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Abstract

Mercury (Hg) is a worldwide contaminant that cans@adverse health effects to wildlife and
humans. While atmospheric modeling traces thefliofn emissions to deposition of Hg onto
environmental surfaces, large uncertainties arisenfour incomplete understanding of
atmospheric processes (oxidation pathways, depositind reemission). Atmospheric Hg
reactivity is exacerbated in high latitudes andehis still much to be learned from Polar
Regions in terms of atmospheric processes. Thiserpggovides a synthesis of the
atmospheric Hg monitoring data available in recgrdrs (2011-2015) in the Arctic and in
Antarctica along with a comparison of these obg@wma with numerical simulations using
four cutting-edge global models. The cycle of atphesic Hg in the Arctic and in Antarctica
presents both similarities and differences. Coastes$ in the two regions are both influenced
by springtime atmospheric Hg depletion events andummertime snowpack reemission and
oceanic evasion of Hg. The cycle of atmospheric differs between the two regions
primarily because of their different geography. WHrctic sites are significantly influenced
by Northern Hemispheric Hg emissions especiallywiimter, coastal Antarctic sites are
significantly influenced by the reactivity observed the East Antarctic ice sheet due to
katabatic winds. Based on the comparison of muttdeh simulations with observations, this
paper discusses whether the processes that dfffieasgheric Hg seasonality and inter-annual
variability are appropriately represented in thedels, and identifies research gaps in our

understanding of the atmospheric Hg cycling in Haghudes.
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1 Introduction

Mercury (Hg) can be emitted to the atmosphere liyrahgeological sources (e.g., volcanic
emissions) and a variety of anthropogenic actisitfe.g., coal combustion, artisanal and
small-scale gold mining) (UNEP, 2013b). The domtnform of atmospheric mercury is
gaseous elemental mercury (Hg(0)) (Lindberg andt®in, 1998). Hg(0) has an atmospheric
lifetime of 0.5 to 1 year (Selin, 2009) and canrdiiere be transported worldwide. It can be
oxidized into highly reactive and water soluble egass and particulate divalent species
(Ho(ll) and Hg(p), respectively) that can depositta environmental surfaces (e.g., land,
surface oceans) through wet and dry processesduisidand Rodhe, 1985). Upon deposition,
mercury can be reemitted to the atmosphere or cted/e- in aquatic systems — to
methylmercury (Driscoll et al., 2013). Anthropogeractivities have altered the global
geochemical cycle of mercury, enhancing the amoointmercury circulating in the
atmosphere and surface oceans by at least a faictbree (Lamborg et al., 2014; Amos et
al., 2015).

Methylmercury is a worldwide contaminant of seafabdt can cause adverse effects on the
developing nervous system of vulnerable populatigAMAP, 2015). The Minamata
Convention on mercury — global treaty to protecinan health and the environment from
mercury — was opened for signature in October ZONEP, 2013a). To date, the Convention
has been signed by 128 countries and ratified byt2&ill enter into force once it is ratified
by 50 nations. As noted in the preamble of the @atien, Arctic ecosystems and indigenous
communities are particularly vulnerable due to thiemagnification of mercury and
contamination of traditional foods. In order to ued mercury effects, the pathway from
emissions to human and environmental impacts need® traced. Atmospheric modeling
provides a first step by tracing the link from esmss to deposition onto environmental
surfaces. Deposition of mercury in a particulariorgdepends on the magnitude and
speciation of domestic and foreign emissions, anthe oxidative capacity of the atmosphere
that transforms Hg(0) to deposited divalent spe@i$EP, 2015). Deposition is partly offset
by the revolatilization of a fraction of depositerrcury. Large uncertainties associated with
the models arise as a result of our incomplete rstaleding of atmospheric processes (e.g.,
oxidation pathways, deposition, and reemission) ¢kwand Selin, 2016). Atmospheric
mercury reactivity is exacerbated in high latitudes! there is still much to be learned from

Polar Regions in terms of atmospheric processes.
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First discovered in 1995 (Schroeder et al., 1988nospheric Mercury Depletion Events
(AMDESs) are observed in springtime throughout threti& (Lindberg et al., 2001; Berg et
al., 2003a; Poissant and Pilote, 2003; Skov.e8D4; Steffen et al., 2005) as a result of
the oxidation of Hg(0) by reactive bromine spedjes et al., 2001; Brooks et al., 2006;
Sommar et al., 2007). AMDESs can lead to a depasibio~ 100 tons of mercury per year to
the Arctic (Ariya et al., 2004; Skov et al., 200Bastoor et al., 2015). The fate of mercury
deposited onto the snowpack during AMDEs is stilmatter of debate in the scientific
mercury community (Steffen et al., 2008). Sevetallies reported significant reemission
(e.g., Ferrari et al., 2005; Brooks et al., 200&irk et al., 2006; Sommar et al., 2007;
Dommergue et al., 2010a) although a fraction ofamgr may likely accumulate within the
snowpack (Hirdman et al., 2009; Larose et al.,020While the Arctic has been extensively
monitored — with hundreds of publications focusotgAMDES, measurements are sporadic
in Antarctica. To the best of the author's knowledgnly eleven studies dealing with
atmospheric mercury in Antarctica (and using modgstrument) have been published
(Ebinghaus et al., 2002; Sprovieri et al., 2002mme et al., 2003; Brooks et al., 2008a;
Brooks et al., 2008b; Dommergue et al., 2012;ffRiher et al., 2012; Angot et al., 2016a;
Angot et al., 2016b; Nerentorp Mastromonaco et28l16; Wang et al., 2016). The earliest
studies showed the occurrence of AMDESs in coastahistica after polar sunrise. The latest
studies highlighted new atmospheric processes enAhtarctic boundary layer — both in
winter and summertime — leading to the formatiod anbsequent deposition of reactive
mercury. In the meantime, several studies showatthie Antarctic Plateau plays a key role

in influencing the cycle of atmospheric mercunaatontinental scale.

The first objective of this paper is to provide ynthesis of the atmospheric mercury
monitoring data available in recent years (20115304 Polar Regions. Secondly, we provide
a comparison of these observations with numerigalulations of atmospheric mercury

concentrations using cutting-edge global modelsalBj, this paper identifies research gaps in

our understanding and modeling of the atmospheeicury cycling in high latitudes.
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2 Experimental Section

2.1 Measurements of atmospheric mercury species

2.1.1 Definitions

Hg(0), Hg(ll), and Hg(p) are the most abundant mercspecies in the atmosphere.
Atmospheric Hg(0) is easily and accurately measimdeolar Regions (Steffen et al., 2008;
Dommergue et al., 2010b). Hg(p) and Reactive Gasedarcury (RGM) — the latter
consisting of various gaseous Hg(ll) compoundse-agerationally defined. Total Gaseous
Mercury (TGM) refers to the sum of Hg(0) and Hg(Bnd Reactive Mercury (RM) to the
sum of RGM and Hg(p).

2.1.2 Instrumentation

Measurements of atmospheric mercury species weferped at various sites in the Arctic
and in Antarctica over the 2011-2015 period (FigAll Hg(0) measurements reported in this
paper were performed using a Tekran gas phasezanglylodel 2537), and all RGM and
Hg(p) measurements using a Tekran speciation uh8Q/1135) (Table 1). The Tekran 2537
analyzer is based on the amalgamation of mercuxy agold cartridge followed by a thermal
desorption and detection by an integrated cold wegtomic fluorescence spectrometer
(CVAFS) at 253.7 nm (Fitzgerald and Gill, 1979;08in and Fitzgerald, 1988). The analysis
of Hg(0) is semi-continuous and the presence of getd cartridges allows alternating
sampling and desorption modes. At all samplingssitee sample air stream was prefiltered
either through a Tekran speciation unit or throughsodalime trap and/or a PTFE
(polytetrafluoroethylene) filter (Table 1). Somesearchers report ambient air collected at
Polar sites as TGM (Ebinghaus et al., 2002), inst#dHg(0), but the PTFE filter on the front
of the analyzer inlet most likely removes RGM ahdst only Hg(0) is collected and analyzed
(Steffen et al., 2002; Steffen et al., 2008). Buthe extremely cold and dry air in Antarctica,
no heated sampling line was used and no sodalire applied at TR, DC, and DDU.
Collected at 5 to 15 min intervals at the varioiigsss Hg(0) measurements are reported here
as hourly averages. RGM and Hg(p) measurement& BtaAd ANT were performed using a
Tekran speciation unit — connected to a 2537 aralymrough a PTFE heated sampling line —
through a multistep procedure as described elsewflendberg et al., 2002) using an

impactor inlet (2.5 um cut-off aerodynamic diame#r10 L/min), a KCl-coated quartz
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annular denuder in the 1130 unit, and a quartznegdle particulate filter (RPF) in the 1135

unit.
Quality assurance and quality control procedures

Auto-calibrations of the 2537 analyzers were penfent every 25 to 72 hours at the various
sites using an internal mercury permeation soufbe. accuracy of this permeation source
was checked at least once per year against mameations using a Tekran 2505 mercury
vapor calibration unit and following a strict procee adapted from Dumarey et al. (1985).
The detection limit for Hg(0) measurements is Mt according to the instrument manual
(Tekran, 2011). Based on experimental evidence,alferage systematic uncertainty for
Hg(0) measurements is of ~ 10 % (Slemr et al., 20There is no robust calibration
technique of the Tekran speciation unit and nofeedtreference material available. There is
growing evidence that RGM and Hg(p) might suffemfrsignificant biases and interferences
(Lyman et al., 2010; Gustin et al., 2013; Jaffale 2014; Huang et al., 2013; Kos et al.,
2013), and that RGM concentrations might be undienaged by as much as a factor of 2 - 13
(Gustin et al., 2016). Despite these limitatiohg Tekran speciation unit is currently the best
available automated method, and Hg(p) and RGM measents can be used as first
estimates to evaluate atmospheric models. Maintenaoperations on the Tekran
2537/1130/1135 instruments and screening critesia data validation/invalidation were
performed according to the directives of the stathdaperational procedure (SOP) from
CAMNet (Canadian Mercury Measurement Network), AMINEnited States Atmospheric
Mercury Network), or GMOS (Global Mercury ObsereatiSystem) (Steffen et al., 2012;
D'Amore et al., 2015).

2.2 Global mercury simulations

The current study is based on multi-model simutetiperformed as part of the Mercury
Modeling Task Force (MMTF) under the GMOS projetiavnikov et al., in preparation).
Four global models (ECHMERIT, GEM-MACH-Hg, GEOS-@heand GLEMOS) were
applied for evaluating monthly-averaged atmospheréccury concentrations and deposition
at various Arctic and Antarctic ground-based sitmsthe year 2013. Additionally, GEM-
MACH-Hg and GEOS-Chem provided hourly-averaged deden 2011 to 2014 to allow
investigations of inter-annual variability. A brieescription of the parameterization of the

four models is given below. The models differ sfgaintly in their description of mercury
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atmospheric chemistry and their parameterizatioprotesses specific to Polar Regions (i.e.,

AMDEsSs, oceanic evasion, and re-emissions from tiosvpack).

2.2.1 ECHMERIT

ECHMERIT is a fully-coupled model, based on the Aspheric General Circulation Model
(AGCM) ECHAMS5, and a mercury chemistry module, deped at the Institute for
Atmospheric Pollution of the National Research Guu(CNR-I1I1A) of Italy (Jung et al.,
2009; De Simone et al., 2014; De Simone et @162 The base mechanism includes
oxidation of Hg(0) by OH and £n the gas and aqueous (in-cloud) phases (remcid to
R3). Rate constants of reactions (R1) to (R3) emefSommar et al. (2001), Hall (1995), and
Munthe (1992), respectively.

