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Abstract. Megacities have strong interactions with the surrounding regions through
transport of air pollutants. It has been frequently addressed that the air quality of
Beijing is influenced by the influx of air pollutants from the North China Plain (NCP).
Estimations of air pollutant cross-boundary transport between Beijing and the NCP
are important for air quality management. However, evaluation of cross-boundary
transport using long-term observations is very limited. Using the observational
results of the gaseous pollutants SO,, NO, NO,, Os, and CO from August 2006 to
October 2008 at the Yufa site, a cross-boundary site between the megacity Beijing
and the NCP, together with meteorological parameters, we explored a method for
evaluating the transport flux intensities at Yufa, as part of the “Campaign of Air
Quality Research in Beijing and Surrounding Region 2006—-2008” (CAREBeijing 2006—
2008). The hourly mean * SD (median) concentration of SO,, NO, NO,, NO,, O3, O,,
and CO was 15 + 16 (9) ppb, 12 £ 25 (3) ppb, 24 + 19 (20) ppb, 36 + 39 (23) ppb, 28 +
27 (21) ppb, 52 + 24 (45) ppb, and 1.6 £ 1.4 (1.2) ppm during the observation period,
respectively. The bivariate polar plots showed the dependence of pollutant
concentrations on both wind speed and wind direction, and thus inferred their
dominant transport directions. Surface flux intensity calculations further
demonstrated the regional transport influence of Beijing and the NCP on Yufa. The
net surface transport flux intensity (mean * SD) of SO,, NO, NO,, NO,, O3, O,, and CO
was 6.2 +89.5,-4.3+29.5,-0.6+72.3,-49+93.0,14.7 £ 187.8, 14.8 + 234.9, and 70
+ 2830 ug s m™ during the observation period, respectively. For SO,, CO, O3, and O,
the surface flux intensities from the NCP to Yufa surpassed those from Beijing to Yufa

in all seasons except winter, with the strongest net fluxes largely in summer, which



41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

was about 4-8 times of other seasons. The surface transport flux intensity of NO,
from Beijing to Yufa was stronger than that from the NCP to Yufa except in summer,
with the strongest net flux in winter, which was about 1.3-8 times of other seasons.
The flux intensities were then assigned to the corresponding trajectories in the
potential source contribution function analysis (PSCF), which confirmed the results of
flux intensity calculations. Our study also suggested that various factors, such as the
wind field, emission inventory, and photochemical reactions, could influence
transport of air pollutants. The decrease of surface flux intensity during the Olympic
Games period implied the role of both local emission reduction and regional
cooperation in successful air quality management. Three dimensional observations
are needed for further comprehensive discussion of the regional transport between

Beijing and the NCP.

Keywords: Megacity Beijing, North China Plain, Yufa site, Regional transport, Long-

term and multiple-species observation

1. Introduction

Megacities are large sources of air pollutants and greatly influence the surrounding
areas (Parrish and Zhu, 2009). With a population over 20 million, the city of Beijing is
an example of such a megacity. Beijing has faced severe air pollution problems over
the past two decades and has intensive interactions with other emission hot spots
within the North China Plain (NCP) (Chen et al., 2015; Shao et al., 2006; Zhang et al.,
2012). Beijing and the NCP are surrounded by the Yanshan Mountains to the north

and the Taihang Mountains to the west. The semi-basin geographical features
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together with the continental monsoon climate make regional transport of air
pollutants between the megacity Beijing and the NCP an important factor affecting
air quality in Beijing and the NCP (An et al., 2007; Guo et al., 2010; Lin et al., 2008,
2009; Streets et al., 2007; Wang et al., 2006; Wang et al., 2011; Wang et al. 2015; Wu
et al., 2011; Xu et al., 2005; Xu et al., 2011). An improved understanding of the
regional transport of air pollutants between Beijing and the NCP is therefore
essential for air quality management of the megacity Beijing and establishment of

regional-scale emissions control measures.

Previous studies have shed light on the regional transport sources of the
megacity Beijing, and various techniques have been employed, including rural/urban
station observations (Guo et al., 2010; Lin et al., 2008, 2009; Wang et al., 2006; Xu et
al.,, 2011), mobile laboratory measurements (Wang et al.,, 2009, 2011; Zhu et al.,
2016), and modelling studies (An et al., 2007; Matsui et al., 2009; Wu et al., 2011). A
ground-based observation study from July 2006 to September 2007 at the Gucheng
site (Lin et al., 2009), a rural site south-west of Beijing, found that high
concentrations of gaseous pollutants, including nitric oxide (NO), nitrogen dioxide
(NO3y), nitrogen oxides (NO,=NO+NQ,), sulphur dioxide (SO,), carbon monoxide (CO),
ozone (0s3), and oxidant (O,=NO,+03), were accompanied by air masses moving
northward from Gucheng to Beijing, according to back-trajectory analysis. Similar to
Lin et al. (2009), regional transport of air pollutants between Beijing and the NCP was
observed consistently in these previous studies (Lin et al., 2008; Yuan et al., 2009;

Zhu et al., 2011), even though they were merely short-term observations.
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Many studies have also attempted to quantify transport fluxes of the main
gaseous pollutants. A mobile laboratory study in Beijing city demonstrated regional
transport of SO, from the NCP in both emission-control and non-control scenarios
during the Beijing 2008 Olympics (Wang et al., 2011). Extrapolated from five 1-day
case studies, the annual transport fluxes of SO, through the south-east part of the
6th Ring Road into Beijing were estimated at 49.2 Gg yr ™ and 146.3 Gg yr ',
accounting for 70 % and 73 % of the annual SO, emissions in Beijing under emission-
control and non-control scenarios, respectively. The Community Multi-scale Air
Quality (CMAQ) model simulation by An et al. (2007) found that the regional
transport from the surrounding areas of Beijing contributed 39 % of PM,s, 30 % of
PMyo, and 18 % of SO, to the city on average in a heavy pollution episode in the
spring of 2005. Similarly, the CMAQ model simulation over the Beijing region for July
2001, reported by Streets et al. (2007), illustrated the regional transport of PM, s and
Os between Beijing and the NCP. The study suggested that the average contributions
of regional transport to PM,s concentrations in the megacity Beijing from Hebei
Province, Shandong Province, and Shanxi Province were about 32 %, 11 %, and 3.5 %,
with maximum contributions of 70 %, 63 %, and 21 %, respectively. The regional
transport contributions to the concentrations of Osin Beijing were less significant,
with maximum contributions of 28 % from Hebei Province, 24 % from Shandong

Province, and 10 % from Shanxi Province, respectively.

