Dear Prof. Carmichael,

we have uploaded the revised version of the paper entitled “Insights into the deterministic
skill of air quality ensembles from the analysis of AQMEII data (acp-2016-513)”. We
would like to thank you for all the detailed comments concerning the mathematical/physical
rigor and clarity of the paper, and we tried our best to comply with the reviewers’ comments.
Accordingly, we believe we have been able to significantly enhance both the content of the
paper and quality of English.

We have re-written and re-organized the majority of the presented material in order (a) to
emphasize the originality of the work and (b) to remove any comparison between AQMEII
phase 1 and 2. Specifically, we have:

- Added a more focused title;

- Introduced a new section 3 with the experimental setup;

- Merged the old sections 3 and 4 into one (Results), with three subsections; one for the
single models, one for the unconditional ensemble mean and its pitfalls and one with
the conditional ensemble estimators;

- Replaced all tables with others containing more information;

- Expanded the conclusions with the ‘take-home’ messages.

We believe, thanks to the reviewers, we have been able to accomplish a worthwhile
improvement of the quality of the paper and have, we hope, clarified the points raised by the

reviewers.

Sincerely yours,

loannis Kioutsioukis and Stefano Galmarini



MS No.: acp-2016-513

Referee #1: Matthieu. Plu

We thank Dr Matthieu Plu for the positive and helpful comments that have improved
the manuscript. They have all been taken on board and addressed in the revised
version of our manuscript.

General Comments:

The manuscript entitled "Improving the deterministic skill of air quality ensembles” reports
about the properties and the scores of different ensembles applied on the model outputs of
the two phases of AQMEII (2006 and 2010) over Europe. The presentation of the manuscript
and of figures is good. To my view, the study has several merits and the results that are
presented are original enough to be published. However, the manuscript should be improved
along the following recommendations in order to go over the Discussion step.

Specific Comments:

1. There is a lack of focus of the manuscript on the main relevant original ideas that are
demonstrated. Many interesting results are presented, and the manuscript needs to
focussed on one or two main new scientific questions that the manuscript addresses. These
lines should be followed from the abstract to the conclusion. To make my argument more
understandable, | would like to point out the following:

- the results that are reported in the first paragraph of the abstract - from lines 6 to 10 - are
not new as they were demonstrated in past research articles. These lines mislead the reader
on the purpose of the article;

- many times (page2-line12, page4-line4, page7-line12), "two ensembles” appear in the text,
but it is not clear whether it refers to two different ensemble methods (and actually, the
article compares more than two methods) or to the two AQMEII phases.

A suggestion would be to present the article as a comparison of different ensemble methods
(mmW, mmS, KZ, ...), applied on two different datasets (both phases of AQMEII). Actually,
the manuscript does not present new methods, but it compares the performance of existing
ensemble methods on different pollutants and on different periods. What | consider also to
be original are the diagnostics (such as Figure 5) that have been developed and that are used
to analyse the ensemble properties. The objectives written page 4 (lines 20-23) may also be
the relevant lines to follow, which is not fully obvious in the present manuscript.

Response: Thank you for the valuable suggestion. The manuscript has been rewritten as an
analysis of the performance of different ensemble techniques rather than a comparison of
the results from the two phases of the AQMEIl activity, focusing on the originality of the
study that includes: (a) the comparison of several ensemble methods on pollutants of
different skill using different datasets, (b) the introduction of an approach based on
high-dimension spectral optimization, (c) the introduction of innovative charts for the
interpretation of the error of the unconditional ensemble mean with respect to indicators



reflecting the skill difference and error dependence of the models as well as the effective
number of models.

2. In the same line of thoughts, the title of the manuscript is too general and it should be
more specific. A general title such as the one that appears now could apply to many papers
that have already been published.

Response: Done as suggested. The title has been changed to ”Insights in the deterministic
skill of air quality ensembles from the analysis of AQMEII data”

3. Comparing the ensemble performance between the two AQMEIl phases does not bring
much to the study and can be misleading, since:

- the observation dataset changes (no PM10 observations available from UK nor France in
Phase Il, page8-lines7-8),

- the period (meteorological regimes, types of pollution, etc) change,
- the individual models change in depth.

