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Abstract 30	

Fires including peatland burning in Southeast Asia have become a major concern to 31	

the general public as well as governments in the region.  This is because aerosols emitted 32	

from such fires can cause persistent haze events under certain weather conditions in 33	

downwind locations, degrading visibility and causing human health issues.  In order to 34	

improve our understanding of the spatial-temporal coverage and influence of biomass 35	

burning aerosols in Southeast Asia, we have used surface visibility and particulate matter 36	

concentration observations, supplemented by decadal long (2003 to 2014) simulations 37	

using the Weather Research and Forecasting (WRF) model with a fire aerosol module, 38	

driven by high-resolution biomass burning emission inventories.  We find that in the past 39	

decade, fire aerosols are responsible for nearly all the events with very low visibility (< 40	

7km).  Fire aerosols alone are also responsible for a substantial fraction of the low 41	

visibility events (visibility < 10 km) in the major metropolitan areas of Southeast Asia: 42	

up to 39% in Bangkok, 36% in Kuala Lumpur, and 34% in Singapore.  Biomass burning 43	

in mainland Southeast Asia account for the largest contribution to total fire-produced 44	

PM2.5 in Bangkok (99%), while biomass burning in Sumatra is a major contributor to fire-45	

produced PM2.5 in Kuala Lumpur (50%) and Singapore (41%).  To examine the general 46	

situation across the region, we have further defined and derived a new integrated metric 47	

for 50 cities of the Association of Southeast Asian Nations (ASEAN): i.e., the Haze 48	

Exposure Days (HEDs) that measures the annual exposure days of these cities to low 49	

visibility (< 10 km) caused by particulate matter pollution.  It is shown that HEDs have 50	

increased steadily in the past decade across cities with both high and low populations.  51	

Fire events alone are found to be responsible for up to about half of the total HEDs.  Our 52	
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result suggests that in order to improve the overall air quality in Southeast Asia, 53	

mitigation policies targeting both biomass burning and fossil fuel burning sources need to 54	

be implemented.  55	
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1 Introduction  56	

In recent decades, biomass burning has become frequent and widely spread across 57	

mainland Southeast Asia and the islands of Sumatra and Borneo (Langner et al., 2007; 58	

Carlson et al., 2012; Page et al., 2002; van der Werf et al., 2010).  Abundant aerosols 59	

emitted from such fires cause haze events to occur in downwind locations such as 60	

Singapore (Koe et al., 2001; Heil et al., 2007; See et al., 2006), degrading visibility and 61	

threatening human health (Emmanuel, 2000; Kunii et al., 2002; Johnston et al., 2012; 62	

Mauderly and Chow, 2008).  Besides causing air quality issues, the fire aerosols contain 63	

rich carbonaceous compounds such as black carbon (BC) (Fujii et al., 2014) and thus can 64	

reduce sunlight through both absorption and scattering.  Indirect effects of fire aerosols 65	

are even more complicated due to various cloud types and meteorological conditions in 66	

the Maritime Continent (MC) (Sekiguchi et al., 2003; Lin et al., 2013; Wu et al., 2013).   67	

The majority of present day fires in Southeast Asia occur due to human interference 68	

such as land clearing for oil palm plantations, other causes of deforestation, poor peatland 69	

management, and burning of agriculture waste (Dennis et al., 2005; Marlier et al., 2015a).  70	

Certain policies and regulations, such as those regarding migration, also affect the 71	

occurrence of burning events.  Large fires have occurred since the 1960s in Sumatra; 72	

however, the first fire event in Kalimantan happened in the 1980s (Field et al., 2009).  73	

Based on economic incentives and population growth in Southeast Asia, future land-use 74	

management will play an important role in determining the occurrence of fires across the 75	

region (Carlson et al., 2012; Marlier et al., 2015b).   76	

Besides human interventions, meteorological factors can also influence fire 77	

initiation, intensity, and duration (Reid et al., 2012; Reid et al., 2015).  Of particular 78	
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importance is rainfall.  Reid et al. (2012) investigated relationships between fire hotspot 79	

appearance and various climate variabilities as well as meteorological phenomena in 80	

different temporal scales over the MC, including: (1) the El Nino and Southern 81	

Oscillation (ENSO) (Rasmusson and Wallace, 1983; McBride et al., 2003) and the Indian 82	

Ocean Dipole (IOD) (Saji et al., 1999); (2) seasonal migration of the Inter-tropical 83	

Convergence Zone (ITCZ) and associated Southeast Asia monsoons (Chang et al., 2005); 84	

(3) intra-seasonal variability associated with the Madden-Julian Oscillation (MJO) 85	

(Madden and Julian, 1971; Zhang, 2005) and the west Sumatran low (Wu and Hsu, 86	

2009); (4) equatorial waves, mesoscale features, and tropical cyclones; and (5) 87	

convection.  One interesting finding is that the influence of these factors on fire events 88	

varies over different parts of the MC.  For example, the fire signal in one part of 89	

Kalimantan is strongly related to both the monsoons and ENSO.  In contrast, fire activity 90	

in Central Sumatra is not closely tied to the monsoons and ENSO but MJO.  91	

Climate variability of meteorological phenomena affects not only biomass burning 92	

emissions but also transport of fire aerosols (Reid et al., 2012).  The seasonal migration 93	

of the ITCZ and the associated monsoonal circulation dominate seasonal wind flows, 94	

whereas sea breezes, tropical cyclones, and topography determine air flow on smaller 95	

spatial and temporal scales – all these phenomena play significant roles in determining 96	

the transport pathway of fire aerosols (Wang et al., 2013).  For example, during the 97	

intense haze episode of June 2013, a long lasting event with a “very unhealthy” air 98	

pollution level in Singapore, was actually caused by enhanced fire aerosol transport from 99	

Sumatra to West Malaysia owing to a tropical cyclone located in South China Sea.  100	

Recently, using a global chemistry transport model combined with a back-trajectory 101	
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tracer model, Reddington et al. (2014) attempted to attribute particulate pollution in 102	

Singapore to different burning sites in surrounding regions over a short time period of 5 103	

years.  The coarse 2.8-degree resolution model used in the study, however, has left many 104	

open questions. 105	

In this study, we aim to examine and quantify the impact of fire aerosols on the 106	

visibility and air quality of Southeast Asia over the past decade.  Analyses of 107	

observational data and comprehensive regional model results have both been performed 108	

in order to improve our understanding of this issue.  We firstly describe methodologies 109	

adopted in the study, followed by the results and findings from our assessment of the fire 110	

aerosol on the degradation of visibility in several selected cities and also over the whole 111	

Southeast Asia.  We then discuss the sensitivity of our findings to the use of different 112	

meteorological datasets as well as fire emission inventories.  The last section summarizes 113	

and concludes our work.  114	

2 Methodology  115	

2.1 The model  116	

In this study, we have used the Weather Research and Forecasting (WRF) model 117	

coupled with a chemistry component (WRF-Chem) version 3.6 (Grell et al., 2005).  Our 118	

focus in this study is on the fire aerosol life cycle.  Therefore, we chose to use WRF-119	

Chem with a modified chemical tracer module instead of a full chemistry package, to 120	

thus model the fire PM2.5 particles as tracers without involving much more complicated 121	

gaseous and aqueous chemical processing calculations but dry and wet depositions.  122	