Hg(0) + OH — Hg(ID) (R1)
Hg(0) + 0; — Hg(ID) (R2)
Hg(o)(aq) + OB(aq) - Hg(ll)(aq) (R3)

Oxidant fields (OH/@) are imported from MOZART (Model for Ozone and &eH
Chemical Tracers) (Emmons et al., 2010). In theebas used for this work bromine
chemistry is not included, and there is no parariestion of AMDEs. ECHMERIT
implements dynamically calculated ocean emissiamsafl ice-free basins, including Polar
Regions, as described in De Simone et al. (2014, & prompt re-emission of 60 % of

deposited mercury over ice (Selin et al., 2008).

2.2.2 GEM-MACH-Hg

GEM-MACH-Hg is a mercury version of the Environmarid Climate Change Canada’s
(ECCC'’s) current operational air quality forecastdel — Global Environmental Multi-scale —
Modelling air quality and Chemistry (GEM-MACH). GEMACH-Hg is an on-line model,
meaning that the meteorology is simulated in-stejph vihe chemistry, and includes
representation of physicochemical processes of umgrbased on the ECCC’s previous
mercury model — GRAHM (Dastoor and Larocque, 20@§stoor et al., 2008; Durnford et
al.,, 2010; Durnford et al., 2012; Kos et al., 201Dastoor et al., 2015). The horizontal
resolution of the model for this study 1§ x 1° latitude/longitude. Hg(0) is oxidized in the
atmosphere by OH (R1) and bromine (reactions (R4)R6), X = Br or BrO). The rate
constant of (R1) is from Sommar et al. (2001), $edled down by a coefficient of 0.34 to
take into account possible dissociation reactidrusgell, 2003; Goodsite et al., 2004). Rate
7
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constants of reactions (R4) to (R6) are from Domehet al. (2006), Dibble et al. (2012) and

Goodsite et al. (2004), respectively. Aqueous-phedection reactions are not included.

Hg(0) + Br — Hg(I)Br (R4)
Hg(D)Br — Hg(0) + Br (R5)
Hg(D)Br + X — Hg(IDX (R6)

OH fields are from MOZART (Emmons et al., 2010) lghBrO is derived from 2007-2009
satellite observations of BrO vertical columns. Tassociated Br concentration is then
calculated from photochemical steady state accgrttirequation (1), wherg,q is the BrO
photolysis frequency, arid,= 2.1 10" cm?® moleculé' s* andk, = 1.2 10" cm® moleculé' s

! are the rate coefficients for thBrO + NO - Br+ NO, and Br+ 0; - BrO + 0,

reactions, respectively (Platt and Janssen, 1995).

[Brl _ Jero+ kq [NOJ
[Bro] = kg [03] @

Durnford et al. (2012) developed and implementegramic multilayer snowpack/meltwater
parameterization allowing the representation of odépn and reemission of mercury.
Oceanic evasion of Hg(0) is activated if therepemwater and the temperature at the air-sea
interface is -4 °C or greater (Dastoor and Durnf@@{l4). In addition, Hg(0) released from
sea ice melting is also taken into account. Therpeterization of AMDEs is based on Br

production and chemistry, and snow reemission dbDH@Pastoor et al., 2008).

2.2.3 GEOS-Chem

GEOS-Chem (v9-02) is a global chemical transportdehodriven by assimilated
meteorological data from the NASA GMAO Goddard Ra@ibserving System (Bey et al.,
2001). It couples a 3-D atmosphere (Holmes et24l1,0), a 2-D mixed layer slab ocean
(Soerensen et al., 2010), and a 2-D terrestrigrves (Selin et al., 2008) with a horizontal
resolution of2° x 2.5° latitude/longitude. Three mercury tracers (Hg@y(ll), and Hg(p))
are tracked in the atmosphere (Amos et al., 20M2ycury fluxes at terrestrial and ocean
surfaces are described in Song et al. (2015). Adi@p oxidation mechanism initialized by Br
atoms is used (reactions (R4) to (R6), X = Br or)OBr fields are archived from a full-
chemistry GEOS-Chem simulation (Parrella et al120while rate constants of reactions
(R4) to (R6) are from Donohoue et al. (2006), Bafady et al. (2005), and Goodsite et al.
(2012), respectively. Some model setups relaté&btar Regions are implemented in v9-02 of
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the model as described in details in Holmes et28110). 5 pptv of BrO — at the low end of
concentrations reported by Neuman et al. (2010} -added in the springtime Arctic
(Antarctic) boundary layer during March-May (Aug@dttober) over areas with sea ice,
sunlight, stable conditions, and temperatures b@68/K. The associated Br concentration is
then calculated from photochemical steady staterdoty to equation (1) assuming that i®
depleted to 2 ppbv. Additionally, a snowpack resignis added. It accumulates deposited

mercury and releases it as Hg(0) under sunlit ¢cmmdi in a temperature-dependent way.

2.2.4 GLEMOS

GLEMOS (Global EMEP Multi-media Modelling Systens)a multi-scale chemical transport
model developed for the simulation of environmerdepersion and cycling of different
chemicals including mercury (Travnikov and IlyirQ®). The model simulates atmospheric
transport, chemical transformations and depositibthree mercury species (Hg(0), Hg(ll),
and Hg(p)). The atmospheric transport of tracerdrien by meteorological fields generated
by the Weather Research and Forecast (WRF) mogediistem (Skamarock et al., 2007) fed
by the operational analysis data from ECMWF. Thalehdn the base configuration has a
horizontal resolution of°® x 1°. The base mechanism includes oxidation of Hg(0)Oby
(R1) and Q (R2) in the atmosphere. Rate constants are fromn&o et al. (2001) and Hall
(1995), respectively. The model also includes oudl oxidation of Hg(0) by OH, ) and ClI
with associated rate constants from Gardfeldt et(2001), Munthe (1992), and Lin and
Pehkonen (1999), respectively. In-cloud reductigndD;* is also implemented, with an
associated rate constant from Petersen et al. (19®&actant fields are imported from
MOZART (Emmons et al., 2010).

The parameterization of AMDEs in Polar Regions @sdd on Br chemistry following the
two-step mechanism (R4)-(R6) described in Holmeslet(2010). Br concentrations are
extracted from p-TOMCAT (parallel-Tropospheric Qffie Model of Chemistry and

Transport) results (Yang et al., 2005). GLEMOS udels an empirical parameterization of
prompt-reemission from snow. It is assumed thamisgion occurs only from newly

deposited mercury in the presence of solar radiatibwo competing processes are
considered: photoreduction and ageing of depositextury with the characteristic times of 1
day and 10 days, respectively. It is also assurhat d@ll reduced mercury is immediately
reemitted back to the atmosphere. The aged fradfianercury does not undergo reduction

and is accumulated within the snowpack. No merewgsion from the ocean is implemented.
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2.3 Goodness-of-fit statistics between modeled and observed data

The Nash-Sutcliffe efficiency (NSE, Nash and Sifg]i1970) indicates how well the plot of
observed versus simulated data fits the 1:1 lINSE = 1 corresponding to the perfect match.
NSE is defined as one minus the sum of the absdgtered differences between the
simulated and observed values normalized by thamnee of the observed values:
_ 1 ZL0i-8)*
NSE=1 ST .0 07 @)

The root mean square error (RMSE) gives the stdndiariation of the model prediction error
(in the same units of simulated and observed valdesmaller value indicates better model

performance. It is calculated as follows:

RMSE :\/% N LSi— 0)? 3

The percent bias (PBIAS, in %) measures the avemagiency of the simulated values to be
larger or smaller than their observed ones. Thémaptvalue of PBIAS is 0. PBIAS is
calculated as follows:
N (5.0,
PBIAS = 100815290 (4

Zi=1 0;

NSE, RMSE, and PBIAS were calculated by using theaBkage “hydroGOF” (Zambrano-
Bigiarini, 2014).

3 Results and Discussion

3.1 Arctic sites

3.1.1 Observations

Fig. 2a shows monthly box plots of all data cokectt the four Arctic sites. The average
Hg(0) value in the Arctic over the 2011-2014 perind.46 + 0.33 ng M This concentration
falls within the range of what is observed in therthern Hemisphere (Sprovieri et al., this
issue-a). The highest mean is at AND (1.55 + 04 % over the 2011-2015 period), which
is closer from European industrialized areas ththprasites and experiences less frequent and
pronounced AMDES in spring (see section 3.1.1.2)er& is a clear Hg(0) concentration
gradient (except from June to August): AND > NY/ASHND > ALT.

10
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The Hg(0) concentration data from the four Arctites for the period 2011-2015 are
presented as monthly box and whisker plots in Biginformation regarding annually- and
monthly-based statistics at the three sites cafolned in Tables 2 and 3, respectively. The
annual medians at NYA and AND (Table 2) suggesbva inter annual variability in the
distribution of Hg(0) concentrations. Converselere is a high degree of inter-annual
variability at ALT and SND driven by the intensity spring and summertime processes. This

will be addressed in the following sections.

The mean seasonal variation of Hg(0) concentratainArctic sites is displayed in Fig. 4a.
Summer refers to June — August, fall to Septembé&iovember, winter to December —
February, and spring to March — May. Hg(0) conaitdns exhibit a strong and consistent
seasonal pattern year after year, as already egpbst others (Steffen et al., 2005; Berg et
al., 2013). Hg(0) concentrations reach a distineiximum in summer at ALT, SND, and
NYA (mean concentrations of 1.63 + 0.37, 1.63 #70and 1.60 + 0.23 ng Threspectively).

In late summer the concentrations start to decraadereach in fall a mean value of 1.28 +
0.12 ng nt at ALT, 1.36 + 0.11 ng ihat SND, and 1.46 + 0.16 nghat NYA. In winter,
concentrations increase slightly and are signifigainigher than in fall at the three sitgs (
value < 0.0001 at the three sites, Mann-Whitnet).t&pringtime reflects the lowest Hg(0)
concentrations with mean values of 1.11 + 0.58 fgamALT, 1.28 + 0.51 ng iMat SND,
and 1.38 + 0.38 ng that NYA. The seasonal cycle is more pronouncedLat than at SND
and NYA. Hg(0) concentrations at AND exhibit an opjpe seasonal cycle with a
significantly @ value < 0.0001, Mann-Whitney test) higher meanceatration in winter
(1.67 + 0.11 ng ) than in summer (1.48 + 0.12 ng*nin line with the seasonality reported
at Pallas, Finland (67°22'N, 26°39’E) (Berg et &001; Sprovieri et al., this issue-a). The
mechanisms which cause the seasonal variation @)Hmpncentrations at Arctic sites are

discussed in the following sections.
3.1.1.1 Wintertime advection of Hg from mid-latitudes

Several studies highlighted that the Arctic is gigantly influenced by atmospheric pollution
from mid-latitudes — phenomenon known as Arcticehazduring wintertime (Barrie et al.,
1981; Heintzenberg et al., 1981; Shaw, 1982; d&twi et al., 1999; Heidam et al., 2004;
Bourgeois and Bey, 2011; Nguyen et al., 2013)t@asand Larocque (2004) used an on-line
model to explain the observed seasonal variatianatinospheric mercury circulation and
showed frequent episodes of mercury transport froich-latitudes sources to the Arctic in
winter. Similarly, Hirdman et al. (2009) attributélte highest 10 % of all wintertime Hg(0)
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data at NYA to transport of air masses especiatiynfEurope. Higher Hg(0) concentrations
in winter compared to fall at ALT, SND, and NYA caherefore be attributed to the

meteorological differences in the seasonal cirgutapatterns (Dastoor and Larocque, 2004).
Higher concentrations in winter at AND comparedthe three other Arctic sites can be
attributed to the powerful advection of air masem Europe at this site (Durnford et al.,

2010).

