1 Response to Anonymous Referee #1

We thank the reviewer for the constructive suggestions/comments. Below we provide a point-by-point response to individual comments (comments in italics, responses in plain font; page numbers refer to the ACPD version; figures used in the response are labeled as Fig. R1, Fig. R2,...).

6

1

7 Comments and suggestions:

8 NO2 measurement: MAX-DOAS measures slant column densities which were 9 converted to vertical column densities as described in line 157 to 162. The authors 10 describe how they convert a vertical column density to local NO2 concentrations in the 11 Supplement. They assume homogeneous concentrations within a 500 m thick boundary 12 layer (BL) irrespective of daytime. Constant height of a boundary layer (BL) over a 13 daytime is not realistic and will deliver a false diurnal variation of NO2 concentrations. 14 Neither is a constant height of BL of 500 m applicable to different seasons.

15 **Responses and Revisions:**

16 Differential Optical Absorption Spectroscopy (DOAS) is used to retrieve NO2 and 17 O4 differential slant column densities (DSCDs) from the measured scattered sunlight 18 spectra (Platt, 1994). In this study, each MAX-DOAS scanning cycle consists of eight 19 elevation viewing angles (2°, 3°, 6°, 8°, 10°, 20°, 30° and 90°) and lasts about 15 min. 20 The spectra are analyzed using the QDOAS spectral-fitting software suite developed at 21 BIRA-IASB (http://uv-vis.aeronomie.be/software/QDOAS/). Detail information about 22 the spectral fitting for NO₂ and O₄ is listed in Table S2 (in the revised supplement). As 23 pointed out by the reviewer, MAX-DOAS vertical column densities could not fully 24 represent the NO₂ surface concentration. So we used the HEIPRO (Heidelberg Profile,

样式定义: EndNote Bibliography: (中文) 中文(中国),(其他) 英 语(美国),行距:单倍行距

带格式的:中文(中国)

25 developed by IUP Heidelberg) retrieval algorithm to retrieve NO2 vertical profiles for 26 each MAX-DOAS scanning cycle. The purpose of calculating NO₂ profiles is to know 27 the NO₂ vertical distribution. More details about NO₂ profile retrieval are described in 28 the revised supplement. The NO₂ vertical profile was shown in Fig. R1, indicating that 29 the NO₂ is not homogeneously distributed vertically. We agree with the reviewer that 30 converting NO₂ DSCD₅ to mixing ratios by assuming that the trace gases were 31 homogeneous within the 500 m height of the boundary is not suitable. We took the 32 suggestion from the reviewer and updated the NO₂ results in the revision. The retrieval 33 altitude grid is 80 layers of 50m thickness between 0.02 and 3.97 km. Thus, in the 34 revised manuscript we have revised our method by using the surface NO₂ concentration 35 (0.02 km) which from the NO₂ vertical profile (Fig. R1) to analyze. Due to the large 36 computational requirement, we were not able to complete the calculation of the NO2 37 vertical profile for the whole year. However, in Figure R1 we showed the result of one 38 such NO2 vertical profile (20th November, 2013), and the DFS and the errors of the 39 retrieval are to determine whether the retrieved method is reasonable or not. As shown 40 in Figure R2, the results suggest that the retrieved NO_2 vertical profile is reliable 41 according to the experience of other research (Wang et al., 2014). 42 43 44 45 46 47

48

带格式的:中文(中国)

Figure R1. Example NO₂ vertical profiles at six different times (shown on top of
each graph as YYYYMMDD hhmmss) from MAX-DOAS measurements in Hefei (20
November, 2013).

带格式的:中文(中国)

3

I

Figure R2. (a) DFS diurnal cycles corresponding to the NO2 profile retrievals; (b)
Errors of NO2 vertical profile retrieval from MAX-DOAS measurements at Hefei (20
November, 2013 at 10:25LT).

71 Comments and suggestions:

Section 4.1: The discussion of the PSCF results is difficult to follow. Figure 5 shows potential source areas of GEM during the haze events in December 2013 and January 2014 but the equivalent figures for non-haze days in December 2013 and January 2014 are shown only in supplementary information. It is their difference which can provide the information about the reason for higher GEM during the hazy days. Dtto about the Figure 6: two seasonal data sets should be presented, one for hazy days and one for non-hazy ones.

79 **Responses and Revisions:**

We have updated and merged PSCF results for potential source areas analysis of GEM in the revised manuscript. Two seasonal data sets are now include, one for haze days and the one for non-haze days. Since the number of haze days accounts only for 5.6% of the total days in spring and summer, we did not provide haze and non-haze PSCF results for spring and summer seasons. As autumn and winter are the prevalent

带格式的:中文(中国)

85 seasons for haze pollution, one PSCF result for haze days and another for non-haze 86 days are shown for autumn and winter, respectively. We have combined Figure 5 and 87 Figure 6 into a new figure (Figure 4) in the revised manuscript. The updated PSCF 88 results showed that higher GEM concentration was mainly influenced by local 89 emission sources during haze days. For non-haze days, the most important mercury 90 sources to the monitoring site were not only the local emission sources, but also those 91 from the neighboring region of Shandong, Henan and Jiangxi provinces. In summary, 92 the increase of GEM concentration during haze days was mainly caused by local 93 emission.

94 Comments and suggestions:

95 The discussion of GEM vs CO correlations is deeply flawed. The low GEM/CO 96 slopes are interpreted as if biomass burning were the major source for both GEM and 97 CO in Hefei. To start with GEM/CO slopes represent their emission ratios if a) the 98 background concentrations do not change, b) the emissions remain constant, and c) 99 there is only dilution, no chemistry, on the way from the source to receptor during an 100 event. Using monthly or other "non-event" data would violate at least the condition a) 101 and b). In addition, whatever the sources of GEM might be, in a city of 7 million people 102 and some 1 million of vehicles most of the CO at the site within the city will almost 103 certainly come from local tailpipes rather than from distant isolated fire counts shown 104 in Figure S4. The authors present Figure S3 as additional evidence in favour of 105 biomass burning being the major source. The figure shows correlation between K+ and 106 an Air Quality Index, whose definition is not given in the paper. To be halfway credible, 107 K+ has to be correlated with CO. Even if K+ correlated with CO, it still will not prove 108 the biomass burning origin of the mercury. For that the density of the fire counts has to

带格式的:中文(中国)

5

be consistent with results of the PSCF analysis which it evidently is not. In addition
remote biomass burning would not yield highest GEM, RGM, and PBM concentration
at the lowest wind speeds-see section 4.2. In summary, the low GEM/CO ratio is
characteristic for the emissions of Hefei.

113 **Responses and Revisions:**

114 Upon further examination of our data, we agree with the reviewer that our original 115 interpretation of the low GEM/CO was not fully supported. Therefore, we have 116 removed Figure S2 (in the ACPD supplement) and revised thoroughly section 4.1 117 regarding the GEM/CO ratio. The definition of mercury pollution events are not same 118 as haze days in this paper. These mercury pollution episodes were defined as a period 119 with hourly average GEM concentration higher than seasonal average GEM 120 concentration and the duration of elevated hourly GEM concentration lasted for over 10 121 hours (Kim et al., 2009). We discussed the correlation coefficients and slopes between 122 GEM concentration and CO concentration during pollution events (Table 3 in the 123 revised manuscript). In previous research, the Hg/CO slope and correlation between 124 GEM and CO concentrations has been used to identify long-range transport episodes or 125 local episodes: significant positive correlation for long-range transport episodes and 126 poor correlation for local episodes (Kim et al., 2009). According to the correlations 127 between GEM concentration and CO concentration, the mercury pollution episodes in 128 autumn and winter mainly belong to local episodes. Incomplete combustion like 129 residential coal and biomass burning combustion could lead to a lower Hg/CO ratio. We 130 agree with the reviewer's point. In summary, the low GEM/CO ratio may be 131 characteristic for the local emissions of Hefei.

带格式的:中文(中国)

132 As for water-soluble potassium (K⁺) in 24-hr PM₁₀ samples, the correlation 133 between K⁺ and Air Quality Index maybe not reliable. So we did the correlation 134 between K^+ and GEM during the 24-hr PM₁₀ sampling period (Fig. R3). Although the 135 concentration of water-soluble potassium (K⁺) in PM₁₀ shows a good correlation 136 $(R^2=0.67)$ with GEM, due to the small number of compared samples (n=6), so it has 137 great accidental and uncertainty. In addition, most pollutant concentration increased 138 during this heavy pollution episodes (Nov-Dec, 2013). Good correlation might occur 139 between K+ and other pollutant, so it cannot fully prove that GEM come from the 140 emission of biomass burning through good correlation between K⁺ and GEM. Thus, we 141 agree with the reviewer's comment and shortening this section. We have removed the 142 discussion about K⁺ and biomass burning altogether in the revised manuscript and 143 supplement.

144

Figure R3. Correlation between water-soluble potassium (K+) and GEM during heavy pollution periods (from 10 Nov to 9 Dec, 2013). Notes: water-soluble potassium (K⁺) concentrations were analyzed from 24-hr PM_{10} (particulate matter less than 10 µm in diameter) samples, GEM concentrations were the average value during the 24-hr PM₁₀ sampling period.

I

带格式的:中文(中国)

150 *Comments and suggestions:*

Section 4.2: Highest PBM and PM2.5 concentrations in January are most likely due to shallower boundary layer in January than in other months. That is probably meant by "poor diffusion conditions in cold months". The average PBM concentrations in March differ hardly from other months except for January but their spread is larger. I think that the precipitation and the frequency of change of air masses should be also taken into account as driving forces for the PBM vs PM2.5 correlation.

157 **Responses and Revisions:**

1

We agree with the reviewer's suggestion. Unfortunately, we did not obtain the precipitation data during our monitoring period, so we were not able to directly examine the influence of precipitation on PBM. This is something we will investigate in our future studies.

162 Although on average the PBM concentrations in March differ hardly from other 163 months (April-June), they fluctuated much greatly in March when compared to other 164 months. We have re-examined the wind rose diagrams for March and April (see Fig. 165 R4). The prevailing wind direction in March indeed varied much greatly than in April. 166 Thus, the larger fluctuation of PBM in March might be related to the frequency of 167 change in wind direction. We have thus removed our original interpretation that "higher 168 temperatures in the warmer months do not favor mercury adsorption", and replaced it 169 with reference to changes in wind direction.

带格式的:中文(中国)

1

171 Figure R4. The wind rose diagrams for (a) March and (b) April.

172 Comments and suggestions:

173 Section 4.3: The interpretation of the diurnal variations here is almost certainly 174 wrong. The authors interpret GEM and PBM diurnal variation in terms of changing 175 height of boundary layer and declare that the opposite RGM diurnal variation must be 176 of chemical origin. This must not be and probably is not true. RGM correlates with O3 177 which is probably not formed in situ but admixed from the free troposphere (FT) as the 178 height of BL increases during the morning. Higher RGM concentrations in FT than in 179 BL have been reported by many researchers. Consequently, the RGM correlation with 180 O3 and its anticorrelation with CO can be viewed as solely a transport phenomenon 181 unrelated to any chemical process. The distinction between a transport and chemical 182 processes is a general problem in the interpretation of diurnal variations. It can only be 183 resolved by careful modeling using measured diurnal variation of the BL height and 184 known concentrations in BL and FT or by using specific tracers for photochemical 185 processes such as peroxynitrites. In this particular case, diurnal variations of GEM, 186 PBM, CO, NOx, etc. emissions due to morning and evening rush hours, working times, 187 etc. additionally complicate the interpretation of the diurnal variations. As mentioned

带格式的:中文(中国)

before the diurnal variation of NO2 is also flawed by the assumption of constant height of boundary layer. In summary, the observed diurnal variation can be interpreted solely as a transport phenomenon due to air exchange between BL and FT. As long as the authors cannot rule out the transport hypothesis their chemical interpretation of the diurnal variation and discussion of NO2 kinetics are wishful thinking without any evidential basis.

194 **Responses and Revisions:**

195 We agree with the reviewer that resolving transport and reaction processes of RGM is 196 not straightforward; the fact that we did not measure specific photochemical tracers 197 such as peroxynitrites did not help. Two processes can affect the RGM concentrations 198 in the boundary layer air. The first is due to transport of RGM from the free 199 troposphere (FT). Diurnal variations of GEM, RGM, O₃ and CO concentrations 200 during non-haze and haze days are shown in Fig. R5 (Figure 7 in the revised 201 manuscript). For both non-haze and haze days, RGM concentrations remained at a 202 relatively constant level during night, and then increased suddenly prior to the sunrise. 203 We agree with the reviewer that such enhancement of RGM in early morning might 204 can be due, at least in part, to its transport from the free troposphere as the height of 205 BL increases. In summary, the observed RGM diurnal variation can be interpreted as a 206 transport phenomenon due to air exchange between BL and FT.

In addition, in situ photochemical oxidation of GEM could also increase the concentration of RGM during daytime. To determine the relative importance of FT transport and in situ photochemical oxidation, we examined the relationship between RGM and the changes in the height of the atmospheric boundary layer and the odd oxygen ($O_X = O_3 + NO_2$) concentrations. Although we did not measure peroxynitritesin

带格式的:中文(中国)

10

I

212 this study, we believe the concentration of odd oxygen ($O_X = O_3 + NO_2$ which is 213 produced from the reaction between O3 and NO) can be used as a tracer of the extent 214 of photochemical processing in the urban atmosphere. Since NO₂ concentrations from MAX-DOAS were only available during daytime, we could only use O_{X} to be a 215 216 indicator for daytime GEM oxidation. As per our manuscript, we selected 20th 217 November 2013 as a case study to probe the importance of photochemical processes. 218 Both RGM and O_X reached higher concentrations from 12:00 to 16:00, along with the 219 lowest value of GEM. The height of atmospheric boundary layer changed very little 220 over this period (12:00-16:00, see Fig. R6). This simple comparison suggests that the 221 transport of FT RGM might be limited and that at least some of the RGM were 222 formed from in situ oxidation of GEM. We further investigated the potential 223 mechanism of the GEM oxidation to GOM.

Figure R5. Diurnal variations of GEM, RGM, O₃, and CO concentrations during
non-haze and haze days.

带格式的:中文(中国)

Figure R6. A case study of diurnal variations of GEM, RGM, O_X , and NO_2 at Hefei (20th November, 2013, left panel). The right panel shows the retrieved aerosol extinction profile on the same day; the black line represents the height of the atmospheric boundary layer.

- 233 Comments and suggestions:
- Line 66-67: PBM is not highly surface reactive. "Affinity" might be better than
- 235 "reactivity".
- 236 **Responses and Revisions:**
- 237 Corrected.
- 238 Comments and suggestions:
- Line 72: The most recent quoted reference is Pacyna et al. (2006). In 2016 and
- 240 recent discussions about emissions this seems to be quite obsolete. Dtto line 82. Please
- 241 quote more recent publications.