Emissions of other chemical species were excluded in the simulations.  This 123	
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configuration lowers the computational burden substantially, and thus allows us to 124	

conduct long model integrations to determine the contributions of fire aerosol to the 125	

degradation of visibility in the region over the past decade.  In WRF-Chem, the sinks of 126	

PM2.5 particles include dry deposition and wet scavenging calculated at every time step.  127	

The simulations are employed within a model domain with a horizontal resolution of 36 128	

km, including 432 × 148 horizontal grid points (Fig. 1), and 31 vertically staggered layers 129	

that are stretched to have a higher resolution near the surface (an average depth of ~30 m 130	

in the first model half layer) based on a terrain-following pressure coordinate system.  131	

The time step is 180 seconds for advection and physics calculation.  The physics schemes 132	

included in the simulations are listed in Table 1.  The initial and boundary meteorological 133	

conditions are taken from reanalysis meteorological data.  In order to examine the 134	

potential influence of different reanalysis products on simulation results, we have used 135	

two such datasets: (1) the National Center for Environment Prediction FiNaL (NCEP-136	

FNL) reanalysis data (National Centers for Environmental Prediction, 2000), which has a 137	

spatial resolution of 1 degree and a temporal resolution of 6 hours; and (2) ERA-Interim, 138	

which is a global atmospheric reanalysis from European Centre for Medium-Range 139	

Weather Forecasts (ECMWF) (European Centre for Medium-Range Weather, 2009), 140	

providing 6-hourly atmospheric fields on sixty pressure levels from surface to 0.1 hPa 141	

with a horizontal resolution of approximately 80 km.  Sea surface temperature is updated 142	

every 6 hours in both NCEP-FNL and ERA-Interim.  All simulations used four-143	

dimensional data assimilation (FDDA) to nudge NCEP-FNL or ERA-Interim 144	

temperature, water vapor, and zonal as well as meridional wind speeds above the 145	
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planetary boundary layer (PBL).  This approach has been shown to provide realistic 146	

temperature, moisture, and wind fields in a long simulation (Stauffer and Seaman, 1994).  147	

Two biomass burning emission inventories are also used in this study to investigate 148	

the sensitivity of modeled fire aerosol concentration to different emission estimates.  The 149	

first emission inventory is the Fire INventory from NCAR version 1.5 (FINNv1.5) 150	

(Wiedinmyer et al., 2011), which classifies burnings of extra tropical forest, tropical 151	

forest (including peatland), savanna, and grassland.  It is used in this study to provide 152	

daily, 36 km resolution PM2.5 emissions.  The second emission inventory is the Global 153	

Fire Emission Database version 4.1 with small fires included (GFEDv4.1s) (van der Werf 154	

et al., 2010; Randerson et al., 2012; Giglio et al., 2013).  GFEDv4.1s provides PM2.5 155	

emissions with the same spatiotemporal resolution as FINNv1.5.   156	

A plume rise algorithm for fire emissions was implemented in WRF-Chem by Grell 157	

et al. (2011) to estimate fire injection height.  This algorithm, however, often derives an 158	

injection height for tropical peat fire that is too high compared to the estimated value 159	

based on remote sensing retrievals (Tosca et al., 2011).  Therefore, we have limited the 160	

plume injection height of peat fire by a ceiling of 700 m above the ground in this study 161	

based on Tosca et al. (2011).  The vertical distribution of emitted aerosols is calculated 162	

using the plume model.  This modification has clearly improved the modeled surface 163	

PM2.5 concentration when compared to observations in Singapore.   164	

In order to distinguish the spatial-temporal coverage and influence of biomass 165	

burning aerosols from different regions in Southeast Asia and nearby northern Australia, 166	

we have created five tracers to represent fire aerosols respectively from mainland 167	

Southeast Asia (s1), Sumatra and Java islands (s2), Borneo (s3), the rest of the Maritime 168	
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Continent (s4), and northern Australia (s5) as illustrated in Fig. 1.  The major fire season 169	

in mainland Southeast Asia (s1) is from February to April.  In the other four regions (s2-170	

s5), it is from August to October. 171	

Generally speaking, there is a strong correlation between the seasonal variation of 172	

fire emissions and that of rainfall in all fire regions as shown in Fig. 2.  Because mainland 173	

Southeast Asia (s1) and northern Australia (s5) are on the edge of the seasonal migration 174	

of the ITCZ, the correlation in these two regions is even more pronounced.  On the other 175	

hand, in Sumatra (s2), Borneo (s3) and the rest of Maritime Continent (s4), while inter-176	

seasonal variations of rainfall and fire emissions are still correlated with each other in 177	

general, however, fire emissions do exist in some raining seasons (Fig. 2b – d), owing to 178	

the precipitation features in multiple scales over these regions (e.g., the passage of MJO 179	

events) and underground peatland burning.  180	

2.2 Numerical simulations and model evaluation 181	

Our simulations cover a time period slightly longer than a decade from 2003 to 2014 182	

based on available biomass burning emission estimates.  The simulation of each year 183	

started on 1 November of the previous year and lasted for 14 months.  The first two 184	

months were used for spin-up.  185	

Three sets of decadal long simulations have been conducted.  The first simulation 186	

used NCEP-FNL reanalysis data and the FINNv1.5 fire emission inventory.  This 187	

simulation is hereafter referred to as FNL_FINN and is discussed as the base simulation.  188	

In order to examine the influence of different meteorological inputs on fire aerosol life 189	

cycle, the second simulation was conducted using the same FINNv1.5 fire emission 190	

inventory as in FNL_FINN but different reanalysis dataset, the ERA-Interim, and is 191	
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referred to as ERA_FINN.  In addition, to investigate the variability of fire aerosol 192	

concentration brought by the use of different estimates of fire emissions, the third 193	

simulation, FNL_GFED, was driven by the same NCEP-FNL meteorological input as in 194	

FNL_FINN but with a different fire emission inventory, the GFEDv4.1s.  Note that the 195	

simulation period from 2003 to 2014 of all these simulations was solely decided based on 196	

the temporal coverage of GFEDv4.1s. 197	

Precipitation and wind are two key factors in determining the transport and 198	

scavenging of fire aerosols.  They are also the variables we use to evaluate the model’s 199	

performance in simulating meteorological features.  The WRF simulation driven by 200	

NCEP-FNL reanalysis data, the FNL_FINN run, produced a monthly mean precipitation 201	

of 6.80±0.55 mm day-1 over the modeled domain for the period from 2003 to 2014, very 202	

close to the value of 6.30±0.43 mm day-1 produced in another simulation driven by ERA-203	

Interim, the ERA_FINN run.  However, the average rainfall in both runs appears to be 204	

higher than the monthly mean of 4.71±0.37 mm day-1 from the satellite-retrieved 205	

precipitation of the Tropical Rainfall Measuring Mission (TRMM) 3B43 (V7) dataset 206	

(Huffman et al., 2007).  Based on the sensitivity tests for FDDA grid nudging, the wet 207	

bias in both experiments mainly comes from water vapor nudging.  Figure S1a – c are the 208	