3.1.1.2 Springtime AM DEs

AMDEs in the Arctic are defined as Hg(0) conceriras below 1.00 ng th (Steffen et al.,
2005; Cobbett et al., 2007). Based on thisshold, AMDESs occur in 39 %, 28%, 15%, and
1% of the 2011-2014 springtime observations at AGND, NYA, and AND, respectively.
The fact that ALT experiences stronger and morgueat AMDESs than other Arctic sites
could be due to air masses circulation patternger@éstudies indicated that a large fraction
of the AMDEs reported at NYA and AND are suspectedresult from the long-range
transport of air masses containing depleted Hg@@hfareas over the Arctic Ocean (Gauchard
et al., 2005; Sommar et al., 2007; Berg et 8082 Steen et al., 2011; Berg et al., 2013). A
statistical analysis on the results from a Lagrangiarticle dispersion model (FLEXPART)
and Hg(0) concentrations measured at NYA was pmdr by Hirdman et al. (2009) to
identify source regions of high- and low-Hg air @& The authors concluded that the lowest
10% of the Hg(0) data at NYA in spring were strgngbksociated with transport across the
sea-ice covered Arctic Ocean at low altitudes -asamehere elevated BrO concentrations are
seen in the atmospheric column by satellite obsiens (e.g., Lindberg et al., 2002).
Similarly, a correlation of AMDEs with wind directh at ALT supports the origin of
depletion events over the Arctic Ocean (Cole areff&t, 2010). The less frequent and
pronounced AMDEs at AND may be explained by the fhat this site is farther away from
the source areas of AMDEs (Berg et al., 2008).

Over the 2011-2015 period, AMDEs at NYA are evaliitributed between April and May as
38 and 38% respectively, and fewer in March andeJ( and 10 % of the time,
respectively). This result is in good agreementtite distribution reported by Berg et al.
(2013) over the 2000-2009 period. Conversely, AMDRIEs more frequent in April (41 %)
than in May (32 %) at ALT, while less frequent ipid (34 %) than in May (43 %) at SND.
Interestingly, the analysis of the ALT dataset frd@95 to 2007 by Cole and Steffen (2010)
revealed that, over time, the month of maximum AM&dEivity shifted from May to April.
On the contrary, the analysis of the NYA datasatnf2000 to 2009 by Berg et al. (2013) did
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not evidence such a change in the timing frequafic&MDEs. The reason for this shift in
timing of AMDEs at ALT is not fully understood babuld be due to local meteorology (Cole
and Steffen, 2010). The authors found that thetlengagnitude, and frequency of AMDESs
decreased with increasing local temperature. Thesdts are consistent with earlier studies
on the temperature dependence of the halogen cimgnistiating AMDEs and ozone
depletion events (Koop et al., 2000; Adams et20Q2; Tarasick and Bottenheim, 2002;
Sander et al., 2006) and with a modeling study ntegp that increasing surface air
temperature decreases the frequency of AMDEs (@hexh., 2015) . However, considering
the fact that AMDESs observed at Arctic sites ofteault from the transport of depleted air
masses, local temperature might not be the keyaegpbry parameter. Moore et al. (2014)
showed that AMDEs and ozone depletion events neamol®, Alaska, are directly linked to
sea-ice dynamics. According to the authors, depietivents are favored by consolidated sea-
ice cover but both Hg(0) andsQoncentrations immediately recover to near-baakgio
concentrations when air masses cross open leatlinvdt day before measurements. The
authors attributed this recovery of concentratitmschanges in boundary-layer dynamics
induced by sea-ice leads, causing significant cotiwe mixing with non-depleted air masses
aloft. Further work is needed to establish the dego which sea-ice dynamics across the
Arctic might influence the inter-annual variabiligf AMDEs at the various Arctic sites.
Indeed, AMDESs occurred at ALT in 36 % (2011), 51(2012), 50 % (2013), and 21 %
(2014) of the springtime observations, at SND i?372011), 16 % (2012), 36 % (2013), and
19 % (2014) of the springtime observations, andlfyrat NYA in 18 % (2011), 13 % (2012),
16 % (2013), 20 % (2014), and 6 % (2015) of théngphme observations.

Several studies reported RGM and Hg(p) concentratiduring AMDEs at Arctic sites
(Lindberg et al., 2002; Berg et al., 2003a; Stefet al., 2003; Aspmo et al., 2005;
Gauchard et al., 2005; Sprovieri et al., 2005&es et al., 2011; Wang, 2015). Fig. 5 shows
box plots of the monthly concentrations of RGM and(p) at ALT over the 2011-2014
period. A distinct annual cycle is highlighted imst figure. Hg(p) concentrations increase
from November through February likely due to thethkrhaze (Steffen et al., 2014), reach a
maximum in March and April due to AMDESs, and thestitase. RGM concentrations peak
in spring and then gradually decrease. The proolnaf RGM in June and July — after the
AMDEs season — is observed every year and remaiegplained (Steffen et al., 2014).
While Hg(p) is the dominant species in early spriagclear shift is observed, from the

predominance of Hg(p) to RGM in AMDESs occurring ey the end of spring. This shift has
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already been evidenced at Churchill, Manitoba (kitlal., 2006), ALT (Cobbett et al., 2007),
and NYA (Steen et al., 2011), and has been showepteat year after year at ALT (Steffen et
al.,, 2014). Steffen et al. (2014) suggested thiat shift is due to temperature and particle
availability. Using a detailed air-snowpack modet fnteractions of bromine, ozone and
mercury in the springtime Arctic, Toyota et al. {20 proposed that Hg(p) is mainly produced
as HgB§> through uptake of RGM into bromine-enriched aeloafter ozone is significantly

depleted in the air mass. In addition, Toyota et (2014) provided the temperature
dependence of these reactions which needs to feegexperimentally. Based on ten years
of data, Steffen et al. (2014) also reported higbeels of mercury in the snow when the
atmospheric conditions favored the formation of RGMhis springtime shift from the

predominance of Hg(p) to RGM in AMDEs likely dirgcimpacts the amount of mercury

deposited onto the snowpack. This will be furthscdssed in section 3.1.2.2.
3.1.1.3 Summer enhancement of Hg(0) concentrations

According to Dastoor and Larocque (2004), advectibmercury from mid-latitudes to the
Arctic is insignificant in summer due to weak aivfl movements and to a confined polar
front. The increase of Hg(0) concentrations in swnrould be due to the reemission of
mercury deposited during springtime AMDESs. Howevke comparison of the magnitude of
the springtime depletion and the magnitude of tlrser enhancement at ALT suggests
otherwise. Mean springtime Hg(0) concentrationslaneer — suggesting more intense and/or
frequent AMDES — in 2012 (0.97 + 0.53 ng®jrand 2013 (0.89 + 0.57 ngthan in 2011
(1.19 + 0.59 ng ) and 2014 (1.37 = 0.50 ng' T while mean summertime concentrations
are higher — suggesting more reemission — in 208 & 0.37 ng M) and 2014 (1.63 + 0.31
ng n°) than in 2012 (1.43 + 0.27 ng¥hand 2013 (1.65 + 0.41 ng¥h Therefore, the
summer enhancement of Hg(0) concentrations is géypettributed to emissions from snow
and ice surfaces (Poulain et al., 2004; Sproweral.,, 2005b; Sprovieri et al., 2005a;
Sprovieri et al., 2010; Douglas et al., 2012) antld evasion from the ice-free surface waters
of the Arctic Ocean (Aspmo et al.,, 2006; Anderssoral., 2008; Hirdman et al., 2009;
Fisher et al., 2013; Dastoor and Durnford, 20M, et al., 2014; Soerensen et al., 2016).
The atmospheric mercury model (GRAHM) used by Darsemd Durnford (2014) simulated
a first peak in Hg(0) concentrations driven by tatibization from snowpack/meltwaters,
followed by a second peak driven by oceanic evasitime timing of the peaks varying with
location and year. Additional modeling studies fggd that some of the mercury in surface

ocean waters may come from riverine input (Fishel.e2012; Soerensen et al., 2016).
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As can be seen in Fig. 3, Hg(0) concentrationssageificantly higher § value < 0.0001,
Mann-Whitney test) during summer 2011 at ALT (1810.37 ng i) than during the
following summers (1.57 + 0.35 ng*hin average). At SND, Hg(0) concentrations peak in
summer 2013 (1.91 + 0.37 ng“ws. 1.52 + 0.26 ng Min average during summers 2011,
2012, and 2014). One possible explanation for ititer-annual variability is sea ice extent.
Daily sea ice maps can be obtained from http://www.iup.uni-
bremen.de/iuppage/psa/2001/amsrop.h{@preen et al., 2008). ALT and SND are both
surrounded by multi-year ice. During summer 201k Hall Basin — waterway between

Greenland and Canada’s northernmost island wherE i8llocated — was ice-free. During
summer 2013, sea ice extent was particularly lothenGreenland Sea — between Greenland
and the Svalbard archipelago. These large arege-dfee surface waters might have led to
enhanced oceanic evasion near ALT, and SND in 20012013, respectively. Indeed, Yu et
al. (2014) reported a negative correlation betw&@&M and salinity over an Arctic ice-
covered region, suggesting that ice melting woutthamce TGM concentrations. This
hypothesis is further supported by wind data obtalem  from

http://climate.weather.gc.ca/historical data/seangtoric_data e.html and

http://villumresearchstation.dk/datait ALT, the summertime dominant wind direction is

from north-east but with frequent and strong wifidsn south/south-west (Hall Basin), in

line with results reported by Bilello (1973) andhbett et al. (2007). At SND, the dominant
wind direction is from south-west but the directibecomes more variable in summer with
winds also occurring from south and east (Bilell®73; Nguyen et al., 2013). Yet a
comprehensive and systematic analysis of air masaelstrajectories and sea-ice extent is

required to further investigate parameters respbméor the observed inter-annual variability.

NYA is normally surrounded by open water in the suen Therefore, oceanic emissions are
expected to act as a significant local source téANwhile being a regional and diffuse source
at ALT and SND (Cole et al.,, 2013). However, themmer enhancement of Hg(0)
concentrations is weaker at NYA than at ALT and S{Hp. 4a). The western coast of
Spitsbergen island, where NYA is located, was fee-fyear-round over the period of interest
possibly preventing the build-up of mercury-enridhiee-covered surface waters in winter
and intense evasion in summer. Additionally, a carafive study was carried out at NYA
with measurements at both 12 m a.s.l. and 474 . &\hile Aspmo et al. (2005) found no
significant difference between Hg(0) concentratiasthe two elevations, several studies
(Berg et al.,, 2003b; Sprovieri et al., 2005b; $wmn et al., 2007) reported that Hg(0)
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concentrations at 12 m a.s.l. were higher in mageitand exhibited a higher variability than
at 474 m a.s.l.. Evidence of volatile mercury ewadrom snow and water surfaces was also
obtained, suggesting a cycling of mercury nearstivéace. Zeppelin station at 474 m a.s.l. is
typically positioned over or at the top of the mariboundary layer of the fjord valley
(Sommar et al., 2007) likely, at least partly, eiping why the summer enhancement of

Hg(0) concentrations is weaker at NYA.

