
                                      

Dear Prof. Carmichael, 
 
we have uploaded the revised version of the paper entitled “Insights	into	the	deterministic	
skill	 of	 air	 quality	 ensembles	 from	 the	 analysis	 of	 AQMEII	 data (acp-2016-513)”. We 
would like to thank you for all the detailed comments concerning the mathematical/physical 
rigor and clarity of the paper, and we tried our best to comply with the reviewers’ comments. 
Accordingly, we believe we have been able to significantly enhance both the content of the 
paper and quality of English. 
 
We have re-written and re-organized the majority of the presented material in order (a) to 
emphasize the originality of the work and (b) to remove any comparison between AQMEII 
phase 1 and 2. Specifically, we have:  

- Added a more focused title; 
- Introduced a new section 3 with the experimental setup;  
- Merged the old sections 3 and 4 into one (Results), with three subsections; one for the 

single models, one for the unconditional ensemble mean and its pitfalls and one with 
the conditional ensemble estimators; 

- Replaced all tables with others containing more information; 
- Expanded the conclusions with the ‘take-home’ messages. 

We believe, thanks to the reviewers, we have been able to accomplish a worthwhile 

improvement of the quality of the paper and have, we hope, clarified the points raised by the 

reviewers.  

 
 
Sincerely yours, 
 
Ioannis Kioutsioukis and Stefano Galmarini 
 



                                      

MS	No.:	acp-2016-513	 

Referee #1: Matthieu. Plu 

We thank Dr Matthieu Plu for the positive and helpful comments that have improved 
the manuscript. They have all been taken on board and addressed in the revised 
version of our manuscript.  

General Comments: 

The manuscript entitled "Improving the deterministic skill of air quality ensembles" reports 
about the properties and the scores of different ensembles applied on the model outputs of 
the two phases of AQMEII (2006 and 2010) over Europe. The presentation of the manuscript 
and of figures is good. To my view, the study has several merits and the results that are 
presented are original enough to be published. However, the manuscript should be improved 
along the following recommendations in order to go over the Discussion step.  

Specific Comments: 

1. There is a lack of focus of the manuscript on the main relevant original ideas that are 
demonstrated. Many interesting results are presented, and the manuscript needs to 
focussed on one or two main new scientific questions that the manuscript addresses. These 
lines should be followed from the abstract to the conclusion. To make my argument more 
understandable, I would like to point out the following:  

- the results that are reported in the first paragraph of the abstract - from lines 6 to 10 - are 
not new as they were demonstrated in past research articles. These lines mislead the reader 
on the purpose of the article;  

- many times (page2-line12, page4-line4, page7-line12), "two ensembles" appear in the text, 
but it is not clear whether it refers to two different ensemble methods (and actually, the 
article compares more than two methods) or to the two AQMEII phases.  

A suggestion would be to present the article as a comparison of different ensemble methods 
(mmW, mmS, KZ, ...), applied on two different datasets (both phases of AQMEII). Actually, 
the manuscript does not present new methods, but it compares the performance of existing 
ensemble methods on different pollutants and on different periods. What I consider also to 
be original are the diagnostics (such as Figure 5) that have been developed and that are used 
to analyse the ensemble properties. The objectives written page 4 (lines 20-23) may also be 
the relevant lines to follow, which is not fully obvious in the present manuscript.  

Response: Thank you for the valuable suggestion. The manuscript has been rewritten as an 
analysis of the performance of different ensemble techniques rather than a comparison of 
the results from the two phases of the AQMEII activity, focusing on the originality of the 
study that includes: (a) the comparison of several ensemble methods on pollutants of 
different skill using different datasets, (b) the introduction of an approach based on 
high-dimension spectral optimization, (c) the introduction of innovative charts for the 
interpretation of the error of the unconditional ensemble mean with respect to indicators 



                                      

reflecting the skill difference and error dependence of the models as well as the effective 
number of models.  

2. In the same line of thoughts, the title of the manuscript is too general and it should be 
more specific. A general title such as the one that appears now could apply to many papers 
that have already been published.  

Response: Done as suggested. The title has been changed to ”Insights in the deterministic 
skill of air quality ensembles from the analysis of AQMEII data” 

3. Comparing the ensemble performance between the two AQMEII phases does not bring 
much to the study and can be misleading, since:  

- the observation dataset changes (no PM10 observations available from UK nor France in 
Phase II, page8-lines7-8),  

- the period (meteorological regimes, types of pollution, etc) change,  

- the individual models change in depth.  

The differences in ensemble performances between phases I and II (page9 for instance) are 
subject to all these differences. The attribution of differences of ensemble performances 
between the two phases should be done cautiously, making only one variable change at each 
time for any interpretation. If it is not possible, I suggest then to remove the discussions 
about the differences between Phase I and Phase II of AQMEII.  

Response: Done. The new presentation is after an analysis of the performance of different 
ensemble techniques rather than a comparison of the results from the two phases of the 
AQMEII activity. 

4. There is a lack of description of the experimental setup of the two phases of 
AQMEII, that would help the reader to understand some of the conclusions that are 
drawn, such as the arguments at page9-line19, page16-line, among others. The 
manuscript as it is written now is not self-consistent. To improve this, I would 
suggest to add in section 3.2 the key facts of both AQMEII phases: general 
experimental setup (domain, periods, common input data and setup for all models) 
and the different models that partici- pate (name, chemical and aerosol schemes, 
resolution, meteorological model, etc). At least the key facts that are needed to 
understand the discussions should appear in the manuscript. For the rest, the 
manuscript should cite some AQMEII reference articles. 

Response: Done as suggested. A new section 3 with the experimental setup has been added. 

Minor comments: 

- page 3, if the "Recent results" (line 7) refer to the citation (Eskes, 2002) (line 9), then the 
word "Recent" does not apply; if they refer to an actual recent other work, please cite it,  



                                      

Response: Done as suggested. The word ‘recent’ has been removed.   

- the manuscript would gain in clarity if the KZ methods (page6) were described more in 
depth; for instance the page12-lines(7-10) sentence is somehow enigmatic.  

Response: Done as suggested. Two paragraphs have been introduced in section 2. The first 
describes the rationale behind spectral optimization (spectral decomposition equations are 
provided in the Appendix). The second presents the examined ensemble estimators with 
reference to their theoretical basis.  

- Is the quarter (September-October-November) chosen for NO2 the most relevant one? Do 
not the December-January-February quarters show higher NO2 concentration levels?  

Response: We choose a continuous seasonal time series for each pollutant.   

- The sentence page7-line22 would better fit in section 3.1.  

Response: Done as suggested. 

- page8-lines5-8: the sentence "the decline ... due to .. sampling stations." should be proven 
by some diagnoses or adequate citation.  

Response: The sentence has been removed from the text. 

- page10-line 2: the sentence "the benefits of ensemble ... members)." is not fully clear and 
maybe not true: what happens if we take the 6 "worse performing" models?  

Response: We have rephrased the sentence to emphasize that we do not mean particular 
models. 

- page10-line17: reference to the relevant figure is needed.  

Response: The sentence has been removed from the text. 

- page17-line28: remove ’*’  

Response: Done as suggested.   

 

 



                                      

MS No.: acp-2016-513  

Referee #2: Anonymous 

We thank the anonymous reviewer for the many helpful suggestions that have 
improved the manuscript. They have all been taken into consideration and 
addressed in the revised version of our manuscript.  

General/Specific Comments: 

The paper analyses the two phases of the AQMEII initiatives to test different techniques for 
improving deterministic estimates from multi-model ensembles. Even though the paper is 
generally well written, my opinion is that the scientific novelty is scarce, and most of the 
conclusions are not solid. Here are my motivations:  

1) As stated in the Abstract: Line 5-7 “we demonstrate. . .is far from optimum,”. This has 
been already proved several times is previous publications. (see Solazzo et al. 2013, Riccio 
et al. 2007, Galmarini et al. 2013, among others). In these papers, the same concepts and 
techniques of reducing the dimensionality of multi-model ensembles and optimal 
combination have been widely and repeatedly presented.  

Response: We have re-written many parts of the manuscript to make more clear the focus 
and originality of the study. The scientific novelty of the study includes: (a) the comparison 
of several ensemble methods on pollutants of different skill using different datasets, (b) the 
introduction of an approach based on high-dimension spectral optimization, (c) the 
introduction of innovative charts for the interpretation of the error of the unconditional 
ensemble mean with respect to indicators reflecting the skill difference and error 
dependence of the models as well as the effective number of models. The manuscript has 
been rewritten to better reflect its originality. 

2) Pag 4 line 4-13. The differences between the two experiments are described. The 
differences in the meteorology (two different years) and stations (amount of observations 
and their locations) are those that undermine more the statistical significance of the results. 
Most of them are presented (see Table2 and Table 4) without bootstrap confidence intervals 
or other techniques to assess if the differences between the two phases are statistically 
significant. The numbers of Phase I and II are often very close, and despite that, the authors 
build many conclusions on the top of these small differences. Also, most of the differences 
(if any) could be explained by the meteorology or the underlying changes in the station 
network. The authors should, at least, have made an attempt to make the two experiments 
more homogenous, i.e. by keeping a similar kind of stations over the two phases (same 
amount of urban, background stations).  

