error 19 

depends on the right trade-off between accuracy (1st term on the r.h.s. of Eq. 2) and diversity 20 

(2nd term on the r.h.s. of Eq. 2).   21 

The two decompositions presented assume uniform ensembles, i.e. all members receive equal 22 

weight. For the case of a non-uniform ensemble, the MSE of the multi-model ensemble mean 23 

can be analytically minimized to yield the optimal weights, provided that the participating 24 

models are bias-corrected (Potempski and Galmarini, 2009):  25 
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𝒘 =
𝑲!!𝒍

(𝑲!!𝒍, 𝒍)
 

Eq.3 

where, w is the vector of optimal weights, K is the error covariance matrix and l the unitary 1 

vector. In its simplest form, the equation assigns one weight for each model at each 2 

measurement site; more complicated versions like multidimensional optimisation for many 3 

variables (e.g. chemical compounds) at many sites simultaneously are not discussed here.  4 

It appears that the skill of the unconditional ensemble mean (mme) has the potential for 5 

certain advantages over the single members, provided some properties are satisfied. As those 6 

properties are not systematically met in practice, better ensemble skill can be achieved 7 

through sub-selecting schemes such as the ideal trade-off between accuracy and diversity 8 

(mme<) or the optimal weighting (mmW). Another sub-selecting scheme is also considered 9 

that is derived from ensemble optimization at selected spectral bands with the Kolmogorov-10 

Zurbenko (kz) filter (Zurbenko, 1986) and combining them either linearly (kzFO) or non-11 

linearly (kzHO) (Galmarini et al., 2013). An inter-comparison of all those approaches in 12 

ensemble averaging is explored in this work using observed and simulated air quality time-13 

series.   14 

2.1 Reducing dimensionality 15 

The combination of redundant models (i.e., models with highly correlated errors) results in 16 

loss of valuable information due to the dependent biases (Solazzo et al., 2013). To improve 17 

the accuracy of the ensemble, redundant information in the sub-selecting schemes is discarded 18 

by mean of the effective number of models (NEFF) sufficient to reproduce the variability of the 19 

full ensemble. NEFF is calculated as (Bretherton et al., 1999): 20 

𝑁𝐸𝐹𝐹 =
( 𝒔𝒊)𝑴

𝒊=𝟏
𝟐

𝒔𝒊𝟐𝑴
𝒊=𝟏

 

Eq.4 

where si is eigenvalue of the error covariance matrix. The fraction of the overall variance 21 

expressed by the first NEFF eigenvalues is 86%, provided that the modelled and observed 22 

fields are normally distributed (Bretherton et al., 1999). The highest eigenvalue is denoted as 23 

sm.  24 
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2.2 Verification metrics 1 

The skill of the forecasts have been measured with the following statistical parameters: (1) 2 

normalised mean square error (NMSE), i.e. the mean square error (MSE) divided by 𝑂𝑀, 3 

where 𝑂 and 𝑀 are the mean value of the observation and the model respectively, (2) hit rate 4 

(HR), i.e. the proportion of occurrences (e.g. events exceeding threshold value) that were 5 

correctly identified, (3) Taylor plots (Taylor, 2001), which summarize standard deviation, 6 

root mean square error (RMSE) and Pearson product-moment correlation coefficient in a 7 

single point on a two-dimensional plot.  8 

3 Results 9 

In this section we apply the conceptual context briefly presented in section 2 to investigate the 10 

differences and commonalities of the ensembles across the two AQMEII phases (Rao et al., 11 

2011). As mentioned in the introduction, the two ensembles are dissimilar with respect to 12 

their input data (emissions, boundary conditions) and their participating coupled models (off-13 

line/on-line) apart from the different meteorology/photochemistry due to the different 14 

simulation year. The model settings and input data for phase I are described in Solazzo et al. 15 

(2012a, b), Schere et al. (2012), Pouliot et al. (2012); for phase II, similar information is 16 

presented in Im et al. (2015a, b), Brunner et al. (2015), Baro et al. (2015), Pouliot et al. 17 

(2015). In both cases, the modelling communities simulated annual air quality over Europe 18 

and North America for the years 2006 (I) and 2010 (II). From the provided station-based 19 

hourly time-series, we analysed the three-monthly period with relatively high concentrations; 20 

for O3, June-July-August was selected while September-October-November is used for NO2 21 

and PM10. All monitoring stations are rural and have data at least 75% of the time.  22 

We start the analysis with a presentation of the ensemble properties in the two phases, 23 

originating from variations in the components (observations, models and their interactions). 24 

Only the unconditional full ensemble average (i.e. mme) is assessed in this section. 25 