In contrast to observations at ALT, SND, and NYAg(6) concentrations reach a minimum
in summer at AND. Transport of air masses from Rars dominant at AND (Durnford et
al., 2010) and could mask any variability induced dzeanic evasion. The mean Hg(0)
concentration in summer at AND (1.48 + 0.12 ng aver the 2011-2015 period) is consistent
with the value of ~ 1.42 ng Threported at Pallas, Finland over the 2013-2014oger
(Sprovieri et al., this issue-a).

3.1.2 Comparison with models

Table 4 displays goodness-of-fit statistics betweemthly-averaged modeled and observed
data in 2013. Except at ALT, modeled Hg(0) conaitns are biased-low suggesting that
the four global models tend to underestimate sauoféig(0). The ability of the four models
to reproduce the observed seasonality of Hg(0) eatnations at Arctic sites in 2013 is shown
in Fig. 6a and discussed in the following sectidksmentioned in section 2.2, GEM-MACH-
Hg and GEOS-Chem provided hourly-averaged data 20l to 2014. The inter-annual
variability of the monthly Hg(0) concentration dibution at Arctic sites as simulated by the
two models is displayed in Fig. 7a while Table ®wh the percent bias between hourly-

averaged modeled and observed data on a seassisfrben 2011 to 2014.
3.1.2.1 Seasonal variation
a) Winter

All the models (except ECHMERIT) overestimate Hg{@ncentrations at ALT in January
and February 2013, but reproduce well the averadaevin December 2013 (Fig. 6a). It is
worth noting that the observed mean value in Jafigebruary 2013 (1.24 + 0.13 ngnis
lower than the value observed in December 20135(+.49.07 ng i) and lower than the
hemispheric background (1.30 — 1.60 ng according to Sprovieri et al. (this issue-a)).
Additionally, the observed mean value in Januatyf&ary 2013 is at the low end of values
reported at this period of the year at ALT from 2ad 2014 (Fig. 3, 1.40 + 0.16 ng‘hin
2011, 1.32 + 0.09 ng thin 2012, and 1.47 + 0.12 ngin 2014). The inter-annual
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497 variability of observed Hg(0) concentrations at ALST not captured by models. Modeled
498 Hg(0) concentrations in January/February range ftof8 + 0.03 in 2014 to 1.54 + 0.03 ng
499 m?3in 2011 and 2012 with GEOS-C hem and from 1.5406 Gn 2012 to 1.58 + 0.04 ng'n

500 in 2013 with GEM-MACH-Hg. Similarly, the inter-anal variability of modeled Hg(0)

501 concentrations is low at other Arctic sites (Fig).7The wintertime inter-annual variability of
502 observed Hg(0) concentrations might be driven byeorelogy and mercury emissions in
503 mid-latitudes. However, the AMAP/UNEP (2010) gloiratentory of mercury anthropogenic
504 emissions (annual mean emission fields) was usealifeimulated years (2011-2014) in both
505 GEOS-Chem and GEM-MACH-Hg, preventing the consitienaof inter-annual changes in

506 anthropogenic emissions.
507 b) Spring

508 Springtime reflects the lowest Hg(0) concentrati@sALT, SND, and NYA due to the
509 occurrence of AMDESs (see section 3.1.1.2). Thisimirm is well reproduced by GEM-
510 MACH-Hg, GEOS-Chem, and GLEMOS at all three statjobut not reproduced by
511 ECHMERIT (Fig. 6a). It should be noted that thesend parameterization of AMDES in the
512 latter. Interestingly, GLEMOS predicts a similar risgtime minimum at AND in
513 contradiction with the seasonal pattern observethiat station (see section 3.1.1.2). This

514 discrepancy can likely be attributed to uncertamtn Br fields extracted from p-TOMCAT.

515 As discussed in section 3.1.1.2, AMDEs were lesgjUent at ALT in 2014. This lower
516 occurrence frequency is fairly well reproduced bEMEMACH-Hg (61 % (2011), 43 %
517 (2012), 53 % (2013), and 36 % (2014)), but notlabyp GEOS-Chem (4 % (2011), 6 %
518 (2012), 13 % (2013), and 37 % (2014)). A tempermtigpendence of BrO concentrations is
519 implemented in GEM-MACH-Hg and Bis assumed to occur only over consolidated sea-ice
520 which would change with changing meteorologicalditans. Conversely, a constant value
521 of 5 pptv of BrO is added in the springtime Arctioundary layer into GEOS-Chem v9-02.
522 However, updates to Arctic mercury processes wéllilmplemented in v11-01 based on
523 Fisher et al. (2012) and Fisher et al. (201ttpi//wiki.seas.harvard.edu/geos-
524  cheml/index.php/Mercury#Updates to Arctic Hg proegss BrO concentrations  will

525 depend on temperature according to a relationshipsen to optimize spring Hg(0)
526 concentrations and the shift of peak depletionlal &om May to April (see section 3.1.1.2).
527 It should also be noted that GEOS-Chem relies 0©0&E and GEOS-FP meteorological
528 fields in 2011-2013 and 2014, respectively. Simaie in Polar Regions can be very

529 sensitive to subtle changes in meteorological $iekspecially during the AMDEs season,
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which could at least partly explain the inter-arintaiability of modeled AMDES occurrence

frequencies.

Based on the work by Moore et al. (2014) showirgy ithpact of sea-ice leads on AMDESs
(AMDEs might be favored by consolidated sea-iceetpwsee section 3.1.1.2), real-time
distribution of sea-ice dynamics including preserafe leads is needed. Contrarily to

conclusions by Moore et al. (2014), a recent modetitudy (Chen et al., 2015) carried out
using GEOS-Chem v9-02 — but including an ice/snavdate and riverine inputs as described
by Fisher et al. (2012) and Fisher et al. (20133hewed that increasing sea ice lead
occurrence increases the frequency of AMDEs. Thesé&radictory results highlight the fact

that further work is needed regarding the degreghich sea-ice dynamics across the Arctic

alters mercury chemistry in spring.
C) Summer

All the models (except ECHMERIT in which polar pesses are not implemented) capture,
to some extent, the summertime Hg(0) enhancemebEM®S clearly underestimates
summertime mean concentrations at ALT and SND (B&. This can be attributed to
missing reemissions and/or oceanic evasion. As ioread is section 3.1.1.3, Dastoor and
Durnford (2014) suggested two distinct summertimaxima: a first one supported by
revolatilization from snowpack/meltwaters occurritgm the end of May to mid-June at
ALT, and in June at NYA,; a second one supporteddsanic evasion from mid-July to early
August at ALT and NYA. GEOS-Chem gives a summerimar in June instead of July at
ALT, SND, and NYA. This time-lag might result froto the fact that oceanic evasion from
the Arctic Ocean is not implemented in v9-02. viilef the model will include, among other
updates, new present-day (2009) fields for net @njnproductivity (NPP) based on Jin et al.
(2012), a UV-B dependence for Hg(ll) reduction égawater based on results of O'Driscoll et
al. (2006), updated Hg(0) emissions from snow, arsdurce of mercury from the snowpack
to the Arctic Ocean at the onset of snowmelt. kieorfor the models to reproduce the inter-
annual variability of Hg(0) concentrations, reahi distribution of areas of ice-free surface

waters along with the type of surface (ice/snowsifi@e bedrock) are needed.
3.1.2.2 Reactive Mercury and deposition

Year 2013 modeled monthly-averaged RM concentratiand wet/dry deposition are
displayed in Fig. 8a. GEOS-Chem, GEM-MACH-Hg, andEMOS predict increased RM

concentrations in spring, during the AMDEs seasamsistent with the observed pattern at
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ALT (Fig. 5) and NYA (Wang, 2015). The fact that BRERIT does not capture the spring
enhancement is not surprising since the model doegmplement any chemistry specific to
Polar Regions. GLEMOS also predicts a RM spring imar at AND, in line with the
modeled Hg(0) spring minimum at this site (Fig..6&3 discussed in section 3.1.2.1.b, this
can likely be attributed to uncertainties in Brdi extracted from p-TOMCAT. Long-term
measurements of RM in the Arctic are scarce andtdimto ALT and NYA (data not
presented here). According to Fig. 8a, all four piedunderestimate RM concentrations at
ALT from at least January to April 2013. Similarl$he comparison of modeled RM
concentrations at NYA with annual averages repdoie&teen et al. (2011) and Wang (2015)
suggest an underestimation of the concentration&SBPS-Chem, GEM-MACH-Hg, and
ECHMERIT.

According to the models, deposition of mercury gemkspring at ALT and SND, consistent
with the RM spring maximum. The deposition of meyculuring AMDEs depends on
temperature, relative humidity and aerosol contritu(Cobbett et al., 2007), and is higher
when the atmospheric conditions favor the format@nRGM over Hg(p) (see section
3.1.1.2). Therefore, as suggested by Steffen gR@l5), prevailing atmospheric conditions
must be fully characterized in order to accuratlgluate the deposition of mercury. GEOS-
Chem and GLEMOS both predict higher dry depositiospring at NYA. Wet deposition is
largely driven by precipitation — RM being readdgavenged by rain or snow, whereas dry
deposition depends on the boundary layer staldlity the type of the underlying surface
(Cadle, 1991). Deposition of mercury in the Ardtitypically inferred from concentrations of
total mercury in the snowpack (e.g., Steffen et24114) or from a Hg(0) flux gradient method
(Steffen et al., 2002; Brooks et al., 2006; Cdbbeal., 2007; Steen et al., 2009), and not
through direct measurement of wet and dry depasitinaking it difficult to evaluate the
accuracy of models predictions. To the best ofkmawledge, NYA is the only site out of the
four Arctic sites where wet deposition measurembate been reported (Sprovieri et al., this
issue-b). From May to December 2013, the obsereeevat deposition flux is equal to 0.9 pg
m? while modeled fluxes amount to 1.7, 3.2, 2.8, & ug nf according to GLEMOS,
GEOS-Chem, GEM-MACH-Hg, and ECHMERIT, respectivell.four models overestimate
the wet deposition flux. Interestingly, all four dels also overestimate the amount of
precipitation (by a factor of 2.0, 2.2, 2.1, and,Irespectively. Data not shown). Several
studies showed that the form of precipitation (r&g snow) influences the collection
efficiency of the sampler. Lynch et al. (2003) a@nkstbo and Gay (2009) found that the
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annual collection efficiency is 89 % and 87.1 + @5 respectively, at cold weather sites of
the United States and Canada experiencing snowfalinter vs 98.8 + 4.3 % at warm
weather sites (Prestbo and Gay, 2009). Assumingrawal 89 % collection efficiency of
snow at NYA does not narrow the gap between obdemed modeled amounts of
precipitation. However, an annual 89 % collectidificiency at NYA seems generous
considering that snow falls year round and thamggwind (> 10 m'3) and blowing snow are

frequent, especially in winter (Maturilli et al.Q23).

3.2 Antarctic sites

3.2.1 Observations

Fig. 2b shows monthly box plots of all data coketin Antarctica (ground-based sites and
cruises). Hg(0) concentrations from the ANT cruisBsplayed in Fig.2b refer to data
collected when R/V Polarstern operated within trergimal sea ice region (8 July — 23 July
2013, 25 July — 9 August 2013, 28 August — 5 Oat@fd 3) (Nerentorp Mastromonaco et
al., 2016). Similarly, Hg(0) concentrations frometlSO cruise refer to data collected at
latitude > 60°S. Hg(0) concentrations measurednguthe ANT and OSO cruises are
somewhat higher than values at ground-based Ardasiteés. The average value at Antarctic
sites is 0.96 + 0.32 ng Ti.e. 35% lower than the average value at Ardtiess(see section
3.1). This result is consistent with the North-toug Hg(0) decreasing gradient reported by
Sprovieri et al. (this issue-a), and with valugsoréed at Southern Hemisphere mid-latitudes
sites (Angot et al., 2014; Slemr et al., 2015).