Response: We have tested the statistical hypotheses on the differences of the distributions 
and their means through the Kolmogorov-Smirnov test and the t-test respectively. Although 
many differences were generally significant at the 1% level, we have decided to remove the 
comparisons of the two phases. The two experiments were independently designed and 
executed and have many differences. The harmonization of the validation set would remove 
an uncertain factor. Even then, the attribution of the differences between the two datasets 
to the uncertain factors (meteorology, models, coupling, etc.) in a statistical framework 



                                      

would still include a considerable amount of uncertainty. Moreover, such quantitative 
decomposition is beyond the objectives stated in this study. Therefore, the manuscript has 
been rewritten as an analysis of the performance of different ensemble techniques rather 
than as a comparison of the results from the two phases of the AQMEII activity.  

3) Section 4.1 Forecasting performances. The authors want to prove that the weighting 
scheme might be used in forecasting mode. There are two issues here that undermine the 
conclusions of this section. My understanding is that some of the models participating at the 
inter-comparison are not running in forecasting mode (they use meteorological reanalysis as 
boundary conditions). While they should run as an operational real-time forecasting model 
to be considered as realistic forecasts. Running these model in forecasting mode would 
change the model behaviors and error structures. Hence the conclusions achieved might 
change as well. How the bias of the models is removed in this test? Using the bias computed 
over the entire period (as previously mentioned) to correct forecast issued over the same 
test period would not be possible in real-time forecasting. This simple bias removal 
technique might not be so effective especially in forecasting mode when data from the 
future cannot be used.  

Response: With respect to the first issue, the term ‘forecast’ has been changed to 
‘simulation’ throughout the text. Concerning the second issue, bias removal is beneficial to 
the ensemble mean according to the bias-variance-covariance decomposition. It is not 
necessary for the approaches relying on reduced-dimensionality ensembles but the formulas 
for the analytically optimized weights have been derived with the assumption of bias-free 
members. As for the implementation, the mean bias over the training period is removed 
from the time-series of the test dataset. An explanation has been added in the text to 
clarify that the bias calculated in the train dataset (for the examined training periods of 
5-60 days) is subtracted from the test dataset.  

Our results indicate that after 30-60 days, the variable biases and weights have no effect in 
the skill of the weighted ensemble mean. Besides that, the seasonal bias reflects the 
systematic errors of the single models and it is considered a known quantity for validated 
models. Those considerations support the possible application of the approaches in 
real-time forecasting.    

  

Minor comments: 

The sentence: “In addition, mathematical tools such as ensemble forecasting provide an 
extra channel for uncertainty quantification and eventually reduction. Such method seems 
similar to the Monte Carlo approach; in practice, the similarity is only phenomenological 
since the probability density function of the uncertainty is not sampled in any statistical 
context like random, latin-hypercube, etc.” is not clear at all. Ensemble forecasting cannot 
be considered as a mathematical tool in general. What does it mean:” Similarity in only 
phenomenological. . ..”?  

Response: The sentence has been removed from the text.  



                                      

“benefits from ensemble forecasting arise from the averaging out of the unpredictable 
components (Kalnay, 2003).” It would be correct to say that benefits arise from averaging 
estimates with uncorrelated errors.  

Response: Done. The sentence has changed accordingly. 

Pag 3 line 25 “One of the challenges in ensemble forecasting is the processing of the 
deterministic models”. This is true only if you are talking about a multi-model ensemble.  

Response: Done. The sentence has changed accordingly. 

Eq1 bias, var, cov? Should be presented with a more detailed notation  

Response: Done. 

Eq 2 E is the mean over what? 

Response: Eq 1 and Eq 2 are related through their expectations over multiple stations.  

Line 6 page 8 keep the same stations over the two phases 

Response: We do not compare differences between the two phases in the revised 
manuscript. 

Line 24 page 8 indirect feedback of what? Some details should be added  

Response: The sentence has been removed from the text.  

Line 19 page 5 I’d say the minimum (what does it mean ideal?)  

Response: Done. The sentence has changed accordingly. 

Section 2.1 86 % is a general value or something related to this paper  

Response: It is general, the first NEFF members account for 86% of the variability.  

The same bunch of authors (or most of them) appears in previous publications regarding 
AQMEII phase I and II. I have some doubts (but I might be wrong) that they all give an active 
contribution to this paper or at least original compared to what already provided in the 
previous publications regarding these experiments. It would be fair to include in detail a 
description of the contribution of each author to this paper.  

Response: The authors present in many AQMEII publications, as well as this one, are from the 
modeling groups that performed the simulations. Without the simulations, none of the 
published analyses would be possible.    
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 2 

Abstract 1 

Simulations from chemical weather models are subject to uncertainties in the input data (e.g. 2 

emission inventory, initial and boundary conditions) as well as those intrinsic to the model 3 

(e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve 4 

the forecast skill provided that certain mathematical conditions are fulfilled. In this work, four 5 

ensemble methods were applied to two different datasets and their performance was compared 6 

for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the 7 

unconditional ensemble average, the approach behind the other three methods relies on 8 

adding optimum weights to members or constraining the ensemble to those members that 9 

meet certain conditions in time or frequency domain. The two different datasets were created 10 

for the first and second phase of the Air Quality Model Evaluation International Initiative 11 

(AQMEII). The methods are evaluated against ground level observations collected from the 12 

EMEP and Airbase databases. The goal of the study is to quantify to what extent we can 13 

extract predictable signals from an ensemble with superior skill over the single models and 14 

the ensemble mean. Verification statistics shows that the deterministic models simulate better 15 

O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. 16 

The unconditional ensemble mean achieves higher skill compared to each station’s best 17 

deterministic model at no more than 60% of the sites, indicating for the rest a combination of 18 

members with unbalanced skill difference and error dependence. The promotion of the right 19 

amount of accuracy and diversity within the ensemble results in an average additional skill up 20 

to 31% compared to using the full ensemble in an unconditional way. The skill improvements 21 

were higher for O3 and lower for PM10, associated to the extent of potential changes in the 22 

joint distribution of accuracy and diversity in the respective ensembles. The skill 23 

enhancement was superior using the weighting scheme but the training period required to 24 

acquire representative weights was longer compared to the sub-selecting schemes. Further 25 

development of the method is discussed in the conclusion.   26 

 27 

Keywords: AQMEII, multi-model ensembles, air quality model, error decomposition, 28 

verification. 29 

 30 
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 3 

1 Introduction 1 

Uncertainties in atmospheric models such as the chemical weather models, whether due to the 2 

input data or the model itself, limit the predictive skill. The incorporation of data assimilation 3 

techniques and the continued effort in understanding the physical, chemical and dynamical 4 

processes, result in better forecasts (Zhang et al., 2012). In addition, ensemble methods 5 

provide an extra channel for forecast improvement and uncertainty quantification. The 6 

benefits from ensemble averaging arise from filtering out the components of the forecast with 7 

uncorrelated errors (Kalnay, 2003). 8 

The European Centre for Medium-Range Weather Forecast (ECMWF) reports an increase in 9 

forecast skill of 1 day per decade for meteorological variables, evaluated on the geopotential 10 

height anomaly (Simmons, 2011). The air quality modelling and monitoring has a shorter 11 

history that does not allow a similar adequate estimation of such trend for the numerous 12 

species being modelled. Moreover, the skill changes dramatically from species to species 13 

strongly connected to the availability of accurate emission data. Results for ozone suggest that 14 

medium-range forecasts can be performed with a quality similar to the geopotential height 15 

anomaly forecasts (Eskes et al., 2002). Besides the continuous increase in skill due to the 16 

improved scientific understanding, harmonized emission inventories, more accurate and 17 

denser observations as well as ensemble averaging, an extra gain of similar magnitude can be 18 

achieved for ensemble-based deterministic modelling using conditional averaging (e.g., 19 

Galmarini et al., 2013; Mallet et al., 2009; Solazzo et al., 2013).  20 

Ideally, for continuous and unbiased variables, the multi-model ensemble mean outscores the 21 

skill of the deterministic models provided that the members have similar skill and 22 

independent errors (Potempski and Galmarini, 2009; Weigel et al., 2010). Practically, the 23 

multi-model ensemble mean usually outscores the skill of the deterministic models if the 24 

evaluation is performed over multiple observation sites and times. This occurs because over a 25 

network of stations, there are some where the essential conditions (e.g. the skill difference 26 

between the models is not too large) for the ensemble members are fulfilled, favouring the 27 

ensemble mean; for the remaining stations, where the conditions are not fulfilled, local 28 

verification identifies the best model but generally no single model is the best at all sites. 29 

Hence, although the skill of the numerical models varies in space (latitude, longitude, altitude) 30 

and time (e.g., hour of the day, month, season), the ensemble mean is usually the most 31 

accurate spatio-temporal representation. 32 
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 4 

One of the challenges in multi-model ensemble forecasting is the processing of the 1 

deterministic models datasets prior to averaging in order to construct another dataset for 2 

which its members ideally constitute an independent and identically distributed (i.i.d.) sample 3 