The differences in ensemble performances between phases | and Il (page9 for instance) are
subject to all these differences. The attribution of differences of ensemble performances
between the two phases should be done cautiously, making only one variable change at each
time for any interpretation. If it is not possible, | suggest then to remove the discussions
about the differences between Phase | and Phase Il of AQMEII.

Response: Done. The new presentation is after an analysis of the performance of different
ensemble techniques rather than a comparison of the results from the two phases of the
AQMEII activity.

4. There is a lack of description of the experimental setup of the two phases of
AQMEII, that would help the reader to understand some of the conclusions that are
drawn, such as the arguments at page9-line19, page16-line, among others. The
manuscript as it is written now is not self-consistent. To improve this, | would
suggest to add in section 3.2 the key facts of both AQMEIl phases: general
experimental setup (domain, periods, common input data and setup for all models)
and the different models that partici- pate (name, chemical and aerosol schemes,
resolution, meteorological model, etc). At least the key facts that are needed to
understand the discussions should appear in the manuscript. For the rest, the
manuscript should cite some AQMEII reference articles.

Response: Done as suggested. A new section 3 with the experimental setup has been added.
Minor comments:

- page 3, if the "Recent results” (line 7) refer to the citation (Eskes, 2002) (line 9), then the
word "Recent” does not apply; if they refer to an actual recent other work, please cite it,



Response: Done as suggested. The word ‘recent’ has been removed.

- the manuscript would gain in clarity if the KZ methods (page6) were described more in
depth; for instance the page12-lines(7-10) sentence is somehow enigmatic.

Response: Done as suggested. Two paragraphs have been introduced in section 2. The first
describes the rationale behind spectral optimization (spectral decomposition equations are
provided in the Appendix). The second presents the examined ensemble estimators with
reference to their theoretical basis.

- Is the quarter (September-October-November) chosen for NO2 the most relevant one? Do
not the December-January-February quarters show higher NO2 concentration levels?

Response: We choose a continuous seasonal time series for each pollutant.
- The sentence page7-line22 would better fit in section 3.1.
Response: Done as suggested.

- page8-lines5-8: the sentence "the decline ... due to .. sampling stations.” should be proven
by some diagnoses or adequate citation.

Response: The sentence has been removed from the text.

- page10-line 2: the sentence "the benefits of ensemble ... members)." is not fully clear and
maybe not true: what happens if we take the 6 "worse performing” models?

Response: We have rephrased the sentence to emphasize that we do not mean particular
models.

- page10-line17: reference to the relevant figure is needed.
Response: The sentence has been removed from the text.
- page17-line28: remove "*’

Response: Done as suggested.



MS No.: acp-2016-513

Referee #2: Anonymous

We thank the anonymous reviewer for the many helpful suggestions that have
improved the manuscript. They have all been taken into consideration and
addressed in the revised version of our manuscript.

General/Specific Comments:

The paper analyses the two phases of the AQMEII initiatives to test different techniques for
improving deterministic estimates from multi-model ensembles. Even though the paper is
generally well written, my opinion is that the scientific novelty is scarce, and most of the
conclusions are not solid. Here are my motivations:

1) As stated in the Abstract: Line 5-7 “we demonstrate. . .is far from optimum,”. This has
been already proved several times is previous publications. (see Solazzo et al. 2013, Riccio
et al. 2007, Galmarini et al. 2013, among others). In these papers, the same concepts and
techniques of reducing the dimensionality of multi-model ensembles and optimal
combination have been widely and repeatedly presented.

Response: We have re-written many parts of the manuscript to make more clear the focus
and originality of the study. The scientific novelty of the study includes: (a) the comparison
of several ensemble methods on pollutants of different skill using different datasets, (b) the
introduction of an approach based on high-dimension spectral optimization, (c) the
introduction of innovative charts for the interpretation of the error of the unconditional
ensemble mean with respect to indicators reflecting the skill difference and error
dependence of the models as well as the effective number of models. The manuscript has
been rewritten to better reflect its originality.