3.1 Observations  26 

The observation networks across the two phases of AQMEII have similar characteristics per 27 

species like the number of stations and the fraction of missing data (Table 1). The network is 28 

denser for O3 for which there are as many monitoring stations as for NO2 and PM10 combined, 29 
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with PM10 having the fewest observations. Figure 1 compares the statistical distribution of all 1 

three species between the two AQMEII phases, through the cumulative density function 2 

composed from the mean value at each percentile of the observations. All three pollutants 3 

demonstrate a decrease from 2006 to 2010, in line with the emissions reductions, as already 4 

documented (European Environmental Agency, 2013). However, we should mention that the 5 

decline is unrealistically larger for PM10 due to the different spatial coverage of the sampling 6 

stations. Unlike the other pollutants, no valid data for France and UK were available in phase 7 

II for PM10 (station locations are shown in Figure 4).   8 

3.2 Models  9 

The number of ensemble members available from Phase I ranges from 10 (PM10) to 12 (O3) 10 

and 13 (NO2) while in Phase II 14 members were available for all species (Table 1). Following 11 

the statements of section 2, each model has been bias-corrected prior to the analysis, i.e. its 12 

own mean bias over the examined three-month period has been subtracted from its modelled 13 

time-series at each monitoring site.  14 

The boxplots of NMSE over all monitoring stations is presented in Figure 2. The aggregated 15 

mean skill of the individual models across the two phases appears similar for O3, shows an 16 

improvement for NO2 (median <NMSE> shifted from 0.53 to 0.49) and a worsening for PM10 17 

(median <NMSE> shifted from 0.47 to 0.50) (Table 2). At the same time, the best model at 18 

each monitoring station has similar behaviour for O3 and NO2 across the two phases and 19 

experiences degradation for PM10 (median <NMSE> shifted from 0.34 to 0.37). In summary, 20 

(a) many models improved their skill for NO2 in the Phase II simulations although no 21 

improvement occurred in the prediction capacity of the best model, (b) the model skill was 22 

generally deteriorated for PM10 in Phase II, shifting the NMSE distribution towards higher 23 

values, (c) no notable changes were seen for O3. The indirect feedback mechanisms available 24 

in phase II generally improved the simulation of meteorological drivers such as temperature, 25 

radiation and precipitation, which in turn improved the forecast of many atmospheric gases 26 

while particulate matter and cloud processes require updated parameterizations (Brunner et al. 27 

(2015), Makar et al. (2015)).  28 
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3.3 Multi-model mean  1 

As shown above, the differences between Phase 1 and Phase 2 in terms of individual accuracy 2 

of the models varied between the three examined species. We examine now the consequences 3 

in the behaviour of the multi-model mean and interpret the results with respect to the 4 

presented error decompositions. As suggested from equations 1 and 2, the error of the multi-5 

model mean relies on the skill difference of its members and their error dependence. 6 

Skill difference 7 

Despite the different changes in individual model skill for the different species, when they are 8 

combined to form an ensemble, the skill difference between the best model and the average 9 

skill has decreased for all species from phase I to II. This is inferred from the values of the 10 

indicator NMSEBEST /<NMSE> that increase (Table 2). This increase occurs because of more 11 

good models in phase II. To explain this, we evaluate the percentage of cases each model has 12 

been identified as being ‘best’ and record the number of models exceeding specific percentage 13 

thresholds. If models were behaving like i.i.d., the probabilities of being best would be 14 

roughly equal (~1/M) for all models. As can be inferred from Table 2, the proportion of 15 

equally good models has increased in phase II for O3 and NO2, since the number of models 16 

exceeding the 1/M percentage contains half of the models compared to one third in phase I. 17 

This is not however true for the Phase II PM10 simulations, where one model outscores the 18 

others at roughly 40% (~6/M) of the stations, implying a missing process in the majority of 19 

the models. It turned out that this model was erroneously running with off-line coupling 20 

between meteorology and chemistry. 21 

Error dependence 22 

The combination of models with correlated errors brings redundant information in the 23 

ensemble and reduces the benefits of ensemble averaging. The eigenvalues of the covariance 24 

matrix calculated from the model errors provides information for the members’ diversity and 25 

the ensemble redundancy. Following the eigen-analysis of the error covariance matrix at each 26 

station separately and converting the eigenvalues to cumulative amount of explained variance, 27 

the resulting matrix is presented into box and whisker plot (Figure 3). The number of 28 

necessary eigenvalues to capture 86% of the variation is referred as effective number of 29 

models (NEFF). In phase I, the maximum value of NEFF across all stations is 6 for O3 and NO2 30 

and 4 for PM10. In phase II, this number is approximately 5 for all species. Hence, 5±1 models 31 
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are sufficient for all species at both phases. Therefore, from a pool of 10-14 models, the 1 

benefits of ensemble averaging cease after 6 members (but not 6 particular members). 2 