(Kioutsioukis and Galmarini, 2014; Bishop and Abramowitz, 2013). This statistical process 4 

favours the ensemble mean at each observation site. Two basic pathways exist to achieve this 5 

goal: model weighting or model sub-selecting. There are several methods to assign weights to 6 

ensemble members such as the singular value decomposition (Pagowski et al., 2005), 7 

dynamic linear regression (Pagowski et al., 2006; Djalalova et al., 2010), Kalman filtering 8 

(Delle Monache et al., 2011), Bayesian model averaging (Riccio et al., 2007; Monteiro et al., 9 

2013) and analytical optimization (Potempski and Galmarini, 2009) while model selection 10 

usually relies on the quadratic error or its proxies, in time (e.g. Solazzo et al., 2013; 11 

Kioutsioukis and Galmarini., 2014) or frequency space (Galmarini et al., 2013). The majority 12 

of those ensemble studies focuses on O3 and only recently the studies also involve particulate 13 

matter (Djalalova et al., 2010; Monteiro et al., 2013).  14 

In this work, we apply and intercompare both approaches (weighting and sub-selecting) using 15 

the Air Quality Model Evaluation International Initiative (AQMEII) datasets from phase I and 16 

phase II. The ensemble approaches are evaluated against ground level observations from the 17 

EMEP and Airbase databases, focusing on the pollutants O3, NO2 and PM10 that exhibit 18 

different levels of forecast skill. The differences between the multi-model ensembles of phase 19 

I (hereafter AQMEII-I) and phase II (hereafter AQMEII-II) originate from many sources, 20 

related to both the input data and the models: (a) the simulated years are different (2006 vs. 21 

2010), therefore the meteorological conditions are different; (b) emission methodologies have 22 

changed; (c) boundary conditions are very different; (d) the composition of the ensembles is 23 

different; (e) the models in AQMEII-II use on-line coupling between meteorology and 24 

chemistry; (f) the models may have been updated with new science processes apart from 25 

feedback processes. The uncertainties arising from observational errors are not taken into 26 

consideration.  27 

In spite of these differences we consider the analysis of the two sets of ensembles revealing. 28 

In detail, the objectives of the paper are (a) to interpret the skill of the unconditional multi-29 

model mean within AQMEII-I and AQMEII-II (b) to calculate the maximum expectations in 30 

the skill of alternative ensemble estimators and (c) to evaluate the operational implementation 31 

of the approaches using cross-validation. The originality of the study includes: (a) the 32 
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 5 

comparison of several ensemble methods on pollutants of different skill using different 1 

datasets, (b) the introduction of an approach based on high-dimension spectral optimization, 2 

(c) the introduction of innovative charts for the interpretation of the error of the unconditional 3 

ensemble mean with respect to indicators reflecting the skill difference and error dependence 4 

of the models as well as the effective number of models. Therefore we carry out an analysis of 5 

the performance of different ensemble techniques rather than a comparison of the results from 6 

the two phases of the AQMEII activity. 7 

The paper is structured as follows: section 2 provides a brief description of the ensemble’s 8 

basic properties through a series of conditions expressed by mathematical equations. In 9 

section 3, the experimental setup is described. Results are presented in section 4, where the 10 

skill of the deterministic models, the unconditional ensemble mean and the conditional 11 

ensemble estimators are analysed and intercompared. Conclusions are drawn in Section 5.  12 

2 Minimization of the ensemble error   13 

The notation conventions used in this section are briefly presented in the following. Assuming 14 

an ensemble composed of M members (i.e. output of modelling systems) denoted as 𝑓!, 15 

i=1,2,…,M, the multi-model ensemble mean can be evaluated from 𝑓 = 𝑤!𝑓!!
!!! , 𝑤! = 1. The 16 

weights (wi) sum up to one and can be either equal (uniform ensemble) or unequal 17 

(nonuniform ensemble). The desired value (measurement) is 𝜇.  18 

Assuming a uniform ensemble, the squared error (MSE) of the multi-model ensemble mean 19 

can be broken down into three components, namely, the average bias (1st term), the average 20 

error variance (2nd term) and the average error covariance (3rd term) of the ensemble members 21 

(Ueda and Nakano, 1996): 22 

𝑴𝑺𝑬 𝒇 =
1
𝛭 𝑓! − 𝜇

!

!!!

!

+
𝟏
𝑴

1
𝛭 𝑓! − 𝜇 !

!

!!!

+ 𝟏−
𝟏
𝑴

1
𝛭 𝛭 − 1 𝑓! − 𝜇 𝑓! − 𝜇

!!!

!

!!!
 

Eq.1 

The decomposition provides the reasoning behind ensemble averaging: as we include more 23 

ensemble members, the variance factor is monotonically decreasing and the MSE converges 24 

towards the covariance factor. Covariance, unlike the other two positive definite terms, can be 25 
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 6 

either positive or negative; its minimization requires an ensemble composed by independent 1 

or even better, negatively correlated members. In addition, bias correction should be a 2 

necessary step prior to any ensemble manipulation. More details regarding this decomposition 3 

within the air quality ensembles context can be found in Kioutsioukis and Galmarini, 2014.  4 

In a similar fashion, the squared error of the multi-model ensemble mean can be decomposed 5 

into the difference of two positive-definite components, with their expectations characterized 6 

as accuracy and diversity (Krogh and Vedelsby, 1995):  7 

𝑴𝑺𝑬 𝒇 =
1
𝑀 𝑓! − 𝜇 !

!

!!!

−
1
𝑀 𝑓! − 𝑓

!
!

!!!
 

Eq.2 

This decomposition proves that the error of the ensemble mean is guaranteed to be less than 8 

or equal to the average quadratic error of the component models. The minimum ensemble 9 

error depends on the right trade-off between accuracy (1st term on the r.h.s. of Eq. 2) and 10 

diversity (2nd term on the r.h.s. of Eq. 2). If the evaluation is applied on multiple sites, then the 11 

equations 1 and 2 should be replaced with their expectations over the stations. 12 

An error decomposition approach can also be applied on the spectral components (SC) of the 13 

observed and modelled time-series. The data can be spectrally decomposed with the 14 

Kolmogorov-Zurbenko (kz) filter (Zurbenko, 1986) while the original time-series can be 15 

obtained with the linear combination of the spectral components. Assuming the pollution data 16 

at the frequency domain yields N principal spectral bands, the squared error of the multi-17 

model ensemble mean can be broken down into N2 components (Galmarini et al., 2013; 18 

Solazzo and Galmarini, 2016): 19 

𝑴𝑺𝑬 𝒇 = 𝑀𝑆𝐸 𝑆𝐶!!

𝑵

𝒊!𝟏

+ 𝐶𝑜𝑣 𝑆𝐶!! , 𝑆𝐶!!
!!!

 

Eq.3 

This decomposition shows that the error of the ensemble mean could be split into the sum of 20 

N errors associated with different parts of the spectrum (1st term), provided the spectral 21 

components are independent (the covariance term is zero). The minimization of the error at 22 

each spectral band can be achieved with another approach such as the decompositions 23 

presented in Eq.1 and Eq.2. 24 
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 7 

The three decompositions presented assume uniform ensembles, i.e. all members receive 1 

equal weight. For the case of a non-uniform ensemble, the MSE of the multi-model ensemble 2 

mean can be analytically minimized to yield the optimal weights, provided that the 3 

participating models are bias-corrected (Potempski and Galmarini, 2009):  4 

𝒘 =
𝑲!!𝒍

(𝑲!!𝒍, 𝒍)
 

Eq.4 

where, w is the vector of optimal weights, K is the error covariance matrix and l the unitary 5 

vector. In its simplest form, the equation assigns one weight for each model at each 6 

measurement site; more complicated versions like multidimensional optimisation for many 7 

variables (e.g. chemical compounds) at many sites simultaneously are not discussed here.  8 

Unlike the straightforward calculation of the optimal weights, the sub-selecting schemes make 9 

use of a reduced-dimensionality ensemble. An estimate of the effective number of models 10 

(NEFF) sufficient to reproduce the variability of the full ensemble is calculated as (Bretherton 11 

et al., 1999): 12 

𝑁𝐸𝐹𝐹 =
( 𝒔𝒊)𝑴

𝒊=𝟏
𝟐

𝒔𝒊𝟐𝑴
𝒊=𝟏

 

Eq.5 

where si is eigenvalue of the error covariance matrix. Theoretical evidence shows that the 13 

fraction of the overall variance expressed by the first NEFF eigenvalues is 86%, provided that 14 

the modelled and observed fields are normally distributed (Bretherton et al., 1999). The 15 

highest eigenvalue is denoted as sm.  16 

It is apparent from the above considerations that the skill of the unconditional ensemble mean 17 

has the potential for certain advantages over the single members, provided some properties 18 

are satisfied. As those properties are not systematically met in practice, superior ensemble 19 

skill can be achieved through sub-selecting or weighting schemes presented in this section. 20 

An inter-comparison of the following approaches in ensemble averaging is investigated in this 21 

work using observed and simulated air quality time-series: 22 

• Unconditional ensemble mean (mme) 23 

• Conditional (on selected members) ensemble mean in time domain (mme<): the 24 

optimal trade-off between accuracy and diversity (equation 2) is identified across all 25 

possible combinations of the available M models (Kioutsioukis and Galmarini, 2014). 26 
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 8 