In summary, long-term observation of transport flux is necessary to constrain
regional models and to directly evaluate the influence of regional transport on air

quality. Estimations of air pollutant cross-boundary transport between Beijing and

5
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the NCP are important for air quality management. However, evaluation of cross-
boundary transport using long-term observations is very limited. In this study, we
developed a method of calculating the surface transport flux intensity across a cross-
boundary site based on long-term ground-based measurement and evaluated the
regional transport influence of Beijing and the NCP on the cross-boundary site. The
results showed different transport directions and seasonal variations in the surface
transport flux intensities of the main pollutants, including SO,, NO, NO,, NO,, Os, and
CO at the Yufa site. The key factors controlling regional transport are also discussed,

which is important for the establishment of air quality control policy in future.

2. Measurements and Methods

2.1. Measurements

The Yufa site is located at the cross-boundary area between Beijing and the NCP and
could be influenced by emissions from the megacity Beijing and long-range transport
from the NCP. The measurements at the Yufa site (39°30'49"N, 116°18'15"E) were
conducted on the top of a building (about 20 m above ground level) in the campus of
Huangpu College. There is no tall building around the Yufa site which affects the wind
and gaseous pollutant measurements. This is a rural site about 50 km south of the
center of Beijing and near the border of Beijing Municipality and Hebei Province. As
shown in Fig. 1, the Yufa site locates in the temperate monsoon climate zone and the
topography of its surrounding area is flat. The prevailing wind of the Yufa site is the
same as the surrounding region (Lin et al., 2009), thus the wind field of the Yufa site

is representative of the researched area in this study. The northern and western sides
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of the site are mountain areas where dry and clean air masses come from, whereas
the southern and south-eastern sides are surrounded by heavily industrialised and
urbanised areas, such as Hebei Province and Tianjin City (Fig.1).

Figure 1. here

The gaseous pollutant species measured included SO,, NO, NO,, NO,, Os, and CO.
SO, was measured using a sulphur dioxide analyser (9850B; Ecotech, Knoxfield,
Australia) which combines microprocessor control with pulsed UV fluorescence
detection with the precision of 0.5 ppb and uncertainty within 10 %. The detection
limit for the analyser is 0.5 ppb and the time resolution is 1 min. Reactive nitrogen
species (NO, NO,, and NO,) were measured using nitrogen analyser (9841B; Ecotech)
which utilises microprocessor control and chemiluminescence detection with the
precision of 0.5 ppb and uncertainty within 10 %. The detection limit for the
instrument is 0.5 ppb and the time resolution is 1 min. CO was measured using a CO
analyser (9830A; Ecotech) which utilises NDIR Gas Filter Correlation photometry and
microprocessor control with the precision of 0.1 ppm and uncertainty within 1 %.
The detection limit for the instrument is 50 ppb and the time resolution is 1 min. Os
was measured using an ozone analyser (9810B; Ecotech) which combines
microprocessor control with UV photometry with the precision of 1 ppb and
uncertainty within 5 %. The detection limit for the instrument is 0.4 ppb and the time
resolution is 1 min. Measurements of meteorological parameters, including wind
direction (WD), wind speed (WS), temperature (T), barometric pressure (BP), and
relative humidity (RH), were conducted with a LASTEM auto meteorology station

(LASTEM, Milan, ltaly). All trace gas instruments were maintained and calibrated

7
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routinely following the manufacturer’s protocols. The main reasons for missing data
were power and instrument failure. The detail information of the instruments was

listed in Table 1.

Table 1. here
2.2. Methods

2.2.1. Transport direction analysis

The transport of gaseous pollutants is markedly influenced by meteorological
parameters, especially wind speed and wind direction. For local emission sources,
wind can facilitate the dilution and diffusion of air pollutants. Strong wind usually has
marked diffusion capability, whereas weak wind usually leads to accumulation of air
pollutants. For regional sources, strong wind can transport pollutants over long
distances and may result in high concentrations of pollutants in downwind areas.
Therefore, the relationship between pollutant concentration and wind field is an

indicator of regional transport.

The bivariate polar plot graphical technique was used to investigate the
relationships between the concentrations of gaseous pollutants and wind field, and
to identify potential emissions sources and transport directions of air pollutants
according to the technique developed by Carslaw et al. (2006) and Westmoreland et
al. (2007). The variables (such as pollutant concentrations, wind speed, and wind
direction) were plotted in polar coordinates. The procedure was as follows. First, the

concentration data were partitioned into wind speed-wind direction bins, and the
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mean concentrations were calculated within each bin. Then, the wind components u
and v were calculated using Eq. (1):

u = WS -sin(m6/180),v = WS - cos(t6/180) (1),
where WS is the hourly mean wind speed, and & is the wind direction in degrees,
with 90° being from the east. Then, a generalised additive model (GAM,;
Jayamurugan et al., 2013) was used for surface fitting to describe the concentration
as a function of the wind components u and v. The concentrations calculated by the

GAM can be expressed with Eq. (2):
VCi = Bo+s(u,v) +e; (2),

where C; is the calculated pollutant concentration, 8y is the overall mean of the

response, s(u,v) is the smooth function, and e; is the residual.

Compared to the nonparametric regression used by Henry et al. (2002), the
bivariate polar plot involves the dependence of pollutant concentration on both wind
speed and wind direction. The non-linear relationships among the variables (such as
concentrations of gaseous pollutants, wind speed, and wind direction) as well as the
interactions among these variables can be considered using the GAM method for
data smoothing. In addition, the use of polar coordinates makes the graphics more

intuitive.
2.2.2. Transport flux assessment

The surface transport fluxes at the Yufa site were calculated with the following

formula (White et al., 1976; Wang et al., 2011):

1
f=-= 121 GXWS; Xcos8;  (3),



196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

o=HyXL, (4),
FLUX = fxo (5),

where f is surface flux intensity of the pollutants, i.e. the per unit area flux (ug s™
m~); C; is the mean concentration of the pollutants (pg m~) during the jth
observation hour; U;is the angle between wind direction and the north-south
direction during the jth observation hour; and WS; is wind speed (m s_l) during the
jth observation hour; n is the total number of observation hour; g is the surface
cross-sectional area (m?) with the width of Lo (m) and height of H, (m); the average
surface flux of the pollutants (i.e. FLUX, pg s™') can be obtained by multiplying flux
intensity f and the cross-section area a.

Figure S1 shows a schematic diagram of the surface flux calculation. The flux
intensity here is the product of wind vector and air pollutant concentration
measured at the same location. Ideally, we need to use the wind speed and air
pollutant concentration with infinite small time resolution to conduct the surface flux
calculations. In this study, the hourly data of the pollutants and wind were used,
mainly because the pollutants concentration data was converted from the minutes’
data to hourly mean to remove the accidental fluctuation and reduce the noise.
Therefore, we assumed the wind speed and wind direction were constant within one
hour, and hourly wind data was used to match with the hourly air pollutant

concentration data to calculate the flux intensity.