Further, the average explained variation by the maximum eigenvalue (sm) has increased for all 3 

species in phase II, indicating a decrease in ensemble diversity.  4 

Similar values across the two phases for the effective number of models are found from an 5 

estimation based on the optimal trade-off between accuracy and diversity, shown in the same 6 

figure. Rather than using a benchmark for the error dependence (i.e., the error covariance 7 

matrix), the NEFF is estimated from the error minimization across all possible combinations of 8 

M models at each site. At 50% of the stations, the optimum number of ensemble members is 9 

less or equal to 3 while at 95% of the stations the maximum optimum number of models 10 

becomes 6. In other words, we do need more than 6 members at most stations. The only 11 

exception is the NO2 (II) case, where NEFF across the two phases defer by 1 (higher in phase 12 

II). As we will see later, this is due to the fact that only for NO2 (II), there is imbalance in the 13 

relative changes of skill difference and error dependence.  14 

Multi-model mean skill 15 

The phase II ensemble consists of models with, compared to phase I, generally improved skill 16 

for NO2, worse skill for PM10 and similar skill for O3. The phase II ensemble as a whole 17 

demonstrates smaller skill differences between models for all species. Last, increased error 18 

dependence is evidenced in phase II, arising primarily from the fact that 50% of the ensemble 19 

members run the same model with differences arising only from the choice of different 20 

physical or chemical parameterizations. The modulation of the ensemble mean skill owing to 21 

the changes in its properties across the two phases is now examined.  22 

The skill of the multi-model mean has been compared against the skill of the best available 23 

deterministic model, independently evaluated at each monitoring site. The geographical 24 

distribution of the ratio RMSE(mme)/RMSEBESTMODEL is presented in Figure 4. The indicator 25 

does not exhibit any longitudinal or latitudinal dependence. We also observe that the number 26 

of extreme cases where the mme skill was notably inferior to the best model has dropped from 27 

phase I to II. Specifically, the percentage of stations where the RMSE(mme) was 10-30% 28 

higher than the RMSEBESTMODEL dropped from 17.2% to 9.3% for O3 and from 10.0% to 5.6% 29 

for NO2. As presented in more detail in Table 3 for the statistical distribution of the indicator:  30 

- no major differences exist for O3, with the mme outscoring the best model at half of 31 

the stations. Extreme values of the indicator at both tails are trimmed in phase II; 32 
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- a clear improvement is evident for NO2, with the mme providing more skilled 1 

forecasts at 63% of the sites, compared to 38% in the previous phase. All ranges 2 

exhibit improvement, indicating a distribution shift; 3 

- a mild improvement is also evident for PM10, where the number of stations where 4 

mme performs better increased from 38% to 42%. Extreme values of the indicator at 5 

both tails are increased in phase II.  6 

The reason behind the behaviour of mme is given in Figure 5 and emerges from the joint 7 

distribution of skill difference and error dependence. Skill difference decreased for all species 8 

and error dependence increased for all species, from phase I to II. It is their relative change 9 

that modulates mme skill. For O3, both are altered by a comparable amount, resulting in 10 

similar mme skill across phase I and II. For NO2, skill difference was improved more than 11 

error dependence was worsened, yielding a net improvement of mme. For PM10, the situation 12 

is similar to NO2 though with a milder relative difference.  13 

The area below the diagonal in Figure 5 corresponds to monitoring sites with disproportionally 14 

low diversity under the current level of accuracy. Seen from another angle, this area of the 15 

chart indicates high spread in skill difference and relatively highly dependent errors. This 16 

situation practically means a limited number of skilled models with correlated errors, which in 17 

turn denotes a small NEFF value as demonstrated in Figure 6. The opposite state is true for the 18 

area above the diagonal. It corresponds to locations that are constituted from models with 19 

comparable skill and relatively independent errors, reflecting a high NEFF value. This is the 20 

desired synthesis for an ensemble. In the next section we will examine some approaches that 21 

are able to put all points in the area above the diagonal. Figure 7 demonstrates such a case with 22 

an ensemble build with selected members (mme<).  23 

4 Ensemble improvements 24 

Following the identification of the weaknesses in the ensemble design, the potential for 25 

corrections through more sophisticated schemes is now investigated. Given the observations, 26 

optimal weights or members can be estimated or selected. In this section we mark the 27 

boundaries of the possible improvements for different ensemble mean estimators applicable to 28 

the AQMEII datasets and in the next subsection we investigate the actual forecast skill for 29 

sub-optimal conditions using cross-validation.   30 
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The average error across all the monitoring stations was lower for mme compared to the 1 

single models in both phases. The spatio-temporal robustness of mme skill has increased in 2 

phase II, for different reasons per species as analysed in the previous section. We consider the 3 

skill of the multi model mean as the starting point and we investigate pathways for further 4 

enhancing it through the non-trivial problem of weighting or sub-selecting. The optimal 5 

weights (mmW) are estimated from the analytical formulas presented in Potempski and 6 