The number of members in the ensemble combination that gives the minimum error 1 

will be used as the effective number of models (NEFF) rather than its estimate based on 2 

the independent components of the ensemble (eq. 5).  3 

• Conditional (on selected members) ensemble mean in frequency domain (kzFO): 4 

following equation 3, an ensemble estimator is synthesized from the best member at 5 

each spectral band (Galmarini et al., 2013). The original time-series are decomposed 6 

into four spectral components (see Appendix I), namely the intra-diurnal, diurnal, 7 

synoptic and long-term component, using the Kolmogorov-Zurbenko filter (Zurbenko, 8 

1986). 9 

• Conditional (on selected members) ensemble mean in frequency domain (kzHO): it is 10 

an extension of the kzFO, where the spectral components of the ensemble estimator 11 

are averaged from NEFF members at each spectral band (rather than the best).  12 

• Conditional (optimally weighted) ensemble mean (mmW): according to equation 4 13 

(Potempski and Galmarini, 2009). 14 

The skill of the models and the examined ensemble averages have been scored with the 15 

following statistical parameters: (1) normalised mean square error (NMSE), i.e. the mean 16 

square error (MSE) divided by 𝑂𝑀, where 𝑂 and 𝑀 are the mean value of the observation and 17 

the model respectively, (2) probability of detection (POD) and false alarm rate (FAR), i.e. the 18 

proportion of occurrences (e.g. events exceeding threshold value) that were correctly 19 

identified and the proportion of non-occurrences that were incorrectly identified respectively 20 

(3) Taylor plots (Taylor, 2001), which summarize standard deviation, root mean square error 21 

(RMSE) and Pearson product-moment correlation coefficient in a single point on a two-22 

dimensional plot.  23 

3 Setup: experiments, models and observations 24 

The two AQMEII ensemble datasets have simulated the air quality for Europe [(-10,39)W; 25 

(30,65)N] and North America [(-125,-55)W; (26,51)N]. Despite the common domains, the 26 

modelling systems across the two phases have profound differences. The simulation year was 27 

2006 for AQMEII-I and 2010 for AQMEII-II, therefore the two sets are dissimilar with 28 

respect to the input data (emissions, chemical boundary conditions, meteorology). Boundary 29 

conditions are obtained from GEMS (Global and Regional Earth-System Monitoring using 30 

Satellite and in-situ data) in AQMEII-I and MACC (Monitoring Atmospheric Composition & 31 
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 9 

Climate) in AQMEII-II. The air quality models of the second phase are coupled with their 1 

meteorological driver (chemistry feedbacks on meteorology), while those of the first phase 2 

are not. The participating models are also different. Detailed analysis of the emissions, 3 

boundary conditions and meteorology for the modelled year 2006 (AQMEII-I) is presented in 4 

Pouliot et al. (2012), Schere et al. (2012) and Vautard et al. (2012). For 2010 (AQMEII-II), 5 

similar information is presented in Pouliot et al. (2015), Giordano et al. (2015) and Brunner et 6 

al. (2015).  7 

The participating models follow a restrictive protocol concerning the emissions and the 8 

meteorological and chemical boundary conditions. In AQMEII-I, meteorological models 9 

applied nudging to the NCEP GFS meteorological analysis. In AQMEII-II, the simulations 10 

were run more in a way as if they were real forecasts; meteorological boundary conditions for 11 

the majority of the models were from the ECMWF operational archive (see Tables 1 and 2 in 12 

Brunner et al, 2015) and no nudging or FDDA was applied. However, the driving 13 

meteorological data were analysis (but no reanalysis) for all simulations, with exception of the 14 

COSMO-MUSCAT run. Hence, the runs from AQMEII-II are more like forecasts than those 15 

from AQMEII-I. 16 

Recent studies with regional air quality models yielded that the full variability of the 17 

ensemble can be retained with only an effective number of models (NEFF) on the order of 5-6 18 

(e.g. Solazzo et al., 2013; Kioutsioukis and Galmarini, 2014; Marecal et al., 2015). The 19 

minimum number of ensemble members to sample the uncertainty should be well above NEFF; 20 

for this reason, we focus on the European domain (EU) due to its sufficient number of models 21 

to form the ensemble. 22 

Table 1 summarises the features of the modelling systems analysed in this study with regard to 23 

O3, NO2 and PM10 concentrations in the EU. The modelling contribution to the two phases of 24 

AQMEII consists of 12, 13 and 10 models for O3, NO2 and PM10 respectively in AQMEII-I, 25 

while 14 members were available for all species in AQMEII-II. Several discrete simulations 26 

of WRF-Chem with alternative chemistry and physics configurations are included in 27 

AQMEII-II (Forkel et al. 2015, San José et al, 2015, Baró et al., 2015). 28 

Following the statements of section 2, each model has been bias-corrected prior to the 29 

analysis, i.e. its own mean bias over the examined three-month period has been subtracted 30 

from its modelled time-series at each monitoring site. For each modelling system, its long-31 

term systematic error is a known quantity estimated during its validation stage; therefore the 32 
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 10 

subtraction of the seasonal bias does not restrict the generality of the study. Actually, the 1 

requirement for bias removal is a necessary condition only for the weighted ensemble mean. 2 

In the results section we will address this issue and its effect on the skill of the ensemble 3 

estimators. 4 

The observational data sets for O3, NO2 and PM10 derived from the surface AQ monitoring 5 

networks operating in the EU constitutes the same data set used in the first and second phases 6 

of AQMEII to support model evaluation. All monitoring stations are rural and have data at 7 

least 75% of the time. The network is denser for O3 (451/450 stations in AQMEII-I/II) for 8 

which there are as many monitoring stations as for NO2 (290/337 stations in AQMEII-I/II) 9 

and PM10 (126/131 stations in AQMEII-I/II) combined, with PM10 having the fewest 10 

observations. Figure	1 compares the statistical distribution of all three species between the two 11 

AQMEII phases, through the cumulative density function composed from the mean value at 12 

each percentile of the observations. The Kolmogorov-Smirnov test (Massey, 1951) yields that 13 

only the PM10 distributions differ at the 1% significance level. It results from the 14 

unavailability of data for France and UK in AQMEII-II for PM10 (station locations are shown 15 

in Figure	3).  16 

4 Results 17 

In this section we apply the conceptual context briefly presented in section 2 to investigate the 18 

effect of the differences in the ensemble properties within each of the two AQMEII phases 19 

(Rao et al., 2011) in the skill of the unconditional multi-model mean. The potential for 20 

improved estimates through conditional ensemble averages and their robustness is ultimately 21 

assessed. 22 

From the provided station-based hourly time-series, we analysed one season (three-monthly 23 

period) with continuous data and relatively high concentrations; for O3, June-July-August was 24 

selected while September-October-November is used for NO2 and PM10.  25 

4.1 Single Models  26 

The distributions of each model’s NMSE for O3, NO2 and PM10 over all monitoring stations 27 

are presented in Figure 2 as box-and-whisker plots. On each box, the central mark indicates the 28 

median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 29 
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 11 

respectively. The whiskers extend to the most extreme data points not considered outliers (i.e. 1 

points with distance from the 25th and 75th percentiles smaller than 1.5 times the interquartile 2 

range). Among the examined pollutants, the models simulate better the O3 concentrations, as 3 

is evident from the axis scale. The highest variability in the skill between and within the 4 

models is observed for NO2.  5 

The distribution of average NMSE at each station (<NMSE>) has a median on the order of 6 

0.1 for O3 and 0.5 for NO2 and PM10 for both phases (Table 2). The application of the 7 

Kolmogorov-Smirnov test (Massey, 1951) on the <NMSE> distributions across AQMEII-I 8 

and AQMEII-II shows that there are no statistically significant differences in the <NMSE> 9 

distributions between the two ensemble datasets at the 1% significance level. The same also 10 

applies for the statistical distribution of the minimum NMSE at each station (NMSEBEST) at 11 

each monitoring station. Hence, despite the different modelling systems and input data, the 12 

<NMSE> and NMSEBEST distributions between AQMEII-I and AQMEII-II are 13 

indistinguishable for the three examined pollutants. 14 

Besides <NMSE> and NMSEBEST, we evaluate the percentage of cases each model has been 15 

identified as being ‘best’ and calculate the coefficient of variation (CoV=std/mean) of this 16 

index for each ensemble. If models were behaving like i.i.d., the probabilities of being best 17 

would be roughly equal (~1/M) for all models and the CoV would generally be well below 18 

unity for the examined range of ensemble members. As can be inferred from Table 2, the 19 

proportion of equally good models is higher for O3 and NO2 in the 2nd dataset. Among the 20 

pollutants, the CoV of NO2 exhibits the most dramatic change. 21 

4.2 Pitfalls of the unconditional multi-model mean  22 

The skill of the multi-model mean has been compared against the skill of the best 23 

deterministic model, independently evaluated at each monitoring site (hereafter bestL). The 24 

geographical distribution of the ratio RMSE(mme)/RMSEBESTMODEL is presented in Figure 3. 25 