It also need to make it clear that the surface flux intensity calculated in this study
is the per unit area flux across the Yufa site, which is different from the flux across a

large area reported in other studies (e.g. Wang et al. 2011). Our results could only be
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extrapolated if the concentrations of all the pollutants, wind speed and direction
were homogenously distributed, vertically and horizontally. Otherwise, vertical
profiles of air pollutants concentration and wind are needed to calculate the cross-
section transport flux of two adjacent regions for the whole boundary layer with the

integrating formula below:
FLUX = ff C(X’Z)WS(x,Z)Slne(xrz)dXdz=fff(x’z)dXdZ (6),

where x is horizontal distance to the observed point, z is the vertical distance
from ground to the observed point. In this study, we focus on the method developing
of the surface flux intensity calculation and evaluation of the regional transport
influence of Beijing and the NCP on the cross-boundary site based on the ground-
based observation data.
2.2.3 The backward trajectory model and PSCF analysis
The 12 h air mass back trajectories arriving at the Yufa site at 500 m above the
ground level were calculated using the National Oceanic and Atmospheric
Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory
Version 4 model (HYSPLIT-4 model) (http://ready.arl.noaa.gov/HYSPLIT.php) during
the study period (from 15 August 2006 to 31 October 2008) with a1 ° x 1 ° latitude-
longitude horizontal resolution and the final meteorological database. The final
archived meteorological data was obtained from the National Center for
Environmental Prediction’s (NCEP’s) Global Data Assimilation System (GDAS)

(ftp://arlftp.arlhg.noaa.gov/pub/archives/gdasl). The back trajectories were
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generated with 6-h time resolution (four times per day) at starting times of 0:00,
6:00, 12:00 and 18:00 UTC (8:00, 14:00, 20:00, 4:00 LT-local time, respectively).

The potential source contribution function (PSCF) analysis was performed with
the Gis-based software TrajStat (http://www.meteothinker.com/products/trajstat.
html) (Wang and Zhang et al., 2009). The PSCF analysis has been widely used for
identifying the possible source areas of the observed high concentrations of
pollutants at the receptor site (Ashbaugh et al., 1985; Zhang et al., 2013). In this
study the long-term calculated surface flux intensity data was assigned to the
backward trajectories in the PSCF analysis to confirm the bi-directional transport of
pollutants between Beijing and the NCP. The PSCF analysis was conducted as follows.

The study domain was divided into i x j equal size grid cells and the PSCF value
for ijth cell is defined as:

PSCF;; = my; /ny;  (7),
where n; denoted the number of endpoints that fall in the jjth cell, and m;
represented the number of endpoints for the same cell having arrival times at the
observed site corresponding to measured data higher than an arbitrarily set criterion.
To reduce the effect of small values of nj, the PSCF values were multiplied by an

arbitrary weigh function Wj;. In this study, Wj; is defined as below.

Wij = B (8),
0.42, 10 < n;; < 20
005, nij <10

In this study, the study domain was 30-50 ° N, 100-125 ° E and the horizontal

resolution was 0.25 ° x 0.25 °.

12



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

3. Results and discussion

3.1. Observations

Figure 2. here

The time series of hourly average and 24-hour smoothing concentrations of SO,, NO,
NO,, NO,, O3, Oy and CO observed at the Yufa site from 15 August 2006 to 31
October 2008 are shown in Fig. 2. The hourly mean * SD (median) concentration
value of SO,, NO, NO,, NO,, O3, Oy, and CO was 15 + 16 (9) ppb, 12 + 25 (3) ppb, 24 +
19 (20) ppb, 36 £ 39 (23) ppb, 28 £ 27 (21) ppb, 52 + 24 (45) ppb, and 1.6 + 1.4 (1.2)
ppm during the observation period from 01 September 2006 to 31 August 2008,
respectively, with hourly mean values -3, 1, 6, 7, -1, 5 and 0 ppb higher for SO,, NO,
NO,, NO,, O3, O,, and CO than the Gucheng site, a polluted rural site to the south-
west of Beijing, from July 2006 to September 2007 (Lin et al., 2009). The hourly mean
values were 12, 11, 17, 28, -5, 22 and 972 ppb higher than those observed at the
clean background at the Shangdianzi site, which is one of the regional Global
Atmosphere Watch (GAW) stations in China over the period 2004-2006 (Lin et al.,
2008). The compared results indicated that the Yufa site has become a relatively
polluted rural site. Typical seasonal variations were observed for all gaseous
pollutants. Concentrations of primary pollutants, including SO,, NO, NO,, NO,, and
CO, were high in winter and low in summer. In contrast, the concentration of Os,
which is a secondary pollutant, was high in summer and low in winter.

Figure 3. here
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Meteorological parameters such as WS, WD, RH, T, and BP were also measured
at the Yufa site; the monthly statistics are shown in Fig. 3. North (usually in winter) or
south wind (usually in summer) prevailed at the Yufa site, with monthly average wind
speed mostly below 2 m s™. Exceptional conditions occurred occasionally in spring
and winter for the north wind, with monthly average wind speeds around 2-3 m s .
In addition, for the north wind, the mean speed was higher than the median speed,
suggesting the prevalence of high wind speeds in both spring and winter. Prevailing
north wind with high wind speed during winter and spring has been reported
consistently in the Beijing area (Lin et al., 2008; Wehner et al., 2008). Another
exceptional condition occurred in spring for the south wind, with a monthly average
wind speed around 2 m s~. Figure 4 summarises the prevalence of wind direction in
the four seasons. Generally, the prevailing surface wind directions were north-
northeast and south-southwest in all seasons. In winter and spring, winds from the
north-northeast sector made a contribution of about 40-50 % to wind frequency.
Whereas under the influence of summer monsoon, winds from south increased
significantly in summer, with the contribution to wind frequency above 40 %. RH was
higher in summer and lower in spring and winter with the driest month in April of
2007 and February of 2008. The seasonal variation of RH may partially be related to
the variations of WS (Lin et al., 2011). T was higher in summer and lower in winter.
Surface pressure measurements showed high values in winter and low values in
summer due to surface heating and lifting air masses in summer, which partly
accounted for the wind field in the NCP (Takegawa et al., 2009).