Hovmöller plots of daily TRMM, FNL_FINN, and ERA_FINN precipitation in 2006, 209	

respectively.  Compared to the satellite-retrieved data, both FNL_FINN and ERA_FINN 210	

have produced more light rain events, and this appears to be the reason behind the model 211	

precipitation bias.  Despite the model overestimate in average total precipitation, the 212	

temporal correlation of monthly rainfall between FNL_FINN and TRMM is 0.68 and the 213	

spatial correlation is 0.85 during 2003-2014 (Table 2).  For ERA_FINN, the temporal 214	
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correlation with TRMM is 0.90, while the spatial correlation is 0.85.  In the summer 215	

monsoon season (i.e., May, June and July), both runs show the highest temporal 216	

correlations with observation but the lowest in the spatial correlations.  The comparisons 217	

show that simulated rainfall generally agrees with the observation in space and time, 218	

especially when ERA-Interim reanalysis is used (i.e., in ERA_FINN). 219	

The representative wind pattern in Southeast Asia is the monsoon wind flow.  In the 220	

winter monsoon season (i.e., February, March and April), mean surface winds are from 221	

northeast in the Northern Hemisphere and turn to the northwesterly once past the Equator 222	

(Fig. S2a).  On the other hand, the wind directions are reversed in the summer monsoon 223	

season (i.e., August, September and October) (Fig. S2b).  We use the wind data from 224	

NCEP-FNL and ERA-Interim reanalysis to evaluate model simulated winds.  We find 225	

that both runs overestimated the u component (stronger easterly) in South China Sea (Fig. 226	

S3a and c) in the winter monsoon season, and overestimated the v component (stronger 227	

southerly) in Java Sea in the summer monsoon season (Fig. S3b and d).  These regions 228	

are the entrances of monsoon wind flow into the MC.  In general, model has well 229	

captured the general wind flows in Southeast Asia during both monsoon seasons but 230	

overestimated about 1 m sec-1 in wind speed in some regions likely due to terrain effect 231	

and model resolution limitation.       232	

2.3 Observational data and model derivation of visibility  233	

The definition of “visibility” is the farthest distance at which one can see a large, 234	

black object against a bright background at the horizon (Seinfeld and Pandis, 2006).  235	

There are several factors determining visibility, but here we mainly consider the 236	
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absorption and scattering of light by gases and aerosol particles, excluding fog or misty 237	

days.  In this study, the visibility is calculated by using the Koschmeider equation: 238	

                                                        VIS = 3.912 / bext,                                                       (1) 239	

where VIS is visibility with a unit in meter and bext is the extinction coefficient with a unit 240	

of m-1.  Excluding fog, visibility degradation is most readily observed from the impact of 241	

particulate pollution.  Based on Eq. (1), a maximum visibility under an absolutely dry and 242	

pollution-free air is about 296 km owing to Rayleigh scattering, while a visibility in the 243	

order of 10 km is considered under a moderate to heavy air pollution by particulate 244	

matter (Visscher, 2013).  Abnormal and persistent low visibility situations are also 245	

referred to as “haze” events.  Air pollution sources such as fossil fuel burning, can cause 246	

low visibility and haze events to occur.  Similarly, fire aerosols, alone or mixed with 247	

other particulate pollutants, can degrade visibility by increasing bext and lead to 248	

occurrence of haze events too.  249	

The observational data of visibility from the Global Surface Summary of the Day 250	

(GSOD) (Smith et al., 2011) are used in our study to identify days under particulate 251	

pollution, i.e., haze events.  The GSOD is derived from the Integrated Surface Hourly 252	

(ISH) dataset and archived at the National Climatic Data Center (NCDC).  The daily 253	

visibility in the dataset is available from 1973 to the present.  254	

The observed visibility is also used to evaluate the modeled visibility and thus PM2.5 255	

concentration.  The modeled visibility is derived based on the extinction coefficient of the 256	

fire aerosols as a function of particle size, by assuming a log-normal size distribution of 257	

accumulation mode with a standard deviation σ = 2 (Kim et al., 2008).  Note that all 258	

these calculations are done for the wavelength of 550 nm unless otherwise indicated.  As 259	
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fire plumes contain both sulfur compounds and carbonaceous aerosols, we assume the 260	

fire aerosols are aged internal mixtures with black carbon as the core and sulfate as the 261	

shell (Kim et al., 2008).  To make the calculated visibility of the fire aerosols better 262	

match the reality, we have also considered hydroscopic growth of sulfate fraction of these 263	

mixed particles in the calculation based on the modeled relative humidity (RH).  Based 264	

on Kiehl et al. (2000), the hydroscopic growth factor (rhf) is given by 265	

𝑟ℎ𝑓 = 1.0+ 𝑒𝑥𝑝 (𝑎! +
!!

!"!!!
+ !!

!"!!!
),                                        (2) 266	

 where a1 to a5 are fitting coefficients given by 0.5532, -0.1034, -1.05, -1.957, 0.3406, 267	

respectively.  The radius increase of wet particle (rwet) due to hydroscopic growth will be  268	

𝑟!"# = 𝑟!"#!!!,                                                             (3) 269	

where rdry is the radius of dry particle in micron.  270	

As mentioned above, a visibility of 10 km is considered an indicator for a moderate 271	

to heavy particulate pollution.  Hence a visibility of 10km in observation is used as the 272	

threshold for defining the “low visibility day (VLD)” in our study.  We firstly derived the 273	

observed low visibility days in every year for a given city using the GSOD visibility data.  274	

Then, we derived the modeled low visibility days following the same procedure but using 275	

modeled visibility data that were only influenced by fire aerosols.  Both the observed and 276	

modeled visibilities were then used to define the fraction of low visibility days that can 277	

be caused by fire aerosols alone.  It is assumed that whenever fire aerosol alone could 278	

cause a low visibility day to occur, such a day would be attributed to fire aerosol caused 279	

LVD, regardless of whether other coexisting pollutants would have a sufficient intensity 280	

to cause low visibility or not.  In addition to the LVD, we have also used a daily visibility 281	

of 7 km as the criterion to define the observed “very low visibility day (VLVD)”.  Such 282	
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heavy haze events in the region are generally caused by severe fire aerosol pollution, thus 283	

we use their occurrence specifically to evaluate the model performance. 284	

2.4 The “Haze Exposure Day (HED)” 285	

We have derived a metric, the Haze Exposure Day (HED), to measure the exposure 286	

of the whole Southeast Asia, represented by 50 cities of the Association of Southeast 287	

Asian Nations (ASEAN), to low visibility events.  HED can be defined in a population 288	

weighted format for the analyzed 50 cities, indicating the relative exposure of the 289	

populations in these cities to the low visibility events caused by particulate pollution: 290	

𝐻𝐸𝐷!" = 𝐶!"(𝑖)!
!!! ,                                                          (4) 291	

where,  292	

𝐶!" 𝑖 = 𝑝𝑜𝑝(𝑖) ∙ 𝐶(𝑖) 𝑝𝑜𝑝(𝑖)!
!!! ,                                             (5) 293	

is the population-weighted fraction of the total Haze Exposure Days, N equals to the total 294	

number of cities (50), i is the index for the 50 analyzed cities, pop(i) is the population for 295	

a given city (Table S1), and C(i) represents the annual LVDs for that city calculated from 296	

the GSOD dataset.  Note that we assume that the population of each city stays constant 297	

throughout the analyzed period.  Another assumption of HEDpw is that everyone in a 298	

given city would be equally exposed to the particulate pollution.  299	

In addition, HED can be also defined in an arithmetic mean format, assuming each 300	

city weights equally regardless of its population.  Its value hence emphasizes on the 301	

relative exposure of each area within the analyzed region: 302	

𝐻𝐸𝐷!" = 𝐶(𝑖)/𝑁!
!!! .     (6) 303	
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Both HEDpw and HEDar can be also calculated using fire-caused LVDs to define the 304	

absolute and relative contributions of fire aerosols to the total low visibility events in the 305	

region.  We will label the fire-caused HED as fHEDpw and fHEDar thereafter. 306	

3 Assessment of the impact of fire aerosols on the visibility in Southeast Asia  307	

3.1 Impact of fire aerosols on the visibility in four selected cities 308	

We first to focus our analysis on four selected cities in the region, Bangkok 309	