The indicator does not exhibit any longitudinal or latitudinal dependence. Summary statistics 26 

indicate that the mme outscores the bestL at roughly half of the stations for O3 (namely 52/49 27 

for AQMEII-I/II) and at approximately 40% of the stations for PM10 (38/42). The same 28 

statistic for NO2 varies considerably (39/64). The Kolmogorov-Smirnov test yields that the 29 

corresponding distributions (pI/pII) are different at the 1% significance level but the t-test 30 

demonstrates that the mean of the distributions differ significantly only for NO2. The reason 31 
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 12 

behind the skill of mme with respect to the bestL is investigated next with respect to the skill 1 

difference and the error dependence of each ensemble. 2 

The skill difference between the best model and the average skill is inferred from the 3 

indicator NMSEBEST /<NMSE> (Table 2). High values of the indicator correspond to small 4 

skill differences between the ensemble members (desirable). The distribution of the 5 

NMSEBEST /<NMSE> at each station has a median on the order of 0.6-0.8, variable with 6 

respect to the dataset and the pollutant. The spread of the indicator, measured by its 7 

interquartile range, is higher for NO2 and lower for O3.  8 

The eigenvalues of the covariance matrix calculated from the model errors provides 9 

information on the members’ diversity and the ensemble redundancy (Eq. 5). Following the 10 

eigen-analysis of the error covariance matrix at each station separately and converting the 11 

eigenvalues to cumulative amount of explained variance, the resulting matrix is presented into 12 

box and whisker plot (Figure 4). The error dependence of the ensemble members is deduced 13 

from the explained variation by the maximum eigenvalue sm. Low values of the indicator 14 

corresponds to independent members with small error dependence (desirable). The average 15 

variation explained by sm ranges between 65% and 79%, taking the lower values for NO2. The 16 

spread of the indicator, measured by its interquartile range, is higher for NO2 and lower for 17 

O3.  18 

All species demonstrate smaller skill difference and higher error dependence in the AQMEII-19 

II dataset. The Kolmogorov-Smirnov test yielded the difference in the corresponding 20 

distributions of the indicators between AQMEII-I and AQMEII-II is significant at the 1% 21 

level. However, it is the joint distribution of skill difference and error dependence that 22 

modulates the mme skill with respect to the bestL, as seen in Figure 5. Shifts in the 23 

distributions of the indicators at opposite directions eventually cancel out, yielding no change 24 

in the mme skill. This case is observed for O3 and PM10. For NO2, skill difference was 25 

improved more than error dependence was worsened, yielding a net improvement of mme in 26 

AQMEII-II. 27 

The area below the diagonal in Figure 5 corresponds to monitoring sites with disproportionally 28 

low diversity under the current level of accuracy. This area of the chart indicates high spread 29 

in skill difference and relatively highly dependent errors. This situation practically means a 30 

limited number of skilled models with correlated errors, which in turn denotes a small NEFF 31 

value as demonstrated in Figure 6. The opposite state is true for the area above the diagonal. It 32 
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corresponds to locations that are constituted from models with comparable skill and relatively 1 

independent errors, reflecting a high NEFF value. This matches the desired synthesis for an 2 

ensemble.  3 

The cumulative distribution of NEFF from the error minimization (i.e. the optimal trade-off 4 

between accuracy and diversity) across all possible combinations of M models at each site is 5 

also presented in Figure 4 (solid line). At over 90% of the stations, we do not need more than 5 6 

members for O3, 6 members for PM10 and 6-7 members for NO2. Further, from a pool of 10-7 

14 models, the benefits of ensemble averaging cease after 5-7 members (but not 5-7 particular 8 

members across all stations). 9 

4.3 Conditional multi-model mean  10 

Following the identification of the weaknesses in the ensemble design, the potential for 11 

corrections through more sophisticated schemes is now investigated. We consider the skill of 12 

the multi model mean as the starting point and we investigate pathways for further enhancing 13 

it through the non-trivial problem of weighting or sub-selecting. The optimal weights (mmW) 14 

are estimated from the analytical formulas presented in Potempski and Galmarini, 2009. The 15 

sub-selection of members has been built upon the optimization of either the accuracy/diversity 16 

trade-off (mme<) (Kioutsioukis and Galmarini, 2014) or the spectral representation of 1st 17 

order components by different models (kzFO) (Galmarini et al., 2013). Another approach 18 

built upon higher order (namely, NEFF) spectral components (kzHO) is also investigated. In 19 

this section we mark the boundaries of the possible improvements for different ensemble 20 

mean estimators applicable to the AQMEII datasets and their sensitivity to sub-optimal 21 

conditions using cross-validation.   22 

The global skill of all the single models and the ensemble estimators, evaluated at all stations, 23 

are presented in Figure 7 in the form of Taylor plots. For O3, the deterministic models have 24 

standard deviations that are smaller compared to observations and a narrow correlation pattern 25 

(~0.7) that is slightly deteriorated in AQMEII-II. For NO2, members with higher variance -as 26 

well as lower- than the observed variance exist in the ensemble while the correlation spread is 27 

becoming narrower in AQMEII-II and demonstrates a minor improvement. Last, simulated 28 

PM10 from the deterministic models displays smaller standard deviation compared to 29 

observations with a wide correlation spread (0.3-0.6). The multi-model mean is always found 30 

closer to the reference point, in an area that incorporates lower error and increased correlation 31 
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but at the same time generally low variance. The examined ensemble estimators (mmW, 1 

mme<, kzFO, kzHO) are horizontally shifted from mme, hence they demonstrate even lower 2 

error and increased correlation and variance. Among them, the highest composite skill was 3 

found for mmW, followed by kzHO.  4 

A comparison between the skill of the examined ensemble estimators versus the mme and the 5 

best single model is now conducted (Table 3). The best single model is evaluated globally 6 

(bestG: average across all stations) and locally (bestL: at each station separately). The former 7 

estimates the best average deterministic skill among the candidate models; the latter provides 8 

a useful indicator for controlling whether the anticipated benefits of ensemble averaging 9 

holds. The skill scores have been evaluated against the guaranteed minimum gain of the 10 

ensemble (<MSE>), the ensemble mean (mme) and the best single model globally (bestG). 11 

The estimations calculated from the unprecedented AQMEII datasets (2 years of hourly 12 

measurements and simulations from 2 different ensembles of 10-14 models each at over 450 13 

stations for 3 pollutants) allows the following interpretation:  14 

- The mme always achieves lower error than bestG. The advancement is higher for O3 15 

(9-22%), followed by NO2 (7-9%) while the PM10 demonstrate the least skill 16 

improvement (1-3%). With respect to bestL, the mme generally attains similar or 17 

slightly higher MSE. Hence, the average error over multiple stations statistically 18 

favours the ensemble mean over the single models but the comparison at each site 19 

generally does not as it depends on the skill difference and the error dependence of the 20 

models. 21 

- The skill score of mme over <MSE> (i.e., the guaranteed upper ceiling for the MSE of 22 

mme, from eq. 2) ranges between 15% and 30%, higher for NO2 and lower for PM10. 23 

According to eq. 2, this number also represents the diversity as percentage of the 24 

accuracy. Therefore, besides improving the single models, their combination in an 25 

ensemble confines the mme skill if their diversity is limited. 26 

- The skill score of the examined ensemble estimators (mmW, mme<, kzFO, kzHO) over 27 

<MSE> ranges between 25% and 50%, higher for O3 and NO2 and lower for PM10. 28 

Among them, the improvement is higher for mmW and lower for mme< and kzFO. 29 

Thus, the promotion of accuracy and diversity within the ensemble almost doubles the 30 

distance to <MSE> compared to mme and results in an additional skill over the mme 31 

between 14% and 31% (for mmW).  32 
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- The improvement of the ensemble estimator using selected NEFF members (mme<) 1 

over all members (mme) is illustrated in Figure	8 in the context of skill difference and 2 

error dependence. The charts demonstrate no points below the diagonal, i.e. the sub-3 

selection results in an ensemble constituted from models with comparable skill and 4 

relatively independent errors (compared to the full ensemble).  5 

- The theoretical minimum MSE of mme for the case of unbiased and uncorrelated 6 

models (from eq. 1) is far from being achieved from all ensemble estimators.  7 

The statistical distributions of the skill scores of the examined ensemble estimators (mmW, 8 

mme<, kzFO, kzHO) over mme are well bounded from above to lower than unity values 9 

(Figure 9). The only exception exists for roughly 10% of the stations, for all pollutants, where 10 

kzFO demonstrates higher MSE compared to mme. Unlike the other ensemble estimators, 11 

kzFO utilises independent spectral components each obtained from a single model, 12 

eliminating the possibility for ‘cancelling out’ of random errors. All cases belonging to this 13 

10% of the samples (lower tail of the cdf) demonstrate high NEFF, where the benefits from 14 

unconditional ensemble averaging are optimal (Kioutsioukis and Galmarini, 2014). Contrary, 15 

for another 10% of the stations (upper tail of the cdf), there is an abrupt improvement from 16 

the conditional ensemble estimators. Those cases demonstrate low NEFF, where the benefits 17 

from unconditional ensemble averaging are minimal. 18 

The ability to simulate extreme values is now examined through the POD and FAR indices. 19 