The Hg(0) concentration data from the three Antaigtound-based sites for the period 2011-
2015 are presented as monthly box and whisker ptotsig. 9. Information regarding
annually- and monthly-based statistics at the thuiess can be found in Tables 2 and 3,
respectively. The annual medians for 2011-2015 Rtahd 2012-2015 at DDU (Table 2)
suggest a low inter annual variability in the dimition of Hg(0) concentrations. Conversely,
Hg(0) concentrations are notably higher in 2015:tm2012 and 2013 at DC. This trend is
more apparent from Fig. 9b, especially from MargtSeptember. It is worth noting that in
2015 measurements were performed at a differerdtitot within the “clean area” (the
instrument was moved from one shelter to anotiatilitionally, following the January 2014
instrument failure, a new Tekran instrument opetate2015. The combination of these two
elements likely, at least partly, explains the efffebserved in 2015. Despite this offset, the

seasonal trends of Hg(0) repeat from year to yeBiCa(see below).
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The mean seasonal variation of Hg(0) concentrat@n#\ntarctic ground-based sites is
displayed in Fig. 4b. Summer refers to Novembeebriary, fall to March — April, winter to
May — August, and spring to September — OctoberTR{ the Hg(0) concentrations are
significantly @ value < 0.0001, Mann-Whitney test) higher in wir{@98 + 0.06 ng M) than

in summer (0.89 + 0.29 ng in good agreement with the seasonal variatiponted at TR
by Pfaffhuber et al. (2012) from February 2007 tmel 2011, and at Neumayer (NM) by
Ebinghaus et al. (2002). Contrarily, Hg(0) concatitins at DDU are slightly but significantly
(p value < 0.0001, Mann-Whitney test) higher in sum@e88 + 0.32 ng i) than in winter
(0.84 + 0.11 ng ). On the high-altitude Antarctic plateau at DC,(B)gconcentrations
exhibit a distinct maximum in fall (1.45 + 0.27 ng°) and a minimum in summer (0.78 +
0.46 ng nT). The mechanisms which cause the seasonal variafibig(0) concentrations at

Antarctic sites are discussed in the following et
3.2.1.1 Thewinter mysteries

Hg(0) concentrations at TR remain at a fairly canstevel of 0.98 + 0.06 ng Tin average
from April to August (Fig. 2b). This result is inogd agreement with observations at
Neumayer (Ebinghaus et al., 2002). Pfaffhuber.e28l12) attributed this phenomenon to the
lack of photochemical oxidation processes during tolar night. Conversely, Hg(0)
concentrations exhibit a gradual 30% decrease atfiofh 1.48 + 0.19 in average in April to
0.98 + 0.20 ng M in August. This decreasing trend remains unexpthiand possibly results
from the dry deposition of Hg(0) onto the snowpadngot et al., 2016b). In 2013,
measurements were performed at various heightdemve the snow surface. Interestingly,
Angot et al. (2016b) reported a steeper decreaség@@) concentrations close to the snow
surface suggesting that the snowpack may act ik #os mercury. Similarly, a gradual 20%
decrease in Hg(0) concentrations is observed at Ofth 0.94 + 0.07 in average in April to
0.72 + 0.10 ng m in August (Fig. 2b). Based on an analysis of a#rsmback trajectories,
Angot et al. (2016a) suggested that this decreasemgl at DDU most likely results from
reactions occurring within the shallow boundaryelagn the Antarctic plateau, subsequently
transported toward the coastal margins by katabatimls. DDU is most of the time
influenced by inland air masses whereas severdlestishowed that stations such as NM are
not significantly impacted by air masses origingtirom the Antarctic plateau (Helmig et al.,
2007; Legrand et al., 2016b) explaining why comiegions remain rather stable at NM and
TR throughout winter.
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Hg(0) concentration exhibits abrupt increases wimaist and warm air masses from lower
latitudes occasionally reach the three ground-b#sedrctic stations. At DDU, such events
are concomitant with an enhanced fraction of oceairi masses reaching the site according
to the HYSPLIT model simulations, and with increhsedium concentrations (Angot et al.,
2016a). At DC, these advections of warm and maistasses are confirmed by an increase
of temperature at 10 m a.g.l. and a high integratatkr vapor column (Angot et al., 2016b).
Finally, based on a statistical analysis of sownd sink regions, Pfaffhuber et al. (2012)
showed that transport from lower-latitude regions faequently associated with the highest

Hg(0) concentrations at TR.

During the winter expedition ANTXXIX/6 on board R/Folarstern over the Weddell Sea
(Fig. 1), Nerentorp Mastromonaco et al. (2016) olese: depletions of Hg(0) characterized by
strong correlations with 9 This is the first evidence of Hg(0) depletiongweing in winter.
The authors propose a dark mechanism involving BvIDEs in Antarctica are operationally
defined as Hg(0) concentrations below 0.60 ri§ (Rfaffhuber et al., 2012). Based on this
threshold and on the ;Gsignal, there is no evidence of Hg(0) depletionsuoring during

months of complete darkness at the three grouneédbastarctic sites.
3.2.1.2 Springtime AM DEs

Before going further, it should be noted that TRhat a coastal station. It is located at an
elevation of 1275 m and approximately 220 km frdma Antarctic coast. Contrarily, DDU is

located on a small island about one km offshormftiee Antarctic mainland.

AMDEs are observed at TR in positive correlatiohw®; (r up to 0.56p value < 0.001,
Spearman test). Based on the 0.60 figtimeshold (see previous section), AMDEs occur in 2
% of the springtime observations, in line with thecurrence frequency of 5% reported by
Pfaffhuber et al. (2012) from February 2007 to JA@#&1. Based on a statistical analysis of
source and sink regions, Pfaffhuber et al. (20@8jcated that the spring Hg(0) sink, caused
by AMDEs, is mainly located within sea ice denseaarsurrounding Queen Maud Land.
AMDEs at TR are weaker and less frequent when coadp@ the Arctic (see section 3.1.1.2)
likely partly due to the location of the stationt fieing exposed directly to depletion events
but rather to transport of mercury-depleted air seagPfaffhuber et al., 2012). In contrast,
AMDESs occur in 28 % of the observations from 28 Asigto 5 October 2013 during the
spring expedition ANTXXIX/7 over sea ice areas lué Weddell Sea. At DDU, on the other
side of the Antarctic continent, data covering #pging period are scarce (Table 3). As
indicated by Angot et al. (2016a), the absenceepiations in spring 2012 tends to suggest
22
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that AMDEs, if any, are not very frequent at DDlevSral studies reported a less efficient
bromine chemistry in East compared to West Anteactiue to a less sea-ice coverage (Theys
et al.,, 2011; Legrand et al., 2016a). However, dtngt al. (2016a) reported low Hg(0)
concentrations (0.71 + 0.11 ng*jrand a significant positive correlation with ® up to 0.65,

p value < 0.0001, Spearman test) in springtime dceain masses, likely due to bromine

chemistry.
3.2.1.3 Boundary layer dynamics on the Antarctic plateau in fall

The fall maximum at DC likely partly results froml@v boundary layer oxidative capacity
under low solar radiation limiting Hg(0) oxidatioAdditionally, at DC, weak turbulence and
mixing, and strong temperature gradients nearthiace are favored by light wind and clear
sky conditions (Argentini et al.,, 2013). The suddiased temperature inversions were
characterized by Pietroni et al. (2012) over tharse of a year. In summer, a convective
boundary layer characterized by a maximum dept20#f-400 m (Argentini et al., 2005)
develops around midday. In winter, strong tempeeaitaversions allow for a mixing depth of
a few tens of meters only. Based on the limitech anrmdel MAR (Modéle Atmosphérique
Régional), Angot et al. (2016b) indicated that tfedl distinct maximum of Hg(0)
concentrations is concomitant with the time whea tioundary layer lowers to ~ 50 m in
average and no longer exhibits a pronounced diwyae. Hg(0) is thus suddenly dispersed
into a reduced volume of air, limiting the diluticgimilarly, several studies showed that NO
mixing ratios are enhanced when the boundary lesyshallow (Neff et al., 2008; Frey et al.,
2013).

3.2.1.4 Extremely active processesin summertime

Summertime Hg(0) concentrations at the three grdwasid sites exhibit a high variability
(Fig. 2b), suggesting extremely active processethiattime of the year. Undetected from
March to October, a diurnal cycle characterizedabyoon Hg(0) maximum is observed in
summer at DDU and DC over the 2012-2015 period (Areg al., 2016a; Angot et al.,
2016b). At DC (DDU), Hg(0) concentrations rangenire- 0.6 ng it (~ 0.7 ng nt) on
average at night to ~ 1.0 ng%~ 1.1 ng i) on average around midday. Conversely, there is
no diurnal variation in Hg(0) concentrations at TiR,good agreement with observations
reported by Pfaffhuber et al. (2012) from Febru2®97 to June 2011. Similarly, there is no
mention of a daily cycle at NM, Terra Nova Bay, aidMurdo where summer campaigns
were carried out (Ebinghaus et al., 2002; Temmnad.e2003; Sprovieri et al., 2002; Brooks
et al., 2008b). The absence of diurnal cycle at CBR be attributed to the absence of
23
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sources/sinks for Hg(0) with a diurnal cycle in thenity of the site (Pfaffhuber et al., 2012).
The mean summertime Hg(0) concentration is sigaifily (0 value < 0.0001, Mann-Whitney
test) lower at DC (0.78 + 0.46 nginthan at DDU (0.88 + 0.32 ngthand TR (0.89 + 0.29
ng m?), suggesting a more intense oxidation of Hg(Ok Bbundary layer oxidative capacity
has been shown to be high in summer on the Antgptaieau with elevated levels of OH;, O
NOy, and RQ radicals (Davis et al., 2001; Grannas et al.,720Bisele et al., 2008; Kukui et
al., 2014; Frey et al., 2015). Angot et al. (201pbrformed Hg(0) measurements in both the
atmospheric boundary layer and the interstitial afirthe snowpack, and analyzed total
mercury in surface snow samples. The authors, ad ggreement with Brooks et al. (2008a)
and Dommergue et al. (2012), suggested that thenads summertime Hg(0) diurnal cycle at
DC might be due to a dynamic daily cycle of Hg(@)dation, deposition to the snowpack,
and reemission from the snowpack. Similarly, a mectudy (Wang et al., 2016) reported a
Hg(0) diurnal cycle at Kunlun station (80°25’S, B8'E) located near Dome A (80°22'S,
77°27'E) — the highest elevation point on the Actiarplateau (4090 m). This suggests that
the dynamic daily cycle of Hg(0) oxidation, depmsitto the snowpack, and reemission from
the snowpack probably occurs throughout the Antapdateau. Based on an analysis of air
mass back trajectories, Angot et al. (2016a) shotlvatl measurements at DDU on the East
Antarctic coast are dramatically influenced byraasses exported from the Antarctic Plateau
by strong katabatic winds. The advection of inlairdnasses enriched in oxidants —,NO;,
and OH (Grilli et al., 2013; Kukui et al., 2012prd Hg(ll) species likely results in the build-
up of an atmospheric reservoir of Hg(ll) specie®BU, as supported by elevated levels of
total mercury in surface snow samples (Angot et28116a). The diurnal cycle observed at
DDU - regardless of wind speed and direction — inighult from a local dynamic cycle of
oxidation/deposition/reemission in the presenceeleivated levels of Hg(ll) species along
with emissions of mercury from ornithogenic soil$ormed by an accumulation of penguin

excreta.