242 **Responses and Revisions:**

243 We have updated the section by quoting two recent publications ((Pacyna et al.,

- 244 2010) and (Zhang et al., 2015)).
- 245 *Comments and suggestions:*
- Line 322: The sentence is flawed both in content as in grammar. If taken at face
- 247 value, the text insinuates emissions from power plants being "non-normal" although

带格式的:中文(中国)

they represent the largest GEM emissions in most inventories. Reference at line 584 is

249 incomplete.

250 **Responses and Revisions:**

251 The sentence in Line 322 has been modified according to the revision in the revised 252 manuscript (second paragraph of section 4.1). We modified this sentence as follows: 253 "GEM and CO often share similar anthropogenic emission sources, such as industrial 254 coal combustion, domestic coal combustion, iron and steel production and cement 255 production (Wu et al., 2006;Wang et al., 2005). However, they also have their own 256 sources. For instance, power plants and nonferrous metal smelters emit mercury but 257 hardly any CO, while most of CO originates from vehicles which are not a major 258 emitter for mercury."

We also corrected the reference at line 584 (Hu et al., 2014).

260 *Comments and suggestions:*

- 261 Figure 8: Bottom plot: which symbol is PBM and which one PM2.5? The caption of
- the Figure 8 seems to be inconsistent with the time scale of the bottom plot. The time
- 263 scale of the bottom plot has not equidistant intervals.

264 **Responses and Revisions:**

We have rearranged the figures, added the symbols of PBM and $PM_{2.5}$ and updated the caption. The time scale of the bottom plot has corrected and had equidistant intervals.

- 268 *Comments and suggestions:*
- 269 Figure 9: The scales of the y-axes should be same for the haze and non-haze days to
- 270 facilitate a comparison. E.g. CO mixing ratios are much higher on hazy days.
- 271 **Responses and Revisions:**

带格式的:中文(中国)

272 We have redrawn the figures so that the scales of the y-axes are same for the haze

and non-haze days.

274

275 References

276 Kim, S. H., Han, Y. J., Holsen, T. M., and Yi, S. M.: Characteristics of atmospheric 277 speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea, 278 Atmospheric Environment, 43, 3267-3274, doi:10.1016/j.atmosenv.2009.02.038, 2009. 279 Pacyna, E. G., Pacyna, J., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., 280 Steenhuisen, F., and Maxson, P.: Global emission of mercury to the atmosphere from 281 anthropogenic sources in 2005 and projections to 2020, Atmospheric Environment, 44, 282 2487-2499, 2010. 283 Platt, U.: Differential optical absorption spectroscopy (DOAS), Air monitoring by 284 spectroscopic technique, 127, 27-84, 1994. 285 Wang, L., Zhang, Q., Hao, J., and He, K.: Anthropogenic CO emission inventory of 286 Mainland China, Acta Scientiae Circumstantiae, 25, 1580-1585, 2005. 287 Wang, T., Hendrick, F., Wang, P., Tang, G., Cl émer, K., Yu, H., Fayt, C., Hermans,

287 Wang, I., Hendrick, F., Wang, F., Tang, G., Crener, K., Tu, H., Fayt, C., Hermans,
288 C., Gielen, C., and Müller, J.-F.: Evaluation of tropospheric SO₂ retrieved from
289 MAX-DOAS measurements in Xianghe, China, Atmospheric Chemistry and Physics,
290 14, 11149-11164, 2014.

Wu, Y., Wang, S., Streets, D. G., Hao, J., Chan, M., and Jiang, J.: Trends in
anthropogenic mercury emissions in China from 1995 to 2003, Environmental science
& technology, 40, 5312-5318, 2006.

Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., Wang, F., Yang, M., Yang,
H., and Hao, J.: Updated Emission Inventories for Speciated Atmospheric Mercury
from Anthropogenic Sources in China, Environmental science & technology, 49,
3185-3194, 2015.

带格式的:中文(中国)

14

299

300

- 301302

304 *Response to Anonymous Referee #2*

I

305	We thank the reviewer for the constructive suggestions/comments. Below we
306	provide a point-by-point response to individual comments (comments in italics,
307	responses in plain font; page numbers refer to the ACPD version; figures used in the
308	response are labeled as Fig. R1, Fig. R2,).
309	Comments and suggestions:
310	Minor issues Line 40: "and" should be placed between "spring, summer".
311	Responses and Revisions:
312	Corrected.
313	Comments and suggestions:
314	Line 55 and all other lines: Several years ago, the atmospheric mercury community
315	stopped using the term "reactive gaseous mercury". This term was replaced with
316	"GOM", gaseous oxidized mercury. I suggest you change all of your RGM to GOM.
317	Responses and Revisions:
318	Agreed and corrections have been made in the text and figures.
319	Comments and suggestions:
320	Line 148: change "limits" to "limit".
321	Responses and Revisions:
322	Corrected.
323	Comments and suggestions:
324	Line 187: you mentioned an arbitrarily set criterion of 4 ng m-3. I really don't know
325	much about PSCF, but why do you use arbitrary criteria. How will different arbitrary
326	criteria affect your results?
327	Responses and Revisions:

带格式的:中文(中国)

328	The "arbitrarily set criterion" was used in the definition of M_{ij} in the PSCF analysis
329	(see TrajStat_Help_v1.2). The definition of M_{ij} as follows: The number of endpoints
330	for the same cell having arrival times at the sampling site corresponding to pollutant
331	concentration higher than an arbitrarily set criterion is defined to be M _{ij} . In this study,
332	pollutant concentration refers to atmospheric mercury concentration (GEM
333	concentration). The words "arbitrarily set criterion" were used in PSCF method
334	introduction and could also be found in (Fu et al., 2012). However, in the actual
335	operation, we use a fixed GEM value as criterion. In this study, mean GEM
336	concentration of 4 ng m^{-3} during the whole study period was used as fixed criterion
337	(refer to Fu et al., 2012). We split the sentence in Lines 192-195 (ACPD version) to
338	describe clearly in the revised manuscript.
339	Comments and suggestions:
340	Line 241: "folds" should be fold or two-fold.
341	Responses and Revisions:
342	Corrected
343	Comments and suggestions:
343 344	Comments and suggestions: Line 296: change "sources region" to "source region".
343 344 345	Comments and suggestions: Line 296: change "sources region" to "source region". Responses and Revisions:
343344345346	Comments and suggestions: Line 296: change "sources region" to "source region". Responses and Revisions: Corrected.
 343 344 345 346 347 	Comments and suggestions: Line 296: change "sources region" to "source region". Responses and Revisions: Corrected. Comments and suggestions:
 343 344 345 346 347 348 	Comments and suggestions: Line 296: change "sources region" to "source region". Responses and Revisions: Corrected. Comments and suggestions: Line 333: change "condition" to "conditions".
 343 344 345 346 347 348 349 	Comments and suggestions: Line 296: change "sources region" to "source region". Responses and Revisions: Corrected. Comments and suggestions: Line 333: change "condition" to "conditions". Responses and Revisions:
 343 344 345 346 347 348 349 350 	Comments and suggestions: Line 296: change "sources region" to "source region". Responses and Revisions: Corrected. Comments and suggestions: Line 333: change "condition" to "conditions". Responses and Revisions: Corrected.
 343 344 345 346 347 348 349 350 351 	Comments and suggestions: Line 296: change "sources region" to "source region". Responses and Revisions: Corrected. Comments and suggestions: Line 333: change "condition" to "conditions". Responses and Revisions: Corrected.

带格式的:中文(中国)

- 352 *Line 391: remove (and) from you reference (Sommar et al. 2001).*
- 353 **Responses and Revisions:** 354 Corrected 355 Comments and suggestions: 356 *Line 454: change "may plays" to "may play"* **Responses and Revisions:** 357 358 Corrected. 359 Comments and suggestions: 360 *Line 456: change "greatly" to "great"* 361 **Responses and Revisions:** 362 Corrected. 363 Comments and suggestions: 364 Table 2 should be updated to include mercury speciation studies conducted in the 365 US over the past few years. There are several studies in the peer-reviewed literature 366 that can be cited in this table, bring it up to date. 367 **Responses and Revisions:** 368 Agreed. We have added (Peterson et al., 2012) and (Ren et al., 2016) in Table 2. 369 Comments and suggestions: 370 Figure 3. Can you eliminate this figure? These data on already in Table 1. 371 **Responses and Revisions:** 372 We assume the reviewer meant Figure 4 in the ACPD version. The only overlap of 373 data between this figure and Table 1 are GEM, RGM and PBM mean concentrations. 374 This figure also provides further information such as various percentiles. We agree with 375 the reviewer's comment and move this figure into the supplement.
- 376 *Comments and suggestions:*

1

带格式的:中文(中国)

377 Figures 4 and 5. Can you merge these two figures into a single figure?

Responses and Revisions:

- We assume the reviewer meant Figures 5 and 6. We have merged PSCF results for
- 380 potential source areas analysis of GEM in the revised manuscript. Two seasonal data
- 381 sets have presented, one for haze days and another one for non-haze days.

References

- Fu, X. W., Feng, X., Shang, L. H., Wang, S. F., and Zhang, H.: Two years of
 measurements of atmospheric total gaseous mercury (TGM) at a remote site in Mt.
 Changbai area, Northeastern China, Atmospheric Chemistry and Physics, 12,
 4215-4226, doi:10.5194/acp-12-4215-2012, 2012.
- Peterson, C., Alishahi, M., and Gustin, M. S.: Testing the use of passive sampling
 systems for understanding air mercury concentrations and dry deposition across
 Florida, USA, Science of the Total Environment, 424, 297-307, 2012.
- Ren, X., Luke, W. T., Kelley, P., Cohen, M. D., Artz, R., Olson, M. L., Schmeltz, D.,
 Goldberg, D. L., Ring, A., and Mazzuca, G. M.: Atmospheric mercury
 measurements at a suburban site in the Mid-Atlantic United States: Inter-annual,
 seasonal and diurnal variations and source-receptor relationships, Atmospheric
 Environment, 2016.

带格式的:中文(中国)

404	Speciated Atmospheric Moreury during Haze and Non-baze Days in		带格式的:	字体颜色:	自动设置
404	speciated Atmospheric Mercury during fraze and Non-haze Days in				
405	an Inland City in China				
406					
407					
408	Qianqian Hong ^{1,3} , Zhouqing Xie ^{1,2,3*} , Cheng Liu ^{1,2,3*} , Feiyue Wang ⁴ , Pinhua Xie ^{2,3} ,		带格式的: 英语(美国)	字体颜色:	自动设置,
409	Hui Kang ¹ , Jin Xu ² , Jiancheng Wang ¹ , Fengcheng Wu ² , Pengzhen He ¹ , Fusheng Mou ² ,				
410	Shidong Fan ¹ , Yunsheng Dong ² , Haicong Zhan ¹ , Xiawei Yu ¹ , Xiyuan Chi ¹ , Jianguo				
411	Liu ²				
412					
/13					
413				ウルボタ	
414	1. School of Earth and Space Sciences, University of Science and Technology of		带格式的:	子体颜色:	目动伐置
415	China, Hefei, 230026, China				
416	2. Innovation <u>CAS</u> Center for Excellence in Urban <u>Regional</u> Atmospheric Environment		带格式的:	字体颜色:	自动设置
417	of CAS & Institute of Urban Environment of CAS, Xiamen, 361021, China		带格式的:带格式的:	子体颜色: 字体颜色:	日初 反 直 自动 设 置
418	3 Key I ab of Environmental Ontics & and Technology Annui Institute of Ontics and		带格式的:	字体颜色:	自动设置
410	3. Rey Lab of Environmental Optics wand Technology, Annut Institute of Optics and				
419	Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China				
420	4. Centre for Earth Observation Science, and Department of Environment and		带格式的:	字体颜色:	自动设置
421	Geography University of Manitoba Winning MB R3T 2N2 Canada		带格式的:	字体颜色:	自动设置
121	Geography, oniversity of Manitoba, Winnipeg, <u>ind Rot 2002</u> , Canada		带格式的:	字体颜色:	自动设置
422					
423					
424	Correspondence author:			at the sector	
125	zavia Queta edu en (ZOV); eplinº1 Quete edu en (CL)		带格式的: 带格式的:	子体颜色: 字体颜色:	自动设直 白动设置
4 <i>2</i> 3	Zqxie@usic.edu.cn (Z.Q.A.); cnnu81@usic.edu.cn (C.L.)		市田八町: 带松式的:	〒149-00-02- 字体颜色・	白幼设里
426		\mathbb{N}	帯格式的・	字体颜色・	自动设置
-			带格式的:	字体颜色:	自动设置
427			带格式的:	字体颜色:	自动设置
			带格式的:	中文(中国)	
ĺ	19				

428	Abstract. Long-term continuous measurements of speciated atmospheric mercury
429	were conducted from July 2013 to June 2014 at Hefei, a mid-latitude inland city in
430	east central China, from July 2013 to June 2014. that experiences frequent haze
431	pollution. The mean concentrations (\pm standard deviation) of gaseous elemental
432	mercury (GEM), reactive gaseous oxidized mercury (RGMGOM) and particle-bound
433	mercury (PBM) were 3.95 \pm 1.93 ng m ⁻³ , 2.49 \pm 2.41 pg m ⁻³ and 23.3 \pm 90.8 pg m ⁻³ ,
434	respectively, during non-haze days, and 4.74 ± 1.62 ng m $^{-3}$, 4.32 \pm 8.36 pg m $^{-3}$ and
435	60.2 ± 131.4 pg m ⁻³ , respectively, during haze days. Potential source contribution
436	function (PSCF) analysis suggested that the atmospheric mercury pollution during
437	haze days was caused primarily by local mercury emissions, instead of via long-range
438	mercury transport. In addition, the <u>The</u> disadvantageous diffusion diffusion during
439	haze days will also enhance <u>favoured</u> the levelaccumulation of atmospheric mercury.
440	Compared to the GEM and RGM, change in GOM, PBM was found to be more
441	sensitive to the haze pollution. The mean PBM concentration during haze days was
442	2.5 times that during non-haze days due to elevated concentrations of particulate
443	matter. A remarkable seasonal trend in PBM was also observed with concentration
444	decreasing in the following order in response to the frequency of haze days: autumn,
445	winter, spring, <u>and summer</u> . A distinctFor both non-haze and haze days, GOM
446	concentrations remained at relatively constant during night, but increased rapidly
447	prior to sunrise. This GOM diurnal relationship was found variation could be due to
448	diurnal variation in air exchange between GEM and RGM during haze days, with the
449	peak values of RGM coinciding with boundary layer and free troposphere, but, the
450	decline in GEM. Using HgOH as an intermediate product during GEM contribution
451	from photochemical oxidation, our could not be ruled out. This is supported by simple
	20

1	带格式的:	字体颜色:	自动设置
1	带格式的:	字体颜色:	自动设置
1	帯格式的・	字体颜色・	自动设置
	• CH) ~ H I	1 仲成山.	
٦	带格式的:	字体颜色:	自动设置
1	带格式的:	字体颜色:	自动设置

带格式的:	字体颜色:	自动设置
带格式的:	字体颜色:	自动设置

-{	带格式的:	字体颜色:	自动设置
-{	带格式的:	字体颜色:	红色
-{	带格式的:	字体颜色:	红色
-	带格式的:	字体颜色:	红色

带格式的:	字体颜色: 红色
带格式的:	中文(中国)

