

Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometer, other networks, and satellite observations

Christos S. Zerefos^{1,2,3,10}, Kostas Eleftheratos^{2,4}, John Kapsomenakis¹, Stavros Solomos⁵, Antje Inness⁶, Dimitris Balis⁷, Alberto Redondas⁸, Henk Eskes⁹, Vassilis Amiridis⁵, Christos Repapis¹⁰, Marc Allaart⁹, Ronny Engelmann¹¹, Arne Dahlback¹², Veerle De Bock¹³, Henri Diémoz¹⁴, Paul Eriksen¹⁵, Julian Gröbner¹⁶, Anu Heikkilä¹⁷, Janusz Jarosławski¹⁸, Weine Josefsson¹⁹, Tomi Karppinen²⁰, Ulf Köhler²¹, Charoula Meleti⁷, John Rimmer²², Vladimir Savinykh²³, Vadim Shirotov²⁴, Anna Maria Siani²⁵, Andrew R. D. Smedley²², Martin Stanek²⁶, René Stübi²⁷

¹Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece

²Biomedical Research Foundation, Academy of Athens, Athens, Greece

³Navarino Environmental Observatory (N.E.O.), Messinia, Greece

⁴Faculty of Geology and Geoenvironment, University of Athens, Greece

⁵Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Athens, Greece

⁶European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK

⁷Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

⁸Izaña Atmospheric Research Center, AEMET, Tenerife, Canary Islands, Spain

⁹Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands

¹⁰Mariolopoulos-Kanaginis Foundation for the Environmental Sciences, Athens, Greece

¹¹Leibniz Institute for Tropospheric Research, Leibniz, Germany

¹²Department of Physics, University of Oslo, Oslo, Norway

¹³Royal Meteorological Institute of Belgium, Brussels, Belgium

¹⁴ARPA Valle d'Aosta, Saint-Christophe, Italy

¹⁵Danish Meteorological Institute, Copenhagen, Denmark

¹⁶PMOD/WRC, Davos Dorf, Switzerland

¹⁷Climate Change Unit, Finnish Meteorological Institute, Helsinki, Finland

¹⁸Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland

¹⁹Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

²⁰Arctic Research Centre, Finnish Meteorological Institute, Sodankylä, Finland

²¹DWD, Meteorological Observatory Hohenpeissenberg, Germany

²²Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK

²³A.M. Obukhov Institute of Atmospheric Physics, Kislovodsk, Russia

²⁴Institute of Experimental Meteorology, Obninsk, Russia

²⁵Department of Physics, Sapienza – University of Rome, Rome, Italy

²⁶Solar and Ozone Observatory, Hradec Kralove, Czech Republic

²⁷Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne, Switzerland

Correspondence to: Christos S. Zerefos (zerefos@geol.uoa.gr)

SO₂ plume from Nabro Volcano over the Canary Islands (June 2011)

1. SO₂ algorithm improvement

The SO₂ is calculated routinely on the Brewer's ozone retrieval algorithm (Kerr et al., 1988).

$$\text{SO}_2 = \text{MS8} - \text{ETC} / m_3 A3 * A2 - O_3 / A2$$

Where:

MS8 is the linear combination of log count ratios of the SO₂ wavelengths 306.3, 316.8, and 320.1 nm, with weights [-1.00, 4.20, -3.20]; m₃ is the ozone air mass factor; ETC is the extraterrestrial constant; and A3 and A2 are the effective cross sections of SO₂. A3 is the differential O₃ absorption coefficient for the SO₂ wavelength combination whereas A2 is the ratio of the SO₂ absorption coefficient to the O₃ absorption coefficient with SO₂ wavelength combination (A2 is nominally set equal to 2.44). These effective absorption cross section quantities can be measured during the wavelength characterization of the spectrometer using the same methodology as that used for the ozone absorption calculation (Redondas 2014). The SO₂ cross section used by the Brewer network were calculated by Kerr, but certainly this subject needs more investigation as we cannot find the laboratory calibration to which is referenced this cross section.

