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Figure S1. Depiction of the PROPHET tower and inlet locations used during

CABINEX 2009.
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Figure S2. CABINEX 2009 median measurements of (a) ambient O3 mixing ratios, (b) ambient NOy
mixing ratios, (¢) ambient isoprene and a-pinene mixing ratios, and (d) the photolysis rate of NO,.
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Figure S3. (a) Comparison of median above-canopy OH measurements during CABINEX
2009 to 0D model predictions for the artificially polluted and Detroit scenarios (b)
Comparison of median below-canopy OH measurements during CABINEX 2009 to 0D
model predictions for the artificially polluted and Detroit scenarios. Error bars indicate
median measurement precision. Above-canopy OH measurements were averaged over 2
hour intervals, while below-canopy measurements were averaged over 30 minutes intervals.
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Figure S4. (a) Comparison of above-canopy median OH measurements during
CABINEX 2009 to 0D model predictions for the ambient CABINEX model scenario.
(b) Comparison of above-canopy median HO, measurements during CABINEX 2009
to 0D model predictions of HO, and HO, + isoprene RO, for the ambient CABINEX
model scenario. Error bars indicate median measurement precision.
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Figure S5. Linear regression of (a) median OH measurements during CABINEX 2009
and 0D model predictions, (b) median HO, measurements and 0D model predictions,
and (c¢) median HO, measurements and HO; + isoprene RO, 0D model predictions.
The 1:1 line is included in each plot.



Fractional Change in Daily SOA Production
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Figure S6. Sensitivity analysis of total daily SOA production in the above-canopy
ambient scenario from scaled changes in NO, NO,, O3, HOy, isoprene, and a-pinene.
White circles indicate expected change below the canopy based on observed gradients
in mixing ratios of these species. For instance, NO concentrations are on average 33%
lower below the canopy than above (67% of above canopy concentrations), which,
assuming concentration gradients of individual species affect SOA production
independently, would result in approximately a 25% increase in total daily SOA
production below the canopy relative to above. It is apparent that SOA production is
most sensitive to NO, isoprene, and HOy, and the below-canopy enhancement of SOA
production is largely the result of the NO and isoprene gradients.



Table S1. Description of dominant RONO, oxidation products in a-pinene SOA as characterized
by the Leeds Master Chemical Mechanism. Diurnal profiles of these species are plotted in Figure
10. Column 4 indicates the initial oxidant(s) that reacts with a-pinene to eventually produce the

given species.
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Table S2. Description of dominant RONO, oxidation products in isoprene SOA as
characterized by the Leeds Master Chemical Mechanism. Diurnal profiles of these species
are plotted in Figure 11. Column 4 indicates the initial oxidant(s) that reacts with isoprene
to eventually produce the given species.
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