带格式的:字体颜色:红色

452	box-model calculations, which showed that oxidation of GEM to GOM does occur		
453	and that the transport of free troposphere GOM alone is not large enough to account		
454	for the observed increase in GOM. Our results suggest postulate that NO ₂ aggregation		带格式的: 字体颜色:红色
455	with HgOH could explain the HgOH intermediate may be a potential mechanism for		带格式的:子体颜色:红色 带格式的:字体颜色:红色
456	the enhanced production of RGMGOM during the daytime in haze days. Increasing		带格式的:字体颜色:红色
457	level of NOx will potentially accelerate the oxidation of GEM despite the decrease of		带格式的: 子体颜色: 红色
458	solar radiation.		带格式的: 字体颜色:红色
459			
460			带格式的:字体颜色:自动设置
461	1 Jutua duation		
401	1. Introduction		
462	Mercury (Hg) is an environmental pollutant that has received much global*		带格式的: 行距: 1.5 倍行距
463	attention because of its toxicity and bioaccumulation via the aquatic food chain. The		
464	most important transport pathway of mercury is via the atmosphere (Schroeder and		
465	Munthe, 1998(Schroeder and Munthe, 1998;Lindqvist and Rodhe, 1985).		
466	Operationally, atmospheric mercury is commonly differentiated into three forms:		
467	gaseous elemental mercury (GEM), reactive-gaseous oxidized mercury (RGMGOM)		带格式的:字体颜色:红色
	games and essentiation and and ((2 - 2 - 2)), essential a <u>provide setting</u> ((- 2 - 2 - 2)).		带格式的:字体颜色:红色
468	and particle-bound mercury (PBM). The sum of these three atmospheric speciated		市船式的 : 子体颜色: 红色 带格式的 : 字体颜色: 自动设置
469	mercury is defined as total atmospheric mercury (TAM = $GEM + \frac{RGMGOM}{PBM} + PBM$),		带格式的:字体颜色:自动设置
470	and the sum of GEM and $\frac{\text{RGM}_{\text{GOM}}}{\text{IS}}$ is known as total gaseous mercury (TGM =		带格式的:字体颜色:自动设置
471	GEM + RGMGOM) (Gustin and Jaffe, 2010;Gustin et al., 2015)(Gustin and Jaffe,		带格式的: 字体颜色: 自动设置
472	2010;Gustin et al., 2015). GEM is regarded as the predominant dominant form of		带格式的: 字体颜色: 自动设置
473	atmospheric mercury, accounting for over 95% of the total. GEM is stable in the		
474	atmospheretroposphere with a long residence time (0.5-2 yr) and can be transported		带格式的:字体颜色:自动设置
475	at the regional to global scale (Schroeder and Munthe, 1998;Lindberg et al.,		
		/	带格式的: 中文(中国)
	21	/	

476	2007)(Schroeder and Munthe, 1998;Lindberg et al., 2007). GEM can be oxidized to				
477	RGM through photochemical processes, and further transformed to PBM on aerosol				
478	surfaces. Although GEM is the predominant form of mercury in the air, trace amounts				
479	of RGM and PBM control the mercury scavenged from the atmosphere (Lindberg and				
480	Stratton, 1998). RGM. GEM can be oxidized to GOM through photochemical				
481	processes, and further transformed to PBM on aerosol surfaces. GOM, and PBM can	带格式	的: 字	华颜色:	自动设置
482	be readily removed form the air by wet and dry deposition as a result of their high				
483	surface reactivity affinity, and water solubility (Lindqvist and Rodhe, 1985). Thus, the	带格式	的: 字	华颜色:	自动设置
484	chemical transformationstransformation between GEM, RGMGOM and PBM will	带格式带格式	的 :字 的:字	:体颜色: :体颜色:	自动设置 自动设置
485	directly influence the atmospheric lifetime of mercury.		H 3 • 3		H-WKE
486	As a result of the rapid industrial development and economic growth of recent				
487	decades, China has become one of the major contributors to anthropogenic mercury	带格式	的: 字	《体颜色:	红色
488	emissions to the environment (Wu et al., 2006;Pacyna et al., 2006;Streets et al.,				
489	2005)(Wu et al., 2006;Pacyna et al., 2006;Pacyna et al., 2010;Zhang et al., 2015b).				
490	Atmospheric mercury emissions from anthropogenic sources in China have been	带格式	的: 字	华颜色:	自动设置
491	estimated to be in the range of 500-700 tons/yr, accounting for 25-30% of the total				
492	global anthropogenic mercury emissions (Streets et al., 2005; Wu et al., 2006) (Streets				
493	et al., 2005; Wu et al., 2006). Research into atmospheric mercury in China is therefore				
494	critical to the understanding of mercury cycling at both regional and global scales.				
495	Long-term observation of atmospheric mercury has been conducted in different				
496	regions in China, including both urban and remote areas. TGM concentrations				
497	observed in urban and industrial regions of China were in the range of 2.7–35 ng m^{-3} ,				
498	higher than the values reported for North America and Europe, and for the adjacent				
499	Asian countries such as Korea and Japan (Stamenkovic et al., 2007;Dommergue et al.,				
	22	带格式	的 :中	文(中国)	

500	2002;Fang et al., 2009)(Weigelt et al., 2013;Fang et al., 2009;Marumoto et al., 2015).
501	TGM and PBM concentrations in remote areas of China were also found to be higher
502	than those observed in North America and Europe (Fu et al., 2008a;Fu et al.,
503	2008b;Fu et al., 2012<u>(</u>Fu et al., 2008a;Fu et al., 2008b;Fu et al., 2012 ;Liu et al., 2010).
504	In recent years, haze pollution has become a major concern in China due to its
505	impacts on visibility, air quality, and climate. It is well known that haze formation is
506	mainly dependent on the atmospheric relative humidity (RH) and the concentration of
507	airborne particles (Chen et al., 2003;Sun et al., 2013);Sun et al., 2013). Most studies
508	on haze have focused on the measurements of airborne particulate matter; few
509	examined the influence of haze on the chemistry of atmospheric mercury, especially
510	PBM. In this study, we conducted one year synchronous observations of speciated
511	atmospheric mercury in Hefei, an inland city of China, which experiences frequent
512	haze events. The comparision of atmospheric mercury under haze days and non-haze
513	days during the study period allows us to examine the formation and deposition
514	mechanisms of mercury, as well as their temporal variations.
515	
516	2. Methods
517	2.1 Study site
518	Continuous measurements of speciated atmospheric mercury were undertaken in
519	Hefei (31 °52' N, 117°17' E) from July 2013 to June 2014. Hefei, the capital of Anhui
520	Province, is located in east central China, between the Changjiang (Yangtze River) and
521	the Huaihe (Huai River). Hefei has a humid subtropical climate with four distinct
522	seasons: June-August is considered summer, September-November autumn,
523	December-February winter and March-May spring. The prevailing wind is
	23

带格式的:中文(中国)

带格式的:字体颜色:自动设置

524 southeasterly in summer and northwesterly in winter. Like many Chinese cities, Hefei 525 has experienced rapid growth in the past 20 years. The total permanent population is 526 about 7.7 million. The city has also been witnessing an increasing frequency in haze 带格式的: 字体颜色: 自动设置 527 pollution, especially in winter months. 528 The monitoring site was located on the Science Island, a small peninsula on the 529 Dongpu Reservoir in the northwestern outskirts of Hefei (Fig. 1). The sampling and 530 analytical instruments were installed 1.5 m above the rooftop (~ 20 m above the 531 ground) of the main building of Anhui Institute of Optics and Fine Mechanics. Further 532 information about the monitoring site can be found in a previous study (Hu et al., 带格式的:字体颜色:自动设置 533 2014)(Hu et al., 2014). We chose this area as the monitoring site because it is one of 534 the cleanest areas in Hefei, not adjacent to any direct pollution sources such as power 535 plants, iron and steel works. 536 537 2.2 Measurements of speciated atmospheric mercury 538 From July 2013 to June 2014, simultaneous measurements of speciated 539 atmospheric mercury concentrations were performed by an automated TekranTM 540 mercury speciation system. The system consisted of a Model 2537B mercury analyzer 带格式的:字体颜色:自动设置 541 combined with a Model 1130 RGMGOM unit and a Model 1135 PBM unit. The 带格式的:字体颜色:自动设置 542 system was configured to measure GEM every 5 min., and RGMGOM and PBM 带格式的: 字体颜色: 自动设置 543 every 2 two hr.h. 544 The details about the Tekran-based mercury speciation system can be found in 545 Landis et al. (2002). In general, the automated measurement process can be 546 summarized as sample collection, thermal desorption and determination. During the 547 collection period, ambient air was drawn to the system at a flow rate of 10 L/min. 带格式的:中文(中国) 24

構	RGMGOM and PBM in the air were captured by a KCl-coated quartz annular	548
	denuder in the 1130 unit and a quartz filter in the 1135 unit, respectively, whereas	549
	GEM would pass through the denuder and filter and be quantified on the Tekran	550
	2537B by cold-vapor atomic fluorescence spectroscopy (CVAFS). After an hour of	551
	sampling, the 1135 quartz filter and the 1130 denuder would be switched to the thermal	552
	decomposition mode at 800 °C and 500 °C, respectively, with the resulting Hg^0	553
	quantified by the 2537B unit in the next hour, while the 1135 and 1130 components	554
	were flushed with zero-mercury gas for the next sampling.	555
	The instrument maintenance followed typical protocols used in similar studies	556
Ħ	(Landis et al., 2002;Hu et al., 2014)(Landis et al., 2002;Hu et al., 2014), The quartz	557
	annular denuder was recoated every two weeks, the quartz filter was replaced once a	558
	month, and the Teflon filter (pore size 0.2 μ m) in the sample inlet was changed every	559
	two weeks. Automated recalibration of the Tekran 2537B was performed every 25 h	560
	using an internal mercury permeation source. No calibration standards were available	561
井 村	for RGMGOM and PBM, but the 1σ precision for RGMGOM and PBM was about	562
#	15 % (Landis et al., 2002)(Landis et al., 2002). The detection limit in ambient air is	563
	about 0.5 ng m^{-3} for GEM (or TGM) at a resolution of 5 min, and 1 pg m^{-3} for	564
村 村	RGMGOM and PBM at a resolution of 2 h (Gustin et al., 2015)(Gustin et al., 2015).	565
Ħ	Although the Tekran-based mercury speciation technique has been widely used	566
	around the world, recent studies have shown that the technique does not efficiently	567
	collect all gaseous oxidized mercury and thus may substantially underestimate the	568
Ħ	concentration of reactive mercury (Huang et al., 2013;Gustin et al., 2013)(Huang et	569
井 有	al., 2013;Gustin et al., 2013). Therefore, the RGMGOM values reported in this study	570
· · · · ·		

带格式的:字体颜色:自动设置

带格式的:字体颜色:自动设置

1	带格式的:	字体颜色:	自动设置
-(带格式的:	字体颜色:	自动设置
-{	带格式的:	字体颜色:	自动设置
-{	带格式的:	字体颜色:	自动设置

带格式的:	字体颜色:	自动设置
带格式的:	字体颜色:	自动设置
带格式的:	字体颜色:	自动设置

带格式的	:字体颜色:	自动设置
带格式的	: 字体颜色:	自动设置
带格式的	: 字体颜色:	自动设置

带格式的:中文(中国) 25

571	should be considered as the lower limitslimit of gaseous oxidized mercury in the air		带格式的: 🗄	字体颜色:	自动设置
572	(Wang et al., 2014)(Wang et al., 2014).				
573	A		带格式的: 英语(美国)	字体颜色:	自动设置,
574	2.3 Ancillary Data		带格式的:	字体颜色:	自动设置
575	Standard meteorological measurements including air temperature, air pressure,	(带格式的: 征	行距: 1.5	倍行距
576	RH, wind direction and speed were observed with a 5-min resolution. CO was				
577	measured by an automated infrared carbon monoxide analyzer (Model EC9830T,				
578	Ecotech Inc., Australia), with a detction limit of 40 ppbv. O_3 was measured every 5				
579	min by an ozone analyzer (Model EC9810B, Ecotech Inc., Australia); its detection				
580	limit and accuracy are 0.5 ppbv and 0.001 ppm, respectively. NO ₂ was measured by a				
581	Multi axis differential optical absorption spectroscopy (MAX-DOAS) instrument. The				
582	collected spectra were analyzed using the QDOAS spectral fitting software suite				
583	developed at BIRA-IASB (<u>http://uv-vis.aeronomie.be/software/QDOAS/</u>). We used		带格式的: 🗄	字体颜色:	自动设置
584	the geometric approximation for conversion between slant column densities (SCDs)				
585	and vertical column densities (VCDs) (Ma et al., 2013). PM _{2.5} (particulate matter less				
586	than 2.5 µm in diameter) data are collected from China air quality online analysis				
587	platform (<u>http://www.aqistudy.cn/historydata/index.php</u>). In addition, 24-hr PM ₁₀				
588	(particulate matter less than 10 µm in diameter) samples were collected on glass fiber				
589	filters by a high volume sampler during heavy pollution episodes (from 10 Nov to 9				
590	Dec 2013, n=11). Water-soluble ions in the PM ₁₀ samples were determined by ion				
591	chromatography (Model ICS-2100, Dionex). In order to identify the potential source				
592	of mercury, NASA's satellite hotspots/fire locations information were obtained from				
593	the Fire Information for Resource Management System (FIRMS)				
594	(https://firms.modaps.eosdis.nasa.gov/firemap/).PM2.5 (particulate matter less than 2.5				
	26		带格式的: 『	中文(中国)	

595	µm in diameter) data are collected from China air quality online analysis platform	
596	(http://www.aqistudy.cn/historydata/index.php).	带格式的:字体颜色:自动设置
597		
598	2.4 Potential Sources Contribution Function (PSCF) analysis	
599	To identify the possible influence of long-range transport on the distribution of	带格式的: 行距: 1.5 倍行距
600	atmospheric mercury in Hefei, we calculated backward trajectories of air masses	
601	using the HYSPLIT (Hybrid Single-particle Lagrangian Integrated Trajectory) model	
602	with the Global Data Assimilation System (GDAS 1 °) developed by the National	
603	Oceanic and Atmospheric Administration (NOAA) (http://www.ready.noaa.gov)	带格式的:字体颜色:自动设置
604	(Draxler and Hess, 1998). Considering the atmospheric pollutants are mainly	
605	concentrated in the low altitude during heavy pollution days, the trajectory arrival	
606	heights were set at 500 m to represent the boundary layer where atmospheric	
607	pollutants were well mixed. In this study, 5 day back trajectories were calculated in	
608	ensemble forms which calculate 27 trajectories from the selected starting point (31 52'	
609	N, 117°17' E) (Fain et al., 2009). In this study, 3-day back-trajectories were generated	
610	hourly by TrajStat, a software including HYSPLIT for trajectory calculation (Wang et	
611	<u>al., 2009).</u>	带格式的:字体颜色:自动设置
612	The contributions of other pollution source regions to the atmospheric mercury at	
613	Hefei was identified by the Potential Sources Contribution Function (PSCF) analysis	
614	with the TrajStat software (Wang et al., 2009)., PSCF analysis has been shown to be	带格式的:字体颜色:自动设置
615	useful in spatially identifying pollution sources for pollutants with a long lifetime	
616	such as elemental mercury and CO (Xu and Akhtar, 2010)(Xu and Akhtar, 2010). The	
617	PSCF values for the grid cells in the study domain were calculated by counting the	
618	trajectory segment endpoints that terminate within each cell. The number of endpoints	
	27	带格式的:中文(中国)