Hg(0) depletion events occur each year in summebD@t with Hg(0) concentrations
remaining low (~ 0.40 ng 1) for several weeks. These depletion events daessmble to

the ones observed in the Arctic. They are not aatamt with depletions of £ and occur as

air masses stagnate over the Plateau which coutd én accumulation of oxidants within the
shallow boundary layer (Angot et al., 2016b). At,TRfaffhuber et al. (2012) reported
episodic low Hg(0) concentrations in summer, aotrelated with @, and associated with the
transport of inland air masses. Results at TR {Riakr et al., 2012) and DDU (Angot et al.,
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2016a), along with observations from earlier sta@ieother coastal Antarctic sites (Sprovieri
et al.,, 2002; Temme et al., 2003), demonstrateé tthe inland atmospheric reservoir can
influence the cycle of atmospheric mercury at aticental scale, especially in areas

influenced by recurrent katabatic winds.

Additionally, Pfaffhuber et al. (2012) indicatedatithe ocean is a source of mercury to TR.
Similarly, at DDU, Angot et al. (2016a) reportece\ated (1.04 + 0.29 ng fh Hg(0)
concentrations in oceanic air masses along witligmifieant positive correlation between
Hg(0) and the daily-averaged percentage of oceainimasses (r = 0.5@, value < 0.0001,
Spearman test). These results are in line withstmemer Hg(0) enhancement in the Arctic

likely partly due to oceanic evasion from ice-fm®en waters (see section 3.1.1.3).

3.2.2 Comparison with models

Table 4 displays goodness-of-fit statistics betwaemthly-averaged modeled and observed
data in 2013. ECHMERIT slightly underestimates Hg{Oncentrations at the three ground-
based Antarctic sites. Contrarily, the three othebal models overestimate Hg(0) levels,
suggesting an underestimation of sinks. The abditythe four models to reproduce the
observed seasonality of Hg(0) concentrations atirgiebased Antarctic sites in 2013 is
shown in Fig. 6b and discussed in the followingtises. The inter-annual variability of the
monthly Hg(0) concentration distribution at Antaccground-based sites as simulated by
GEM-MACH-Hg and GEOS-Chem is displayed in Fig. 7biles Table 5 shows the percent
bias between hourly-averaged modeled and obseraedah a seasonal basis from 2011 to
2014.

3.2.2.1 Seasonal variation
a) Winter

GEOS-Chem, GEM-MACH-Hg, and GLEMOS overestimaterygi 3 Hg(0) concentrations
in winter at the three ground-based stations (&). This trend repeats year after year for
GEOS-Chem and GEM-MACH-Hg (Table 5). The most stgkresult, however, is the
modeled gradual increase of Hg(0) concentratiorer dlve course of winter at the three
ground-based sites according to ECHMERIT, GEOS-Clemd GEM-MACH-Hg. A mean
gradual increase of 9 %, 19 %, and 11 % is prediibtethe three models, respectively, from
May to August. GLEMOS, however, predicts a meanlgshdecrease of 5 % over the course
of winter at the three sites. It is to be noted (section 3.2.1.1) that Hg(0) concentrations are
constant from May to August at TR, exhibit a grddd@ % decrease at DC possibly due to
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the dry deposition of Hg(0), and a gradual 20 %elese at DDU due to advection of inland
air masses. All in all, the four models misreprédka decreasing trend at DC and DDU. This
might be due to several factors including undemetiion of concentrations of oxidants over
the East Antarctic plateau at this period of tharyemission of heterogeneous mechanisms,
and significant bias in Southern Hemisphere emissimcluding oceanic evasion. The strong
increase (19 %) of Hg(0) concentrations from Maytmust predicted by GEOS-Chem is not
restricted to the Antarctic continent but is obéairior the whole Southern Hemisphere (Fig. 3
in Song et al., 2015). The emission inversion peréa by Song et al. (2015) overturns the
seasonality of oceanic emissions and better repexdthe ground-based Hg(0) observations
in the Southern Hemisphere mid-latitudes and atHiRther work, including sensitivity tests,

is needed to explain the discrepancies betweemadzsand modeled trends.

Additionally, all of the four models are unablecapture the differences in trends observed at
the three ground-based sites (constantlecreasing concentrations). As discussed in sectio
3.2.1.1, TR, contrarily to DDU, is not significapntinfluenced by inland air masses. This
large-scale airflow pattern will have to be captulby models in order to better reproduce
observations. Interestingly, Zatko et al. (2016)cuiated the annual mean surface wind
convergence/divergence over the Antarctic contingsing GEOS-Chem. The results —
consistent with those by Parish and Bromwich (1987J Parish and Bromwich (2007) —
correctly indicate that the large-scale airflowtpat in Antarctica flows from the East
Antarctic plateau towards the coastal margins adirately highlight major regions of wind

convergence. The findings from this study can lesl@s the basis for future research.

b) Spring

Based on the 0.60 ng fhthreshold, GEM-MACH-Hg and GEOS-Chem do not predity
AMDE at TR over the 2011-2014 period. Considerimg low occurrence frequency based on
observations (2 %, see section 3.2.1.2), this rdsuhot unreasonable. Similarly, GEM-
MACH-Hg does not predict any AMDE at DDU. Howev&EOS-Chem predicts AMDES in
1.5 % of the springtime observations at DDU. Thisreprediction of AMDESs at DDU likely
results from the constant value of 5 pptv of Br@extlin the springtime Antarctic boundary
layer. While Saiz-Lopez et al. (2007) reported engpmaximum of up to 7 pptv at Halley
Station (75°35’S, 26°30'W, West Antarctic coastggtand et al. (2016a) suggested a BrO
mixing ratio< 1 pptv at DDU (East Antarctic coast) in springngsian off-line chemistry
transport model. Based on the oxygen and nitrogetope analysis of airborne nitrate,

Savarino et al. (2007) provided further evidenaddar BrO levels in the vicinity of DDU.
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¢) Fall

None of the four models capture the fall maximunD&t (Fig. 6b). While a spatially and
temporally resolved distribution of concentratimioxidants on the East Antarctic Plateau is
needed, the boundary layer dynamics must alsokem t@to account. Based on the work by
Lin and McElroy (2010), Zatko et al. (2016) incorated a calculation of the boundary layer
height across Antarctica and Greenland into GEO8AChOne could also rely on model
outputs from the limited area model MAR, validatghinst observations at DC (Gallée and
Gorodetskaya, 2010; Gallée et al., 2015). Thisehadrees very well with observations and
provides reliable and useful information about acef turbulent fluxes, vertical profiles of

vertical diffusion coefficients and boundary layeight.
d) Summer

The daily variation of Hg(0) concentrations waseistigated based on hourly-averaged data
provided by GEOS-Chem and GEM-MACH-Hg. The two msd&e not able to reproduce
the noon maximum observed at DC and DDU in summe2.1.4), suggesting that the
dynamic daily cycle of deposition and reemissiotthatair/snow interface is not captured by
the models. The bidirectional exchange of Hg(Okdsnplex and influenced by multiple
environmental variables (e.g., UV intensity, tengpere, atmospheric turbulence, presence of
reactants) limiting the accuracy of flux modelinghg et al., 2016). The work carried out by
Durnford et al. (2012) in the Arctic and by Zatkibat (2016) in Antarctica could be good
starting points for future research. The formeraleped a new dynamic physically-based
snowpack model to determine the fate of mercuryodiépd onto snowpacks; the latter
incorporated an idealized snowpack along with ansradiative transfer model (Zatko et al.,
2013) into GEOS-Chem to investigate the impactnafns nitrate photolysis on the boundary

layer chemistry across Antarctica.
3.2.2.2 Reactive mercury and deposition

According to Fig. 8b, ECHMERIT predicts low RM camtrations during the whole 2013
year at the three ground-based stations (annusige® of 10, 7, and 6 pghat TR, DC, and
DDU, respectively). GEOS-Chem predicts a peak nmngpat the three sites (up to ~ 160 pg
m* in average October at DC), and quite elevatedexunations in summer and fall (~ 85 pg
m? in average). GEM-MACH-Hg predicts increased comegions in summer at TR and
DDU only. Finally, GLEMOS predicts a more intensensner peak at DC (up to ~ 130 pg m

% in average in November) than at DDU and TR. Measents of RM are scarce in
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Antarctica and have never been reported on a yesdr basis. RM concentrations ranging
from 100 to 1000 pg Mhave been reported in summer at South Pole (Brebks, 2008a)

and several studies have reported elevated coatienss at coastal sites in spring during the
AMDESs season (165 pg Tin average at Mc Murdo (Brooks et al., 2008b)) andummer

(mean RGM concentration of 116 pg°rat Terra Nova Bay (Sprovieri et al., 2002); RGM
and Hg(p) concentrations ranging from 5 to > 300mg and from 15 to 120 pg Th

respectively, at Neumayer (Temme et al., 2003))es€hresults along with the seasonal
pattern of Hg(0) reported in section 3.2.1 sugdbkat the atmospheric boundary layer is
enriched in RM in summer, especially on the Anfarptateau, and that the four models tend
to underestimate the summertime concentrationsr-hbeand measurements are needed to

further evaluate the accuracy of models predictions

The total (wet + dry) deposition flux for year 20i3qual to 1.0, 3.3, 2.5, and 3.9 pg ym™*

at TR, 0.8, 1.5, 0.8, and 1.1 pg’rr* at DC, and 4.3, 9.7, 9.7, and 4.1 pg wn* at DDU
according to GLEMOS, GEOS-Chem, GEM-MACH-Hg, and HMERIT, respectively.
Deposition during summertime accounts for 73, 38, d@hd 35 % of the total deposition at
TR, 58, 50, 37, and 35 % at DC, and 58, 61, 89,26 at DDU according to GLEMOS,
GEOS-Chem, GEM-MACH-Hg, and ECHMERIT, respectivelfiere are no measurements
of wet and dry deposition in Antarctica, except Ahgt al. (2016b) who reported a Hg(0) dry
deposition velocity of 9.3 10cm s' in winter at DC. Similarly to the Arctic (see siect
3.1.2.2), deposition of mercury is typically infedr from concentrations of total mercury in
the snowpack. To the best of our knowledge, re$olisd in Angot et al. (2016b) are the only
reported over various seasons. Higher total mercancentrations in surface snow samples
in summer suggest an enhanced deposition at thiedpef the year. Alternatively, deposition
of mercury can be inferred from the biomonitorinigAmtarctic macrolichens and mosses.
Large-scale and long-term biomonitoring surveysefcury deposition have been performed
in Victoria Land (Bargagli et al., 1993; Bargagtial., 2005). While all four models predict
higher total mercury deposition for year 2013 ghhArctic (ALT, SND, NYA)vs. Antarctic
ground-based sites, significantly higher mercurypcamtrations in Antarctiovs. Northern
Hemisphere lichens suggest otherwise (Bargagli,€1203).