Figure 4. here

14



305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

The seasonal variations in gaseous pollutants and meteorological parameters
could be linked in certain ways. For example, the high temperature and low pressure
in summer suggested a high boundary layer and diluted gaseous pollutants to some
extent. The high temperature, light intensity, and relative humidity also favoured the
chemical transformation of these primary pollutants and the formation of secondary
pollutants. The high wind speeds in spring and winter also affected regional
transport, and therefore the concentrations of gaseous pollutants, as discussed

below.

3.2. Transport direction

3.2.1. The bivariate polar plots for the whole observed period

As shown in Fig. 1, the Yufa site is located at the boundary area of Beijing city and the
NCP. Prevalent south/south-west or north/north-east wind would bring in polluted or
clean air masses to the site. Air masses from both directions would pass over the
Yufa site. Regional transport from the megacity Beijing and the NCP could therefore
be observed at the Yufa site. The transport directions for gaseous pollutants,
including SO,, NO, NO,, NO,, O3, O,, and CO, will be discussed in this section.

Figure 5. here

Figure 5a-g show the bivariate polar plots for SO,, NO, NO,, NO,, O3, Oy, and CO
at the Yufa site, respectively. In the low wind speed scenario, high or medium
concentrations of NO, NO,, NO,, SO,, and CO were generally observed, along with
low O3 and Oy concentrations. In the high wind speed scenario, the dependence of

species concentration on wind speed and wind direction was more varied.
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Specifically, the bivariate polar plot in Fig. 5b clearly shows dependence of high NO
concentration (higher than 30 ppb) on low wind speed, with low NO concentration
(lower than 5 ppb) at wind speeds >3 m s ™. The bivariate polar plot in Fig. 5¢c shows
similar dependence of high NO, concentration on low wind speed, but NO;
concentrations up to 20 ppb were still observed with medium wind speeds of around
5 m s * from the south, east, and north-east. Accordingly, the dependence pattern of
the NO, concentration (Fig. 5d) on wind speed and wind direction reflected the
features of both NO and NO,. The dependence pattern of high CO concentration on
low wind speed in Fig. 5g was similar to that for NO,, but a considerable CO
concentration, substantially higher than background level, was still observed at wind
speeds exceeding 5 m s from the south and the east. Figure 5a shows similar
dependence of medium-high concentration of SO, (around 20 ppb) on low wind
speed, with one unique feature being that high SO, concentration was observed
under conditions of high wind speed (> 5 m s™) in various wind directions (especially
the south wind). Finally, the bivariate polar plot in Fig. 5e shows the dependence of
O3 concentration on wind speed and wind direction, which was somewhat opposite
to the patterns for other species. The low O3z concentration (< 20 ppb) was related to
low wind speed or calm wind conditions. With the north wind and medium or high
wind speed, a typical background O3 concentration (around 50 ppb) was observed.
With south wind and medium or high wind speed, high Os; concentration was
observed. The dependence of the high O, concentration on high wind speed from the

south and south-east was similar to that of O3, but no low concentration of O, was
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observed under low wind speed conditions (Fig. 5f), probably due to the

compensation of high NO, concentration at low wind speeds (Fig. 5d).

Figure 6. here

The high concentrations of NO, NO,, NO,, and CO and the medium-high
concentration of SO, observed under low wind speed conditions were consistent
with their high emission intensities in the Beijing area (Fig. 6). Due to the marked
increase in the number of vehicles and heavy energy consumption, Beijing has been
a well-known emission hot spot for NO and NO, (Tang, 2004). Meanwhile, the
extremely high levels of CO emissions in the Beijing area are clearly shown in the
emissions map (Fig. 6) and have been reported consistently (Wang et al., 2009) and
directly observed, with peak CO concentrations up to 9.3 ppm. Only medium-high
SO, concentration (~15 ppb) observed even at low wind speed suggested the
successful reduction of SO, emission, which could be ascribed to the continuous
effort of the Chinese government since the 1990s and during the Olympic Games
(Qin et al., 2009; Tang, 2004; Wang et al.,, 2009, 2011). Accordingly, the O3
concentration under low wind speed conditions was lower than the typical
background level, which could be attributed to the rapid titration of Oz by of

accumulation NO.

3.2.2. Seasonal variations of the bivariate polar plots

Figure 7. here

The different patterns of the bivariate polar plots reflected the differences in

local emission and regional transport for different species. The emissions, the
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meteorological conditions, the chemical reaction rate and the species lifetime, which
have essential influence on the regional transport, vary greatly by seasons. Thus the
seasonal variations of the bivariate polar plots and the corresponding causes were

discussed in this section.

Figure 7b-d show seasonal variations of the bivariate polar plots for NO, NO,,
and NOy at the Yufa site, respectively. Generally, the mean concentrations of NO,,
NOy and especially NO in the low wind speed scenario were higher than those in the
higher wind speed scenario in all seasons. The mean concentration of NO was less
than 10 ppb when the wind speed higher than 5 m s™* in all seasons (Fig. 7b). Figure
7c clearly shows the relatively higher concentration of NO, (~20 ppb) with winds at
higher wind speed (>5 m s™') from the south sector in spring, from the northeast and
south sectors in summer and winter, and from the northeast sector in autumn.
Figure 7d shows the dependence pattern of NO, was similar to both NO and NO,.
Although emission hot spots of NO, NO,, and NOy are widespread in the NCP, the
long-range transport of these species to Yufa is limited by the lifetime of these
species. As the average O3 concentration for spring, summer, autumn and winter was
20, 11, 32, and 42 ppb respectively at Yufa, the typical lifetime of NO was 66, 51, 106,
and 181 s in spring, summer, autumn, and winter, respectively, just by assuming that
all the NO is removed mainly by chemical reaction with O; (Sander et al., 2011). The
transport distance of NO was therefore less than 5 km even with a high wind speed
of 15 m s'. Even when considering the the conversion of NO from NO, with
conversion efficiency ~30 % in summer and autumn (Takegawa et al. 2009), the

transport distance of NO is still limited, for the lifetime of NO; is also relative short
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(Beirle et al., 2011; Gu et al., 2013). That is, NO concentration is determined by local
emissions rather than regional transport. NO, and NOy have longer lifetimes in the
atmosphere than NO has, typically on the order of 4-5 h and with longer
photochemical lifetime in cold seasons (Beirle et al., 2011; Gu et al., 2013). Hence,
the typical transport distance of these species is around 100 km at the wind speed of
5m st (Beirle et al., 2011). W.ithin such transport distance, the Yufa site is
surrounded by various NO, emission hot spots (Fig. 6), such as the megacity Beijing
to the north, the Baoding-Cangzhou area to the south, and the Tianjin-Tangshan area
to the east. Meanwhile the emission intensity was larger in winter and autumn than
that in spring and summer (Fig. 6). It is therefore reasonable to observe the influence
of short-range transport, in addition to local emissions, on the local NO, and NO,
concentrations, especially in cold seasons (Fig. 7c and 7d). Although our results
suggested that short-range transport from these surrounding areas, especially the
urban area of Beijing, was a non-negligible factor affecting the NO4 concentration at
the Yufa site, the regional transport of NOy was of less significance compared to SO,

and CO due to its limited transport distance (see below).