带格式的:字体颜色:红色 619 that fall in the ijth cell is designated as Nij. The number of endpoints for the same cell 620 corresponding to the atmospheric mercury concentration higher than an arbitrarily set 带格式的:字体颜色:红色 621 criterion (4 ng m⁻³ which was theis defined to be M_{ii} . In this study, mean GEM 带格式的:字体颜色:红色 622 concentration of 4 ng m⁻³ during the whole study period) is defined to be M_{ii}, was 带格式的:字体颜色:自动设置 623 used as the mercury pollution criterion. The PSCF value for the ijth cell is then defined 624 as: 带格式的: 字体颜色: 自动设置 $PSCF_{ij} = \frac{M_{ij}}{N_{ij}} W_{ij}$ $\frac{PSCF_{ij}}{N_{ii}} = \frac{M_{ij}}{N_{ii}} W_{ij}$ 625 626 (2)627 W_{ij} is an arbitrary weight function to reduce the effect of small values of N_{ij} . The 628 PSCF values were multiplied by Wij to better reflect the uncertainty in the values for 629 these cells (Polissar et al., 2001)(Polissar et al., 2001). The weight function reduces 630 the PSCF values when the total number of endpoints in a particular cell is less than 3 631 times the average value of the end points per cell: 带格式的:字体颜色:自动设置 632 633 (3) 634 635 3. Results 636 We intended to continuously monitor speciated atmospheric mercury 637 concentration over the course of a year; however, interruptions were inevitable due to 638 instrument maintenance, which resulted in loss of data for the following four periods: 639 (1) 25 September to 9 October 2013; (2) 5-14 November 2013; (3) 9-25 February 640 2014; and (4) 1-14 April 2014. The rest of the data were grouped into haze days and 带格式的:中文(中国) 28

641	non-haze days according to the China Meteorological Administration's haze standard	
642	(QX/T 113-2010). Haze days refer to the days when the atmospheric visibility < 10	
643	km and $RH < 80\%$ (Duan et al., 2016), and non-haze days refer to clear days with the	带格式的: 字体颜色:自动设置
644	atmospheric visibility > 10 km. The visibility and RH information were collected	前推入的, 于仲颜仁, 日朔夜重
645	from the weather history data at the Luogang Airport of Hefei	
646	(<u>http://www.wunderground.com/</u>). Through the study period of almost a year, a total	带格式的:字体颜色:自动设置
647	of 56 days were identified to be haze days, and 253 days to be non-haze days. All the	带格式的: 字体颜色: 自动设置 带格式的: 字体颜色: 自动设置
648	times reported herein are local time (UTC + 8 $\frac{hrh}{hrh}$).	带格式的:字体颜色:自动设置
649		
650	3.1-, Overall characteristics of speciated atmospheric mercury	带格式的: 字体颜色:自动设置, 英语(美国)
651	The time series of GEM. RGMGOM and PBM concentrations at the study site	带格式的:字体颜色:自动设置, 英语(美国)
652	throughout the study period are shown in Fig. 2 and their frequency distributions are	带格式的:字体颜色:自动设置
652	unoughout the study period are shown in Fig. 2, and then nequency distributions are	带格式的: 子体颜巴: 目初设直
653	shown in Fig. S1 (in the supporting information). The mean (\pm standard deviation)	
654	GEM, RGMGOM and PBM concentrations during the whole study period were 4.07	带格式的: 子体颜色: 自动设直
655	\pm 1.91 ng m^-3, 3.67 \pm 5.11 pg m^-3, and 30.0 \pm 100.3 pg m^-3, respectively (Table 1).	
656	The GEM concentrations in different seasons did not differ much. The highest GEM	
657	concentration occurred in autumn (4.51 ± 2.10 ng m ⁻³), while the lowest in spring	
658	$(3.89 \pm 1.79 \text{ ng m}^{-3})$. RGMGOM concentrations varied greatly during the study period	带格式的:字体颜色:自动设置
659	with much higher concentrations in autumn and the lowest in winter. A similar	
660	seasonal variation in the RGMGOM concentration was observed at a remote site in	带格式的:字体颜色:自动设置
661	Mt. Gongga of southwest China (Fu et al., 2008b)(Fu et al., 2008b). The seasonal	
662	trend in PBM was also observed in Hefei with its concentration decreasing in the	
663	following order: autumn > winter > spring > summer. The mean PBM concentration	
664	during the cold season was about 20 times that in summer, similar to the findings	
	29	带格式的: 中文(中国)

666 2008b;Fang et al., 2001)(Zhang et al., 2013;Fu et al., 2011;Fu et al., 2008b;Fang et al., 667 2001). 668 Comparisons of speciated atmospheric mercury concentrations with other urban 669 and rural areas in China and a few other countries are shown in Table 2. The mean 670 GEM concentration at Hefei is slightly higher than that in many remote areas in China 671 (Fu et al., 2008a;Fu et al., 2008b;Fu et al., 2012;Wan et al., 2009a;Wan et al., 672 2009b;Zhang et al., 2015a)(Fu et al., 2008a;Fu et al., 2008b;Fu et al., 2012;Wan et al., 673 2009a; Wan et al., 2009b; Zhang et al., 2015a), but is much lower than those in urban 674 areas of industrial cities such as Guiyang and Changchun where large point sources of 675 mercury exist (e.g., non-ferrous metal smelting, coal-fired power plants, and 676 residential coal burning) (Feng et al., 2004;Fu et al., 2011;Fang et al., 2004)(Feng et 677 al., 2004; Fu et al., 2011; Fang et al., 2004). Although Hefei is geographically close to 678 Shanghai, a mega urban centre in China, it is interesting to note that the TGM 679 concentration of Shanghai is much lower than that of Hefei. This may be due to the 680 fact that Shanghai is a coastal city that is influenced more by cleaner marine air 681 masses (Friedli et al., 2011)(Friedli et al., 2011). Table 2 also shows that the average 带格式的:字体颜色:自动设置 682 concentration of GEM in Hefei is typically more than fold or two-folds-fold that in the 带格式的:字体颜色:自动设置 683 urban and rural areas in Europe and North America- (Liu et al., 2010; Li et al., 带格式的: 字体颜色: 自动设置 684 2008;Brooks et al., 2010). 685 686 3.2- Speciated atmospheric mercury during non-haze days 687 The frequency distribution of GEM, RGMGOM and PBM for the non-haze period 688 are shown in Fig. S1 (in blue). The mean concentration of GEM was 3.95 ± 1.93 ng

from many previous studies in China (Zhang et al., 2013; Fu et al., 2011; Fu et al.,

带格式的:字体颜色:自动设置 带格式的:行距:1.5 倍行距 带格式的:字体颜色:自动设置

带格式的:中文(中国)

30

689	m^{-3} . Its distribution was characterized by large fluctuations ranging from 0.2 to 23.8			
690	ng m ^{-3} , although more than half of the GEM values were in the narrow range 2-4 ng			
691	m ⁻³ . The mean concentration of RGMGOM was 2.49 \pm 2.41 pg m ⁻³ with a range of	带格式的:	字体颜色: 自动设	置
692	0.5-33.5 pg m ^{-3} , although most of the values were in the range of 1-4 pg m ^{-3} . High			
693	concentrations of RGMGOM (exceeding 10 pg m ^{-3}) only accounted for 1.4% of the	带格式的:	字体颜色: 自动设	置
694	total data. The mean RGMGOM concentration at the Hefei site is much smaller than	带格式的:	字体颜色: 自动设	置
695	that reported from other study sites in China (Table 2), but is comparable to the values			
696	observed from many European and North American sites (Brooks et al., 2010;Li et al.,			
697	2008;Liu et al., 2010;Cheng et al., 2014)(Peterson et al., 2012;Cheng et al., 2014;Ren			
698	et al., 2016). The mean PBM concentraion at the Hefei site during the non-haze days			
699	was 23.3 \pm 90.8 pg m $^{-3}$ with an exceptionally large range of 0.5-1827 pg m $^{-3}.$ The			
700	frequency distribution of PBM showed that high PBM concentrations (i.e., > 50 pg			
701	m^{-3}) accounted for 6.4% of the total data. The PBM concentration under the non-haze			
702	condition in Hefei is generally at a similar level to the remote areas, such as Mt.			
703	Gongga, Mt. Waliguan and Shangri-LiLa in western China.	带格式的:	字体颜色: 自动设	置
704	Diurnal variations of GEM, PBM and RGMGOM concentrations for non-haze	带格式的:	字体颜色: 自动设	置
705	days are shown in Fig. 3. Both GEM and PBM concentrations exhibited similar			
706	variations with elevated concentrations during night. The RGMGOM concentration	带格式的:	字体颜色: 自动设	置.
707	during the daytime was slightly higher than that in nighttime, typically peaking			
708	between 10:00 and 12:00.			
709	•	带格式的: 厘米,行跟	缩进: 首行缩进: 5: 1.5 倍行距	0.63
710	3.3– Speciated atmospheric mercury during haze days	带格式的:	字体颜色: 自动设	置
711	Haze pollution mainly occurred in December and January at our monitoring site.	带格式的:	行距: 1.5 倍行距	
712	The four major haze pollution periods were identified in grey in Fig. 2. The mean			
	31	带格式的:	中文(中国)	

713	concentrations of GEM, RGMGOM and PBM during these haze days were 4.74 \pm		带格式的:	字体颜色:	自动设置	
714	1.62 ng m ⁻³ , 4.32 \pm 8.36 pg m ⁻³ and 60.2 \pm 131.4 pg m ⁻³ , respectively (Table 1). The					
715	frequency distributions of GEM, RGMGOM and PBM for the haze days are shown in		带格式的:	字体颜色:	自动设置	
716	Fig. S1 (in gray). Comparison of GEM, RGMGOM and PBM concentrations during		带格式的:	字体颜色:	自动设置	
717	haze and non-haze days is shown in Fig. 4. <u>S2.</u> GEM, RGMGOM and PBM		带格式的:	字体颜色: 字体颜色:	自动设置	
718	concentrations show siginificant differences between haze and non haze days			1 1408 12.	口切议旦.	
719	(p<0.001, t-test). On average, the concentration of GEM in haze days was 1.2 times					
720	that in non-haze days. Similarly, the concentration of RGMGOM in haze days was		带格式的:	字体颜色:	自动设置	
721	about 1-1.7 times those in non-haze days. The largest impact of haze pollution is					
722	however on PBM, with the mean PBM concentration in haze days about 2.5 times that					
723	of non-haze days. High concentrations of RGMGOM (exceeding 10 pg m ⁻³) and PBM		带格式的:	字体颜色:	自动设置	
724	concentrations (exceeding 50 pg m ⁻³) were also more frequently observed than in					
725	non-haze days, accounting for 5.9% and 25%, respectively, of the total haze days.					
726	Diurnal variations of GEM, PBM and RGMGOM concentrations for haze days		带格式的:	字体颜色:	自动设置	
727	are shown in Fig. 3. GEM concentrations were higher during night, decreased during					
728	daytime. The opposite pattern was observed for RGMGOM, which showed higher		带格式的:	字体颜色:	自动设置	
729	concentrations during daytime than during night; the duration of the RGMGOM peak		带格式的:	字体颜色:	自动设置	
730	also lasted longer for haze days. On the contrary, the PBM typically peaked just					
731	before sunrise, with the lowest values occurred in the afternoon (14:00-16:00).					
732						
733	4. Discussion					
734	4.1 Influence of atmospheric mercury emission source					
735	The statistically significant difference in the GEM concentration between					
736	non haze days and haze days suggests that haze pollution could directly affect the					
737	concentration of elemental mercury. In order to understand the mercury sources		带格式的:	字体颜色:	自动设置	
	of elements increase. In order to understand the increase sources		带格式的:	中文(中国))	7
	32	/				_

attribution-during haze days, the PSCF model analysis was conducted by using the
TrajStat software. As shown in Fig. 5, the area south to the monitoring site and the
neighboring provinces were the main sources region during haze days. Thus,
atmospheric mercury in haze days were mainly affected by local or regional emission
sources.

743 The seasonal sources could also be inferred from the PSCF analysis with the 744 year-round data. Fig. $\frac{6(A)4a}{4}$ showed the overall spatial contribution of mercury 745 emission sources in China. As Hefei is located in east-central China, its atmospheric 746 mercury concentration could be affected by both north and south emission sources, 747 including those from the North China Plain (especially Shandong Provice) and the 748 neighboring provinces of Henan, Jiangsu, Jiangxi and Hubei. The total mercury 749 emissions from Henan and Shandong provinces were estimated to be over 50 and 45 750 tons in 2010, respectively, making them two largest Hg emitters in China (Zhang et al., 751 2015b). Long-range transport could also impact the seasonal variations of 752 atmospheric mercury in Hefei. As shown in Figure 64, in spring, the major 753 contributors of atmospheric mercury to Hefei were from the southwestern region 754 including the local area and the Jiangxi and Hunan provinces. In summer, the main 755 contributors were from north of Anhui, as well as Henan and Jiangxi provinces, and 756 even from the Pearl River Delta region in the far south. In autumn and winter, the 757 prevalent seasons for haze pollution, the most important anthropogenic mercury 758 sources to the monitoring site were the local emissions and those from the 759 neighboring region of Shandong, Henan and the Yangtze River Delta region. The total 760 mercury emissions from Henan and Shandong provinces were estimated to be over 50 761 and 45 tons in 2010, respectively, making them two largest Hg emitters in China 762 (Zhang et al., 2015b). Since the number of haze days accounts only for 5.6% of the 763 total days in spring and summer, we did not provide haze and non-haze PSCF results 33

带格式的:字体颜色:自动设置

1	带格式的:	字体颜色:	自动设置
1	带格式的:	行距: 1.5	倍行距
1	带格式的:	字体颜色:	自动设置
-	带格式的:	字体颜色:	自动设置

带格式的:字体颜色:自动设置

带格式的:字体颜色:自动设置

带格式的:中文(中国)