(Thailand), Kuala Lumpur (Malaysia), Singapore (Singapore), and Kuching (Malaysia), 310	

all located close to the major fire sites ranging from the mainland to the islands of 311	

Southeast Asia.  Specifically, Bangkok is a smoke receptor city of the fire events in 312	

mainland of Southeast Asia (s1) while Kuala Lumpur and Singapore are two cities 313	

frequently under the influence of Sumatra (s2) as well as Borneo fires (s3).  Kuching is in 314	

the coastal area of Borneo and directly affected by Borneo fire events (s3).   315	

The surface observational data of PM2.5 concentration among these four cities are 316	

only available in Singapore since 2013 from the National Environment Agency (NEA) of 317	

Singapore.  We thus firstly used these data along with visibility data to evaluate model’s 318	

performance for fire-caused haze events reported in Singapore during 2013-2014 (Fig. 3). 319	

Note that the observed PM2.5 level reflects the influences of both fire and non-fire 320	

aerosols, whereas the modeled PM2.5 only includes the impact of fire aerosols.  We find 321	

that the model still predicted clearly high PM2.5 concentrations during most of the 322	

observed haze events, especially in June 2013, and in spring and fall seasons of 2014 323	

(highlighted green areas), though with underestimates in particle concentration of up to 324	

30-50%, likely due to the model’s exclusion of non-fire aerosols, coarse model 325	
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resolution, overestimated rainfall, or errors in the emission inventory.  Figure 4 shows 326	

observed visibility versus modeled visibility in FNL_FINN during the fire events shown 327	

in Fig. 3.  Note that all these events have an observed visibility lower than or equal to 10 328	

km, or can be identified as LVDs.  In capturing these fire-caused haze events, the model 329	

only missed about 22% of them, or reporting a visibility larger than 10 km in 40 out of 330	

185 observed LVDs as marked with purple color in Fig. 4.  When observed visibility is 331	

between 7 and 10 km, model results appear to align with observations rather well.  For 332	

cases with visibility lower than 7 km, the model captured all the events (by reporting a 333	

visibility lower than 10 km, or LVD) although often overestimated the visibility range.  334	

These results imply that the VLVDs only count a very small fraction in LVDs and thus 335	

are episodic events. It is very likely that the size of concentrated fire plumes in VLVDs 336	

might be constantly smaller than the 36 km model resolution; therefore, the model results 337	

could not reach the peak values of PM2.5 concentrations of these plumes. 338	

Furthermore, the LVDs in the four selected near-fire-site cities during the fire 339	

seasons from 2003 to 2014 have been identified using the daily GSOD visibility database 340	

and then compared with modeled results (Fig. 5).  It is difficult to identify all the fire 341	

caused haze events beyond Singapore even in recent years.  However, in Southeast Asia, 342	

severe haze events equivalent to the VLVDs in visibility degradation are known to be 343	

largely caused by fire aerosol pollution.  Therefore, we used the observed VLVDs in the 344	

four selected cities to evaluate the performance of the model.  We find that the modeled 345	

result displays a good performance in capturing VLVDs despite an overestimate in 346	

visibility range during certain events compared with the observation.  The model in 347	

general only missed about 10% or fewer VLVDs observed in the past decade (Table 3; 348	
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Fig. 5).  In addition, the model has reasonably captured the observed LVDs despite 349	

certain biases (Fig. 5), likely due to the fact that fire aerosol might not be the only reason 350	

responsible for the degradation of visibility during many LVDs.  351	

We find that the annual mean LVDs in Bangkok has increased from 47% (172 days) 352	

in the first 5-year period of the simulation duration (2003-2007) to 74% (272 days) in the 353	

last 5-year period (2010-2014).  The LVDs caused by fire aerosols has increased as well 354	

(Fig. 6a).  Overall, fire aerosols are responsible for more than one third of these LVDs 355	

(i.e., 39% in average; Table 3).  The largest source of fire aerosols affecting Bangkok is 356	

burning of agriculture waste and other biomass in s1 during the dry season of spring (Fig. 357	

7a; Table 4).  During the fire season, abundant fire aerosols degrade visibility and even 358	

cause VLVDs to occur, mainly from December to April (Fig. 6e).  Based on our model 359	

results, 87% of VLVDs can be identified as fire caused.     360	

In Kuala Lumpur, the percentage of LVDs also gradually increases since 2006 to 361	

reach a peak in 2011 and again in 2014 (Fig. 6b).  During 2005-2010 the frequency of 362	

total LVDs have increased 10-15% each year, mainly attributing to the pollution sources 363	

other than fires.  However, fire-caused LVDs become more evident after 2009.  Seasonal 364	

wise, there are two peaks of fire aerosol influence, one in February-March and another in 365	

August (Fig. 6f), corresponding to the trans-boundary transport of fire aerosols from 366	

mainland Southeast Asia (s1) in the winter monsoon season and from Sumatra (s2) in the 367	

summer monsoon season, respectively (Fig. 7b).  Three quarter of VLVDs occurred in 368	

the summer monsoon season due to Sumatra fires.  Note that in November and December 369	

the percentage of LVDs is over 50% and dominated by pollutants other than fire aerosols.  370	

These non-fire aerosols come from either local sources or the areas further inland riding 371	
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on the winter monsoon circulation.  Overall, fire pollution is responsible for 36%, a 372	

substantial fraction of total low visibility events in Kuala Lumpur during 2003-2014 373	

(Table 3).    374	

The percentage of LVDs in Singapore has been rapidly increasing since 2012 (Fig. 375	

6c).  During the simulation period, this increase appears to be mostly from anthropogenic 376	

pollution other than fires, especially in 2012 and 2013.  In monthly variation, similar to 377	

Kuala Lumpur, two peaks of fire aerosol influence appear in February-March and in 378	

September-October, respectively (Fig. 6g).  In February and March, the trans-boundary 379	

transport of fire aerosols come from mainland Southeast Asia (s1), while in the summer 380	

monsoon season fire aerosols come from both Sumatra (s2) and Borneo (s3) (Fig. 7c).  381	

Except for the severe haze events in June 2013, VLVDs basically occur in September and 382	

October (i.e., 92%) due to both Sumatra and Borneo fires.  In general, up to 34% of 383	

LVDs in Singapore are caused by fire aerosols based on the FNL_FINN simulation and 384	

the rest by local and long-range transported pollutants (Table 3).  Nevertheless, fire 385	

aerosol is still the major reason for the episodic severe haze conditions.  386	

Because of its geographic location, Kuching is affected heavily by local fire events 387	

during the fire season (Fig. 7d).  Fire aerosols can often degrade the visibility to below 7 388	

km and even reaching 2 km  (Fig. 5d).  The LVDs mainly occur in August and September 389	

during the fire season (Fig. 6d and h).  The frequency of LVDs in Kuching is similar to 390	

Singapore; however, 25% of those LVDs are considered to be VLVDs in Kuching while 391	

only 4% are in Singapore in comparison (Table 3).  392	
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3.2 Impact of fire aerosols on the visibility over the whole Southeast Asia 393	