Two thresholds were utilised for each pollutant, being 120 and 180 µg/m3 for O3, 25 and 50 20 

µg/m3 for NO2 and 50 and 90 µg/m3 for PM10. The average 90th percentile across the stations 21 

was 129/117 µg/m3 (AQMEII-I/II) for O3, 30/26 µg/m3 for NO2 and 52/33 µg/m3 for PM10 22 

(Figure 1). Hence, the thresholds fall into the upper 10% of the distributions, being even more 23 

extreme for PM10 in AQMEII-II. The numbers in Table 4 give rise to the following inferences: 24 

- for O3 and NO2, mme achieves somewhat higher POD than bestG at the lower 25 

threshold but the order is reversed at the higher threshold. For PM10, bestG always 26 

performs better than mme for values exceeding the lower threshold. As we move 27 

towards the tail, the POD of bestG dominates over the mme. Thus, the ranking of the 28 

mme and bestG at the extreme percentiles and on average (seen earlier) are opposite.      29 

- The mme< generally achieves somewhat higher POD than bestL at the lower threshold 30 

but the order is reversed at the higher threshold. Over that level, kzFO and mmW are 31 

the only estimators with POD higher than bestL.  32 
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- As we move towards higher percentiles, the 1st order spectral model (kzFO) has higher 1 

POD than the higher-order spectral model (kzHO) due to the averaging in the latter. In 2 

addition, the frequency domain averaging (kzHO) had slightly higher POD compared 3 

to the time domain averaging (mme<).  4 

- The mmW, besides its lower MSE, has the highest POD among all models and 5 

ensemble estimators.   6 

- The variation of FAR was very small between all examined models and ensemble 7 

estimators. 8 

The combination of the results from the average error and the extremes identifies mmW as the 9 

estimator that outscores the others across all percentiles. kzFO has high capacity for extremes 10 

but requires attention for the limited sites with high NEFF, where its skill is inferior to mme. 11 

kzHO and mme< have both high skill across all percentiles (better for kzHO) but they could 12 

have inferior POD compared to bestL at the extreme percentiles. With respect to the 13 

pollutants, the advancement of mmW skill over mme was higher for O3.  14 

The additional skill over mme in the range between 8% and 31% from the statistical 15 

approaches applied to a pool of ensemble simulations identifies the upper ceiling of the 16 

improvements from the corrections in the skill difference and the error dependence of the 17 

ensemble members. The bound results from the removal of the seasonal bias from the time 18 

series and the optimal training of the methods. We now proceed with splitting the datasets 19 

into training and testing and explore the sensitivity of the mmW skill arising from improper 20 

bias removal and weights. Both factors are estimated on the training set for variable time-21 

series length that is progressively increasing from 1 to 60 days, for all monitoring stations and 22 

pollutants. The evaluation period for all training windows is the same 30-day segment, not 23 

available in the training procedure. The analysis will provide a perspective on applying the 24 

techniques in a forecasting context, although the examined simulations did not operate in 25 

forecasting mode.  26 

The interquartile range of the day-to-day difference in the weights is calculated and its range 27 

over all stations is displayed in Figure 10. No convergence occurs, however the variability of 28 

the mmW weights is notably reduced after a certain amount of time. If we set a tolerance level 29 

at the second decimal, to be satisfied at all stations, we need at a minimum 20-45 days of 30 

hourly time-series. The variability of weights is smaller for O3 and higher for NO2 and PM10, 31 

explained by the larger NMSE spread in the latter case. The identification of the necessary 32 
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training or learning period will be assessed by its effect on the mmW skill. Table 5 presents the 1 

mmW skill obtained from training over time series of different lengths varying from 5 to 60 2 

days. For O3, mmW trained over 10 days yields similar results with mme while longer periods 3 

result in large departures from mme. NO2 and PM10 require larger training periods than O3. 4 

The use of mmW is practically of no benefit compared to mme if the traning period is less than 5 

20 days for NO2 and 30 days for PM10. For all pollutants, the variability of the weights and 6 

the bias has no effect in the error after 60 days.  7 

The results demonstrate that the ensemble estimators based on the analytical optimization 8 

become insensitive to inaccuracies in the bias and weights for training periods exceeding 60 9 

days. Other published studies with weighted ensembles using non-analytical optimization 10 

though (e.g. linear regression, Monteiro et al., 2012), argue that one month is sufficient for the 11 

weights and the bias. The sub-selecting schemes are more robust compared to the optimal 12 

weighting scheme in the variations of their parameters (bias, members). Using data from 13 

AQMEII-I, training periods in the order of a week were found essential for mme< 14 

(Kioutsioukis and Galmarini, 2014) and kzFO (Galmarini et al., 2013). Therefore, the 15 

operational implementation of each ensemble approach requires knowledge of its safety 16 

margins for the examined pollutants.  17 

5 Conclusions 18 

In this paper we analyze two independent suites of chemical weather modelling systems 19 

regarding their effect in the skill of the ensemble mean (mme). The results are interpreted with 20 

respect to the error decomposition of the mme. Four ways to extract more information from an 21 

ensemble besides the mme are ultimately investigated and evaluated. The first approach 22 

applies optimal weights to the models of the ensemble (mmW) and the other three methods 23 

utilise selected members in time (mme<) or frequency (kzFO, kzHO) domain. The study 24 

focuses on O3, NO2 and PM10, using the unprecedented datasets from two phases of AQMEII 25 

over the European domain. 26 

The comparison of the mme skill versus the globally best single model (bestG: identified from 27 

the evaluation over all stations), points out that mme achieves lower average (across all 28 

stations) error compared to bestG. The enhancement of accuracy is highest for O3 (up to 22%) 29 

and lowest for PM10 (below 3%). We then investigate whether this benefit of ensemble 30 

averaging of air quality time series holds at each station by direct comparison between the 31 

plaisio
Highlight

plaisio
Highlight

plaisio
Highlight



 18 

mme and the locally best single model (bestL: identified from the evaluation at each station). 1 

Summary statistics indicate that the mme outscores the bestL at roughly 50% of the stations 2 

for O3 and at approximately 40% of the stations for PM10, while for NO2 the values were 3 

about 40% and 60% for the two datasets. This result indicates that there is a considerable 4 

amount of stations (over 40%) where the unconditional averaging is not advantageous 5 

because the ensemble does not meet the necessary conditions. A new chart has been 6 

introduced in this paper that interprets the skill of the mme according to the skill difference 7 

and the error dependence of the ensemble members.  8 

The four examined ensemble estimators are then assessed for their skill in the average error as 9 

well as their capability to correctly identify extreme values (events exceeding threshold 10 

value). The key results of the analysis are summarized below: 11 

- The skill score of mme over its guaranteed upper ceiling (case of zero diversity) ranges 12 

between 15% and 30%, being lower for PM10. Those percentages also represent the 13 

diversity normalized by the accuracy. Therefore, besides improving the single models, 14 

their combination in an ensemble confines the mme skill if their diversity is limited. 15 

- The promotion of the right amount of accuracy and diversity in the conditional 16 

ensemble estimators almost doubles the distance to the guaranteed upper ceiling. The 17 

skill score over mme is higher for O3 (in the range 18%-31%) and lower for NO2 and 18 

PM10 (in the range 8%-25%), associated to the extent of potential changes in the joint 19 

distribution of accuracy and diversity in the respective ensembles. The improvement is 20 

larger for mmW and smaller for mme< and kzFO.  21 

- The theoretical minimum MSE of mme for the case of unbiased and uncorrelated 22 

models is far from being achieved from all ensemble estimators. 23 

- As we move towards the tail, the probability of detection (POD) of bestG (bestL) 24 

dominates over the mme (mme<). At the extreme percentiles, kzFO and mmW are the 25 

only estimators with POD higher than bestL. 26 

- The combination of the results from the average error and the extremes identifies 27 

mmW as the estimator that outscores the others across all percentiles. kzFO has high 28 

capacity for extremes but requires attention for the limited sites with high NEFF, where 29 

its skill is inferior to mme. kzHO and mme< have both high skill across all percentiles 30 

(better for kzHO) but they could have inferior POD compared to bestL at the extreme 31 

percentiles. 32 
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The skill enhancement is superior using the weighting scheme but the required training period 1 

to acquire representative weights was longer compared to the sub-selecting schemes. For all 2 

pollutants, the variability of the weights and the bias has negligible effect in the error for 3 

training periods longer than 60 days. For the schemes relying in member selection, accurate 4 

recent representations on the order of a week were sufficient. The learning periods constitute 5 

the necessary time to acquire similar prior and posterior distributions in the controlling 6 

parameters of samples. The risks of all the statistical learning processes originate from the 7 

violation of this assumption, which holds for example in the case of changing weather or 8 

chemical regimes. Therefore, the operational implementation of each ensemble approach 9 

requires knowledge of its safety margins for the examined pollutants as well as its risks. 10 

The improvement of the physical, chemical and dynamical processes in the deterministic 11 

models is a continuous procedure that results in better forecasts. Besides that, mathematical 12 

optimizations in the input data (e.g. data assimilation) or the model output (e.g. ensemble 13 

estimators) have a significant contribution in the accuracy of the whole modelling process. 14 

The presented post-simulation advancements were the result of only favourable ensemble 15 

design. However, the theoretical minimum MSE of mme for the case of unbiased and 16 

uncorrelated models is far from being achieved from all ensemble estimators. Further 17 

development is underway in the presented ensemble methods that take into account the 18 

meteorological and chemical regimes.   19 

  20 

21 
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Appendix I 1 

The relevant separate scales of motion are defined by means of physical considerations and 2 

periodogram analysis (Rao et al., 1997). They are namely the intra-day component (ID), the 3 

diurnal component (DU), the synoptic component (SY) and the long-term component (LT). 4 

The hourly time series (S) can therefore be decomposed as: 5 

𝑆 𝑡 = 𝐼𝐷 𝑡 + 𝐷𝑈 𝑡 + 𝑆𝑌 𝑡 + 𝐿𝑇 𝑡  (1) 

where: 6 

𝐼𝐷 𝑡 = 𝑆 𝑡 − 𝐾𝑍!,! 