764	for spring and summer seasons. As autumn and winter are the prevalent seasons for
765	haze pollution, one PSCF result for haze days and another for non-haze days are
766	shown for autumn and winter, respectively. The statistically significant difference
767	(p<0.001) in the GEM concentration between non-haze days and haze days suggests
768	that haze pollution could directly affect the concentration of elemental mercury. As
769	shown in Figs. 4d and 4f, higher GEM concentration was mainly influenced by local
770	emission sources during haze days. For non-haze days, the most important mercury
771	sources to the monitoring site were not only the local emission sources, but also those
772	from the neighboring region of Shandong, Henan and Jiangxi provinces (see Figs. 4e
773	and 4g). In summary, the increase of GEM concentration during haze days was
774	mainly caused by local emission.
775	GEM and CO normally share anthropogenic emission sources, such as industrial
776	and domestic coal combustion (Wu et al., 2006). However, they also have their own
777	sources, vehicles are another kind of dominant sources for CO, while power plants are
778	another type of mainly sources for GEM. The correlation between the concentrations
779	of GEM and CO during non-haze and haze days is shown in Fig. S2. The slope of the
780	trend line represents the Hg/CO ratio. Emissions from power plants typically have a
781	higher Hg/CO ratio (Wu et al., 2006), whereas biomass burning and residential coal
782	combustion have a lower Hg/CO ratio due to incomplete combustion (Weiss Penzias
783	et al., 2007). The Hg/CO ratios from our study for both non-haze and haze days are in
784	the range of 0.0003-0.0009 ng m ⁻³ -ppbv ⁻¹ , similar to the ratio reported for Alaska
785	biomass burning (0.0014 \pm 0.0006 ng m ⁻³ ppbv ⁻¹ ; Weiss Penzias et al., 2007),
786	indicating that biomass burning might have played an important role in mercury
787	emission in Hefei. This is further supported by the concentration of water soluble
	34

带格式的:字体颜色:红色

带格式的:中文(中国)

788	potassium (K^+) in PM ₁₀ . K^+ is a typical component of biomass burning aerosol and
789	has been used as a tracer element for qualitative identification of biomass burning
790	(Cachier et al., 1991). As shown in Fig. S3, K^+ in PM ₁₀ shows a good correlation with
791	air quality index (AQI) during the heavy pollution period of Nov-Dec, 2013. In
792	addition, seven high-GEM events were identified during the whole monitoring period
793	(Table S1). 5-day backward trajectories for each GEM heavy pollution event for the
794	time of at maximum GEM concentration are shown in Fig. S4. Air masses with
795	elevated GEM concentration were mainly from NW, SW and East directions. In
796	combination with the NASA's satellite hotspots/fire locations information from the
797	Fire Information for Resource Management System (FIRMS), there were potential
798	biomass burning occurred in these regions when air masses passed over (Fig. S4,
799	Events 1–7). Therefore, biomass burning can contribute to the observed higher mercury
800	concentrations, which not only came from local sources (Events 1 and 4), but could also
801	be affect by other regions through long range transport processes (Events 2, 3, 6 and 7).
802	GEM and CO often share anthropogenic emission sources, such as industrial coal
803	combustion, domestic coal combustion, iron and steel production and cement
804	production (Wu et al., 2006;Wang et al., 2005). However, they also have their own
805	sources. For instance, power plants and nonferrous metal smelters emit mercury but
806	hardly any CO, while most of CO originates from vehicles which are not a major
807	emitter for mercury. The correlation coefficients and slopes between GEM
808	concentration and CO concentration during pollution events are shown in Table 3.
809	These mercury pollution episodes were defined as a period with hourly average GEM
810	concentration higher than seasonal average GEM concentration and the duration of
811	elevated hourly GEM concentration lasted for over 10 hours. The Hg/CO slope and

带格式的:中文(中国)

35

I

812	correlation between GEM and CO concentrations has been used to identify long-range	
813	transport episodes and local episodes in previous research (Jaffe et al.,	
814	2005;Weiss-Penzias et al., 2006;Kim et al., 2009). These episodes could classified	
815	into long-range transport episodes or local episode by using the correlation	
816	coefficients (R ²) of linear regression: significant positive correlation for long-range	
817	transport episodes and poor correlation for local episodes (Kim et al., 2009). Six	
818	episodes (events: 1-6) were found to have poor correlations between GEM and CO	
819	concentrations (R ² : 0.01-0.29) for local episodes, while four episodes (events: 7-10)	
820	were found to have positive correlations between GEM and CO concentrations (R ² :	
821	0.51-0.79) for long-range transport episodes. These local episodes tend to occur in	
822	autumn and winter. The slope of the trend line represents the Hg/CO ratio. Emissions	
823	from power plants typically have a higher Hg/CO ratio (Wu et al., 2006), whereas	
824	residential coal and biomass burning combustion have a lower Hg/CO ratio	
825	(0.0013-0.0046 ng m ⁻³ ppbv ⁻¹) due to incomplete combustion (Weiss-Penzias et al.,	
826	2007). The Hg/CO ratio for vehicles is nearly zero (Zhang et al., 2013). The Hg/CO	
827	ratios from our study for pollution episodes are in the range of 0.0001-0.0050 ng m ⁻³	
828	ppbv ⁻¹ . In summary, the low GEM/CO ratio in Hefei might related to the local	
829	incomplete combustion, like residential coal and biomass burning combustion.	
830	•	带格式的:字体颜色:自动设置
831	4.2 Impacts of meteorological factors for atmospheric mercury during haze days	
832	Meteorological conditionconditions, especially wind direction and speed, could	带格式的:字体颜色:自动设置
833	also impact the atmospheric mercury during haze days. The wind rose for the	
834	monitoring site during the study period is shown in Fig. 75_{x} Easterly and southeasterly	带格式的: 字体颜色:自动设置
835	winds represented the prevailing wind directions at the study site. A wind rose	
	36	带格式的: 中文(中国)
836	diagram of GEM concentrations above the 90 th percentile value is shown in Fig.	
-----	--	
837	7B5B, We found that 67% of the high GEM concentrations occurred at low wind 带格式的: 字体颜色: 自动设置	
838	speed (below 1.5 m s ⁻¹); however, wind speed below 1.5 m s ⁻¹ accounted for only 1.7%	
839	of total study. High RGMGOM and PBM concentrations appear not to be related to 带格式的: 字体颜色: 自动设置	
840	high wind speed (wind speed: 3-5 m s ⁻¹); only 1.4% and 2.6% of the high RGMGOM 带格式的: 字体颜色: 自动设置	
841	and PBM concentrations were observed under high wind-speed conditions,	
842	respectively (Figs. 7C5C and 7D5D). In general, most of the high atmospheric 带格式的: 字体颜色: 自动设置 带格式的: 字体颜色: 自动设置	
843	mercury levels occurred in the low wind speed conditions. This slow wind speed	
844	condition is not conductive to the spread of mercury and thus favours the	
845	accumulation of atmospheric mercury, especially during haze days. This result is	
846	further support that atmospheric mercury during haze days is mainly affected by local	
847	emissions. 带格式的: 字体颜色: 自动设置	
848	Both GEM and PBM concentrations exhibited great variations with elevated 带格式的: 行距: 1.5 倍行距	
849	concentration during night or early morning, regardless of the presence of haze. Such a	
850	diurnal variation of GEM and PBM could be related to changes in the height of urban	
851	boundary layer, which is typically low in the morning and night, and high during the	
852	daytime (Yuan et al., 2005(Yuan et al., 2005; Mao et al., 2006). The maximum PBM	
853	concentration (observed at 6:00) was more than 4 times higher than the minimum value	
854	(observed at 16:00) both under non-haze and haze days, and about 76% PBM were	
855	removed <u>declined</u> during this period (6:00-16:00). However, the reductions of PBM as a	
856	result of deposition during haze days was 62.7 pg m ⁻³ , which was about 2.4 times that in	
857	non-haze days, suggesting that haze pollution could increase the removal of PBM and	
858	thus reduce its atmospheric lifetime. Although PBM is not the major form of mercury	
859	emitted to the atmosphere, it is crucial in atmospheric mercury transport and removal	
ļ	带格式的: 中文(中国) 37、	

860	processes due to its short atmospheric lifetime. As shown in Fig. 6, highest PBM and				
861	PM _{2.5} concentrations were observed in January, which most likely due to shallower				
862	boundary layer in January than in other months. The co-variation in February is weaker,		带格式的:	字体颜色: 自动i	2置
863	possibly due to the loss of PBM data because of instrument maintenance (see Section				
864	<u>2.3).</u> 8, the The PBM concentration co-varied with the PM _{2.5} concentration, especially		带格式的:	字体颜色: 自动i	殳置
865	in January when all the four PBM peak events were associated with increased $\text{PM}_{2.5}$				
866	concentrations- (Fig. 6c). This result indicates that the PM _{2.5} concentration may play an				
867	important role in the formation of PBM. Thus, elevated The co-variation in February is		带格式的:	字体颜色: 自动	殳置 🛛
868	weaker, possibly due to the loss of PBM data because of instrument maintenance (see				
869	Section 2.3)Elevated PBM concentrations might be due to the poor diffusion		带格式的:	字体颜色: 红色	
870	conditions in cold months and high PM pollution, Although the concentrations of PM _{2.5}		带格式的:	字体颜色: 自动i	2置
871	were similar from March to June, March showed higher PBM concentrations. This				
872	might be due to higher temperatures in the warmer months which do not favor mercury				
873	adsorption (Otani et al., 1986). These results indicate that both the PM _{2.5} concentration				
874	and temperature may play an important role in the formation of PBM.		带格式的:	字体颜色: 自动	殳置
875	•	\checkmark	带格式的:	字体颜色: 红色	
876	4.3 <u>Chemical process for RGM</u> Enhancements in GOM and the notential [▲]		带格式的: 符,行距:	缩进: 首行缩进: 1.5 倍行距	0字
070	ine onemical process for respiration in oong and the potential		带格式的: #枚式的:	行距: 1.5 倍行路 字体新鱼, 好鱼	E
877	oxidation mechanism			丁仲颜日,红日)
878	In contrast with the diurnal variations of GEM and PBM, RGM shows different				
879	diurnal trend. The RGM concentration during daytime was slightly higher than at				
880	night. As discussed before in 4.2 section, the diurnal variation of GEM and PBM				
881	could be related to changes in the height of urban boundary layer. So the role of				
882	boundary layer for the enhancement of RGM during daytime would be limited. The				
883	weak correlation (r=0.164, p<0.001) between RGM and CO suggests that regional				
884	anthropogenic sources are not a major source of RGM in the air. As shown in Fig. 9				
885	(haze days), the peak value of RGM coincided well with the lowest value of CO,				
886	suggesting that the production of RGM in haze days does not fully come from				
	38		带格式的:	中文(中国)	

anthropogenic emission sources. Instead, RGM is more likely produced from the in
situ oxidation of GEM; this is supported by the fact that the peak values of RGM
coincided well with the decline of GEM. We found that the RGM concentration did
not change much from 8:00 to 20:00 (local time) during haze days. This indicates that
photochemical reaction between GEM and RGM still takes place during haze days,
but the daytime change in the intensity of solar radiation has been greatly dampened
due to the light haze interaction.

894 Various atmospheric oxidants are capable of oxidizing GEM to RGM, including 895 halogen radicals, ozone, hydroxyl radicals (OH), among others (Holmes et al., 896 2010; Wang et al., 2014). Halogen radicals, especially bromine atoms, are believed to be the the primary oxidant for GEM in the global tropopshere (Holmes et al., 2010). 897 898 Unfortunately, we did not measure halogen radicals in this study. Ozone itself is not 899 an efficient oxidant for GEM oxidation due to low reaction rate (Hall, 1995;Holmes et 900 al., 2010). In the lower troposphere, ozone is produced from daytime photochemical 901 reactions involving volatile organic compounds (VOC) and nitrogen oxides (NO_{*}). 902 Due to fresh emissions of NO from vehicles can react with O3 to form NO2, so ozone 903 could not fully represent photochemical oxidation processes in urban area (Herndon et 904 al., 2008). Compared with ozone, odd oxygen ($O_X = O_3 + NO_2$) is a more conserved 905 tracer of the extent of photochemical processing in the urban atmosphere (Herndon et 906 al., 2008;Wood et al., 2010). Because of such NO2-concentrations from MAX DOAS 907 are available only during the daytime, so we could only use Ox to be a indicator for 908 GEM oxidation occurred in the daytime. Diurnal variations of GEM, RGM and 909 Gas-Phase Data (Ox, O3, NO2 and CO) concentrations during non-haze and haze days 910 are shown in Fig. 9. The increase of O_x is consistent with the increase of RGM during 911 haze days, but seems to lag behind the increase of RGM during non haze days. 912 suggesting some oxidation processes might be at work during haze days. During haze 913 days, both the RGM and Ox-reached highest values around 16:00, along with the 914 lowest value of GEM, indicating the chemical transformation between GEM and 915 RGM occurred. However, this phenemenon is not found in non haze days. 916 The OH radical is also an important oxidant for mercury in the atmosphere. 917 Previous studies have shown that the major source of OH in the early morning is the 918 photolysis of HONO, which accumulates in the urban atmospheric boundary layer 919 during night (Kleffmann et al., 2005). The formation of HgOH as an intermediate

921 2001), although HgOH is highly unstable and could decompose back rapidly to Hg⁰

product of the $Hg^{\theta}(g) + OH$ oxidation reactions has been proposed by (Sommar et al.,

922 and OH (Goodsite et al., 2004). It has been proposed that secondary reactants such as

39

带格式的:中文(中国)

923	NO2, HO2, RO, RO2, and NO could assist the formation of Hg(II) from the initial
924	HgOH intermediate, which outcompetes with the decomposition of HgOH (Calvert
925	and Lindberg, 2005). As an example, we calculated the transformation between GEM
926	and RGM under the influence of NO_2 , using the reactions and rate constants shown in
927	Table S2. As shown in Fig. S5, the production rate of NO ₂ HgOH, d[NO ₂ HgOH]/dt,
928	increased almost linearly with increasing NO_2 under low NO_2 concentrations, and
929	eventually reached a steady state when the NO2 concentration is high enough.
930	Diurnal variations of GEM, GOM, O ₃ and CO concentrations during non-haze
931	and haze days are shown in Fig. 7. The weak correlation (r=0.164, p<0.001) between
932	GOM and CO suggests that the CO-producing, primary emission is not a major source
933	of GOM in the air. This is clearly shown in Fig. 7 (haze days), where the peak value
934	of GOM coincided with the lowest value of CO. GOM also shows a diurnal trend that
935	is opposite to that of GEM and PBM; for both non-haze and haze days, GOM
936	concentrations remained relatively constant during night, but increased rapidly prior
937	to sunrise. Two processes can affect the GOM concentrations in the boundary layer air.
938	The first is due to transport of GOM from the free troposphere (FT). It is well
939	established that FT contains higher GOM concentrations than in the boundary
940	layer(e.g., (Murphy et al., 2006;Lyman and Jaffe, 2012;Timonen et al., 2013;Brooks
941	et al., 2014;Shah et al., 2016)). It is thus possible that higher GOM concentrations
942	observed prior to sunrise is due to admixing from the free troposphere as the height of
943	the boundary layer increases during the morning. In addition, in situ photochemical
944	oxidation of GEM could also increase the concentration of GOM during daytime.
945	Various atmospheric oxidants are capable of oxidizing GEM to GOM, including
946	halogen radicals, ozone, hydroxyl radicals (OH), among others (Holmes et al.,
947	2010;Wang et al., 2014).
948	To determine the relative importance of FT transport and in situ photochemical
949	oxidation, we examined the relationship between GOM and the changes in the height 40