Air quality degradation caused by fires apparently occurs in regions beyond the 394	

above-analyzed four cities.  To examine such degradation over the whole Southeast Asia, 395	

we have extended our analysis to cover 50 cities of the ASEAN.  The impact of 396	

particulate pollution on the whole Southeast Asia is measured by the “Haze Exposure 397	

Day” (HED) as defined in Section 2.5.  The top four among the 50 cities that made the 398	

largest contributions to the HEDpw are Jakarta, Bangkok, Hanoi, and Yangon (Fig. 8a), 399	

with population ranking of 1, 2, 4, and 5, respectively (Table S1).  400	

We find that both HEDpw and HEDar increase rather steadily over the past decade 401	

(Fig. 8b), demonstrating that the exposure to haze events either weighted by population 402	

or not has become worse in the region.  Generally speaking, the fire aerosols are 403	

responsible for up to 40-60% of the total exposure to low visibility across the region.  In 404	

both measures, the increase of fire-caused HED (2.64 and 3.37 days per year for 405	

population-weighted and arithmetic mean, respectively) is similar to that of overall HED 406	

(2.61 and 3.59 days per year for population-weighted and arithmetic mean, respectively) 407	

(Fig. 8b), suggesting that fire aerosol has taken the major role in causing the degradation 408	

of air quality in Southeast Asia compared to the non-fire particulate pollution.  The result 409	

that HEDpw is higher than HEDar in most of the years indicates that the particulate 410	

pollution is on average worse over more populous cities than the others.  Interestingly, 411	

the discrepancy of these two variables, however, has become smaller in recent years and 412	

even reversed in 2014, implying an equally worsening of haze event occurrence across 413	

from the smaller to bigger cities in terms of population in the region.  The reason behind 414	

this could be a wider spread of fire events in the region, causing acute haze events in 415	
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cities even with relatively low populations.  Regarding the increase of fire-caused HED, 416	

because biomass burning, especially peatland burning, usually occurs in the rural areas, 417	

higher fire emissions would extend low visibility conditions to a larger area regardless of 418	

its population.  On the other hand, due to industrialization, urbanization, and other factors 419	

such as population growth, air pollution has become worse across the region so even 420	

cities with lower populations now increasingly suffer from low visibility from fossil fuel 421	

burning and other sources of particulate pollution.  Therefore, the mitigation of air quality 422	

degradation needs to consider both fire and non-fire sources.   423	

3.3 The influence of wind and precipitation on fire aerosol life cycle  424	

Seasonal migrations of the ITCZ and associated summer and winter monsoons 425	

dominate seasonal wind flows that drive fire aerosol transport.  Additionally, as discussed 426	

previously, certain small-scale or short-term phenomena such as sea breezes, typhoons, 427	

and topography-forced circulations also play important roles in distributing fire aerosols.  428	

Nevertheless, we focus our discussion here on the former.   429	

From February to April is the main fire season in mainland Southeast Asia (s1).  In 430	

the FNL_FINN simulation, the seasonal mean concentration of PM2.5 within the PBL can 431	

exceed 20 µg m-3 in this region (note that the air quality standard suggested by World 432	

Health Origination is 10 µg m-3 for annual mean and 25 µg m-3 for 24-h mean).  During 433	

this fire season, the most common wind direction is from northeast to southwest across 434	

the region (Fig. 9a).  Fire aerosol plumes with concentrations higher than 0.1 µg m-3 can 435	

be transported westward as far as 7000 km from the burning sites.  In contrast, February 436	

to April is not the typical burning season in the islands.  Low fire emissions in 437	



	 21	

combination with a lack of long-range transport of fire aerosols from the mainland due to 438	

the seasonal circulation result in a low PM2.5 level over these regions (Fig. 9b - d). 439	

 Wet scavenging is a major factor determining the lifetime and thus abundance of 440	

suspended fire aerosols in the air.  The effect of wet scavenging of fire aerosols is 441	

reflected from the wet scavenging time calculated using the modeled results, which is a 442	

ratio of the aerosol mass concentration to the scavenging rate (a function of precipitation 443	

rate).  Thus, short scavenging times often indicate high scavenging rates except for the 444	

sites with extremely low aerosol concentration.  During February-April, at the ITCZ’s 445	

furthest southern extent, the short scavenging time < 1 day around 10°S shows a quick 446	

removal of fire aerosols by heavy precipitation, preventing the southward transport of 447	

aerosols (Fig. 9f).  On the other hand, the long scavenging time (> 5 days) in the Western 448	

Pacific warm pool, South China Sea, the Indochina peninsula, Bay of Bengal, and 449	

Arabian Sea leads to a long suspending time of aerosols transported to these regions.  450	

During the same season, over the islands of Sumatra and Borneo, the abundance of fire 451	

aerosols, either emitted locally or trans-boundary transported, are greatly limited by the 452	

high scavenging rate (short scavenging time) over these regions (Fig. 9g and h).  The 453	

South China Sea has little precipitation during this time period; therefore, fire aerosols 454	

from the northern part of the Philippines can be transported to this region and stay longer 455	

than 5 days (Fig. 9i).  456	

The months of August to October, when the ITCZ reaches its furthest northern 457	

extent, mark the major fire season of Sumatra, Borneo, and some other islands in the MC 458	

(Fig. S5b - d).  Australia fires also mainly occur in this season (Fig. S5e).  Mean wind 459	

flows are from southeast to northwest in the Southern Hemisphere, and turn to the 460	
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northeast direction once past the Equator.  Within the MC the seasonal variation of 461	

rainfall is small during this time, with heavy precipitation and thus short scavenging 462	

times (< 3 days) existing along the MJO path (Fig. S5f - i) (Wu and Hsu, 2009).  The 463	

high scavenging rate in the regions close to the fire sites in the islands shortens the 464	

transport distance of fire aerosol plumes with PM2.5 concentration > 0.1 µg m-3 to less 465	

than 3000 km (Fig. S5b - d).  Long scavenging times (> 5 days) exist in the Banda Sea 466	

and northern Australia due to the ITCZ location.  Fire aerosols from Java (s2) (Fig. S5g), 467	

Papua New Guinea (s4) (Fig. S5i), and northern Australia (s5) (Fig. S5j) can thus be 468	

suspended in the air for a relatively long time over these regions.  469	

The above-discussed seasonal features of precipitation and aerosol scavenging rate 470	

help us to better understand the variability of haze occurrence and also to identify the 471	

major source regions of fire aerosols influencing selected Southeast Asian cities (Fig. 7).  472	

For example, the geographic location of Bangkok, which is inside the s1 emission region, 473	

determines that nearly all the fire aerosols (99%) are from sources within the region from 474	

December to April (Fig. 7a and Table 4).  Fire aerosols from all the other burning sites 475	

stay at very low levels even during the burning seasons there due to circulation and 476	

precipitation scavenging.  For Kuala Lumpur and Singapore, over 90% of the fire 477	

aerosols reaching both cities come from mainland Southeast Asia (s1) in January–April 478	

due to the dominant winter monsoon circulation.  During May-October, however, the 479	

major sources of fire aerosols shift to Sumatra (s2) and Borneo (s3) aided by northward 480	

wind (Fig. S5b and c).  The monthly variations of PM2.5 concentration in Kuala Lumpur 481	

and Singapore also have a largely similar pattern (Fig. 7b and d).  The annual mean 482	

contribution of different emission regions in Kuala Lumpur are 43% from mainland 483	
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Southeast Asia (s1), 50% from Sumatra (s2), 4% from Borneo (s3), 3% from the rest of 484	