Wet deposition accounts for 14, 53, 47, and 0 %heftotal (wet + dry) flux at TR, 35, 7, 14,
and 0 % at DC, and 68, 57, 60, and 8 % at DDU aitgito GLEMOS, GEOS-Chem, GEM-
MACH-Hg, and ECHMERIT, respectively. The amountpoécipitation is equal to 214, 242,
291, and 1127 mm Vrat TR, 33, 29, 24, and 60 mm‘yat DC, and 643, 792, 895, and 1751
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mm yr! at DDU according to GLEMOS, GEOS-Chem, GEM-MACH;Hgd ECHMERIT,
respectively. Ground-based measurements of pratiguitare sparse and difficult to obtain in
Antarctica. Strong winds in coastal regions makdifiicult to tell the difference between
blowing snow and precipitation (Palerme et al.,00Dn the Antarctic plateau, a significant
part of the precipitation falls in the form of i@ystals (diamond dust) under clear-sky
conditions (Bromwich, 1988; Fujita and Abe, 2008atellite observations of precipitation in
Antarctica by active sensors are now possible (2008; Stephens et al., 2008). According
to Palerme et al. (2014), the mean annual snowd#dl is < 20 mm water equivalent’yat
DC, ranges from 20 to 100 mm“at TR, and from 500 to 700 mm“yat DDU. The low
amount of precipitation at DC might, however, bdsef by the high mercury-capture
efficiency of ice crystals (Douglas et al., 2008xtt are frequently observed at that site
(Bromwich, 1988; Fujita and Abe, 2006).

4  Summary and future perspectives

The data compiled in this study represent the tlagailable in Polar Regions. While the
Arctic is a semi-enclosed ocean almost completefyosinded by land, Antarctica is a land
mass — covered with an immense ice shelf — suredify ocean. Therefore, the cycle of
atmospheric mercury in the two regions presentk bimhilarities and differences. Springtime
AMDEs are observed in both regions at coastal ¢ges sections 3.1.1.2 and 3.2.1.2). Their
frequency and magnitude depend on parameters sushaaice dynamics, temperature, and
concentration of bromine species, and exhibit aig@nt but poorly understood inter-annual
variability. Additionally, coastal sites in the twegions are influenced by both snowpack
reemission and oceanic evasion of Hg(0) in summee Sections 3.1.1.3 and 3.2.1.4). As
evidenced in section 3.1.1.3, the summertime erdmaant of Hg(0) concentrations exhibits a
significant but little understood inter-annual \adnility at Arctic sites. The cycle of
atmospheric mercury differs between the Arctic &mdarctica, primarily because of their
different geography. Arctic sites are significanthfluenced by mercury emissions from
Northern Hemisphere mid-latitudes — especially imtar (see section 3.1.1.1). Coastal
Antarctic sites are significantly influenced by tieactivity of atmospheric mercury observed
on the Antarctic Plateau due to the large-scaftoaimattern flowing from the East Antarctic
ice sheet towards the coastal margins (katabatidsyi As discussed in section 3.2, the cycle

of atmospheric mercury on the Antarctic Plateawstgprising and involves yet unraveled
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mechanisms in winter and a daily bidirectional exue of Hg(0) at the air/snow interface in

summer.

From the comparison of multi-model simulations wottservations, we identified whether the
processes that affect Hg(0) seasonality and imteual variability, including mercury
oxidation, deposition and reemission, are approgsiaunderstood and represented in the
models. Generally, models reproduce quite fairky dbserved seasonality at Arctic sites but
fail to reproduce it at Antarctic sites. In order the models to reproduce the seasonality of
Hg(0) concentrations in Antarctica, parameterizatgd the boundary layer dynamics (see
section 3.1.1.3) and of the large-scale airflowtgrat (see above) is needed. Moreover,
reaction pathways might be missing or inapproplyateorporated in models. Heterogeneous
reactions, although poorly understood (Subir et2012), might be required to explain the
reactivity on the Antarctic Plateau. Additionallyhile NO, chemistry was shown to prevail
upon halogens chemistry in East Antarctica in sum¢hegrand et al., 2009; Girilli et al.,

2013) it is currently incorporated in none of tberfglobal models.
Based on this study, the following research gapsine be addressed:

1. Improving the spatial resolution of RM measurataeThere is presently no year-round
data available in Antarctica. The Tekran speciatioit suffers from significant biases and
interferences, is expensive, labor-intensive, ayliires trained operators. Passive samplers,
such as Polyethersulfone cation exchange membreoelsl provide an alternative (Huang et
al., 2014).

2. Unraveling of Hg(ll) speciation. The exact sjp#icin — expected to vary with space and
time — remains unknown. Identification of Hg(ll)exjes in ambient air emerges as one of the
priorities for future research (Gustin et al., 2D1Recent advancement on analytical
techniques may offer new insights into Hg(ll) sp¢icn (Huang et al., 2013; Jones et al.,
2016). However, further research is still needed application of passive samplers for

collection and identification of Hg(ll) compoundsagild be tested in various environments
and at different times of the year. Such advancéméhgreatly improve our understanding

of atmospheric redox processes.

3. Improving the spatial resolution of measuremeffit®otal mercury in snow samples. These
measurements are an alternative to wet and drysiteépo measurements — difficult to

perform in Polar Regions.
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4. Investigation of the fundamental environmentabcpsses driving the inter-annual
variability of Hg(0) concentrations, especially Atctic sites. Further work is needed to
establish the degree to which temperature and ceeaynamics across the Arctic alters
mercury chemistry in spring and summer. This w#baopen up new opportunities to explore

the influence of Climate Change on the cycle ofauerin Polar Regions.

5. Investigation (and quantification) of the oceafiuxes of Hg(0) during oceanographic
campaigns across the Arctic and Austral Oceanss Will largely reduce the uncertainty in

the mercury budget estimation in Polar Regions.

6. Reducing uncertainties in existing kinetic paetens and quantitatively investigate the
effect of temperature on the rate constants (Sethél., 2011). Limited data are available for
temperature applicable to atmospheric conditiosgeeially in Polar Regions. Achieving this

will largely reduce uncertainties in atmosphericdeis.

7. Investigation of the influence of atmosphericfates (e.g., aerosols, clouds, ice, snow
covers, ice crystals). This is a major gap for adég modeling of mercury cycling (Subir et
al., 2012) and studies addressing this are cijicededed.
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Table 1: Summary of the instrumentation used at the variPatar sites to measure
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Table 2: Annually-based statistics (number of hourly-avedhgiata (n), mean, median,
standard deviation (SD)) of Hg(0) concentratiomsn@ m°) at ground-based Polar sites over
the 2011-2015 period. Note that 2013 data at D€r rief concentrations recorded at 210 cm
above the snowpack. The 2015 data coverage is Mdyrie at SND and January to May at
DDU (see Table 3). na: not available due to QA/@Ealidation, instrument failure, or
because the QA/QC validation is currently in pregré015 data).
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ALT SND NYA AND IR DC DDU
mean median SD | n _mean median SD | n_mean median SD | n mean median SD | n mean median SD | n mean median SD | n mean median SD

=

Jan |736 144 144 006|698 146 146 0.07|739 149
Feb (664 135 139 022|631 140 140 008|661 148

1 171 014|671 085 0.6 na mna na na |na na na na
1
Mar (740 133 135 033|613 124 130 028|548 143 159
1
1

0.25
173 014[656 09 106 025/ na mna na na (na na na na
173 021|735 106 105 011
15% 0.16(711 101 101 005/na mna na na [na na na na
141 013|718 09 09 003|na na na na (na na na na
153 011|614 058 099 004 na mna na na (na na na na
154 0.09(733 098 098 0.05/na mna na na [na na na na

na na na 7na [na mna na  na
Apr 720 087 051 052|621 1.05 113 036|719 1.58
May (647 138 128 073|622 091 091 044|709 117
Jun |650 187 185 031(434 127 121 035|716 146 158
Jul 672 1.96 197 048|na na na  na |[647 177 173

Aug |724 162 163 019\ na na na na (663 166 168 153 008[168 0% 09 004/ na na na na (na na na na
Sep |670 121 120 006]458 130 130 004|715 166 166 159 009 na mna na na (na na na na (na na na na
Oct |719 116 116 002|107 123 123 0.03|66% 139 1.60 164 010(na na na na |na na na na [na na na na
Nov (395 120 121 006|na na na na 681 132 134 162 011|254 059 071 034|na na na na (na na na na

Dec |663 126 130 006|528 152 153 005/706 159 159 171 006[{717 087 08 029 na mna na na |[na  na na na

Jan |595 133 136 010|744 153 133 1.62 16l 0.06 (720 1.75 174 0.07(497 1.07 108 028|259 0.6l 0.57 033|576 1.06 1.09 0.32
Feb (685 132 133 007|696 148 149 159 159 006|696 176 175 005(660 103 100 023|583 093 100 042|670 101 103 023
Mar (722 0952 102 041|744 126 135 148 159 028 (744 173 173 008|744 057 057 005/67 114 114 026|635 097 095 009
Apr (695 079 075 049|319 129 132 1.31 145 037720 1.5% 1.60 012|712 097 096 0.04|na na na na (668 0.97 098 0.08
May (698 119 127 059|703 158 163 139 146 026|744 155 159 016(649 097 097 003|na mna na na [696 092 094 011
Jun (720 152 152 024|719 161 1.60 1.52 150 010720 156 157 009|654 095 094 004423 082 081 006|663 088 088 008
Jul 728 150 144 033|744 161 159 168 168 0.17([412 1.61 161 007|487 0.87 0.87 006624 070 070 0.05[101 079 079 0.07
Aug |744 127 126 009|593 154 153 170 169 009|744 152 152 006|670 1.01 102 007|682 066 067 005(107 063 062 005
Sep |657 116 116 006|631 143 142 1.58 156 010720 146 145 007|612 108 108 008|682 072 066 014|131 059 100 009
Oct |742 116 1.16 0.04|601 1.28 127 138 139 005744 156 156 0.10|744 1.02 1.001 0.12(431 079 081 020(719 082 084 0.14
Nov |718 116 117 006|694 131 128 140 141 008|720 157 157 007(69% 0% 0% 015/ na na na na (428 076 074 024
Dec |743 116 118 005|744 129 127 145 147 015([744 170 167 009|680 050 088 022|na na na na [555 082 08 021

Jan (468 125 127 012|729 1.5 151 0.13]483 1.2 154 013 (717
Feb |671 123 127 014|378 146 145 006|596 165 167 0.10 [671
Mar |664 114 128 040|na na na na (671 139 145 030|725

66 1.66 0.05(711 097 096 0.24|762 0.69 0.64 030|644 088 0.84 037
68 167 006[665 09 097 021|585 068 059 041|450 081 081 023
7 139 007|727 058 100 008487 116 115 019|215
46 149 0.20(704 098 097 0.05|271 116 1.14 0.16(635 0.8 095 0.04
41 140 010(688 0% 0% 003|464 101 08% 010|725

5
&

May |739 051 087 067(744 139 123 075|744 140 148 033|732 14 X

41 143 013|718 095 095 0.02(297 093 093 005|661 083 083 005

4

4

Jun 696 143 153 059|719 189 19 0350(686 145 163 042713
Jul 742 182 1.80 023|709 1.97 1.95 0.2§(206 1.52 150 013 (717
Aug |720 171 167 015]538 184 176 023|716 163 160 012 (622
Sep (720 143 141 004|412 147 149 013|650 151 151 007 (266

43 145 012{713 096 096 0.03|554 0.8% 0.89 0.05(63% 0.80 0.81 0.09
42 143 011|679 0% 0% 005(5%1 075 075 008(655 073 073 010
50 149 008[670 087 087 006|616 085 085 008|82 068 068 006
36 156 005|710 079 076 0.12(245 075 0.7%9 0.17|na na na na
60 161 00s5(606 076 076 018431 066 060 033|na na na na
69 169 005[606 078 076 020|213 084 085 024|415 088 097 025

Nov |605 136 136 002(597 140 139 007|298 140 141 007545
Dec |646 132 133 007|694 136 136 009|514 152 144 031735