𝐷𝑈 𝑡 = 𝐾𝑍!,! − 𝐾𝑍!",! 

𝑆𝑌 𝑡 = 𝐾𝑍!",! − 𝐾𝑍!"#,!  

𝐿𝑇 𝑡 = 𝐾𝑍!"#,!	

(2) 
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Table	1.	The	modelling	systems	participating	in	the	first	and	second	phases	of	AQMEII	for	Europe.	1 

Model 
Grid Emissions Chemical BC 

 Met AQ 

E
U

 –
 A

Q
M

E
II

 p
ha

se
 I 

MM5 DEHM 50 km Global emission databases, 
EMEP 

Satellite 
measurements 

MM5 Polyphemus 24 km Standard§ Standard 

MM5 Chimere 25 km MEGAN, Standard Standard 

MM5 CAMx 15 km MEGAN, Standard Standard 

PARLAM-PS EMEP 50 km EMEP model From ECMWF 
and forecasts 

WRF CMAQ 18 km Standard§ Standard 

WRF Chem 22.5 km Standard§ Fixed 

ECMWF SILAM 24 km 
Standard anthropogenic; 

In-house biogenic 
Standard 

ECMWF Lotos-
EUROS 25 km Standard§ Standard 

GEM GEM-AQ 25 km 

Standard (AQMEII region);  

EDGAR/GEIA  

(rest of the global domain) 

Global variable 
grid setup (no 

boundary 
conditions) 

COSMO Muscat 24 km Standard§ Standard 

COSMO-
CLM CMAQ 24 km Standard§ Standard 

E
U

 –
 A

Q
M

E
II

 p
ha

se
 II

 WRF Chem 23 km Standard Standard 

WRF CMAQ 18 km Standard Standard 

COSMO Cosmo-ART 0.22° Standard Standard 

COSMO Muscat 0.25° Standard Standard 

NMMB BSCCTM 0.20° Standard Standard 

RACMO LOTOS-
EUROS 

0.5° x 
0.25° 

Standard Standard 

MetUM UKCA RAQ 0.22° Standard Standard 

AQMEII phase I  2 
Standard Boundary conditions: provided from GEMS project (Global and regional Earth-system Monitoring using Satellite and in-situ data). 3 
Refer to Schere et al. (2012) for details. 4 
§ Standard anthropogenic emissions and biogenic emissions derived from meteorology (temperature and solar radiation) and land use 5 
distribution implemented in the meteorological driver. Refer to Solazzo et al. (2012a-b) and references therein for details.  6 
AQMEII phase II  7 
Standard Boundary conditions: 3-D daily chemical boundary conditions were provided by the ECMWF IFS-MOZART model run in the 8 
context of the MACC-II project (Monitoring Atmospheric Composition and Climate - Interim Implementation) at 3-hourly and 1.125 spatial 9 
resolution. Refer to Im et al. (2015a-b) for details. 10 
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Standard Emissions: based on the TNO-MACC-II (Netherlands Organization for Applied Scientific Research, Monitoring Atmospheric 1 
Composition and Climate - Interim Implementation) framework for Europe. Refer to Im et al. (2015a-b) for details. 2 
	3 
 	4 
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Table	2.	 The	 statistical	distribution	of	 (a)	 the	Normalized	Mean	Square	Error	 (NMSE)	of	 the	best	1 
model	(NMSEBEST),	(b)	the	ensemble	average	NMSE	(<NMSE>)	and	(c)	the	skill	difference	indicator	2 
(NMSEBEST	/<NMSE>).	In	addition,	the	coefficient	of	variation	(CoV	=	standard	deviation	/	mean)	of	3 
the	 number	 of	 cases	 where	 each	 model	 has	 been	 identified	 as	 best.	 All	 indicators	 have	 been	4 
evaluated	at	each	monitoring	site	for	the	examined	species	of	the	two	AQMEII	phases.		5 

 O3  

(I/II) 

O3  

(I/II) 

NO2  

(I/II) 

NO2  

(I/II) 

PM10  

(I/II) 

PM10  

(I/II) 

 <NMSE> NMSEBEST <NMSE> NMSEBEST <NMSE> NMSEBEST 

5th 0.04 / 0.04 0.03 / 0.03 0.28 / 0.23 0.17 / 0.18 0.30 / 0.27 0.20 / 0.20 

25th  0.07 / 0.07 0.05 / 0.05 0.39 / 0.35 0.24 / 0.25 0.40 / 0.39 0.26 / 0.28 

50th  0.10 / 0.10 0.07 / 0.08 0.52 / 0.49 0.33 / 0.34 0.47 / 0.51 0.34 / 0.37 

75th  0.15 / 0.15 0.11 / 0.12 0.82 / 0.76 0.48 / 0.50 0.61 / 0.62 0.46 / 0.50 

95th  0.24 / 0.23 0.18 / 0.18 1.69 / 1.49 0.81 / 0.93 1.02 / 0.98 0.73 / 0.81 

𝑁𝑀𝑆𝐸!"#$
< 𝑁𝑀𝑆𝐸 > 

O3  

(I) 

O3  

(II) 

NO2  

(I) 

NO2  

(II) 

PM10  

(I) 

PM10  

(II) 

5th 0.50 0.60 0.36 0.45 0.49 0.63 

25th  0.62 0.70 0.50 0.62 0.61 0.72 

50th  0.70 0.76 0.61 0.72 0.70 0.79 

75th  0.76 0.82 0.72 0.81 0.85 0.85 

95th  0.83 0.88 0.87 0.93 0.92 0.92 

mean 0.69 0.75 0.61 0.70 0.72 0.77 

NBEST O3  

(I) 

O3  

(II) 

NO2  

(I) 

NO2  

(II) 

PM10  

(I) 

PM10  

(II) 

CoV 1.08 0.70 1.42 0.65 1.16 1.53 
	 	6 
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Table	3.	The	MSE	 from	 (a)	 the	best	deterministic	models,	globally	 (bestG)	and	 locally	 (bestL),	 (b)	1 
the	unconditional	ensemble	mean	(mme)	and	(c)	the	four	conditional	ensemble	estimators	(mme<,	2 
kzFO,	kzHO,	mmW).	In	addition,	the	bounds	for	the	MSE	of	the	ensemble	mean	are	also	presented.	3 
The	maximum	 value	 (<MSE>)	 arises	 for	 ensemble	members	without	 diversity	 and	 the	minimum	4 
value	(mmeMIN)	has	been	estimated	from	the	variance	term	only	(i.e.	calculated	for	unbiased	and	5 
uncorrelated	 ensemble	 members).	 The	 ability	 of	 the	 estimators	 is	 evaluated	 through	 their	 skill	6 
scores	(SSREF=1-MSE/MSEREF,	REF=bestG,	<MSE>,	mme).		7 

O3 (I) MSE 

SS 

(bestG) 

SS 

(<MSE>) 

SS 

(mme) O3 (II) MSE 

SS 

(bestG) 

SS 

(<MSE>) 

SS 

(mme) 

bestG 641  7%  bestG 499  14%  

bestL 483 25% 30% 3% bestL 441 12% 24% 3% 

mme 498 22% 28%  mme 454 9% 21%  

mme< 398 38% 42% 20% mme< 374 25% 35% 18% 

kzFO 400 38% 42% 20% kzFO 369 26% 36% 19% 

kzHO 367 43% 47% 26% kzHO 349 30% 40% 23% 

mmW 345 46% 50% 31% mmW 315 37% 45% 31% 

<MSE> 690    <MSE> 577    

mmeMIN 58    mmeMIN 41    

NO2 (I) MSE 

SS 

(bestG) 

SS 

(<MSE>) 

SS 

(mme) NO2 (II) MSE 

SS 

(bestG) 

SS 

(<MSE>) 