Maritime Continent (s4), and 0.3% from northern Australia (s5) in FINL_FINN (Table 485	

4).  Similar to Kuala Lumpur, there are two peak seasons of the monthly low visibility 486	

days contributed by fire aerosols in Singapore (Fig. 6g), well correlated with modeled 487	

high fire PM2.5 concentration (Fig. 7c).  The low visibility days in March and April 488	

mainly are caused by fire aerosols from mainland Southeast Asia (s1) under southward 489	

wind pattern (Fig. 9a), and those in May to October are affected by Sumatra (s2) first in 490	

May to June, and then by both s2 and s3 (Borneo) during August to October due to north- 491	

or northwest-ward monsoonal circulation (Fig. S5b and c; also Table 4).  Kuching, 492	

similar to Bangkok, is strongly affected by local fire aerosols (s3) during the fire season 493	

(July – October).  The annual mean contribution from Borneo (s3) is 85%, with only 8% 494	

from mainland Southeast Asia (s1) and 5% from Sumatra (s2) (Table 4). 495	

Reddington et al. (2014) applied two different models, a 3D global chemical 496	

transport model and a Lagrangian tracer model to examine the long-term mean 497	

contributions of fire emissions from different regions to PM2.5 in several cities in 498	

Southeast Asia.  Their estimated contribution from mainland Southeast Asia to the above-499	

discussed four selected cities was lower than our result during January-May, likely due to 500	

their use of a different emission inventory and the coarse resolution of their global model.  501	

The FINNv1.5 dataset used in our study specifically provides higher PM2.5 emissions 502	

from agriculture fires (the major fire type in mainland Southeast Asia) than GFED4.1s 503	

does – the latter is an updated version of the dataset (GFEDv3) used in Reddington et al. 504	

(2014) (Fig. 2).  The detailed comparison of FNL_FINN and FNL_GFED will be 505	

discussed in the following section. 506	
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4 Influence of different meteorological datasets and emission inventories on 507	

modeled fire aerosol abundance 508	

As discussed in the previous section, meteorological conditions, particularly wind 509	

field and precipitation, could substantially influence the life cycle and transport path of 510	

fire aerosols during the fire seasons.  Therefore, it is necessary to examine potential 511	

discrepancy in modeled particulate matter abundance arising from the use of different 512	

meteorological datasets.   513	

When comparing two of our simulations, one driven by the NCEP-FNL (i.e., 514	

FNL_FINN) and the other by the ERA-Interim (i.e., ERA_FINN) meteorological input, 515	

we find that the ERA_FINN run consistently produces less precipitation than the 516	

FNL_FINN run during the rainy seasons over the past decade (Fig. 2; also see the 517	

comparison results of both runs with observations in Section 2.2.).  Regarding fire aerosol 518	

life cycle, less rainfall in ERA_FINN results in weaker wet scavenging and thus higher 519	

abundance of fire aerosols than in FNL_FINN.  We find that the annual mean 520	

concentration of fire PM2.5 produced in the ERA_FINN run in Bangkok, Kuala Lumpur, 521	

Singapore, and Kuching is 9.2, 5.8, 3.4, and 7.7 µg m-3, respectively, clearly higher than 522	

the corresponding results of the FNL_FINN run of 8.5, 5.3, 3.0, and 6.9 µg m-3 (Table 4).  523	

In general, fire PM2.5 concentration in ERA_FINN is about 10% higher than in 524	

FNL_FINN.  However, the occurrence of low visibility events is less sensitive to the 525	

differences in rainfall in places near the burning areas such as Bangkok and Kuching, as 526	

indicated by a nearly negligible enhancement of VLVDs in the ERA_FINN run in 527	

Bangkok and Kuching (~1%) (Table 3).  In comparison, the difference in wind field 528	
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between the two runs has a much smaller impact than that of precipitation on modeled 529	

particulate matter abundance.    530	

In addition to meteorological inputs, using different fire emission estimates could 531	

also affect the modeled results.  To examine such an influence, we have compared two 532	

simulations with the same meteorological input but different fire emission inventories, 533	

the FNL_FINN using FINNv1.5 and FNL_GFED using GFEDv4.1s.  The main 534	

differences between the two emission inventories appear mostly in mainland Southeast 535	

Asia (s1) and northern Australia (s5) (Fig. 2a and e).  Compared to FINNv1.5, fire 536	

emissions in GFEDv4.1s over mainland Southeast Asia are more than 66% lower (Fig. 537	

2a), and this results in a 43% lower fire PM2.5 concentration in Bangkok (Table 4).  The 538	

lower fire PM2.5 concentration in FNL_GFED actually produces a visibility that matches 539	

better with observations in Bangkok comparing to the result of FNL_FINN (Fig. S5a).  540	

This implies that the fire emissions in FINNv1.5 are perhaps overestimated in mainland 541	

Southeast Asia.  In northern Australia, fire aerosol emissions suggested by FINNv1.5 are 542	

almost negligible compared to GFEDv4.1s (Fig. 2e).  Therefore, in the FNL_GFED 543	

simulation, Australia fire aerosols play an important role in Singapore air quality, 544	

contributing to about 22% of the modeled PM2.5 concentration in Singapore.  In contrast, 545	

Australia fires have nearly no effect on Singapore air quality in the FNL_FINN run 546	

(Table 4).   547	

We would also like to point out the importance of spatiotemporal distribution of fire 548	

emission to the modeled results.  For example, during the June 2013 severe haze event in 549	

Kuala Lumpur and Singapore, the total amount of fire emissions from Sumatra (s2) in 550	

GFEDv4.1s are lower than those of FINNv1.5 (Fig. S6a) but distributed rather more 551	
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densely over a smaller area (Fig. S6c and d).  As a result, under the same meteorological 552	

conditions, the simulated PM2.5 in the FNL_GFED simulation reaches Singapore in a 553	

higher concentration that also matches better with observations than the result of 554	

FNL_FINN (Fig. S7b).  555	

5 Summary and Conclusions 556	

We have examined the extent of the biomass burning aerosol’s impact on the air 557	

quality of Southeast Asia in the past decade using surface visibility and PM2.5 558	

measurements along with the WRF model with a modified fire tracer module.  The model 559	

has shown a good performance in capturing 90% of the observed severe haze events 560	

(visibility < 7 km) caused by fire aerosols occurred over past decade in several cities that 561	

are close to the major burning sites. Our study also suggests that fire aerosols are 562	

responsible for a substantial fraction of the low visibility days (visibility < 10 km) in 563	

these cities: up to 39% in Bangkok, 36% in Kuala Lumpur, 34% in Singapore, and 33% 564	

in Kuching.  565	

In attributing the low visibility events to fire emissions from different sites, we find 566	

that mainland Southeast Asia is the major contributor during the Northeast or winter 567	

monsoon season in Southeast Asia.  In the Southwest or summer monsoon season, 568	

however, most fire aerosols come from Sumatra and Borneo.  Specifically, fires in 569	

mainland Southeast Asia are accounted for the largest percentage of the total fire PM2.5 in 570	

Bangkok (99%), and fires from Sumatra are the major contributor in Kuala Lumpur 571	