Galmarini, 2009. The sub-selection of members has been built upon the optimization of either 7 

the accuracy/diversity trade-off (mme<) (Kioutsioukis and Galmarini, 2014) or the spectral 8 

representation of 1st and higher order components by different models (kzFO, kzHO) 9 

(Galmarini et al., 2013).  10 

The results evaluated at all stations are presented in Figure 8 in the form of Taylor plots. For 11 

O3, the deterministic models have standard deviations that are smaller compared to 12 

observations and a narrow correlation pattern (~0.7) that is slightly deteriorated in phase II. 13 

For NO2, members with higher variance -as well as lower- than the observed variance exist in 14 

the ensemble while the correlation spread is becoming narrower in phase II and demonstrates 15 

a minor improvement. Last, simulated PM10 from the deterministic models displays smaller 16 

standard deviation compared to observations with a wide correlation spread (0.3-0.6). The 17 

multi-model mean is always found closer to the reference point, in an area that incorporates 18 

lower error and increased correlation but at the same time generally low variance. The 19 

examined ensemble estimators (mmW, mme<, kzFO, kzHO) are horizontally shifted from 20 

mme, hence they demonstrate even lower error and increased correlation and variance. 21 

Among them, the highest composite skill was found for mmW, followed by kzHO.  22 

A comparison between the skill of the examined improvements versus mme, at each station 23 

separately, is now conducted. The cumulative density function of the indicator 24 

MSEX/MSEMME (X = mmW, mme<, kzFO, kzHO) evaluated at each monitoring is shown in 25 

Figure 9. For O3, the median improvement was 27% for mmW, 22-25% for kzHO and 17% for 26 

kzFO and mme<, relatively equal across the two phases. At ten percent of the stations, the 27 

improvement can be over 41%. For NO2, the median improvement for phase I (phase II) was 28 

21% (17%) for mmW, 20% (13%) for kzHO and 13% (7-9%) for kzFO and mme<. The 29 

magnitude of improvement can exceed 39% (30%) at roughly ten percent of the stations. 30 

Unlike NO2, PM10 shows higher improvement rates for phase II simulations; the median 31 

improvement for was 13-24% for mmW, 11-19% for kzHO, 8-16% for mme< and 8-12% for 32 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-513, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 30 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



 13 

kzFO. The magnitude of improvement surpasses 22% (37% in phase II) at ten percent of the 1 

stations.  2 

The statistical distributions of all MSEX/MSEMME indicators (X = mmW, mme<, kzFO, kzHO) 3 

are well bounded from above to lower than unity values. The only exception exists for 4 

roughly 10% of the stations, for all pollutants, where kzFO demonstrates higher MSE 5 

compared to mme. Unlike the other ensemble estimators, kzFO utilises independent spectral 6 

components each obtained from a single model, eliminating the possibility for ‘cancelling 7 

out’ of random errors. All cases belonging to this 10% of the samples demonstrate high NEFF, 8 

where the benefits from unconditional ensemble averaging are optimal (Kioutsioukis and 9 

Galmarini, 2014). 10 

The ability to forecast extreme values is now examined through the hit rate indicator 11 

(probability of detecting events exceeding a certain threshold). Due to the lowering of the 12 

concentrations from phase I to II, a percentile threshold is more appropriate for the 13 

comparison rather than a fixed threshold. Therefore, a threshold reflecting the average 90th 14 

percentile across the stations has been selected, being 129/117 µg/m3 (phaseI/II) for O3, 30/26 15 

µg/m3 for NO2 and 52/33 µg/m3 for PM10. The ability of the models at the tail simulation was 16 

similar to the <NMSE> change from phase I to II. For O3, the percentage of successful events 17 

exceeding the 90th percentile for mme was 29% (25%) for phase I (II). The major 18 

improvement occurred for mmW, where the aggregated hit rate was 51% (48%), and the 19 

smaller improvement was for mme<, with value 42% (38%). The spectral estimators yielded 20 

values of 47% (42%) and 46% (40%) for kzFO and kzHO respectively. For NO2, the 21 

successful hits for mme was 35% (42%) and reached 45% (49%) for mmW. For the other 22 

ensemble averages, the result was 39% (45%) for mme<, 39% (44%) for kzFO and 40% 23 