950	of the atmospheric boundary layer and the odd oxygen ($O_X = O_3 + NO_2$) concentrations.
951	We used O_x because it is a more conserved tracer of the extent of photochemical
952	processes in the urban atmosphere (Herndon et al., 2008;Wood et al., 2010), as O ₃
953	reacts with NO emitted from automobiles to form NO ₂ . Example results are shown in
954	Fig. 8 for 20th November, 2013. As can be seen from the figure, both GOM and O_X
955	reached higher concentrations from 12:00 to 16:00, along with the lowest value of
956	GEM. The height of the atmospheric boundary layer changed very little (less than 0.1
957	km) over the same period (see Fig. S3). This simple comparison suggests that the
958	transport of FT GOM might be limited and that at least some of the GOM were
959	formed from in situ oxidation of GEM. Note that in our studies we could only
960	calculate daytime O _x concentrations, because NO ₂ concentrations from MAX-DOAS
961	were only available during daytime.
962	We further investigated the mechanism of the GEM oxidation to GOM. Ozone
963	itself is not an efficient oxidant for GEM oxidation due to the low reaction rate (Hall,
964	1995;Holmes et al., 2010). Instead, halogen radicals (especially bromine atoms) and
965	halogen radicals, are believed to be the primary oxidants for GEM in the global
966	troposphere (Holmes et al., 2010). Unfortunately, we did not measure halogen radicals
967	in this study. OH radicals are known to be present in the early morning urban
968	boundary layer, primarily from the photolysis of HONO, which accumulates during
969	night (Kleffmann et al., 2005). Therefore, here we consider the oxdiation of GEM by
970	OH radicals. The formation of HgOH as an intermediate product of the $Hg^{0}(g) + OH$
971	oxidation reactions has been proposed by Sommar et al., 2001, although HgOH is
972	highly unstable and could decompose back rapidly to Hg ⁰ and OH (Sommar et al.,
973	2001;Goodsite et al., 2004). It has been proposed that the presence of other gases X
	41

974	$(X = NO_2, HO_2, RO, RO_2, or NO)$ could assist the formation of Hg(II) by forming	
975	X-HgOH, which outcompetes the decomposition of HgOH (Calvert and Lindberg,	
976	2005; Dibble et al., 2012; Wang et al., 2014). As an example, we calculated the	
977	transformation between GEM and GOM under the influence of NO ₂ , using the	
978	reactions and rate constants shown in Table S1. As shown in Fig. S4, the production	
979	rate of NO ₂ HgOH, d[NO ₂ HgOH]/dt, increased almost linearly with increasing NO ₂	
980	under low NO ₂ concentrations, and eventually reached a steady state when the NO ₂	
981	concentration is high enough.	
982	Based on the production rate of NO ₂ HgOH, we can estimate the production of	7
983	NO ₂ HgOH during the 1 hr sampling period when RGMGOM was captured by the	1
984	KCl-coated denuder in the Tekran 1130 unit. As discussed earlier, a distinct diurnal	
985	relationship between GEM and RGM was observed both in non haze and haze days	
986	(Fig. 9), The production of NO ₂ HgOH and d[NO ₂ HgOH]/dt corresponding to	1
987	different NO ₂ concentrations is shown in Table $\frac{3.4}{.}$ With the increase of the NO ₂	1
988	concentration, the contribution of the NO ₂ HgOH production to RGMGOM will	1
989	increase. If the NO ₂ concentration is within 100 ppbv (from 0 to 100 ppbv), the	
990	production of NO ₂ HgOH would be in range of 0.058-4.81 pg m ^{-3} during the 1h	
991	sampling period. The mean NO2 concentration during haze days is 24.3 ppbv (unit	
992	convertion see the supporting information), which is higher that in non haze days	
993	(17.4 ppbv). The increments of RGM from sunrise to peak (6:00-12:00) are about	Å
994	2.14 pg m ⁻³ (growth rate ≈ 0.36 pg m ⁻³ h ⁻¹) and 0.41 pg m ⁻³ (growth rate ≈ 0.068 pg	
995	$m^{3}-h^{-1}$) during haze days and non-haze days, respectively. As illustrated in Table 34,	X
996	the level of NO ₂ observed in the urban atmosphereour study is high enough forto	7
997	make increase the GOM production of RGM during the 1h sampling period. In	7
		1

带格式的:	字体颜色:	自动设置
带格式的:	行距: 1.5	倍行距
带格式的:	字体颜色:	自动设置

带格式的:	字体颜色:	自动设置	
带格式的:	字体颜色:	自动设置	
带格式的:	字体颜色:	自动设置	

l	带格式的:	字体颜色:	自动设置
λ	带格式的:	字体颜色:	自动设置
Å	带格式的:	字体颜色:	自动设置,
Å	带格式的:	字体颜色:	自动设置
X	带格式的:	字体颜色:	自动设置
1	带格式的:	字体颜色:	自动设置
-{	带格式的:	字体颜色:	自动设置
1	带格式的:	字体颜色:	自动设置
-{	带格式的:	字体颜色:	自动设置
1	带格式的:	中文(中国)	

998	addition, we found that the NO2 concentrations increased rapidly after sunrise to reach				
999	peak values around noon, consistent with the increases of RGM during haze days. We.				
1000	Our results, thus postulatesupport a recent study in the tropical equatorial Pacific		带格式的	字体颜色:	红色
1001	(Wang et al., 2014), that NO ₂ aggregation with HgOH may be provides provides a		带格式的	字体颜色:	红色
1002	possible mechanism to explain the enhanced production of RGM during the daytime		CHARTER HI	1 1408 6	
1003	over the inland urban air. The NO2 level in urban air GOM and the role of NO2 might		带格式的	字体颜色:	红色
1004	have a <u>be</u> more important influence on the chemical transformations between the		带格式的	字体颜色:	红色
1005	GEM and RGM during haze days, rather than non-haze days. But unfortunately, we				
1006	can not provide an adequate description about these oxidation processes. To solve this				
1007	problem, newin the urban air. More laboratory and mercury modelmodeling studies		带格式的	字体颜色:	自动设置
1008	on mercury oxidation mechanism are needed in the presence of NO ₂ and other gases		带格式的	字体颜色:	自动设置
1009	are thus warranted.		带格式的	字体颜色:	自动设置
1010					
1010			带格式的		白动设置
	5. Summary		1011-413	J PP/MC	日初以且
1011 1012	5. Summary			1 件颜日.	日初反直
1011 1012 1013	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014.			1 1110	日初议直
1011 1012 1013	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014.				口砌成直
1011 1012 1013 1014	 5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O₃, NO₂) and meteorological parameters ware employed to better understand the sources and evidation pathways of 			1 14 100	日初议直
1011 1012 1013 1014 1015	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of		带格式的	字体颜色。	: 自动设置
1011 1012 1013 1014 1015 1016	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of atmospheric mercury. The mean GEM, RGMGOM and PBM concentrations during		带格式的	字体颜色:	: 自动设置
1011 1012 1013 1014 1015 1016 1017	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of atmospheric mercury. The mean GEM, <u>RGMGOM</u> and PBM concentrations during haze days were 4.74 \pm 1.62 ng m ⁻³ , 4.32 \pm 8.36 pg m ⁻³ and 60.2 \pm 131.4 pg m ⁻³ ,		带格式的	字体颜色:	: 自动设置
1011 1012 1013 1014 1015 1016 1017 1018	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of atmospheric mercury. The mean GEM, RGMGOM and PBM concentrations during haze days were 4.74 \pm 1.62 ng m ⁻³ , 4.32 \pm 8.36 pg m ⁻³ and 60.2 \pm 131.4 pg m ⁻³ , respectively. Potential source contribution function (PSCF) analysis suggested that the	/	带格式的	字体颜色。	自动设置
1011 1012 1013 1014 1015 1016 1017 1018 1019	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of atmospheric mercury. The mean GEM, RGMGOM and PBM concentrations during haze days were 4.74 \pm 1.62 ng m ⁻³ , 4.32 \pm 8.36 pg m ⁻³ and 60.2 \pm 131.4 pg m ⁻³ , respectively. Potential source contribution function (PSCF) analysis suggested that the local mercury emission rather than long-range transport is the most important	/	带格式的	字体颜色。	自动设置
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of atmospheric mercury. The mean GEM, RGMGOM and PBM concentrations during haze days were 4.74 \pm 1.62 ng m ⁻³ , 4.32 \pm 8.36 pg m ⁻³ and 60.2 \pm 131.4 pg m ⁻³ , respectively. Potential source contribution function (PSCF) analysis suggested that the local mercury emission rather than long-range transport is the most important contributor of atmospheric mercury pollution during haze days at our monitoring site.	/	带格式的	字体颜色。	自动设置
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of atmospheric mercury. The mean GEM, RGMGOM and PBM concentrations during haze days were 4.74 \pm 1.62 ng m ⁻³ , 4.32 \pm 8.36 pg m ⁻³ and 60.2 \pm 131.4 pg m ⁻³ , respectively. Potential source contribution function (PSCF) analysis suggested that the local mercury emission rather than long-range transport is the most important contributor of atmospheric mercury pollution during haze days at our monitoring site. The Hg/CO ratio and NASA's satellite fire locations information indicated that the		带格式的	字体颜色:	自动设置
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of atmospheric mercury. The mean GEM, RGMGOM and PBM concentrations during haze days were 4.74 \pm 1.62 ng m ⁻³ , 4.32 \pm 8.36 pg m ⁻³ and 60.2 \pm 131.4 pg m ⁻³ , respectively. Potential source contribution function (PSCF) analysis suggested that the local mercury emission rather than long-range transport is the most important contributor of atmospheric mercury pollution during haze days at our monitoring site. The Hg/CO ratio and NASA's satellite fire locations information indicated that the		带格式的	字体颜色:	 自动设置
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021	5. Summary Continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in central China, from July 2013 to June 2014. Measurements of other trace gases (e.g. CO, O ₃ , NO ₂) and meteorological parameters were employed to better understand the sources and oxidation pathways of atmospheric mercury. The mean GEM, RGMGOM and PBM concentrations during haze days were 4.74 \pm 1.62 ng m ⁻³ , 4.32 \pm 8.36 pg m ⁻³ and 60.2 \pm 131.4 pg m ⁻³ , respectively. Potential source contribution function (PSCF) analysis suggested that the local mercury emission rather than long-range transport is the most important contributor of atmospheric mercury pollution during haze days at our monitoring site. The Hg/CO ratio and NASA's satellite fire locations information indicated that the 43		带格式的	字体颜色:	 自动设置

1022	biomass burning may plays an important role in mercury emission. Haze pollution has	
1023	considerable impact on PBM rather than on GEM and RGM. Both GEM and PBM	
1024	concentrations exhibited greatly variations with elevated concentration during night.	
1025	The diurnal variations of GEM and PBM might be related to the boundary layer depth;	
1026	a lower boundary layer depth in the morning and night could elevate the mercury	
1027	concentration. The slow wind speed condition is not conductive to the spread of	
1028	mercury and thus favours the accumulation of atmospheric mercury, especially during	
1029	haze days. We found that PBM concentrations co-varied with the PM2.5 concentration	
1030	especially in January when all the four PBM peak events were associated with	
1031	increased PM2.5 concentrations. In addition, The low GEM/CO ratio in Hefei could be	
1032	a result of local incomplete combustion sources such as residential coal and biomass	
1033	burning. Haze pollution has a more profund impact on PBM than on GEM and GOM.	带格式的:字体颜色:自动设置
1034	PBM showed a remarkable seasonal pattern, with higher concentrations in cold	
1035	seasons and lower in warm seasons. Elevated PBM concentrations might be due to	
1036	both the high loadings of particle matter and disadvantageous diffusion conditions	
1037	during haze days especially in cold months. The peaks of RGM were observed around	
1038	noon, which is probably due to the higher intensity of solar radiationBoth GEM and	带格式的:字体颜色:自动设置
1039	photochemical oxidation processes at this time. Change in the odd oxygen ($\Theta_{\rm X}$ =	
1040	Θ_3 +N Θ_2)PBM concentrations exhibited great variations with elevated concentration is	带格式的:字体颜色:自动设置
1041	normally appllied to be an indicator for photochemical reaction. The increase of O_X is	
1042	consistent with the increase of RGM during haze days, but seems to lag behind the	带格式的: 字体颜色:自动设置, 英语(美国)
1043	increase of RGM during non-haze days, suggesting some oxidation processesnight.	
1044	The diurnal variations of GEM and PBM might be at workrelated to the boundary	带格式的: 字体颜色: 自动设置