(50%) and Singapore (41%).   Kuching receives 85% of fire aerosols from local Borneo 572	

fires.  573	
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By comparing the results from two modeled runs with the same fire emissions but 574	

driven by different meteorological inputs, we have examined the sensitivity of modeled 575	

results to meteorological datasets.  The discrepancy in modeled low visibility events 576	

arising from the use of different meteorological datasets is clearly evident, especially in 577	

the results of Bangkok and Kuching.  However, using different meteorological input 578	

datasets does not appear to have influenced the modeled very low visibility events, or the 579	

severe haze events in the cities close to burning sites.     580	

We have also examined the sensitivity of modeled results to the use of different 581	

emission inventories.  We find that significant discrepancies of fire emissions in 582	

mainland Southeast Asia and northern Australia between the two emission inventories 583	

used in our study have caused a substantial difference in modeled fire aerosol 584	

concentration and visibility, especially in Bangkok and Singapore.  For instance, the 585	

contribution to fire aerosol in Singapore from northern Australia changes from nearly 586	

zero in the simulation driven by FINNv1.5 to about 22% in another simulation driven by 587	

GFEDv4.1s.  We have also identified the influence of the difference in spatiotemporal 588	

distribution rather than total emitted quantities from the fire hotspots on modeled PM2.5 589	

concentration.   590	

To further assess the impacts of particulate pollution on the surface visibility of the 591	

whole Southeast Asia and to estimate the fire aerosol’s contribution, we have defined and 592	

derived a metric of “Haze Exposure Days” (HEDs), by integrating annual low visibility 593	

days of 50 cities of the Association of Southeast Asian Nations and weighted by 594	

population or averaged arithmetically.  We find that a very large population of Southeast 595	

Asia has been exposed to relatively persistent hazy conditions.  The top four cities in the 596	
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HED ranking, Jakarta, Bangkok, Hanoi, and Yangon, with a total population exceeding 597	

two millions, all have experienced more than 200 days per year of low visibility due to 598	

particulate pollution over the past decade.  Even worse is that the number of annual low 599	

visibility days have been increasing steadily not only in high population cities but also 600	

those with relatively low populations, suggesting a wide spread of particulate pollutions 601	

across Southeast Asian.  Generally speaking, the fire aerosols are found to be responsible 602	

for up to about half of the total exposes to low visibility in the region.  Our result 603	

suggests that in order to improve the air quality in Southeast Asia, besides reducing or 604	

even prohibiting planned or unplanned fires, mitigation policies targeting at pollution 605	

sources other than fires need to be implemented as well.  606	
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 789	
 Table 1. WRF physics scheme configuration 790	

Physics Processes Scheme 
microphysics Morrison (2 moments) scheme 

longwave radiation  rrtmg scheme 
shortwave radiation  rrtmg scheme 

surface-layer  MYNN surface layer 
land surface  Unified Noah land-surface model 

planetary boundary layer  MYNN 2.5 level TKE scheme 
cumulus parameterization Grell-Freitas ensemble scheme 

 791	
 792	
 793	

794	
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Table 2. The spatial and temporal correlation of monthly rainfall between model and 795	
observation during 2003-2014. FMA, MJJ, ASO, NDJ and All indicate February-April, 796	
May-July, August-October, November-January and whole year, respectively.  797	
 798	

 FNL_FINN vs. TRMM ERA_FINN vs. TRMM 
Spatial cor. Temporal cor. Spatial cor. Temporal cor. 

FMA 0.89 0.61 0.89 0.89 
MJJ 0.83 0.69 0.81 0.90 
ASO 0.86 0.59 0.84 0.89 
NDJ 0.88 0.60 0.88 0.85 
All  0.86 0.68 0.85 0.90 

   799	
 800	
  801	
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Table 3. Annual mean low visibility days (LVDs; observed visibility ≤ 10 km) and very 802	
low visibility days (VLVDs; observed visibility ≤ 7 km) per year in Bangkok, Kuala 803	
Lumpur, Singapore and Kuching during 2003-2014 are presented in the second column. 804	
Parentheses show the percentage of year. The third and fourth columns show the 805	
percentage contributions along with standard deviations of fire and non-fire (other) 806	
pollutions for total low visibility days.  807	
 808	

FNL_FINN LVD per year (days) Fire pollution 
contribution (%) 

Other pollution 
contribution (%) 

Bangkok, Thailand  215±50 (59±14%) 39±8 61±8 
Kuala Lumpur, Malaysia 174±78 (48±21%) 36±17 64±17 

Singapore, Singapore 96±87 (26±24%) 34±17 66±17 
Kuching, Malaysia 95±57 (26±17%) 33±15 67±15 

FNL_FINN VLVD per year (days) Fire pollution 
contribution (%) 

Other pollution 
contribution (%) 

Bangkok, Thailand 15±8 (4±2%) 87±20 87±20 
Kuala Lumpur, Malaysia 19±18 (5±5%) 85±17 15±17 

Singapore, Singapore 4±4 (1±1%)  91±33 9±33 
Kuching, Malaysia 22±18 (6±5%) 93±11 7±11 

ERA_FINN VLD per year (days) Fire pollution 
contribution (%) 

Other pollution 
contribution (%) 

Bangkok, Thailand  215±50 (59±14%) 46±7 54±7 
Kuala Lumpur, Malaysia 174±78 (48±21%) 40±16 60±16 

Singapore, Singapore 96±87 (26±24%) 37±18 63±18 
Kuching, Malaysia 95±57 (26±17%) 45±17 55±17 

ERA_FINN VLVD per year (days) Fire pollution 
contribution (%) 

Other pollution 
contribution (%) 

Bangkok, Thailand 15±8 (4±2%) 88±20 12±20 
Kuala Lumpur, Malaysia 19±18 (5±5%) 90±18 10±18 

Singapore, Singapore 4±4 (1±1%)  98±6 2±6 
Kuching, Malaysia 22±18 (6±5%) 94±11 6±11 

FNL_GFED VLD per year (days) Fire pollution 
contribution (%) 

Other pollution 
contribution (%) 

Bangkok, Thailand  215±50 (59±14%) 36±8 64±8 
Kuala Lumpur, Malaysia 174±78 (48±21%) 28±17 72±17 

Singapore, Singapore 96±87 (26±24%) 29±21 71±21 
Kuching, Malaysia 95±57 (26±17%) 26±18 74±18 

FNL_GFED VLVD per year (days) Fire pollution 
contribution (%) 

Other pollution 
contribution (%) 

Bangkok, Thailand 15±8 (4±2%) 90±19 10±19 
Kuala Lumpur, Malaysia 19±18 (5±5%) 83±28 17±28 

Singapore, Singapore 4±4 (1±1%)  89±37 11±37 
Kuching, Malaysia 22±18 (6±5%) 89±28 11±28 

  809	
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Table 4. Annual mean and standard deviation of fire PM2.5 concentration (µg m-3) 810	
contributed by each source region in Bangkok, Kuala Lumpur, Singapore, and Kuching 811	
during 2003-2014. Parentheses show the percentage of fire PM2.5 contribution originating 812	
from each source region. The same regions, s1-s5, are explained in Fig. 1.   813	
 814	

FNL_FINN s1  s2  s3  s4 s5  

Bangkok 8.4±2.3 
(99.2±0.5%) 

0.0±0.0 
(0.1±0.1%) 

0.0±0.0 
(0.1±0.1%) 

0.1±0.0 
(0.6±0.5%) 

0.0±0.0 
(0.0±0.0%) 

Kuala Lumpur 2.3±1.2 
(43.3±14.8%) 

2.7±1.4 
(49.6±14.9%) 

0.2±0.2 
(3.3±3.4%) 