(47%) for kzHO. For PM10, the total percentage of successful hits for mme was 19% (16%) 24 

and became 33% (42%) for mmW, while the other estimators yielded 28% (27%), 29% (30%) 25 

and 31% (28%) for mme<, kzFO and kzHO respectively.  26 

The range of forecast error, from the worst deterministic model to the optimum ensemble-27 

based average is presented in Table 4. Statistics were calculated for the 3-monthly evaluation 28 

period and averaged over all monitoring sites. All values have been normalized with the error 29 

of the best deterministic model in order to quantify the potential extent of improvement that 30 

each method can achieve as a function of species and feedbacks. We observe that the benefits 31 

from ensemble averaging in the form of mme range from 1% to 12% when compared to the 32 
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best numerical model. Under proper weighting, this distance is, at a minimum, doubled. The 1 

range of improvement for mmW over the best single model was from 9% to 27%. 2 

To summarize: 3 

- [Error] The analytical optimization of the error through non-uniform weighting 4 

(mmW) achieved lower MSE compared to the sub-selecting schemes. Among species, 5 

improvements over mme are larger for O3 and smaller for PM10, i.e. proportional to the 6 

skill of the deterministic models.  7 

- [Extremes] The ranking of the methods with respect to their capability for extremes 8 

was inline with the skill of the methods for the mean error. The ability of all models to 9 

capture levels exceeding a fixed threshold was better for O3 and PM10 in phase I and 10 

for NO2 in phase II. Among species, mme performed best for NO2 and worst for PM10. 11 

The total percentage of successfully modelled extreme values from using the statistical 12 

treatments increased by up to 10% for NO2, 23% for O3 and 26% for PM10.   13 

4.1 Forecasting performance 14 

The statistical treatments applied to a pool of ensemble simulations generated results with 15 

improved skill in diagnostic mode. To provide a perspective on applying these techniques in a 16 

forecasting context, we explore the temporal robustness of the weighting scheme, i.e. their 17 

predictability window. For this reason, the weights have been re-calculated for variable time-18 

series length that is progressively increasing from 1 to 60 days, for all monitoring stations 19 

across the two phases. The evaluation period for all training windows is the same 30-day 20 

segment, not available in the training procedure. The interquartile range of the day-to-day 21 

difference in the weights is calculated and its range over all stations is displayed in Figure 10. 22 

No convergence occurs, however the variability of the mmW weights is notably reduced after 23 

a certain amount of time. If we set a tolerance level at the second decimal, to be satisfied at all 24 

stations, we need 20 days of hourly time-series for O3 and NO2 and 30 days for PM10 (phase 25 

I). This period can be thought of as the necessary training or learning period. In phase II, 26 

those periods are increased and they become 25 days for O3, 45 days for NO2 and PM10. 27 

Weights are unpredictable for smaller periods. In practice, even safer margins should be 28 

employed. Using half of the tolerance applied, we need an approximate learning period of 50 29 

days for phase I and 60 days for phase II. Last, the sub-selecting schemes, unlike the 30 

analytical optimization, are quite robust even for very small training periods (e.g. 1 week), 31 
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whether in the form of mme< (Kioutsioukis and Galmarini, 2014) or kzFO/kzHO (Galmarini 1 

et al., 2013).  2 

Table 5 presents the mmW skill obtained from training over time series of different lengths 3 

varying from 5 to 60 days. For O3, mmW trained over 10 days yields similar results with mme 4 

while longer periods result in large departures from mme. NO2 and PM10 require larger 5 

training periods than O3. The use of mmW is practically of no benefit compared to mme if the 6 

traning period is less than 20 days for NO2 and 30 days for PM10. For all pollutants, the 7 

variability of the weights has no effect in the error after 60 days. 8 

5 Conclusions 9 

In this paper we give an overview of the performance of the forecast systems in the two 10 

phases of AQMEII and their effect in the skill of the ensemble mean. The results are 11 

interpreted with respect to the error decomposition of the ensemble. Ways to extract more 12 

information from an ensemble besides the ensemble mean are ultimately investigated and 13 

evaluated.  14 

Air Quality models simulate the atmospheric composition through a series of complex 15 

physical, chemical and dynamical processes. In the hypothetical scenario where a simulation 16 

experiment with an ensemble of chemical weather models is performed twice, with the only 17 

difference being off-line or on-line coupling among meteorological and chemical modules, 18 

the increased non-linearity in the latter case is expected to enhance the model independence 19 

and hence generate more diverse results between models. Assuming the accuracy of the 20 

models remains the same, the increased diversity in the latter case favours the skill of the 21 

multi-model mean in the simulation with feedbacks compared to models without interactions. 22 