Figure 7e is the seasonal bivariate polar plots of CO, which clearly shows the
relatively higher mean concentration of CO (> 1 ppm) with winds at low wind speed
(< 2 m s™), similar to nitrogen oxide species. The mean concentration of CO was
relatively higher with wind at higher wind speed (> 5 m s™) from south sector in
spring and summer, from northeast and south sector in autumn, and from north and
south in winter. The oxidation lifetime of CO is typically ~20 days, under the

assumption of OH radical concentration of 2 x 10° cm™3 (Xu et al.,, 2011). This is
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substantially longer than the lifetime of NO,, making regional transport of CO an
important process affecting local air quality in the downwind area. The different
lifetimes of CO and NOy appeared to explain the unique high concentration of CO,
but not NOy, at wind speeds exceeding 5 m s* from the south and the east. Our
results suggest that regional transport from the south and central NCP and the

Tianjin area could greatly affect local concentrations of CO at the Yufa site.

Figure 7a clearly shows the relatively higher mean concentration of SO, (~20 ppb)
with winds at higher wind speed (> 5 m s!) from the south sector in spring and
summer. The mean concentration of SO, was high (> 30 ppb) with winds at higher
wind speed (> 5 m s') from the north-east, east, and south sectors in autumn and
winter. Similar to CO, SO, has a relatively long lifetime in the atmosphere compared
to NO,, i.e. a couple of hours to 1-2 days with longer lifetime in winter and shorter
lifetime in summer (Beirle et al., 2014; He et al., 2012; Lee et.al., 2014), and regional
transport of SO, was expected to occur. Accordingly, regional transport from
emission hot spots located south of the Yufa site (Fig. 6), was found to influence the
concentrations of SO, (Fig. 7a) at Yufa in all seasons. Specifically, the highlighted
emission hot spots in the central NCP and the south NCP, which accounted for about
70 % of China’s coal consumption in 10 % of China’s domestic area (China Statistical
Yearbook, 2008), is a major source of SO, in the Beijing area by regional transport
(Liu et al., 2016). Furthermore, regional transport from the north-east sector of the
Yufa site, where the center of the megacity Beijing located, also was observed in
autumn and winter, which indicated the increased emission of SO, in heating

seasons.
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Finally, the bivariate polar plots in Fig. 7f and 7g show the dependence of O; and
O, concentration on wind speed and wind direction by season. The low O3
concentration (< 20 ppb) was observed at low wind speed (< 2 m s*). With the north
wind at higher wind speed (> 5 m s™), a typical background O; concentration (around
50 ppb) was observed in spring and summer. With south wind at higher wind speed
(> 5 m s7), high O; concentration (above 60 ppb) was observed, especially in
summer. The main difference of seasonal bivariate polar plots between Oz and Oy
was that no low concentration of O, was observed under low wind speed conditions
in all seasons. The low concentration of O3 at low wind speed may be due to the
titration of O3 by NO, which was more obvious in autumn and winter. Background O3
levels in the north-west wind under medium and high wind speed conditions clearly
reflect the transport of background air mass to the Yufa site from locations where the
emission intensities of pollutants were relatively low (Fig. 6), and this was more
obvious in spring when the air masses from the north-west increased (Fig. 4).
Whereas O3 concentrations higher than background level in the south wind under
medium and high speed conditions, especially in summer, suggest accumulation of
Os during its transport from the central NCP area or even the south NCP area to the
Yufa site. Emission intensity of O3z precursors, such as NO, and VOCs is high in the
NCP, and the solar radiation is strong in summer, which facilitate the formation and

transport of O3 from the NCP to Beijing (Zhang et al., 2014).

In conclusion, the emissions in the Beijing area are closely related to the
observed concentrations of NO, NO,, NO, and CO at Yufa. Regional transport had a

clear influence on the concentrations of all gaseous pollutants examined here, with
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the exception of NO. The emission hot spots located east, north-east, and especially
south of the Yufa site determined the regional transport directions. The influence of
regional transport differed among species. Regional transport of SO,, CO, and Os
from the central and south NCP to the Yufa site was more important, whereas
regional transport of NO, from the NCP was less evident. Factors affecting regional
transport included, but were not limited to, the atmospheric lifetime of pollutants,
wind field, and local and regional emissions. As the Yufa site is a cross-boundary rural
site between the megacity Beijing and the NCP, observation of transport flux there is
appropriate in evaluating the regional transport influence by both the megacity

Beijing and the NCP on the Yufa site.
3.3. Transport flux

To evaluate the surface transport of the main air pollutants from Beijing and the
NCP to the Yufa site, the surface flux intensities were calculated with Egs. (3) based
on observations at the Yufa site. The mean net surface flux intensities in each
season were also calculated for the 2-year observation period (Table 2). The overall
net surface flux intensities (mean * SD) of SO,, NO, NO,, NO,, O3, O,, and CO were
6.2 £89.5,-43+295,-0.6+72.3,-49+93.0,14.7 £ 187.8,14.8 +234.9,and 70
2830 pg st m? during the observation period from 01 September 2006 to 31
August 2008, respectively. The large standard deviation of the surface flux intensity
indicated the large variations of the transport flux intensities. Table 3a shows the
mean influx intensities (positive; from the NCP to Yufa) were highest in winter and
lowest in summer, with the flux intensity values in winter 2—-6 times of those in

summer. The outflux intensities (negative; from Beijing to Yufa) show the same
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pattern, with the absolute flux intensity values in winter 2-8 times of those in
summer (Table 3b). Yet the overall net transport surface flux intensities show quite
different seasonal variations (Table 2) comparing to the results in Table 3. For SO,,
CO, 03, and O, the surface transport flux intensities from the NCP to Yufa surpassed
those from Beijing to Yufa in all seasons except in winter, with the strongest net
fluxes largely appeared in summer, which was about 4-8 times of other seasons.
The net surface transport flux intensity of NO, from Beijing to Yufa was stronger
than that from the NCP to Yufa except in summer, with the strongest net flux in

winter, which was about 1.3-8 times of other seasons.
Table 2. here
Table 3. here