2) Pag 4 line 4-13. The differences between the two experiments are described. The
differences in the meteorology (two different years) and stations (amount of observations
and their locations) are those that undermine more the statistical significance of the results.
Most of them are presented (see Table2 and Table 4) without bootstrap confidence intervals
or other techniques to assess if the differences between the two phases are statistically
significant. The numbers of Phase | and Il are often very close, and despite that, the authors
build many conclusions on the top of these small differences. Also, most of the differences
(if any) could be explained by the meteorology or the underlying changes in the station
network. The authors should, at least, have made an attempt to make the two experiments
more homogenous, i.e. by keeping a similar kind of stations over the two phases (same
amount of urban, background stations).

Response: We have tested the statistical hypotheses on the differences of the distributions
and their means through the Kolmogorov-Smirnov test and the t-test respectively. Although
many differences were generally significant at the 1% level, we have decided to remove the
comparisons of the two phases. The two experiments were independently designed and
executed and have many differences. The harmonization of the validation set would remove
an uncertain factor. Even then, the attribution of the differences between the two datasets
to the uncertain factors (meteorology, models, coupling, etc.) in a statistical framework



would still include a considerable amount of uncertainty. Moreover, such quantitative
decomposition is beyond the objectives stated in this study. Therefore, the manuscript has
been rewritten as an analysis of the performance of different ensemble techniques rather
than as a comparison of the results from the two phases of the AQMEII activity.

3) Section 4.1 Forecasting performances. The authors want to prove that the weighting
scheme might be used in forecasting mode. There are two issues here that undermine the
conclusions of this section. My understanding is that some of the models participating at the
inter-comparison are not running in forecasting mode (they use meteorological reanalysis as
boundary conditions). While they should run as an operational real-time forecasting model
to be considered as realistic forecasts. Running these model in forecasting mode would
change the model behaviors and error structures. Hence the conclusions achieved might
change as well. How the bias of the models is removed in this test? Using the bias computed
over the entire period (as previously mentioned) to correct forecast issued over the same
test period would not be possible in real-time forecasting. This simple bias removal
technique might not be so effective especially in forecasting mode when data from the
future cannot be used.

Response: With respect to the first issue, the term ‘forecast’ has been changed to
‘simulation’ throughout the text. Concerning the second issue, bias removal is beneficial to
the ensemble mean according to the bias-variance-covariance decomposition. It is not
necessary for the approaches relying on reduced-dimensionality ensembles but the formulas
for the analytically optimized weights have been derived with the assumption of bias-free
members. As for the implementation, the mean bias over the training period is removed
from the time-series of the test dataset. An explanation has been added in the text to
clarify that the bias calculated in the train dataset (for the examined training periods of
5-60 days) is subtracted from the test dataset.

Our results indicate that after 30-60 days, the variable biases and weights have no effect in
the skill of the weighted ensemble mean. Besides that, the seasonal bias reflects the
systematic errors of the single models and it is considered a known quantity for validated
models. Those considerations support the possible application of the approaches in
real-time forecasting.

Minor comments:

The sentence: “In addition, mathematical tools such as ensemble forecasting provide an
extra channel for uncertainty quantification and eventually reduction. Such method seems
similar to the Monte Carlo approach; in practice, the similarity is only phenomenological
since the probability density function of the uncertainty is not sampled in any statistical
context like random, latin-hypercube, etc.” is not clear at all. Ensemble forecasting cannot
be considered as a mathematical tool in general. What does it mean:” Similarity in only
phenomenological. . ..”?

Response: The sentence has been removed from the text.



“benefits from ensemble forecasting arise from the averaging out of the unpredictable
components (Kalnay, 2003).” It would be correct to say that benefits arise from averaging
estimates with uncorrelated errors.

Response: Done. The sentence has changed accordingly.

Pag 3 line 25 “One of the challenges in ensemble forecasting is the processing of the
deterministic models”. This is true only if you are talking about a multi-model ensemble.