The only calibration constant is the ETC. There are three methods to derive the ETC: 1) by comparing to a reference instrument, 2) assuming a zero SO₂ during a certain period (this is what most of Brewer stations use to do), and 3) by Langley extrapolation. In this case analysis we show results using the last two methods, so the Langley extrapolation with the RBCC-E (Regional Brewer Calibration Centre for Europe) methodology (Redondas, 2007; Ito et al., 2011), and using the days 6 and 7 of June as zero reference. The estimated error of the Langley is +/- 0.25 DU.

2. Ancillary information

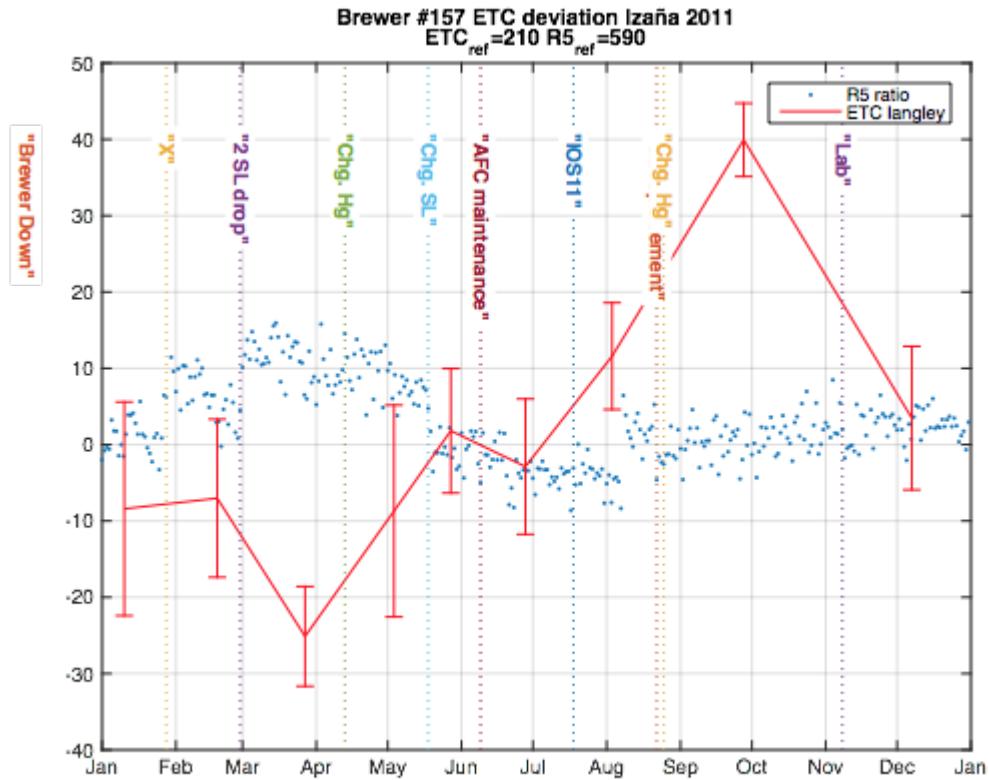


Figure S1: Langley determination of the SO_2 extraterrestrial constant and the internal lamp measurement (R5) used for track the calibration between calibrations. Possible changes on the calibration of the instrument are marked by vertical lines. The error estimation of the ETC is shown on error bars and is in mean \pm 10 ETC units (\pm 0.25 DU).

References

- Ito, M., Takano, M., Oguri, H., Takita, M., Shimodaira, H., and Ishitsuka, H.: Observations of total ozone and UV solar radiation with Brewer spectrophotometers on the Norikura mountains in 2009, Journal of the Aerological Observatory, 69, 41-54, 2011.
- Kerr, J. B., Asbridge, I. A., and Evans, W. F. J.: Intercomparison of Total Ozone Measured by the Brewer and Dobson Spectrophotometers at Toronto, Journal of Geophysical Research, 93, 11129-11140, 1988.
- Redondas, A.: Ozone absolute langley calibration, in The Tenth Biennial WMO Consultation on Brewer Ozone and UV Spectrophotometer Operation, Calibration and Data Reporting, Edited by C. T. McElroy and E. W. Hare, Gaw Report. No. 176, WMO TD No. 1420, pp. 12-14, 2007.

Redondas, A., Evans, R., Stuebi, R., Köhler, U., and Weber, M.: Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms, *Atmospheric Chemistry and Physics*, 14(3), 1635-1648, 2014.