SS 

(mme) 

bestG 77  25%  bestG 61  20%  

bestL 70 10% 32% 3% bestL 58 5% 25% -4% 

mme 72 7% 30%  mme 56 9% 27%  

mme< 63 19% 39% 13% mme< 51 17% 34% 9% 

kzFO 62 19% 40% 13% kzFO 52 16% 33% 8% 

kzHO 59 24% 43% 18% kzHO 48 21% 37% 14% 

mmW 56 27% 46% 22% mmW 46 25% 40% 18% 

<MSE> 104    <MSE> 77    

mmeMIN 8    mmeMIN 6    

PM10 (I) MSE 

SS 

(bestG) 

SS 

(<MSE>) 

SS 

(mme) PM10 (II) MSE 

SS 

(bestG) 

SS 

(<MSE>) 

SS 

(mme) 

bestG 341  16%  bestG 141  14%  

bestL 326 5% 20% 1% bestL 139 2% 15% 0% 

mme 330 3% 19%  mme 139 1% 15%  

mme< 303 11% 25% 8% mme< 121 14% 26% 13% 

plaisio
Highlight



 32 

kzFO 299 13% 27% 10% kzFO 122 13% 25% 12% 

kzHO 294 14% 28% 11% kzHO 117 17% 29% 16% 

mmW 284 17% 30% 14% mmW 105 26% 36% 25% 

<MSE> 407    <MSE> 164    

mmeMIN 41    mmeMIN 12    

mme: unconditional ensemble mean 1 

mme<: conditional ensemble mean (Kioutsioukis and Galmarini, 2014) 2 

kzFO: conditional spectral ensemble mean with 1st order components (Galmarini et al., 2013) 3 

kzHO: conditional spectral ensemble mean with 2nd and higher order components (kzHO) 4 

mmW: optimal weighted ensemble (Potempski and Galmarini, 2009) 5 
  6 
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Table	 4.	 The	 probability	 of	 detection	 (POD)	 and	 false	 alarm	 rate	 (FAR)	 from	 (a)	 the	 best	1 
deterministic	models,	 globally	 (bestG)	 and	 locally	 (bestL),	 (b)	 the	 unconditional	 ensemble	mean	2 
(mme)	 and	 (c)	 the	 four	 conditional	 ensemble	 estimators	 (mme<,	 kzFO,	 kzHO,	 mmW).	 Two	3 
thresholds	were	examined	for	each	indicator,	corresponding	to	tail	percentiles.		4 

O3 (I) POD FAR POD FAR O3 (II) POD FAR POD FAR 

threshold 120  180 threshold 120 180 

bestG 37.9 3.6 11.4 0.0 bestG 19.9 1.2 1.2 0.0 

bestL 54.7 3.5 19.5 0.0 bestL 33.2 1.5 5.4 0.0 

mme 39.9 2.5 12.0 0.0 mme 22.0 1.2 0.5 0.0 

mme< 53.5 2.6 18.3 0.0 mme< 34.9 1.3 2.4 0.0 

kzFO 57.7 3.0 19.6 0.0 kzFO 39.1 1.5 4.4 0.0 

kzHO 57.1 2.5 19.2 0.0 kzHO 36.9 1.2 2.3 0.0 

mmW 60.6 2.6 27.2 0.0 mmW 45.4 1.6 8.6 0.0 

NO2 (I) POD FAR POD FAR NO2 (II) POD FAR POD FAR 

threshold 25 50 threshold 25 50 

bestG 45.9 4.6 3.8 0.2 bestG 39.3 3.3 4.9 0.1 

bestL 48.7 4.2 8.5 0.3 bestL 41.4 3.1 8.1 0.1 

mme 49.4 4.6 3.0 0.1 mme 44.4 3.5 5.4 0.1 

mme< 52.2 4.1 7.1 0.1 mme< 47.6 3.2 7.6 0.1 

kzFO 52.7 4.1 8.4 0.1 kzFO 46.5 3.1 9.5 0.1 

kzHO 54.2 4.0 6.8 0.1 kzHO 49.5 3.2 9.3 0.1 

mmW 57.0 4.1 14.8 0.2 mmW 50.9 3.1 13.5 0.1 

PM10 (I) POD FAR POD FAR PM10 (II) POD FAR POD FAR 

threshold 50 90 threshold 50 90 

bestG 25.9 2.7 1.2 0.0 bestG 13.0 0.4 0.0 0.0 

bestL 27.8 2.3 6.9 1.2 bestL 14.5 0.4 1.6 0.0 

mme 21.6 1.8 0.4 0.0 mme 11.4 0.4 0.0 0.0 

mme< 30.6 2.3 5.6 0.1 mme< 13.9 0.4 0.0 0.0 
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kzFO 31.1 2.3 6.9 0.1 kzFO 14.1 0.3 0.0 0.0 

kzHO 33.2 2.4 6.1 0.1 kzHO 13.2 0.3 0.2 0.0 

mmW 35.5 2.6 13.3 0.2 mmW 23.9 0.4 20.8 0.0 

mme: unconditional ensemble mean 1 

mme<: conditional ensemble mean (Kioutsioukis and Galmarini, 2014) 2 

kzFO: conditional spectral ensemble mean with 1st order components (Galmarini et al., 2013) 3 

kzHO: conditional spectral ensemble mean with 2nd and higher order components (kzHO) 4 

mmW: optimal weighted ensemble (Potempski and Galmarini, 2009) 5 
	6 

  7 
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Table	 5.	 The	 average	MSE	 of	mmW	 for	 various	 training	 lengths,	 calculated	 for	 the	 testing	 time-1 
series	(i.e.	not-used	in	the	training	phase)	that	contains	all	stations.		2 

Length of training 

period (days) 

O3  

(I) 

O3  

(II) 

NO2  

(I) 

NO2  

(II) 

PM10  

(I) 

PM10  

(II) 

5 616 540 90 91 717 210 

10 496 441 77 66 443 150 

20 400 378 65 56 348 125 

30 380 344 62 52 308 109 

40 366 334 59 50 300 113 

50 357 326 57 48 294 108 

60 351 319 56 45 282 102 

 3 

  4 
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Figure	1.	The	Cumulative	density	functions	of	the	observations	(O3,	NO2,	PM10)	in	the	two	AQMEII	1 
phases	(Phase	I:	filled	circles,	Phase	II:	non-filled	circles).	Each	bullet	represents	the	median	at	the	2 
specific	percentile.	3 

  4 
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Figure	2.	Model	skill	difference	via	the	NMSE.	On	each	box,	the	central	mark	indicates	the	median,	1 
and	the	bottom	and	top	edges	of	the	box	indicate	the	25th	and	75th	percentiles,	respectively.	The	2 
whiskers	extend	to	the	most	extreme	data	points	not	considered	outliers	and	the	outliers	(points	3 
with	distance	from	the	25th	and	75th	percentiles	larger	than	1.5	times	the	interquartile	range)	are	4 
plotted	individually	using	the	'+'	symbol.	5 

		6 
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Figure	3.	Comparison	of	the	mme	skill	against	the	best	local	deterministic	model	by	means	of	the	1 
indicator	RMSEMME/RMSEBEST.		2 

  3 
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Figure	 4.	 Model	 error	 dependence	 through	 the	 eigenvalues	 spectrum.	 The	 average	 explained	1 
variation	from	the	maximum	eigenvalue	is	71/78	(phase	I/II)	 for	O3,	65/69	for	NO2	and	74/79	for	2 
PM10.	 On	 the	 same	 graph,	 the	 cumulative	 density	 function	 of	 NEFF	 calculated	 from	 all	 possible	3 
ensemble	combinations	is	presented	with	the	black	line.	 4 
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Figure	 5.	 Interpretation	 of	 Figure	 4:	 the	 explanation	 of	 the	 mme	 skill	 against	 the	 best	 local	1 
deterministic	 model	 with	 respect	 to	 skill	 difference	 (evaluated	 from	 MSEBEST/<MSE>)	 and	 error	2 
dependence	(evaluated	from	the	explained	variation	by	the	highest	eigenvalue).		3 

 4 
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Figure	6.	Like	Figure	5	but	showing	the	NEFF	with	respect	to	skill	difference	and	error	dependence.		1 

  2 
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Figure	7.	Composite	skill	of	all	deterministic	models	and	ensemble	estimators	(mme,	mme<,	kzFO,	1 
kzHO,	mmW)	through	Taylor	plots.	The	point	R	represents	the	reference	point	(i.e.	observations).	2 

  3 

O3 (I) O3 (II) 

NO2 (I) NO2 (II) 

PM10 (I) PM10 (II) 
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Figure	8.	Like	Figure	5	but	for	the	mme<	skill	 in	the	reduced	ensemble.	Please	note	the	change	in	1 
the	colorscale.	2 

 3 

 4 

  5 
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Figure	 9.	 The	 cumulative	 density	 function	 of	 the	 Skill	 Score	 (1-MSEX/MSEMME,	 X	 =	mmW,	mme<,	1 
kzFO,	 kzHO)	 over	mme,	 evaluated	 at	 each	monitoring	 site	 for	 the	 examined	 species	 of	 the	 two	2 
AQMEII	phases.		3 

 4 
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Figure	 10.	 The	 interquartile	 range	 over	 all	 stations	 of	 the	 day-to-day	 difference	 in	 the	 weights	1 
arising	from	variable	time-series	length.		2 

 3 
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