Response: Done. The sentence has changed accordingly.

Eq1 bias, var, cov? Should be presented with a more detailed notation

Response: Done.

Eq 2 E is the mean over what?

Response: Eq 1 and Eq 2 are related through their expectations over multiple stations.
Line 6 page 8 keep the same stations over the two phases

Response: We do not compare differences between the two phases in the revised
manuscript.

Line 24 page 8 indirect feedback of what? Some details should be added

Response: The sentence has been removed from the text.

Line 19 page 5 I’d say the minimum (what does it mean ideal?)

Response: Done. The sentence has changed accordingly.

Section 2.1 86 % is a general value or something related to this paper

Response: It is general, the first Ngge members account for 86% of the variability.

The same bunch of authors (or most of them) appears in previous publications regarding
AQMEII phase | and II. | have some doubts (but | might be wrong) that they all give an active
contribution to this paper or at least original compared to what already provided in the
previous publications regarding these experiments. It would be fair to include in detail a
description of the contribution of each author to this paper.

Response: The authors present in many AQMEII publications, as well as this one, are from the

modeling groups that performed the simulations. Without the simulations, none of the
published analyses would be possible.
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(e sl paaeerzafion Ghemical GGHAAIS)) Mult-model ensermbles can improve

the forecast skill provided that certain mathematical conditions are fulﬁlled._

Keywords: AQMEII, multi-model ensembles, air quality model, error decomposition,

verification.
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1 Introduction

Uncertainties in atmospheric models such as the chemical weather models, whether due to the
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The air quality modelling and monitoring has a shorter

—
\]

history that does not allow a similar adequate estimation of such trend for the numerous

—
(8]

species being modelled.

\]
—

Ideally, for continuous and unbiased variables, the multi-model ensemble mean outscores the
22 skill of the deterministic models provided that the members have similar skill and
23 independent errors (Potempski and Galmarini, 2009; Weigel et al., 2010). Practically, the
24 multi-model ensemble mean usually outscores the skill of the deterministic models if the
25  evaluation is performed over multiple observation sites and times. This occurs because over a
26  network of stations, there are some where the essential conditions (e.g. the skill difference

27  between the models is not too large) for the ensemble members are fulfilled, favouring the

28  ensemble mean,;

30  Hence, although the skill of the numerical models varies in space (latitude, longitude, altitude)
31 and time (e.g., hour of the day, month, season), the ensemble mean is usually the most

32 accurate spatio-temporal representation.
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7 ensemble members such as the singular value decomposition (Pagowski et al., 2005),
8 dynamic linear regression (Pagowski et al., 2006; Djalalova et al., 2010), Kalman filtering
9 (Delle Monache et al., 2011), Bayesian model averaging (Riccio et al., 2007; Monteiro et al.,
10 2013) and analytical optimization (Potempski and Galmarini, 2009) while model selection
11 usually relies on the quadratic error or its proxies, in time (e.g. Solazzo et al., 2013;
12 Kioutsioukis and Galmarini., 2014) or frequency space (Galmarini et al., 2013). The majority
13 of those ensemble studies focuses on Os and only recently the studies also involve particulate
14 matter (Djalalova etal., 2010; Monteiro et al., 2013).

IS In this work, we apply and intercompare both approaches (weighting and sub-selecting) using
16 the Air Quality Model Evaluation International Initiative (AQMEII) datasets from phase I and
17 phase II. The ensemble approaches are evaluated against ground level observations from the
18 EMEP and Airbase databases, focusing on the pollutants Os, NO; and PMy that exhibit
19 different levels of forecast skill. The differences between the multi-model ensembles of phase
20 1 (hereafter AQMEIL-I) and phase II (hereafter AQMEIL-II) originate from many sources,
21

This statistical process

favours the ensemble mean at each observation site. Two basic pathways exist to achieve this

goal: model weighting or model sub-selecting.

(a) the simulated years are different (2006 vs.