To understand the transport fluxes reported here, it is necessary to discuss the
affecting factors. First, the prevalent wind is a dominant factor affecting the surface
fluxes. Figure 8 shows the time series of daily average surface flux intensity, i.e. the
per unit cell flux (ug st m_z) of SO,, NO, NO,, NO,, O3, O,, and CO, and
corresponding wind vectors (m s during the observation period. In general, the
variations in the pollutant flux intensities showed a saw-teethed pattern, with influx
(positive; from the NCP to Yufa) and outflux (negative; from Beijing to Yufa)
prevailing according to the shift in wind direction. Meanwhile, mainly due to the
seasonal variations in wind speed and wind direction (Fig. 3 and 4), the magnitude
of surface fluxes showed similar seasonal variation (Table 2). High net positive influx

intensities were observed in summer, and high net negative outflux intensities in
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winter. As the north wind prevailed significantly over the south wind in winter, and
the south wind over the north wind in summer (Fig. 4), the values of net surface
flux intensities in these two seasons were the highest. During the other two
seasons, frequent changes in positive and negative fluxes tended to cancel each
other out, making the net transport fluxes less significant. This dominant role of
wind field could also be illustrated by conditions during the winter of 2006/07 and
2007/08. Exceptionally, the south wind prevailed in the winter of 2006/07 (Fig. 4),
leading to the surface flux intensity of pollutants more positive in the winter of
2006/07 than 2007/08 (Table 2). For example, the increase of influx intensity for
SO;, NO, NO;, NO, and CO between winter of 2006/07 and 2007/08 was on the
order of a factor of 1.5 (Table 3a).
Figure 8. here

Second, the transport flux is determined not only by the wind field but also by
the emissions of pollutants in the upwind area. Various pollutants showed different
patterns of seasonal variations in flux as a result of relative high emission intensities
in the upwind area compared to local emissions. For example, the seasonal surface
flux intensities of SO, were mainly positive influx, except in winter of 2007/08. The
significant regional transport of SO, from the NCP to Yufa in all seasons except
winter could be partly attributed to the high emission intensity of SO, in the NCP
(Fig.6) and the reduction of SO, emission in Beijing (Qin et al., 2009; Wang et al.,
2009, 2011), whereas the SO, outflux from Beijing to Yufa was determined by the
prevalent north wind, as explained above. In contrast to the net positive influx of

SO,, the net seasonal surface flux intensities of CO were negative in both winter
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and autumn. The small outflux of CO in autumn reflected increased CO emission in
Beijing, which was sufficiently strong to account for the strong CO emissions in the
NCP.

The influence of emissions on transport flux could also be inferred from an
emissions-reduction scenario. For example, the 29" Olympic Games was held in
Beijing during the period from 8 August 2008 to 20 September 2008. The Beijing
government implemented aggressive long- and short-term air quality control
measures in Beijing and its surrounding areas before and during the Olympic period
to maintain good air quality during the Olympic Games (Wang et al., 2010; Wang et
al., 2011). The control measures included moving the heavy polluted factories out
the Beijing city, reducing the traffic emission through an odd/even plate number
rule, and freezing construction activities (Wang et al., 2009). The concentrations of
pollutants and the surface flux intensities during the 2008 Olympic Games were
substantially reduced compared to the corresponding period of 2007 (Table 4).
Besides the favored meteorological conditions (Fig. S2), the significant emission
reduction both in the Beijing area and the NCP during the 2008 Beijing Olympic
Games played a key role in the decrease of the transport flux intensities (Zhou et al.,
2010).

Table 4. here

Finally, the chemical properties of these species could also affect the flux. Take
Os for example, although both Beijing and the NCP are regarded as emissions hot
spots for O3 precursors, the short distance between Beijing and the Yufa site may

hinder the secondary formation of O; to some extent. Thus the surface transport of
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Os from to the NCP to Yufa was stronger than that from Beijing to Yufa, especially in
summer time with a net average surface flux intensity value of about 60 pg s™ m™,
which is 4-9 times of that in autumn and spring (Table 2). The lifetime of the
pollutants also determined the different net transport flux intensities for different
species (Table 2 and 3), with the net transport of NO, NO, and NO, from Beijing to

Yufa and the net transport of SO,, CO, O3 and O, from the NCP to Yufa. These results

are consistent with bivariate polar plots analysis mentioned above (Fig. 5 and 7).

Overall, the flux intensities are influenced by at least the wind field, emissions
inventory in both the megacity Beijing and the NCP, and the chemical fates of these
pollutants in the atmosphere. These observations provide insight for the analysis of
projected transport flux under various emissions-reduction scenarios in the future.
On the other hand, the dependence of the fluxes on these factors, which can vary,
suggests that the fluxes reported here should not be compared with other reports

under different conditions.
3.4 The back trajectory and PSCF analysis

The discussion above suggested the regional transport from both Beijing and the
NCP have important influence on the air quality of the Yufa site. However, both the
bivariate polar plots and surface flux intensity calculation were based on the
observation data at a ground measurement site. Considering the limitation of
spatial representation of the Yufa site, the PSCF analysis based on the HYSPLIT-4
model was used to demonstrate the regional transport influence of the megacity

Beijing and the NCP on Yufa in this section.
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Figure 9. here

Figure 10. here

PSCF analysis was used in this study by combining backward trajectories and
the corresponding surface transport flux intensities of pollutants. PSCF results of
S0O,, NO, NO,, NO,, CO, O3 and O, in 6-h time resolution are shown in Fig. 9 for
positive influx intensities (i.e. from south to north) and Fig. 10 for negative outflux
intensities (i.e. from north to south). It can be seen from Fig. 9, that the higher PSCF
values for most pollutants are located at the area south-west to the Yufa site, which
indicates the positive surface flux intensities of the Yufa site are consistent with the
air masses moving from south to Yufa. Figure 10 shows the higher PSCF values for
most pollutants are located at the area north to the Yufa site, which indicates the
negative surface flux intensities of the Yufa site are consistent with the air masses
moving from north to Yufa. The PSCF analysis results validate the calculated flux
intensities based on observation data can be used to evaluate the regional
transport influence of Beijing and the NCP on the Yufa site. However, it should be
noticed that the PSCF results of NO, NO,, and NO, was inconsistent with the flux
calculation results sometimes (Fig. 9 and 10), which may partially ascribe to the
lifetime of these species is much shorter than 12 h. As a cross-boundary site
between the megacity Beijing and the NCP, the surface flux intensities at the Yufa

site may also indicate the transport between the megacity Beijing and the NCP.

3.5 Uncertainty and limitation
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Uncertainty in calculation of the surface flux intensities in this study mainly comes
from the measurement of the pollutants and the wind. Based on the instruments
used, the uncertainty of the measurement of the concentrations of SO,, NO,, CO,
and O3z was within 10 %, 10 %, 1 %, and 5 %, respectively. The uncertainty of wind
speed measurement was less than 5 % and the uncertainty of wind direction was
about 1 %. Thus, the uncertainty of the overall surface flux intensity for SO,, NO,,
CO, and O3 was less than 12 %, 12 %, 6 %, and 8 %, respectively.