However, maintaining the same level of accuracy when we incorporate feedbacks in the 23 

models is not granted. Besides feedbacks, the varying factors between the two AQMEII 24 

experiments included also different models, emissions, boundary conditions and simulation 25 

year.  26 

The indirect contrast assessed demonstrated that the ensembles of phase I and phase II have 27 

several key differences. The average accuracy in phase II has improved for NO2, decreased 28 

for PM10 and remained the same for O3. At the same time, the accuracy of the best model 29 

remained the same for NO2 and O3 and decreased for PM10. In other words, without pushing 30 
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further the predictability limits, many models simulate better NO2 in phase II. The opposite is 1 

true for PM10, where phase II modelling accuracy was deteriorated. In terms of redundancy, 2 

despite the expected increase in variability, the ensemble diversity was reduced in phase II, 3 

mainly due to the fact that half of the ensemble members were originating from the same 4 

model using only different physical or chemical parameterizations. The combined effect for 5 

the multi-model mean, in terms of the NMSE was neutral, regardless of the idealized 6 

theoretical expectations. However, the relative changes in the accuracy and diversity in phase 7 

II, favoured always the multi-model mean over the best local deterministic model, enhancing 8 

further its spatiotemporal robustness. This raises the topic of ensemble design and supports 9 

again the critical importance of having the right amount of accuracy and diversity within an 10 

ensemble. 11 

Several improvements in the multi-model mean skill were also examined in the form of 12 

weighting or sub-selecting. The skill enhancement was superior using the weighting scheme 13 

but the required training phase to acquire representative weights was higher compared to the 14 

sub-selecting schemes. For all pollutants, the variability of the weights has negligible effect in 15 

the error for training periods longer than 60 days. The range of improvement for the optimal 16 

multi-model mean over the best single model was from 9% (PM10) to 27% (O3), when the 17 

corresponding range for the traditional unconditional multi-model average was from 1% to 18 

12%. The advancement from the other approaches that use reduced-size ensembles closely 19 

follows the skill of the optimal scheme. The presented post-simulation advancements were the 20 

result of only favourable ensemble design. The combined skill earned from conditional versus 21 

unconditional ensemble averaging is comparable with the one obtained each decade as a result 22 

of the aggregated advancements in numerical prediction due to more and better assimilated 23 

observations, higher computing power and progress in our understanding of dynamics and 24 

physics. 25 

The improvement of the physical, chemical and dynamical processes in the deterministic 26 

models is a ceaseless procedure that results in better forecasts. Besides that, mathematical 27 

optimizations in the input data (e.g. data assimilation) or the model output (e.g. ensemble 28 

estimators) have a significant contribution in the accuracy of the whole modelling process. 29 

Further development is underway in the presented ensemble methods that take into account 30 

the meteorological and chemical regimes.   31 

32 
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Table	 1.	 The	 forecasting	 systems	 and	 the	 evaluation	 network	 in	 Europe	 in	 the	 inter-comparison	1 
exercise	 of	 the	 AQMEII	 phases	 I	 and	 II:	 simulation	 models,	 number	 of	 rural	 stations	 and	 data	2 
coverage	per	species.	3 

 O3  

( I / II ) 

NO2  

( I / II ) 

PM10  

( I / II ) 

Models 12 / 14 13 / 14 10 / 14 

Stations 451 / 450 290 / 337 126 / 131 

Missing Data (%) Fraction of stations 

0-5 0.67 / 0.76 0.52 / 0.59 0.72 / 0.78 

5-10 0.24 / 0.16 0.28 / 0.29 0.13 / 0.14 

10-15 0.05 / 0.05 0.09 / 0.07 0.09 / 0.05 

15-20 0.02 / 0.02 0.06 / 0.01 0.03 / 0.01 

20-25 0.02 / 0.01 0.04 / 0.04 0.02 / 0.01 

 4 

5 
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Table	2.	The	 statistical	distribution	of	 the	NMSE	of	 the	best	model	 (NMSEBEST)	and	 the	ensemble	1 
average	NMSE	(<NMSE>),	evaluated	at	each	monitoring	site	 for	the	examined	species	of	 the	two	2 
AQMEII	 phases.	 In	 addition,	 the	 average	 value	 of	 the	 ratio	 ACCN=NMSEBEST	 /<NMSE>	 and	 the	3 
number	 of	 best	 models	 (NBEST)	 exceeding	 specific	 percentage	 thresholds	 is	 also	 displayed.	 For	4 
example,	for	PM10	(II)	there	are	4	out	of	14	models	that	scored	the	least	NMSE	across	at	least	the	5 
7%	of	stations	(1/M),	2	models	(of	those	4)	which	scored	the	least	NMSE	across	at	least	the	14%	of	6 
stations	 (2/M),	 etc,	 pointing	 that	 one	 model	 outscored	 the	 others	 at	 over	 36%	 (5/M)	 of	 the	7 
stations.		8 