22 2010), therefore the meteorological conditions are different; (b) emission methodologies have
23 changed; (c) boundary conditions are very different; (d) the composition of the ensembles is
24  different; (e) the models in AQMEII-II use on-line coupling between meteorology and
25  chemistry; (f) the models may have been updated with new science processes apart from
26  feedback processes. The uncertainties arising from observational errors are not taken into
27  consideration.

28

29  In detail, the objectives of the paper are (a) to interpret the skill of the unconditional multi-
30  model mean within AQMEII-I and AQMEII-II (b) to calculate the maximum expectations in
31  the skill of alternative ensemble estimators and (c) to evaluate the operational implementation

32 of the approaches using cross-validation.

A ‘
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comparison of several ensemble methods on pollutants of different skill using different
datasets, (b) the introduction of an approach based on high-dimension spectral optimization,
(c) the introduction of innovative charts for the interpretation of the error of the unconditional
ensemble mean with respect to indicators reflecting the skill difference and error dependence
of the models as well as the effective number of models. Therefore we carry out an analysis of
the performance of different ensemble techniques rather than a comparison of the results from

the two phases of the AQMEII activity.

The paper is structured as follows: section 2 provides a brief description of the ensemble’s
basic properties through a series of conditions expressed by mathematical equations. In
section 3, the experimental setup is described. Results are presented in section 4, where the
skill of the deterministic models, the unconditional ensemble mean and the conditional

ensemble estimators are analysed and intercompared. Conclusions are drawn in Section 5.

2 Minimization of the ensemble error

The notation conventions used in this section are briefly presented in the following. Assuming
an ensemble composed of M members (i.e. output of modelling systems) denoted as f;,
i=1,2,...,M, the multi-model ensemble mean can be evaluated from f = ¥, w;f;,>w; = 1. The
weights (w;) sum up to one and can be either equal (uniform ensemble) or unequal

(nonuniform ensemble). The desired value (measurement) is u.

Assuming a uniform ensemble, the squared error (MSE) of the multi-model ensemble mean
can be broken down into three components, namely, the average bias (1** term), the average
error variance (2™ term) and the average error covariance (3" term) of the ensemble members

(Ueda and Nakano, 1996):

MSE(f) = (%Z(fl = u)) + %(%Z(fl - u)2>

=1

#(1=5) | mar=p 2. 0. A=0G=0

i=1 i#j

The decomposition provides the reasoning behind ensemble averaging: as we include more
ensemble members, the variance factor is monotonically decreasing and the MSE converges

towards the covariance factor. Covariance, unlike the other two positive definite terms, can be

5
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either positive or negative; its minimization requires an ensemble composed by independent
or even better, negatively correlated members. In addition, bias correction should be a
necessary step prior to any ensemble manipulation. More details regarding this decomposition

within the air quality ensembles context can be found in Kioutsioukis and Galmarini, 2014.

In a similar fashion, the squared error of the multi-model ensemble mean can be decomposed
into the difference of two positive-definite components, with their expectations characterized

as accuracy and diversity (Krogh and Vedelsby, 1995):

M m
WSER) ) P gy () =
This decomposition proves that the error of the ensemble mean is guaranteed to be less than

or equal to the average quadratic error of the component models. The minimum ensemble

error depends on the right trade-off between accuracy (1™ term on the r.h.s. of Eq. 2) and

diversity (2™ term on the r.h.s. of Eq. 2). If the evaluation is applied on multiple sites, then the

l\!!‘
i
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The three decompositions presented assume uniform ensembles, i.e. all members receive
equal weight. For the case of a non-uniform ensemble, the MSE of the multi-model ensemble
mean can be analytically minimized to yield the optimal weights, provided that the

participating models are bias-corrected (Potempski and Galmarini, 2009):

K1l

R — Eq.4
(K11, 1)

W=
where, w is the vector of optimal weights, K is the error covariance matrix and / the unitary
vector. In its simplest form, the equation assigns one weight for each model at each
measurement site; more complicated versions like multidimensional optimisation for many

variables (e.g. chemical compounds) at many sites simultaneously are not discussed here.