In this study, we did not intent to extrapolate from the Yufa site to the entire
region. We focus on the method developing and evaluation of the regional transport
influence of Beijing and the NCP on the cross-boundary site based on the ground-
based observation data. Bivariate Polar plots analysis and surface flux intensity
calculation were conducted, and we obtained clear evidences of surface pollutants
transport from Beijing to the Yufa site and from the NCP to the Yufa site. Considering
the variations of the vertical and horizontal distributions of the air pollutants and
meteorological parameters, and the influence of the boundary layer on the regional
transport, three dimensional observations with high precision and resolution are
needed for further comprehensive discussion of the regional transport between

Beijing and the NCP.

4. Conclusions

We used 2-year continuous observation data at a cross-boundary rural site between
the megacity Beijing and the NCP to investigate regional transport influence on the
Yufa site, as part of the “Campaign of Air Quality Research in Beijing and Surrounding

Region 2006—-2008” (CAREBeijing 2006—2008). The gaseous pollutants SO,, NO, NO,,
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NO,, CO, O; and O,, together with meteorological data, were determined at Yufa
from August 2006 to October 2008. During the observation period, the average
concentrations of the pollutants at the Yufa site were relatively high, suggesting a
profound influence of the emissions from the megacity Beijing and regional transport
from the NCP.

Through bivariate polar plots, we found that the south wind, at relatively high
wind speed, was essential for the inflow of SO,, CO, and O3 from the NCP to Yufa. For
NO, NO,, NO,, and even CO, the emission from Beijing played a dominant role. The
seasonal variations of emission intensity, meteorological conditions, pollutant
lifetimes lead to the seasonal variations of the regional transport of pollutants, hence

the different bivariate polar plot patterns.

The the surface flux intensities showed strong net surface transport from the
NCP to Yufa in summer and net surface transport from Beijing to Yufa in winter,
mainly varied with the prevailing wind. The positive net influxes of SO,, CO, and Os;
in this study indicate a northward regional transport of these species from the NCP.
Whereas the fluxes of NOy indicate the influence of NOx emission in Beijing city
could only influence downwind area adjacent to Beijing, due to the limited

transport distance of NO,.

PSCF analysis demonstrated the regional transport from Beijing and the NCP to
Yufa can be evaluated by the surface flux intensity calculation based on the ground-
based measurement data. As a cross-boundary site between the megacity Beijing
and the NCP, the surface transport flux intensities at the Yufa site may also indicate

the transport between the megacity Beijing and the NCP.
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Our results again suggested that Beijing and the NCP have tight interactions
through regional transport of air pollutants. Factors affecting the transport flux such
as meteorological parameters, especially wind speed and wind direction, emissions
inventory, and photochemical reactions are essential for the regional transport fluxes
and thus the air quality of the megacity Beijing and its surrounding areas. Therefore,
both local emissions reduction and regional cooperative control should be taken

considered in air quality management of Beijing.
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828 Table 1. The overview of measurement instruments.
Species/ Time
Parameter Instrument Detection limit resolution Precision Uncertainty
SO, Ecotech 98508 0.5 ppb 1 min 0.5% (0.5 ppb) 10%
NO-NO, Ecotech 9841B 0.5 ppb 1 min 1% (0.5 ppb) 10%
co Ecotech 9830 50 ppb 1 min 1% (0.1 ppm) 1%
O3 Ecotech 98108 0.4 ppb 1 min 0.5% (1 ppb) 5%
ws LASTEM - 10 min 01ms" 5%
WD LASTEM - 10 min 0,1¢ 1%
BP LASTEM - 10 min 0,1 hPa +0.35 hPa
T LASTEM - 10 min 0,1°C +0.2°C
RH LASTEM - 10 min 1% +3%
829
830 Table 2. The total and seasonal net surface flux intensities (mean * SD) (ug s'm?) of
831  gaseous pollutants at the Yufa site from 1 September 2006 to 31 August 2008.
Flux
(gs'm?) S0, NO NO, NO, co 0; 0,
Autumn_06 5.3+79.6 -6.3+27.5 -3+60.2 -9.4+78.9 -30+2730 19.4+128.8 25.9+177.6
Autumn_07 6.3+78.8 -6.6+33.6 -3.5+74.3 -10.1498.6 602570 10+120 6.6£170.3
Winter_06/07  11.8+139.1 -6.9+47.7 3.6+105.6 -3.3+142.9 35044150 -11.9+127.5 -8.3+188
winter_07/08  -13.1#113.3  -11.5#46.5 -11+82.3 -22.6+117.6  -550+3380 -29.6+143.1 -40.7+191.2
Spring_07 11.3490.5 -1.9+12.1 0.1+71.1 -1.9+78.8 5042720 3.4+261.8 3.54315.5
Spring_08 13.5+92 -1.8+15.2 0.2+76.4 -1.5+87 16042630 10.7+266.4 10.9+321.2
Summer_07 11435.3 0.446.7 8.4+46.9 8.7+51.5 600+1960 71.3+175.7 79.7+211.4
Summer_08 5.7+26.1 0.1%4.9 1+32.7 1.1+36.6 120+1540 48.1+183.3 49.1+207.8
Total 6.2+89.5 -4.3+29.5 -0.6+72.3 -4.9+93 70+2830 14.7+187.8 14.8+234.9
832
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833  Table 3a. The total and seasonal surface influx intensities (mean#sb) (positive; from

834  the NCP to Yufa, pg s m™) of gaseous pollutants at the Yufa site from 1 September

835 2006 to 31 August 2008.