 O3  

(I/II) 

O3  

(I/II) 

NO2  

(I/II) 

NO2  

(I/II) 

PM10  

(I/II) 

PM10  

(I/II) 

 <NMSE> NMSEBEST <NMSE> NMSEBEST <NMSE> NMSEBEST 

5th 0.04 / 0.04 0.03 / 0.03 0.28 / 0.23 0.17 / 0.17 0.30 / 0.28 0.20 / 0.20 

25th  0.07 / 0.07 0.05 / 0.05 0.39 / 0.35 0.24 / 0.25 0.40 / 0.39 0.26 / 0.28 

50th  0.10 / 0.10 0.07 / 0.08 0.53 / 0.49 0.34 / 0.35 0.47 / 0.50 0.34 / 0.37 

75th  0.15 / 0.15 0.11 / 0.11 0.82 / 0.76 0.48 / 0.50 0.60 / 0.62 0.46 / 0.50 

95th  0.24 / 0.24 0.18 / 0.18 1.69 / 1.49 0.81 / 0.93 1.02 / 0.98 0.73 / 0.81 

 O3  

(I) 

O3  

(II) 

NO2  

(I) 

NO2  

(II) 

PM10  

(I) 

PM10  

(II) 

ACCN 0.68 0.76 0.60 0.70 0.70 0.77 

NBEST (1/M) 4 6 3 7 3 4 

NBEST (2/M) 3 1 3 0 1 2 

NBEST (3/M) 1 0 2 0 1 1 

NBEST (4/M) 0 0 0 0 0 1 

NBEST (5/M) 0 0 0 0 0 1 

NBEST (6/M) 0 0 0 0 0 0 

9 
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Table	 3.	 The	 percentage	 of	 stations	 lying	 at	 various	 bins	 of	 the	 indicator	 RMSEMME/RMSEBEST,	1 
evaluated	at	each	monitoring	site	for	the	examined	species	of	the	two	AQMEII	phases.		2 

RMSEMME/RMSEBEST O3  

(I) 

O3  

(II) 

NO2  

(I) 

NO2  

(II) 

PM10  

(I) 

PM10  

(II) 

0.7 - 0.8 0  0 0 0 0 0 

0.8 - 0.9 8.4 2.4 4.1 6.2 0 6.9 

0.9 - 1.0 43.7 46.7 34.5 57.3 38.1 35.1 

1.0 - 1.1 29.7 41.6 48.6 30.0 61.9 55.0 

1.1 - 1.2 13.7 8.2 7.9 4.7 0 3.0 

1.2 - 1.3 3.5 1.1 2.1 0.9 0 0.0 

<1 52.1 49.1 38.6 63.5 38.1 42.0 

  3 
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Table	 4.	 The	 RMSE	 from	 the	 worst	 deterministic	 model	 to	 the	 optimum	 ensemble	 average,	1 
averaged	over	all	 stations.	The	worst	and	 the	best	model	have	been	evaluated	at	each	 site.	The	2 
worst	(best)	deterministic	model	is	the	set	containing	the	worst	(best)	time-series	at	each	station.	3 
All	values	have	been	normalized	with	the	RMSE	of	the	composite	best	deterministic	model.		4 

Model O3  

(I) 

O3  

(II) 

NO2  

(I) 

NO2  

(II) 

PM10  

(I) 

PM10  

(II) 