Unlike the straightforward calculation of the optimal weights, the sub-selecting schemes make
use of a reduced-dimensionality ensemble. An estimate of the effective number of models
(Nerr) sufficient to reproduce the variability of the full ensemble is calculated as (Bretherton

et al., 1999):

2
M
.4 S
NEFF (Z i=1 l) Eq.S

M 2
Yi=15i

where s; is eigenvalue of the error covariance matrix. Theoretical evidence shows that the
fraction of the overall variance expressed by the first Ngzr eigenvalues is 86%, provided that
the modelled and observed fields are normally distributed (Bretherton et al., 1999). The

highest eigenvalue is denoted as s,,.

It is apparent from the above considerations that the skill of the unconditional ensemble mean
has the potential for certain advantages over the single members, provided some properties
are satisfied. As those properties are not systematically met in practice, superior ensemble
skill can be achieved through sub-selecting or weighting schemes presented in this section.
An inter-comparison of the following approaches in ensemble averaging is investigated in this

work using observed and simulated air quality time-series:

* Unconditional ensemble mean (mme)
* Conditional (on selected members) ensemble mean in time domain (mme<): the
optimal trade-off between accuracy and diversity (equation 2) is identified across all

possible combinations of the available M models (Kioutsioukis and Galmarini, 2014).

7
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(1) normalised mean square error (NMSE), i.e. the mean

square error (MSE) divided by OM, where O and M are the mean value of the observation and

the el sespctively, (2) probabilty of detection (POD) and flse alarm rate (FAR), e the

(3) Taylor plots (Taylor, 2001), which summarize standard deviation, root mean square error
(RMSE) and Pearson product-moment correlation coefficient in a single point on a two-

dimensional plot.
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Recent studies with regional air quality models yielded that the full variability of the
ensemble can be retained with only an effective number of models (NVgrr) on the order of 5-6
(e.g. Solazzo et al., 2013; Kioutsioukis and Galmarini, 2014; Marecal et al., 2015). The

minimum number of ensemble members to sample the uncertainty should be well above Nggr;

N N = = =
2R x5 DERPPREEe - o ®®

for this reason, we focus on the European domain (EU) due to its sufficient number of models

N
\S]

to form the ensemble.

23

29  Following the statements of section 2, each model has been bias-corrected prior to the

30 analysis, i.e. its own mean bias over the examined three-month period has been subtracted

31  from its modelled time-series at each monitoring site.


plaisio
Highlight

plaisio
Highlight

plaisio
Highlight

plaisio
Highlight


POPPPPPe o0 -ooe®

17

—
o0

25

All monitoring stations are rural and have data at

least 75% of the time.

4 Results

period) with continuous dataand rlaively high concentration: for O, Junc-July-ugust was

selected while September-October-November is used for NO, and PMj.

4.1 Single Models

The distributions of each model’s NMSE for O;, NO, and PM;, over all monitoring stations

are presented in Figure 2 as box-and-whisker plots.
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22 4.2 Pitfalls of the unconditional multi-model mean

23 The skill of the multi-model mean has been compared against the skill of the best
24 deterministic model, independently evaluated at each monitoring site_The
25  geographical distribution of the ratio RMSE(mme)/RMSEggstvoner 1S presented in Figure 3.

The indicator does not exhibit any longitudinal or latitudinal dependence.
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The eigenvalues of the covariance matrix calculated from the model errors provides
10  information on the members’ diversity and the ensemble redundancy (Eq. 5). Following the
11  eigen-analysis of the error covariance matrix at each station separately and converting the

12 eigenvalues to cumulative amount of explained variance, the resulting matrix is presented into

13 box and whisker plot (Figure 4).

—
O
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The area below the diagonal in Figure 5 corresponds to monitoring sites with disproportionally

low diversity under the current level of accuracy._
Sl R ATl S GEpERGGRIIGHOR) This siuaton pracicaly means a

31 limited number of skilled models with correlated errors, which in turn denotes a small Nggr

N
O

32 value as demonstrated in Figure 6. The opposite state is true for the area above the diagonal. It
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corresponds to locations that are constituted from models with comparable skill and relatively
independent errors, reflecting a high Ngpr value. This matches the desired synthesis for an

ensemble.