0.1±0.1 
(2.5±2.3%) 

0.0±0.0 
(0.3±0.2%) 

Singapore 1.1±0.7 
(36.7±14.7%) 

1.2±0.8 
(40.7±15.9%) 

0.4±0.4 
(14.3±10.0%) 

0.2±0.1 
(6.1±3.8%) 

0.1±0.0 
(2.2±1.1%) 

Kuching 0.5±0.4 
(7.8±6.5%) 

0.3±0.1 
(4.7±2.5%) 

6.0±3.2 
(84.6±9.7%) 

0.1±0.1 
(2.3±2.5%) 

0.0±0.0 
(0.6±0.3%) 

ERA_FINN s1  s2  s3  s4 s5  

Bangkok 9.1±2.3 
(99.2±0.4%) 

0.0±0.0 
(0.1±0.1%) 

0.0±0.0 
(0.1±0.1%) 

0.1±0.0 
(0.6±0.4%) 

0.0±0.0 
(0.0±0.0%) 

Kuala Lumpur 2.3±1.2 
(39.7±12.7%) 

3.2±1.4 
(53.7±12.3%) 

0.2±0.2 
(3.9±3.3%) 

0.1±0.0 
(2.3±1.8%) 

0.0±0.0 
(0.4±0.2%) 

Singapore 1.1±0.6 
(34.2±13.5%) 

1.4±0.9 
(40.5±13.7%) 

0.6±0.6 
(17.2±11.8%) 

0.2±0.1 
(6.2±3.1%) 

0.1±0.0 
(1.9±0.9%) 

Kuching 0.5±0.4 
(8.1±5.6%) 

0.4±0.2 
(6.1±3.9%) 

6.7±3.9 
(82.5±10.0%) 

0.1±0.1 
(2.7±3.0%) 

0.0±0.0 
(0.6±0.3%) 

FNL_GFED s1  s2  s3  s4 s5  

Bangkok 4.8±1.3 
(99.6±0.2%) 

0.0±0.0 
(0.1±0.0%) 

0.0±0.0 
(0.1±0.1%) 

0.0±0.0 
(0.2±0.2%) 

0.0±0.0 
(0.1±0.0%) 

Kuala Lumpur 1.3±0.6 
(38.6±20.8%) 

2.7±1.9 
(53.8±21.1%) 

0.1±0.2 
(2.8±3.5%) 

0.0±0.0 
(0.8±0.8%) 

0.1±0.1 
(3.9±3.4%) 

Singapore 0.3±0.2 
(22.1±17.3%) 

1.5±1.8 
(40.2±23.6%) 

0.4±0.5 
(12.5±9.5%) 

0.1±0.0 
(2.9±2.4%) 

0.4±0.2 
(22.3±13.2%) 

Kuching 0.1±0.1 
(7.2±6.8%) 

0.1±0.1 
(4.3±3.2%) 

3.2±3.2 
(75.2±12.9%) 

0.0±0.0 
(1.7±2.7%) 

0.3±0.2 
(11.6±6.7%) 

 815	
  816	
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 817	
Figure 1. Model domain used for simulations.  The domain has 432 × 148 grid points 818	
with a horizontal resolution of 36 km.  Five fire source regions marked in different colors 819	
and labeled as s1, s2, s3, s4 and s5, represent mainland Southeast Asia (s1), Sumatra and 820	
Java islands (s2), Borneo (s3), the rest of Maritime Continent (s4), and northern Australia 821	
(s5).  A, B, C and D indicate the location of four selected cities: Bangkok (A), Kuala 822	
Lumpur (B), Singapore (C) and Kuching (D).    823	
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Figure 2. Time series of monthly PM2.5 emission (Tg year-1) in FINNv1.5 (pink solid 830	
lines) and GFEDv4.1s (red dashed lines).  Also shown are precipitation rates (mm day-1) 831	
simulated in FNL_FINN (light blue solid lines) and ERA_FINN (blue dashed lines) 832	
during 2003-2014 in: (a) mainland Southeast Asia (s1), (b) Sumatra and Java islands (s2), 833	
(c) Borneo (s3), (d) the rest of the Maritime Continent (s4), and (e) northern Australia 834	
(s5).   835	

  836	
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 837	

 838	

 839	
 840	
Figure 3. (a) Time series of daily surface PM2.5 from the ground-based observations 841	
(black line) and FNL_FINN simulated results (red line) in Singapore during 2013-2014. 842	
(b) Time series of daily visibility of GSOD observation (black line) and calculated result 843	
from FNL_FINN (red line) in Singapore during 2013-2014. Highlighted green areas are 844	
known haze events caused by fire aerosols. Two gray lines mark the visibility of 7 and 10 845	
km, respectively.   846	
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 849	
Figure 4. A scatter plot of observed visibility and FNL_FINN visibility during known fire 850	
events as labeled in Fig. 4b. Black dash line refers 1:1 line and red line is the threshold of 851	
VLVD (7 km). Data points marked with purple color are the events that model failed to 852	
produce a visibility qualified for LVD. 853	
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 855	

 856	

 857	

 858	
Figure 5. Comparison of daily visibility between GSOD observation (black lines) and 859	
FNL_FINN modeled result (red lines) in: (a) Bangkok, (b) Kuala Lumpur, (c) Singapore, 860	
(d) Kuching during the fire seasons from 2003 to 2014. Two grey lines mark the visibility 861	
of 7 and 10 km, respectively.   862	
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 864	

  865	

 866	

  867	

  868	
Figure 6. (a) – (d) The percentage of LVDs per year derived using from GSOD visibility 869	
observations in Bangkok, Kuala Lumpur, Singapore, and Kuching, respectively. (e) – (h) 870	
The percentage of LVDs averaged over 2003-2014, derived using GSOD visibility 871	
observations in Bangkok, Kuala Lumpur, Singapore, and Kuching, respectively. Each bar 872	
presents the observed LVDs in each year or month. Red color shows the partition of fire-873	
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caused LVDs (captured by model) while green color presents non-fire LVDs (observed – 874	
modeled).    875	
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 876	

  877	

 878	

 879	
 880	
Figure 7. The mean fire PM2.5 concentrations within the PBL attributed to different 881	
emission regions (s1 - s5) in (a) Bangkok, (b) Kuala Lumpur, (c) Singapore and (d) 882	
Kuching, all derived from FNL_FINN simulation and averaged over the period of 2003-883	
2014.  884	
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 885	

 886	

 887	
Figure 8. (a) The mean low visibility days (circles) per year from 2003 to 2014 in 50 888	
ASEAN cities. The size of the circles indicates the number of days. The colors refer to 889	
population-weighted fraction in the total Haze Exposure Days (HED). (b) Annual 890	
population-weighted HED (HEDpw) and arithmetic mean HED (HEDar). Fire-caused 891	
HED are labeled as fHEDpw and fHEDar. Units are in days. Note that the y-axes are in 892	
different scales.   893	
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 899	

  900	
Figure 9. Seasonal mean fire PM2.5 concentration (µg m-3) and wind within the PBL 901	
modeled in FNL_FINN during February to April, 2003–2014 for fire PM2.5 source region 902	
from (a) mainland Southeast Asia, (b) Sumatra and Java islands, (c) Borneo, (d) the rest 903	
of the Maritime Continent, and (e) northern Australia. (f)-(g) Same as (a)-(e) but for 904	
seasonal mean wet scavenging time (days).  905	
 906	
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