Influx
(gs'm?) S0, NO NO, NO, co 0; 0,
Autumn_06 53.3462.7 5.1+7.9 42.5+34.3 47.6+37.9 1770+1740 85+131.6 143.1+158.3
Autumn_07 43.9+80.8 8.5+14.5 48.7+51.8 57.2460.7 1720+1820 65.1+116.8 117.3+140.2
Winter_06/07  106.3+126.1 19.8+30 82.3+83 102+101.5 336043620 40.1+74.1 122.4+112.8
winter_07/08  72.395.1 13.6+20.9 60.4£60.2 74+72.6 217042130 41.7+70.2 102.1+98.3
Spring_07 62.9+88.3 3.8+7.2 53.6+46.6 57.5+49.7 1970+2050 158.8+193.2 212.54223.1
Spring_08 64.7+97.5 6+9 56.8+44.6 62.7+49.1 2090+1850 162.5+194.4 222.9+217.9
Summer_07 22.3438.7 2.9+5.4 32.4430.1 35.3+32.4 1560+1630 140.7+177.9 173.1+199.7
Summer_08 18.9+24.3 2.842.6 20.8+16.3 23.6+18.2 1060+880 138.2+168.9 160.1+180.2
Total 53.2+84.8 7.4+15.4 48.3+51.5 55.8+60.7 1920+2130 108.2+159.2 159.7+180

836 Table 3b. The total and seasonal outflux intensities (mean + SD) (negative; from

837  Beijing to Yufa, ug s'm™) of gaseous pollutants at the Yufa site from 1 September

838 2006 to 31 August 2008.
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Outflux

(gs™m?) S0, NO NO, NO, co 0; 0,
Autumn_06 -40.4+66 -17.8434.4  -48.6+43.9  -66.4+67.3  -1830+2360 -44.7+87.5 -91.24103.4
Autumn_07  -30.2#¢56.5  -21.44#39.9  -54.54¢54.9  -75.94#82.9  -1800+1910 -48.9+92.3 -101.5+120.4
Winter_06/07  -72.8486 -30.7¢48.1  -66.8+67.6  -97.6+103.8  -2350+2380  -58.44146.3  -125.2+163.9
winter_07/08  -73.9¢81.6  -29.54#51.2  -61.9452.9  -91.3392.4  -2490£2690  -80.4+159.2  -142.3%175.7
Spring_07 -41.3+55.8  -7.8+13.2 -54.6+45.6  -62.4+#52.6  -1920#1720  -155.24225 -209.8+245.6
Spring_08 -38.8+44.4  -9.7#16.2 -57.4456.4  -67.1¥65.8  -1820#1660  -151.3%+235.8  -205.24259.7
Summer_07 -9+13.3 -4.246.5 -34.2440.8  -38.4+44.9  -1110%1210 -51.6476.6 -85.8+102.2
Summer_08  -12.1#15.8 -3.545 -25.6430.1  -29.1#33.3  -1150#1320  -75.24¢119.5  -100.1#¥137.1
Total -42.8464.6  -16.7+35.2 -52452.8 -68.7¢77.1  -1870£2080 -85+163.2 -137.3+184.5
839 Table 4. The mean net surface flux intensities (i.e. Flux_2007 and Flux_2008), the
840 influx intensities (positive; from the NCP to Yufa; In_2007 and In_2008), the outflux
841 intensities (negative; from Beijing to Yufa; Out_2007 and Out_2008), and the mean
842  concentrations (i.e. Cont._2007 and Cont._2008) during the 2008 Beijing Olympic
843  period (from 8 August 2008 to 20 September 2008) and the same corresponding
844  period of 2007 (from 8 August 2007 to 20 September 2007).
Flux Cont._2007 Cont._2008
(gs'm?) Flux_2007 In_2007 Out_2007 Flux_2008 In_2008 Out_2008 (ppb) (ppb)
S0, 7.9+19.3 14.9+20.8 -4.544.6 1.4415.5 11.9+13.6 -9+8.8 3.643.4 3.942.2
NO 0.38.6 3.845 -5.949.9 -0.1#3.2 2.4+1.8 -2.542.3 4.3%55 1.940.6
NO, 4.1#37.9 24.1+18.6 -31.3#37.9 | -1.3#21.9 15.2411.6 -17.5417.1 16.1+10.2 8.543.6
NO, 4.4+44.5 27.8+20.7 -37.2445.3 -1.4425 17.5413.2 -20+19.2 20.5+13.3 10.4+4
co 5404158 139041160 -980+980 10+1110 870670 -850+740 11904490 7504260
05 60£130 117.94122.6  -42.6%61.1 | 24.9+124.6 11094111 -60.6+63.7 41.1#30.5 38.9+25.8
0, 64.1+154.4  141.94129.1  -73.9+82.4 | 23.7#142.1  126.7+118.4  -77.7t74.6 57.2427.3 47.4+24.1
845
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847  Figure 1. The location information of the Yufa site.
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August 2006 to 31 October 2008.
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Figure 3. Monthly statistics of wind speed (WS) for north wind (a) top and south wind
(a) bottom, relative Humidity (RH) (b), temperature (T) (c) and barometric pressure
(BP) (d) at the Yufa site. The red point represents the mean value. The black cross bar
stands for the median value. The black box and whisker denote the 5th, 25th, 75th
and 95th percentiles, respectively. The plus and minus symbols represent the
maximum and minimum, respectively. It should be clarified that the North and South
wind here is different from the wind direction definition in meteorology. The South
wind here is the wind with direction from 90° to 270°, while the North wind is from

0° to 90° and from 270° to 360°.
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Figure 4. Wind rose plots based on frequencies of hourly data in Autmun_2006,
Autumn_2007, Winter_2006/07, Winter_2007/08, Spring 2007, Spring_2008,
Summer_2007, Summer_2008. Spring (MAM): March, April, and May; Summer (JJA):
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879  Figure 6. Spatial distribution of seasonal NO,, CO, and SO, emissions in 2008 based
880 on the Multi-resolution Emission Inventory of China (MEIC; www.meicmodel.org)
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Figure 8. Time series of surface flux intensity (i.e. flux per unit cell, pg s~ m™ or mg
s m™) for SO, NO, NO,, NO,, 03, O,, CO and wind vector ( i.e. WSVECTOR=

—l n ~1 WS- cosf;, m s') based on daily average data at the Yufa site from 15

August 2006 to 31 October 2008. The red shaded line indicates the positive transport
direction of gaseous pollutants from south to north (i.e. from the NCP to Yufa) and
the black shaded line represents the negative transport direction of gaseous

pollutants from north to south (i.e. from Beijing to Yufa).
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898  Figure 9. The PSCF maps for the SO, (a), NO (b), NO,(c), NO,(d), Os(e), O (f) and CO
899  (g) surface influx intensity (positive; from the NCP to Yufa). The criterion value of the
900 surface flux intensity is set to greater than the median values, i.e. 20, 3, 30, 34, 40, 94,

901 and 1200 pg s m™for SO,, NO, NO,, NOy, O3, O, and CO, respectively.
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903  Figure 10. The PSCF maps for the SO, (a), NO (b), NO; (c), NO,(d), Oz (e), Ox(f) and CO
904 (g) surface outflux intensity (negative; from Beijing to Yufa). The criterion value of the
905  surface flux intensity is set to lower than the median values, i.e. -18, -5, -35, -43, -16,

906 -67,and -1200 ug s - m~> for SO,, NO, NO,, NO,, Os, Oy, and CO, respectively.
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