4.3 Conditional multi-model mean

Following the identification of the weaknesses in the ensemble design, the potential for

corrections through more sophisticated schemes is now investigated.

built upon higher order (namely, Ness) specral components (1zFO) s also investigated. In

this section we mark the boundaries of the possible improvements for different ensemble
mean estimators applicable to the AQMEII datasets and their sensitivity to sub-optimal

conditions using cross-validation.

e FEUREY G e SO O TAYIOHBIOS) For Os, the deterministic models have

standard deviations that are smaller compared to observations and a narrow correlation pattern
(~0.7) that is slightly deteriorated in AQMEII-II. For NO,, members with higher variance -as
well as lower- than the observed variance exist in the ensemble while the correlation spread is
becoming narrower in AQMEII-II and demonstrates a minor improvement. Last, simulated
PM;, from the deterministic models displays smaller standard deviation compared to
observations with a wide correlation spread (0.3-0.6). The multi-model mean is always found

closer to the reference point, in an area that incorporates lower error and increased correlation

13
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but at the same time generally low variance. The examined ensemble estimators (mmW,
mme<, kzFO, kzHO) are horizontally shifted from mme, hence they demonstrate even lower
error and increased correlation and variance. Among them, the highest composite skill was

found for mmW, followed by kzHO.

AW N =

A comparison between the skill of the examined ensemble estimators versus the mme and the

best single model is now conducted
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The statistical distributions of the skill scores of the examined ensemble estimators (mmW,
mme<, kzFO, kzHO) over mme are well bounded from above to lower than unity values
(Figure 9). The only exception exists for roughly 10% of the stations, for all pollutants, where
kzFO demonstrates higher MSE compared to mme. Unlike the other ensemble estimators,
kzFO utilises independent spectral components each obtained from a single model,
eliminating the possibility for ‘cancelling out’ of random errors. All cases belonging to this

10% of the samples (lower tail of the cdf) demonstrate high Ngpp, where the benefits from
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available in the training procedure.

The interquartile range of the day-to-day difference in the weights is calculated and its range
over all stations is displayed in Figure 10. No convergence occurs, however the variability of

the mmW weights is notably reduced after a certain amount of time. If we set a tolerance level

at the second decimal, to be satisfied at all stations,
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Table 5 presents the
mmW skill obtained from training over time series of different lengths varying from 5 to 60
days. For O3, mmW trained over 10 days yields similar results with mme while longer periods
result in large departures from mme. NO, and PM;, require larger training periods than Os.
The use of mmW is practically of no benefit compared to mme if the traning period is less than
20 days for NO, and 30 days for PM,. For all pollutants, the variability of the weights and

the bias has no effect in the error after 60 days.

5 Conclusions
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The skill enhancement is superior using the weighting scheme but the required training period
to acquire representative weights was longer compared to the sub-selecting schemes. For all

pollutants, the variability of the weights and the bias has negligible effect in the error for

training periods longer than 60 days.

The improvement of the physical, chemical and dynamical processes in the deterministic
models is a-procedure that results in better forecasts. Besides that, mathematical
optimizations in the input data (e.g. data assimilation) or the model output (e.g. ensemble

estimators) have a significant contribution in the accuracy of the whole modelling process.

uncorrelated models is far from being achieved from all ensemble estimators. Further

development is underway in the presented ensemble methods that take into account the

meteorological and chemical regimes.
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Figure 2. Model skill difference via the NMSE. On each box, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25™ and 75" percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers and the outliers (points
with distance from the 25" and 75" percentiles larger than 1.5 times the interquartile range) are
plotted individually using the '+' symbol.
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Figure 6. Like Figure 5 but showing the Ng with respect to skill difference and error dependence.
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Figure 8. Like Figure 5 but for the mmec< skill in the reduced ensemble. Please note the change in

the colorscale.
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Figure 10. The interquartile range over all stations of the day-to-day difference in the weights

arising from variable time-series length.
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