44

l

1045	layer depth; a lower boundary layer depth in the morning and night could elevate the	
1046	mercury concentration.	
1047	Unlike with the diurnal variations of GEM and PBM, GOM concentration	 带格式的: 缩进: 首行缩进: 0.85 厘米, 行距: 1.5 倍行距, 制表位: 不在 32.91 字符
1048	remained relatively constant during night, and then increased rapidly prior to the	
1049	sunrise. The enhancement of GOM during haze days. daytime could be due to both the	带格式的:字体颜色:红色
1050	transport of GOM-enriched free troposphere air to the boundary layer and in situ	
1051	oxidation of GEM in the boundary layer. Simple photochemical modeling supports	
1052	the occurrence of daytime oxidation of GEM to GOM, Based on HgOH as an	带格式的:字体颜色:红色
1053	intermediate product, weour calculations suggest that NO2 aggregation with HgOH is	带格式的:字体颜色:红色
1054	a potential mechanism to explain the enhanced production of RGM during the	
1055	daytime over the inland urban air. The NO_2 level in urban air might have a more	
1056	important influence on the chemical transformations between the GEM and RGM	
1057	during haze days, rather than non haze daysGOM over the inland urban air.	带格式的:字体颜色:红色
1057 1058	during haze days, rather than non haze daysGOM over the inland urban air.	带格式的: 字体颜色:红色
1057 1058 1059	during haze days, rather than non haze daysGOM over the inland urban air.	带格式的: 字体颜色:红色
1057 1058 1059 1060	during haze days, rather than non-haze daysGOM over the inland urban air. Acknowledgements–	带格式的: 字体颜色:红色
1057 1058 1059 1060 1061	<pre>during haze days, rather than non haze daysGOM over the inland urban air, Acknowledgements- This research was supported by grants from the National Basic Research Program of*</pre>	带格式的: 字体颜色: 红色 带格式的: 行距: 1.5 倍行距
1057 1058 1059 1060 1061 1062	 during haze days, rather than non haze daysGOM over the inland urban air. Acknowledgements– This research was supported by grants from the National Basic Research Program of China (2013CB430000), the National Natural Science Foundation of China (Project 	 带格式的:字体颜色:红色 带格式的:行距:1.5倍行距 带格式的:字体颜色:自动设置
1057 1058 1059 1060 1061 1062 1063	 during haze days, rather than non haze daysGOM over the inland urban air. Acknowledgements– This research was supported by grants from the National Basic Research Program of China (2013CB430000), the National Natural Science Foundation of China (Project Nos. 91544103,41575021) and the External Cooperation Program of BIC, CAS 	 带格式的:字体颜色:红色 带格式的:行距:1.5倍行距 带格式的:字体颜色:自动设置 带格式的:字体颜色:自动设置
1057 1058 1059 1060 1061 1062 1063	during haze days, rather than non haze daysGOM over the inland urban air. Acknowledgements- This research was supported by grants from the National Basic Research Program of China (2013CB430000), the National Natural Science Foundation of China (Project Nos. 91544103,41575021) and the External Cooperation Program of BIC, CAS (Project No.211134KYSB20130012).	 带格式的:字体颜色:红色 带格式的:行距:1.5倍行距 带格式的:字体颜色:自动设置 带格式的:字体颜色:自动设置
1057 1058 1059 1060 1061 1062 1063 1064 1065	 during haze days, rather than non-haze daysGOM over the inland urban air, Acknowledgements– This research was supported by grants from the National Basic Research Program of China (2013CB430000), the National Natural Science Foundation of China (Project Nos. 91544103,41575021) and the External Cooperation Program of BIC, CAS (Project No.211134KYSB20130012). 	 带格式的:字体颜色:红色 带格式的:行距:1.5倍行距 带格式的:字体颜色:自动设置 带格式的:字体颜色:自动设置
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066	during haze days, rather than non haze daysGOM over the inland urban air. Acknowledgements— This research was supported by grants from the National Basic Research Program of China (2013CB430000), the National Natural Science Foundation of China (Project Nos. 91544103,41575021) and the External Cooperation Program of BIC, CAS (Project No.211134KYSB20130012).	 带格式的:字体颜色:红色 带格式的:行距:1.5倍行距 带格式的:字体颜色:自动设置 带格式的:字体颜色:自动设置 带格式的:正文,行距:1.5倍
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067	during haze days, rather than non haze daysGOM over the inland urban air, Acknowledgements– This research was supported by grants from the National Basic Research Program of China (2013CB430000), the National Natural Science Foundation of China (Project Nos. 91544103,41575021) and the External Cooperation Program of BIC, CAS (Project No.211134KYSB20130012).	 带格式的:字体颜色:红色 带格式的:行距:1.5倍行距 带格式的:字体颜色:自动设置 带格式的:字体颜色:自动设置 带格式的:正文,行距:1.5倍 行距
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067	 during haze days, rather than non haze daysGOM over the inland urban air, Acknowledgements– This research was supported by grants from the National Basic Research Program of China (2013CB430000), the National Natural Science Foundation of China (Project Nos. 91544103,41575021) and the External Cooperation Program of BIC, CAS (Project No.211134KYSB20130012). 	 带格式的:字体颜色:红色 带格式的:行距:1.5倍行距 带格式的:字体颜色:自动设置 带格式的:字体颜色:自动设置 带格式的:正文,行距:1.5倍 行距
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067	during haze days, rather than non haze daysGOM over the inland urban air, Acknowledgements– This research was supported by grants from the National Basic Research Program of China (2013CB430000), the National Natural Science Foundation of China (Project Nos. 91544103,41575021) and the External Cooperation Program of BIC, CAS (Project No.211134KYSB20130012).	 带格式的:字体颜色:红色 带格式的:行距:1.5倍行距 带格式的:字体颜色:自动设置 带格式的:字体颜色:自动设置 带格式的:正文,行距:1.5倍 行距 带格式的:中文(中国)

1069	Brooks, S., Luke, W., Cohen, M., Kelly, P., Lefer, B., and Rappenglück, B.: Mercury	
1070	species measured atop the Moody Tower TRAMP site, Houston, Texas,	
1071	Atmospheric Environment, 44, 4045-4055, 2010.	
1072	Cachier, H., Ducret, J., Bremond, M., Yoboue, V., Lacaux, J., Gaudichet, A., and	
1073	Baudet, J.: Biomass burning aerosols in a savanna region of the Ivory Coast, in:	
1074	Global biomass burning. Atmospheric, climatic, and biospheric implications, 1991.	
1075	Brooks, S., Ren, X., Cohen, M., Luke, W. T., Kelley, P., Artz, R., Hynes, A., Landing,	
1076	W., and Martos, B.: Airborne vertical profiling of mercury speciation near	
1077	<u>Tullahoma, TN, USA, Atmosphere, 5, 557-574, 2014.</u>	
1078	Calvert, J. G., and Lindberg, S. E.: Mechanisms of mercury removal by O ₃ and OH in ⁴	带格式的: 行距: 1.5 /
1079	the atmosphere, Atmospheric Environment, 39, 3355-3367, 2005.	
1080	Chen, LW. A., Chow, J. C., Doddridge, B. G., Dickerson, R. R., Ryan, W. F., and	
1081	Mueller, P. K.: Analysis of a summertime $PM_{2.5}$ and haze episode in the	
1082	mid-Atlantic region, Journal of the Air & Waste Management Association, 53,	
1083	946-956, 2003.	
1084	Cheng, I., Zhang, L., Mao, H., Blanchard, P., Tordon, R., and Dalziel, J.: Seasonal and	
1085	diurnal patterns of speciated atmospheric mercury at a coastal-rural and a	
1086	coastal-urban site, Atmospheric Environment, 82, 193-205,	
1087	doi:10.1016/j.atmosenv.2013.10.016, 2014.2014.	
1088	Dommergue, A., Ferrari, C. P., Planchon, F. A., and Boutron, C. F.: Influence of	
1089	anthropogenic sources on total gaseous mercury variability in Grenoble suburban air	
1090	(France), Science of the total environment, 297, 203-213, 2002.	
1091	Dibble, T., Zelie, M., and Mao, H.: Thermodynamics of reactions of ClHg and BrHg	
1092	radicals with atmospherically abundant free radicals, Atmospheric Chemistry and	
1093	Physics, 12, 10271-10279, 2012.	
	46	带格式的:中文(中国)

带格式的:行距: 1.5 倍行距

		III. 14. B. 14. Antonio and the Antonio
1094	Draxler, R. R., and Hess, G.: An overview of the HYSPLIT_4 modelling system for	带格式的:行距:1.5 倍行距
1095	trajectories, Australian meteorological magazine, 47, 295-308, 1998.	
1096	Duan, L., Xiu, G., Feng, L., Cheng, N., and Wang, C.: The mercury species and their	
1097	association with carbonaceous compositions, bromine and iodine in $\ensuremath{\text{PM}_{2.5}}$ in	
1098	Shanghai, Chemosphere, 146, 263-271, 2016.	
1099	Fain, X., Obrist, D., Hallar, A., Mccubbin, I., and Rahn, T.: High levels of reactive	
1100	gaseous mercury observed at a high elevation research laboratory in the Rocky	
1101	Mountains, Atmospheric Chemistry and Physics, 9, 8049-8060, 2009.	
1102	Fang, F., Wang, Q., and Li, J.: Atmospheric particulate mercury concentration and its	带格式的: 行距: 1.5 倍行距
1103	dry deposition flux in Changchun City, China, Science of the total environment, 281,	
1104	229-236, 2001.	
1105	Fang, F., Wang, Q., and Li, J.: Urban environmental mercury in Changchun, a	
1106	metropolitan city in Northeastern China: source, cycle, and fate, Science of the Total	
1107	Environment, 330, 159-170, 2004.	
1108	Fang, GC., Wu, YS., and Chang, TH.: Comparison of atmospheric mercury (Hg)	
1109	among Korea, Japan, China and Taiwan during 2000-2008, Journal of hazardous	
1110	materials, 162, 607-615, 2009.	
1111	Feng, X., Shang, L., Wang, S., Tang, S., and Zheng, W.: Temporal variation of total	
1112	gaseous mercury in the air of Guiyang, China, Journal of Geophysical Research:	
1113	Atmospheres (1984–2012), 109, 2004.	
1114	Friedli, H., Arellano Jr, A., Geng, F., Cai, C., and Pan, L.: Measurements of	
1115	atmospheric mercury in Shanghai during September 2009, Atmospheric Chemistry	
1116	and Physics, 11, 3781-3788, 2011.	

47

Fu, X., Feng, X., Zhu, W., Wang, S., and Lu, J.: Total gaseous mercury concentrations 1117 1118 in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the 1119 Tibetan plateau, China, Atmospheric Environment, 42, 970-979, 2008a. 1120 Fu, X., Feng, X., Zhu, W., Zheng, W., Wang, S., and Lu, J. Y.: Total particulate and 1121 reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, 1122 China, Applied Geochemistry, 23, 408-418, 2008b. 1123 Fu, X., Feng, X., Qiu, G., Shang, L., and Zhang, H.: Speciated atmospheric mercury 1124 and its potential source in Guiyang, China, Atmospheric Environment, 45, 1125 4205-4212, 2011. 1126 Fu, X., Feng, X., Liang, P., Zhang, H., Ji, J., and Liu, P.: Temporal trend and sources of 1127 speciated atmospheric mercury at Waliguan GAW station, Northwestern China,

1128 Atmospheric Chemistry and Physics, 12, 1951-1964, 2012.

Goodsite, M. E., Plane, J., and Skov, H.: A theoretical study of the oxidation of Hg⁰ to
HgBr₂ in the troposphere, Environmental science & technology, 38, 1772-1776,
2004.

- 1132 Gustin, M., and Jaffe, D.: Reducing the uncertainty in measurement and understanding
- of mercury in the atmosphere, Environmental science & technology, 44, 2222-2227,2010.
- 1135 Gustin, M., Amos, H., Huang, J., Miller, M., and Heidecorn, K.: Measuring and 1136 modeling mercury in the atmosphere: a critical review, Atmospheric Chemistry and
- 1137 Physics, 15, 5697-5713, 2015.
- 1138 Gustin, M. S., Huang, J., Miller, M. B., Peterson, C., Jaffe, D. A., Ambrose, J., Finley, B.
- 1139 D., Lyman, S. N., Call, K., and Talbot, R.: Do we understand what the mercury

带格式的:中文(中国)

48

speciation instruments are actually measuring? Results of RAMIX, Environmental

1141 science & technology, 47, 7295-7306, 2013.

- Hall, B.: The gas phase oxidation of elemental mercury by ozone, in: Mercury as aGlobal Pollutant, Springer, 301-315, 1995.
- 1144 Herndon, S. C., Onasch, T. B., Wood, E. C., Kroll, J. H., Canagaratna, M. R., Jayne, J.
- T., Zavala, M. A., Knighton, W. B., Mazzoleni, C., and Dubey, M. K.: Correlation of
 secondary organic aerosol with odd oxygen in Mexico City, Geophysical Research
 Letters, 35, 2008.
- Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.:
 Global atmospheric model for mercury including oxidation by bromine atoms,
 Atmospheric Chemistry and Physics, 10, 12037-12057, 2010.
- Hu, Q.-. H., Kang, H., Li, Z., Wangy Wang, Y.-. S., Ye, P.-. P., Zhang, L.-. L., Yu, J., Yu,
 X.-. W., Sun, C., and Xie, Z.-. Q.: Characterization of atmospheric mercury at a
 suburban site of central China from wintertime to springtime, Atmospheric
 Pollution Research, 5, 769-778, 2014.
- Huang, J., Miller, M. B., Weiss-Penzias, P., and Gustin, M. S.: Comparison of gaseous
 oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange
 membranes, Environmental science & technology, 47, 7307-7316, 2013.
- 1158 Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A.,
- Hatakeyama, S., and Kajii, Y.: Export of atmospheric mercury from Asia,
 Atmospheric Environment, 39, 3029-3038, 2005.
- 1161 Kim, S.-H., Han, Y.-J., Holsen, T. M., and Yi, S.-M.: Characteristics of atmospheric
- 1162 speciated mercury concentrations (TGM, Hg (II) and Hg (p)) in Seoul, Korea,
- 1163 <u>Atmospheric Environment, 43, 3267-3274, 2009.</u>

带格式的:中文(中国)

1164	Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp, L.,	带格式的: 行距: 1.5 倍行距
1165	Schlosser, E., Siese, M., and Wahner, A.: Daytime formation of nitrous acid: A	
1166	major source of OH radicals in a forest, Geophysical Research Letters, 32, 2005.	
1167	Landis, M. S., Stevens, R. K., Schaedlich, F., and Prestbo, E. M.: Development and	
1168	characterization of an annular denuder methodology for the measurement of	
1169	divalent inorganic reactive gaseous mercury in ambient air, Environmental science	
1170	& technology, 36, 3000-3009, 2002.	
1171	Li, J., Sommar, J., Wängberg, I., Lindqvist, O., and Wei, Sq.: Short-time variation of	
1172	mercury speciation in the urban of Göteborg during GÖTE-2005, Atmospheric	
1173	Environment, 42, 8382-8388, 2008.	
1174	Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W.,	
1175	Pirrone, N., Prestbo, E., and Seigneur, C.: A synthesis of progress and uncertainties	
1176	in attributing the sources of mercury in deposition, AMBIO: A Journal of the	
1177	Human Environment, 36, 19-33, 2007.	
1178	Lindberg, S. a., and Stratton, W.: Atmospheric mercury speciation: concentrations and	
1179	behavior of reactive gaseous mercury in ambient air, Environmental Science &	
1180	Technology, 32, 49-57, 1998.	
1181	Lindqvist, O., and Rodhe, H.: Atmospheric mercury-a review*, Tellus B, 37, 1985.	带格式的: 行距: 1.5 倍行距
1182	Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and	
1183	Morgan, J. T.: Urban-rural differences in atmospheric mercury speciation,	
1184	Atmospheric Environment, 44, 2013-2023, 2010.	
1185	Ma, J., Beirle, S., Jin, J., Shaiganfar, R., Yan, P., and Wagner, T.: Tropospheric NO2	
1186	vertical column densities over Beijing: results of the first three years of	
1187	ground-based MAX-DOAS measurements (2008 2011) and satellite validation,	
1188	Atmospheric Chemistry and Physics, 13, 1547-1567, 2013.	
1189	Lyman, S. N., and Jaffe, D. A.: Formation and fate of oxidized mercury in the upper	
1190	troposphere and lower stratosphere, Nature Geoscience, 5, 114-117, 2012.	带格式的: 中文(中国)