Worst deterministic 1.10 1.19 1.43 1.43 1.31 1.16 

Average RMSE 1.04 1.07 1.15 1.11 1.09 1.08 

Best deterministic 1.00 1.00 1.00 1.00 1.00 1.00 

mme 0.88 0.95 0.96 0.95 0.98 0.99 

mme< 0.79 0.87 0.90 0.91 0.94 0.93 

kzFO 0.79 0.86 0.90 0.92 0.94 0.93 

kzHO 0.76 0.84 0.87 0.89 0.93 0.91 

mmW 0.73 0.79 0.85 0.87 0.91 0.86 

mme: unconditional ensemble mean 5 

mme<: conditional ensemble mean (Kioutsioukis and Galmarini, 2014) 6 

kzFO: conditional spectral ensemble mean with 1st order components (Galmarini et al., 2013) 7 

kzHO: conditional spectral ensemble mean with 2nd and higher order components (kzHO) 8 

mmW: optimal weighted ensemble (Potempski and Galmarini, 2009) 9 
  10 
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Table	5.	The	RMSE	of	mmW	for	various	training	lengths,	calculated	for	the	testing	time-series	(i.e.	1 
not-used	in	the	training	phase)	that	contains	all	stations.	All	values	have	been	normalized	with	the	2 
RMSE	of	the	composite	best	deterministic	model.		3 

Length of training 

period (days) 

O3  

(I) 

O3  

(II) 

NO2  

(I) 

NO2  

(II) 

PM10  

(I) 

PM10  

(II) 

5 0.98 1.04 1.10 1.26 1.55 1.21 

10 0.88 0.94 1.01 1.06 1.14 1.05 

20 0.79 0.87 0.93 0.96 1.02 0.95 

30 0.77 0.83 0.91 0.92 0.96 0.90 

60 0.73 0.80 0.85 0.87 0.91 0.86 

 4 

  5 
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Figure	 1.	 Comparison	 of	 the	 Cumulative	 density	 functions	 of	 the	 observations	 (O3,	 NO2,	 PM10)	1 
between	 the	 two	 AQMEII	 phases	 (Phase	 I:	 filled	 circles,	 Phase	 II:	 non-filled	 circles).	 Each	 bullet	2 
represents	the	median	at	the	specific	percentile.	3 
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Figure	2.	Model	skill	difference	via	the	NMSE.	On	each	box,	the	central	mark	indicates	the	median,	1 
and	the	bottom	and	top	edges	of	the	box	indicate	the	25th	and	75th	percentiles,	respectively.	The	2 
whiskers	extend	to	the	most	extreme	data	points	not	considered	outliers	and	the	outliers	(points	3 
with	distance	from	the	25th	and	75th	percentiles	larger	than	1.5	times	the	interquartile	range)	are	4 
plotted	individually	using	the	'+'	symbol.	5 
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Figure	 3.	 Model	 error	 dependence	 through	 the	 eigenvalues	 spectrum.	 The	 average	 explained	1 
variation	from	the	maximum	eigenvalue	is	71/78	(phase	I/II)	 for	O3,	65/69	for	NO2	and	74/79	for	2 
PM10.	 On	 the	 same	 graph,	 the	 cumulative	 density	 function	 of	 NEFF	 calculated	 from	 all	 possible	3 
ensemble	combinations	is	presented	with	the	black	line.		4 
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Figure	4.	Comparison	of	the	mme	skill	against	the	best	local	deterministic	model	by	means	of	the	1 
indicator	RMSEMME/RMSEBEST.		2 

  3 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-513, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 30 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



 31 

  

  

  
Figure	 5.	 Interpretation	 of	 Figure	 4:	 the	 explanation	 of	 the	 mme	 skill	 against	 the	 best	 local	1 
deterministic	 model	 with	 respect	 to	 skill	 difference	 (evaluated	 from	 MSEBEST/<MSE>)	 and	 error	2 
dependence	(evaluated	from	the	explained	variation	by	the	highest	eigenvalue).		3 

 4 
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Figure	6.	Like	Figure	5	but	showing	the	NEFF	with	respect	to	skill	difference	and	error	dependence.		1 

  2 
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Figure	7.	Like	Figure	5	but	for	the	mme<	skill	 in	the	reduced	ensemble.	Please	note	the	change	in	1 
the	colorscale.	2 

 3 
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Figure	8.	Composite	skill	of	all	deterministic	models	and	ensemble	estimators	(mme,	mme<,	kzFO,	1 
kzHO,	mmW)	through	Taylor	plots.	The	point	R	represents	the	reference	point	(i.e.	observations).	2 

O3 (I) O3 (II) 

NO2 (I) NO2 (II) 

PM10 (I) PM10 (II) 
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Figure	9.	The	cumulative	density	function	of	the	indicator	MSEX/MSEMME	(X	=	mmW,	mme<,	kzFO,	1 
kzHO)	evaluated	at	each	monitoring	site	for	the	examined	species	of	the	two	AQMEII	phases.		2 
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Figure	 10.	 The	 interquartile	 range	 over	 all	 stations	 of	 the	 day-to-day	 difference	 in	 the	 weights	1 
arising	from	variable	time-series	length.		2 

 3 
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