Jan |743 147 147 007|719 141 137 016]/701 144 160 0366838 169 168 004|427 070 062 031|na mna na na (585 051 092 033
Feb |671 148 152 016|672 142 146 023|584 169 167 0.10|656 166 166 0.06(414 08 090 0.17|na na na na |26 042 041 013
Mar |744 149 158 0.31(694 134 134 033|703 1.55 le4 024718 1.62 1.61 007|708 109 109 0.16/na mna na na (na na na na
Apr |675 142 145 060|718 121 121 047|688 131 149 049 (677 1 X X

May (702 121 129 050|722 156 160 050({709 1.13 133 054 (534 127 128 026(542 107 108 005/ na na na na |84 068 063 010
Jun (712 143 158 039|718 146 145 0.25(689 149 156 0.25 (664 1.41 143 0.12(680 103 103 0.05/na mna na na (na na na na
Jul (732 174 172 021|128 147 146 005|666 1.62 159 015 (714 141 142 010(693 100 100 003 na mna na na |17 082 081 003
Aug (744 172 165 021|na na na na (ma na na na |725 138 138 009(672 102 102 005 na na na na (na na na na
Sep (720 143 142 006\ na na na na (ma na na na |711 137 137 008|670 0%% 09 006/ na mna na na (na na na na
Oct |605 136 136 002|na na na na (586 140 144 014|740 145 145 006|662 091 051 019/na mna na na (na na na na
Nov (646 132 133 007|350 114 113 005/660 156 156 009582 154 154 006|586 076 076 024\ na na na na [56% 067 065 030
Dec |664 129 131 010[670 112 112 004|744 157 158 008737 161 160 005(68 07% 072 033|240 087 078 043|626 100 099 045

Jan |na na na na na na na na |730 156 156 0.10(139 1.57 157 0.04(648 094 083 041|710 088 081 051|711 082 082 031
Feb |na ma na na (na na na na 665 152 150 0.14 (560 1.58 159 006[520 0% 0% 025(652 093 078 059|664 081 081 021
Mar |na na na na (na na na na [701 153 158 019 (585 147 146 009 na na na na [734 150 147 031|655 050 08% 009
Apr |nz mna na na (na na na na (707 139 148 037(607 1.56 1354 0.15|na na na na [717 149 149 0.16|715 089 088 0.06
May |na na na ma [672 105 101 037|742 134 134 023|741 147 148 008|na ma na na |648 131 130 011)32% 0% 089 005
Jun |na na na na (387 122 121 016|616 167 164 020703 145 148 009|nma na na na [717 120 118 006 na na na na
Tl |na na na na [na na na na 720 173 170 0.20(72% 1.50 130 0.0%|na na na na |744 114 114 005/na na na na
Aug |na na na na (na na na na 682 153 154 012568 154 152 012|ma na na na |[740 110 110 007/na na na na
Sep |ma mna na na (na na na na 616 167 164 020703 145 148 009|nma na na na [718 103 105 015/na na na na
Oct |na na na na [na na na na |707 137 137 0.07(665 1.32 131 005|714 054 0.9 021|725 071 06% 032/na na na na
Nov |na na na na (na na na na (682 140 141 008|568 148 149 005]695 091 0%0 026(680 054 048 029\ na na na na
Dec |na mna na na (na na na na |702 152 151 011628 146 146 009|712 091 079 041|558 081 076 033|na mna na na

Table 3: Monthly-based statistics (humber of hourly-averabigg0) data (n), mean, median,
standard deviation (SD)) of Hg(0) concentratiomsn@ m°) at ground-based Polar sites over
the 2011-2015 period. Note that 2013 data at DE€r ref concentrations recorded at 210 cm
above the snowpack. na: not available due to QAI@@lidation, instrument failure, or
because the QA/QC validation is currently in pregré2015 data).
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GLEMOS GEOS-Chem GEM-MACH-Hg ECHMERIT

NSE RMSE PBIAS NSE RMSE PBIAS NSE RMSE PBIAS NSE RMSE PBIAS
ALT | 0,12 029 4% 032 025 1.3 049 022 41 027 034  -100
SND (-0.83 029 -12.0 -085 029 -137 -0.17 023 -90 285 042 227
NYA | 000 01 -63 -1.82 018 97 -040 013 44 416 025 -155
AND | -2.76 0.20 -83 250 01%  -122 -026 012 41 -6.24 028 -16.7
TR |-1.83 013 140 -476 0.19 3.0 298 0.16 102 -250 015 -118
DC |-0.28 0.19 162 -1.07 025 7.5 -1.08 023 163 -032 020 -6.6

DDU | -6.10 024 254 -815 027 169 487 022 16.7 -0.85 012 -5.1

Table 4. Goodness-of-fit statistics between monthly-avera@gebr 2013) modeled and
observed Hg(0) data at all ground-based sites: {Sastiiffe efficiency (NSE, quantity
without unit), root mean square error (RMSE, innmg)/ and percent bias (PBIAS, in %).
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GEOS-Chem GEM-MACH-Hg

2011 2012 2013 2014|2011 2012 2013 2014
Summer
ALT 239 -19% -154 -17.1(-123 111 -%2 -10.0
SND 343 38 -220 46 (116 14 -175 34
NYA -8.9 73 -147 -156| -39 44 -02 -10
AND -132 -104 -119 -141(-72 -68 32 130
TR -1.1 -140 -89 -56| 40 -19 63 236
DC na 17 156 na na 87 356 na
DDU na 01 00 -83| na -34 -17 84
Fall
ALT 94 117 98 -85 |134 147 -36 -30
SND -33 -15 91 23427 -05 -50 268
NYA -11.1 -7% -144 -120( -93 -84 -97 -85
AND -126 -11.1 -15 -12.1(-134 -125 -139 -635
TR -13.1 -12.0 -109 -246| -78 -14 -29 -116
DC na -315 -226 na na -186 -434 na
DDU na 96 11 -199%| na -32 21 -44
Winter
ALT 11.8 185 11.7 33 [ 128 1%2 162 8.0
SND 55 335 42 11651 48 55 153
NYA 41 01 -30 40|13 -14 -14 -15
AND -76 -90 -80 -76|-101 -111 -72 -67
TR 253 298 296 141 58 92 113 28
DC na 799 3%3 na na 484 178 na
DDU na 385 504 494 | na 154 26959 404
Spring
ALT 32 274 297 -218|-23.0 93 118 -240
SND 123 -116 -255 -333| 42 -277 -230 -1838
NYA -58 53 97 -17.8(-238 -17.0 -21.5 -204
AND -115 -138 -124 -167| -93 -160 -35 -76
TR na 90 130 -7.7| na 75 365 181
DC na 326 229 na na 488 345 na
DDU na 32 736 na | na 319% 628 na

Table 5: Percent bias (in %) between hourly-averaged modatetiobserved Hg(0) data at
all ground-based sites. Summer refers to Jun -(Ney - Feb), fall to Sep - Nov (Mar - Apr),
winter to Dec - Feb (May - Aug), and spring to Mavlay (Sep - Oct) at Arctic (Antarctic)

sites. na: not available due to QA/QC invalidationinstrument failure.
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Cruises routes:
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. Ross Sea
AND Y
DDU

Figure 1. Location of the sites whose data are reportedim paper: Alert (ALT), Villum
Research Station at Station Nord (SND), Zeppelatist at Nyzf\Iesund (NYA), Andgya
(AND), Troll (TR), Concordia Station at Dome C (DCGind Dumont d'Urville (DDU).
Additionally, two cruises were performed in Antécat ANT XXIX/6-7 (denoted ANT in the
paper) over the Weddell Sea onboard icebreakers?eta, and OSO 10/11 (denoted OSO in

the paper) over Ross and Amundsen Seas onboareadel Oden.
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Figure 2: Box and whisker plots presenting the monthly Hg{@hcentration distribution at
a) Arctic sites: ALT (red), SND (green), NYA (turqua), AND (purple), and) Antarctic

sites: DDU (red), DC (green), TR (turquoise), dgrile OSO (purple) and ANT (orange)
cruises.® : mean, bottom and top of the box: firal ¢hird quartiles, band inside the box:
median, ends of the whiskers: lowest (highest) ™adtill within the 1.5 interquartile range of

the lowest (upper) quartile. Outliers are not repreed.
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Figure 3: Box and whisker plots presenting the monthly Hg{@hcentration distribution at

Arctic sitesa) ALT, b) SND, c) NYA, andd) AND in 2011 (pink), 2012 (green), 2013
(turquoise), 2014 (purple), and 2015 (oran®2). améottom and top of the box: first and
third quartiles, band inside the box: median, esfdhie whiskers: lowest (highest) datum still

within the 1.5 interquartile range of the lowegpigar) quartile. Outliers are not represented.

53



Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-509, 2016 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Published: 16 June 2016 and Physics
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

a) Arctic sites

2.00,

S 1.00

o

I

ALT SND NYA AND

O'OOJMMJSNMMJSNMMJSNMMJSN
Month Month Month Month

b) Antarctic sites

2.00, — -

8100l ———— |/ -

:CCD : N\ o

0.00 TR DC DDU

) M M J S NJ M M J S NJ M M J S N
Month Month Month

Figure 4: Seasonal variation (monthly mean along with th&®nfidence interval for the
mean) of Hg(0) concentrations (in ng°ymat a) Arctic andb) Antarctic ground-based sites.
Periods highlighted in yellow refer to 24-h suntigind periods highlighted in grey to 24-h
darkness. Summer refers to June — August (NovembEebruary), fall to September —
November (March — April), winter to December — kedoy (May — August), and spring to
March — May (September — October) at Arctic (Antia)csites.
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Figure 5: Box and whisker plots presenting the monthly RGiMréd) and Hg(p) (in violet)

concentration distribution (in pg W at ALT over the 2011-2014 perio®. : mean, bottom
and top of the box: first and third quartiles, bamglde the box: median, ends of the whiskers:
lowest (highest) datum still within the 1.5 inteagtile range of the lowest (upper) quartile.

Outliers are not represented.
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Figure 6: Year 2013 monthly-averaged Hg(0) concentrationan( m°) ata) Arctic andb)
Antarctic ground-based sites: observations (ink)lacd concentrations according to the four
global models (GLEMOS in green, GEOS-Chem in bl@&EM-MACH-Hg in red,
ECHMERIT in yellow). The gray shaded regions intkcaa 10 % uncertainty for

observations.
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Figure 7: Box and whisker plots presenting the monthly Hg{@hcentration distribution at

a) Arctic and b) Antarctic ground-based sites as

simulated by GBB&n and GEM-

MACH-Hg in 2011 (pink), 2012 (green), 2013 (turgsm), and 2014 (purple® : mean,

bottom and top of the box: first and third quasgijlba

nd inside the box: median, ends of the

whiskers: lowest (highest) datum still within thé& Interquartile range of the lowest (upper)

quartile. Outliers are not represented.
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Figure 8: Year 2013 monthly-averaged mean reactive merdRkj) (concentrations (in pg'm

% along with mean wet (solid line) and dry (daslied) deposition (in ng m day’) at a)

Arctic and b) Antarctic ground-based sites: observations (inc)laand concentrations
according to the four global models (GLEMOS in gre@EOS-Chem in red, GEM-MACH-
Hg in blue, ECHMERIT in yellow). Note that RM (wedgposition) observations are available
at ALT (NYA) only.
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Figure 9: Box and whisker plots presenting the monthly Hg{@hcentration distribution at
ground-based Antarctic site§ TR, b) DC, andc) DDU in 2011 (pink), 2012 (green), 2013
(turquoise), 2014 (purple), and 2015 (oran®2). améottom and top of the box: first and
third quartiles, band inside the box: median, esfdhie whiskers: lowest (highest) datum still
within the 1.5 interquartile range of the lowegtgar) quartile. Outliers are not represented.
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