1191	Mao, M., Jiang, W., Wu, X., Qi, F., Yuan, R., Fang, H., Liu, D., and Zhou, J.: LIDAR 带格式的: 行距: 1.5 倍行距
1192	exploring of the UBL in downtown of the Nanjing City, Acta Scientiae
1193	Circumstantiae, 26, 1723-1728, 2006.
1194	Otani, Y., Kanaoka, C., Usui, C., Matsui, SMarumoto, K., Hayashi, M., and Emi, H.:
1195	Adsorption of Takami, A.: Atmospheric mercury vapor on particles concentrations at
1196	two sites in the Kyushu Islands, Japan, and evidence of long-range transport from
1197	East Asia, Atmospheric Environment, 117, 147-155, 2015.
1198	Murphy, D., Hudson, P., Thomson, D., Sheridan, P., and Wilson, J.: Observations of 带格式的: 行距: 1.5 倍行距
1199	mercury-containing aerosols, Environmental science & technology, 20, 735 738,
1200	1986 <u>40, 3163-3167, 2006</u> .
1201	Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., and Wilson, S.: Global anthropogenic
1202	mercury emission inventory for 2000, Atmospheric environment, 40, 4048-4063,
1203	2006.
1204	Pacyna, E. G., Pacyna, J., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S.,
1205	Steenhuisen, F., and Maxson, P.: Global emission of mercury to the atmosphere
1206	from anthropogenic sources in 2005 and projections to 2020, Atmospheric
1207	Environment, 44, 2487-2499, 2010.
1208	Peterson, C., Alishahi, M., and Gustin, M. S.: Testing the use of passive sampling
1209	systems for understanding air mercury concentrations and dry deposition across
1210	Florida, USA, Science of the Total Environment, 424, 297-307, 2012.
1211	Polissar, A. V., Hopke, P. K., and Harris, J. M.: Source regions for atmospheric aerosol 带格式的: 行距: 1.5 倍行距
1212	measured at Barrow, Alaska, Environmental science & technology, 35, 4214-4226,
1213	2001.
	带格式的: 中文(中国) 51

1214	Ren, X., Luke, W. T., Kelley, P., Cohen, M. D., Artz, R., Olson, M. L., Schmeltz, D.,	
1215	Goldberg, D. L., Ring, A., and Mazzuca, G. M.: Atmospheric mercury	
1216	measurements at a suburban site in the Mid-Atlantic United States: Inter-annual,	
1217	seasonal and diurnal variations and source-receptor relationships, Atmospheric	
1218	Environment, 2016.	
1219	Schroeder, W. H., and Munthe, J.: Atmospheric mercury-an overview, Atmospheric	带格式的: 行距: 1.5 倍行距
1220	Environment, 32, 809-822, 1998.	
1221	Shah, V., Jaegl & L., Gratz, L., Ambrose, J., Jaffe, D., Selin, N., Song, S., Campos, T.,	
1222	Flocke, F., and Reeves, M.: Origin of oxidized mercury in the summertime free	
1223	troposphere over the southeastern US, Atmospheric Chemistry and Physics, 16,	
1224	<u>1511-1530, 2016.</u>	
1225	Sommar, J., Gårdfeldt, K., Strömberg, D., and Feng, X.: A kinetic study of the	带格式的: 行距: 1.5 倍行距
1226	gas-phase reaction between the hydroxyl radical and atomic mercury, Atmospheric	
1227	Environment, 35, 3049-3054, 2001.	
1228	Stamenkovic, J., Lyman, S., and Gustin, M. S.: Seasonal and diel variation of	
1229	atmospheric mercury concentrations in the Reno (Nevada, USA) airshed, Atmospheric Environment, 41, 6662-6672, 2007.	
1231	Streets, D. G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., and Feng, X.:	带格式的: 行距: 1.5 倍行距
1232	Anthropogenic mercury emissions in China, Atmospheric Environment, 39,	
1233	7789-7806, 2005.	
1234	Sun, Z., Mu, Y., Liu, Y., and Shao, L.: A comparison study on airborne particles during	
1235	haze days and non-haze days in Beijing, Science of the total environment, 456, 1-8,	
1236	2013.	
1237	Timonen, H., Ambrose, J., and Jaffe, D.: Oxidation of elemental Hg in anthropogenic	
1238	and marine airmasses, Atmospheric Chemistry and Physics, 13, 2827-2836, 2013.	
	52	带格式的:中文(中国)

1239	Wan, Q., Feng, X., Lu, J., Zheng, W., Song, X., Han, S., and Xu, H.: Atmospheric*	带格式的: 行距: 1.5 倍行距
1240	mercury in Changbai Mountain area, northeastern China I. The seasonal distribution	
1241	pattern of total gaseous mercury and its potential sources, Environmental research,	
1242	109, 201-206, 2009a.	
1243	Wan, Q., Feng, X., Lu, J., Zheng, W., Song, X., Li, P., Han, S., and Xu, H.: Atmospheric	
1244	mercury in Changbai Mountain area, northeastern China II. The distribution of	
1245	reactive gaseous mercury and particulate mercury and mercury deposition fluxes,	
1246	Environmental research, 109, 721-727, 2009b.	
1247	Wang, F., Saiz-Lopez, A., Mahajan, A., Mart ń, J. G., Armstrong, D., Lemes, M., Hay,	
1248	T., and Prados-Roman, C.: Enhanced production of oxidised mercury over the	
1249	tropical Pacific Ocean: a key missing oxidation pathway, Atmospheric Chemistry	
1250	and Physics, 14, 1323, 2014.	
1251	Wang, L., Zhang, Q., Hao, J., and He, K.: Anthropogenic CO emission inventory of	
1252	Mainland China, Acta Scientiae Circumstantiae, 25, 1580-1585, 2005.	
1253	Wang, Y., Zhang, X., and Draxler, R. R.: TrajStat: GIS-based software that uses various	带格式的: 行距: 1.5 倍行距
1254	trajectory statistical analysis methods to identify potential sources from long-term	
1255	air pollution measurement data, Environmental Modelling & Software, 24, 938-939,	
1256	2009.	
1257	Weigelt, A., Temme, C., Bieber, E., Schwerin, A., Schuetze, M., Ebinghaus, R., and	
1258	Kock, H. H.: Measurements of atmospheric mercury species at a German rural	
1259	background site from 2009 to 2011-methods and results, Environmental Chemistry,	
1260	<u>10, 102-110, 2013.</u>	
1261	Weiss-Penzias, P., Jaffe, D. A., Swartzendruber, P., Dennison, J. B., Chand, D., Hafner,	
1262	W., and Prestbo, E.: Observations of Asian air pollution in the free troposphere at	
	53_	带格式的:中文(中国)

1263 Mount Bachelor Observatory during the spring of 2004, Journal of Geophysical

1264 <u>Research: Atmospheres, 111, 2006.</u>

- 1265 Weiss-Penzias, P., Jaffe, D., Swartzendruber, P., Hafner, W., Chand, D., and Prestbo, E.:
- 1266 Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio
- in pollution plumes observed at the Mount Bachelor Observatory, AtmosphericEnvironment, 41, 4366-4379, 2007.
- Wood, E., Canagaratna, M., Herndon, S., Onasch, T., Kolb, C., Worsnop, D., Kroll, J.,
 Knighton, W., Seila, R., and Zavala, M.: Investigation of the correlation between
 odd oxygen and secondary organic aerosol in Mexico City and Houston,
 Atmospheric Chemistry and Physics, 10, 8947-8968, 2010.
- Wu, Y., Wang, S., Streets, D. G., Hao, J., Chan, M., and Jiang, J.: Trends in
 anthropogenic mercury emissions in China from 1995 to 2003, Environmental
 science & technology, 40, 5312-5318, 2006.
- 1276 Xu, X., and Akhtar, U.: Identification of potential regional sources of atmospheric total
 1277 gaseous mercury in Windsor, Ontario, Canada using hybrid receptor modeling,
 1278 Atmospheric Chemistry and Physics, 10, 7073-7083, 2010.
- Yuan, S., Xin, Y., and Zhou, J.: Lidar Observations of the Lower Atmosphere in Hefei,
 Chinese Journal of Atmospheric Sciences, 29, 387-395, 2005.
- 1281Zhang, H., Fu, X., Lin, C., Wang, X., and Feng, X.: Observation and analysis of1282speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China, Atmospheric1282Given in the second secon
- 1283 Chemistry and Physics, 15, 653-665, 2015a.
- 1284 Zhang, L., Wang, S., Wang, L., and Hao, J.: Atmospheric mercury concentration and
- 1285 chemical speciation at a rural site in Beijing, China: implications of mercury
- emission sources, Atmospheric Chemistry and Physics, 13, 10505-10516, 2013.

带格式的:行距: 1.5 倍行距

I

【**带格式的:**中文(中国)

1287	Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., Wang, F., Yang, M., Yang, H.,
1288	and Hao, J.: Updated Emission Inventories for Speciated Atmospheric Mercury
1289	from Anthropogenic Sources in China, Environmental science & technology, 49,
1290	3185-3194, 2015b.
1291	
1292	
1293	

I

带格式的:中文(中国)

1294 Table 1. Summary of GEM, <u>RGMGOM</u> and PBM concentrations measured in

1296

	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			RGMG0	\underline{OM} (pg m ⁻³)		PBM		
	Mean $\pm\sigma$	Range	Ν	Mean $\pm\sigma$	Range	Ν	Mean $\pm \sigma$	Range	Ν
Spring	3.89 ± 1.79	0.2-21.3	7890	4.49±4.22	0.5-69.8	526	8.34 ± 8.97	1.6-130.1	542
Summer	4.08 ± 1.99	0.3-22.9	6050	3.66±4.39	0.5-45.2	511	3.61 ± 4.38	0.5-41.9	570
Autumn	4.51±2.10	0.4-23.8	3632	5.65 ± 8.93	0.5-78.9	274	59.9±153.5	0.5-1615	339
Winter	4.05 ± 1.81	0.9-12.2	6381	2.59 ± 2.58	0.5-9.5	541	56.1±134.9	0.5-1827	639
Total	4.07 ± 1.91	0.2-23.8	23953	3.67±5.11	0.5-78.9	1852	30.02 ± 100.3	0.5-1827	2090
Non-haze	3.95 ± 1.93	0.2-23.8	20345	2.49±2.41	0.5-33.5	1508	23.3 ± 90.76	0.5-1827	1708
Haze	4.74±1.62	2.1-16.5	3608	4.32±8.36	0.5-78.9	344	60.2±131.4	1.6-1615	382

1297

1298

I

带格式的: 行距: 1.5 倍行距

带格式的:中文(中国)

1299 Table 2. Speciated atmospheric mercury concentrations in Hefei and other urban

1300 and rural areas.

1301

I

Location	Classification	Time	TGM	GEM	RGM	PBM	Reference
			(ng m ⁻³)	(ng m ⁻³)	<u>GOM</u>	(pg m ⁻³)	
					(pg m ⁻³)		
Hefei	Suburb	Jul 2013-Jun 2014	4.1	4.07	3.67	30	This study
Hefei	Suburb	Feb-May 2009	2.53	-	-	-	Hu et al. (2014)
Beijing	Rural	Dec 2008-Nov 2009	3.23	3.22	10.1	98.2	Zhang et al. (2013)
Shanghai	Urban	Aug-Sep 2009	2.7	-	-	-	Friedli et al. (2011)
Nanjing	Urban	Jan-Dec 2011	7.9	-	-	-	Zhu et al. (2012)
Guiyang	Urban	Nov 2001-Nov 2002	8.4	-	-	-	Feng et al. (2004)
Guiyang	Urban	Aug-Dec 2009	-	9.72	35.7	368	Fu et al. (2011)
Changchun	Urban	Jul 1999-Jan 2000	18.4	-	-	276	Fang et al. (2004)
Changchun	Suburb	Jul 1999-Jan 2000	11.7	-	-	109	Fang et al. (2004)
Mt.Changbai	Remote	Aug 2005-Jul 2006	3.58	-	65	77	Wan et al. (2009a, b)
Mt.Gongga	Remote	May 2005-July 2006	3.98	-	6.2	30.7	Fu et al. (2008a, b)
Mt.Waliguan	Remote	Sep 2007-Aug 2008	1.98	-	7.4	19.4	Fu et al. (2012a)
Mt.Leigong	Remote	May 2008-May 2009	2.8	-	-	-	Fu et al. (2010)
Shangri-La	Remote	Nov 2009-Nov 2010	2.55	-	8.22	38.82	Zhang (2015)
Detroit, USA	Urban	Jan-Dec 2004	-	2.5	15.5	18.1	Liu et al. (2010)
Dexter, USA	Rural	Jan-Dec 2004	-	1.6	3.8	6.1	Liu et al. (2010)
Houston, USA	Urban	Aug-Oct 2006	-	1.66	6.9	2.5	Brooks et al. (2010)
<u>Florida, USA</u>	<u>Urban</u>	<u>Jul 2009-Jul 2010</u>		<u>1.3</u>	<u>3</u>	<u>2</u>	Peterson et al. (2012)
Maryland, USA	<u>suburb</u>	<u>2007-2015</u>		<u>1.41</u>	<u>4.6</u>	<u>8.6</u>	<u>Ren et al. (2016)</u>
Gäteborg, Sweden	Urban	Feb-Mar 2005	-	1.96	2.53	12.5	Li et al. (2008)
Nova Scotia,	Urban	Jan 2010- Dec 2011		1.67	2.07	2.32	Cheng et al. (2014)
Canada							
Northern Hemispher	e background value			1	.5-1.7		Lindberg et al. (2007)

	1303	Table 3.								
	1304	Table 3. Co	rrelation coefficien	its and slop	es between (GEM concentrat	ion and CO			
	1305	<u>concentrati</u>	on during atmosph	eric mercu	ry pollution	events.				
	1306									
Even	<u>t</u>	tart Time	End Time	Duration	<u>GEM</u>	<u>CO</u>	<u>GEM/CO</u>	$\underline{\mathbf{R}^2}$		
	<u>(U</u>	<u>TC + 8 hr)</u>	<u>(UTC + 8 hr)</u>	<u>(h)</u>	<u>(ng m⁻³)</u>	<u>(ppbv)</u>	(slope, ng m ⁻³			
							<u>ppbv⁻¹)</u>			
<u>1</u>	<u>2013</u>	8/11/21 03:00	2013/11/22 02:00	<u>23</u>	<u>8.37±2.42</u>	<u>4481.6±717.3</u>	<u>0.0018</u>	<u>0.29</u>		
<u>2</u>	<u>2013</u>	8/12/03 20:00	2013/12/04 09:00	<u>13</u>	<u>7.51±0.67</u>	<u>5270.0±744.5</u>	<u>0.0001</u>	<u>0.02</u>		
<u>3</u>	<u>2013</u>	8/12/07 04:00	2013/12/09 04:00	<u>48</u>	<u>9.21±1.16</u>	<u>5943.8±1394.1</u>	<u>0.0004</u>	<u>0.23</u>		
<u>4</u>	<u>2013</u>	8/12/19 09:00	2013/12/20 09:00	<u>24</u>	<u>4.35±0.17</u>	<u>3907.6±353.0</u>	<u>0.0002</u>	<u>0.03</u>		
<u>5</u>	<u>2013</u>	8/12/24 19:00	2013/12/25 15:00	<u>20</u>	<u>5.58±0.94</u>	<u>4930.8±919.7</u>	<u>0.0012</u>	<u>0.01</u>		
<u>6</u>	<u>2014</u>	/01/17 22:00	<u>2014/01/19 13:00</u>	<u>39</u>	<u>5.80±0.83</u>	<u>5746.3±1626.9</u>	<u>0.0003</u>	<u>0.28</u>		
<u>7</u>	<u>2014</u>	/01/25 02:00	2014/01/25 22:00	<u>20</u>	<u>6.03±0.50</u>	<u>8797.9±2244.3</u>	<u>0.0002</u>	<u>0.59</u>		
<u>8</u>	<u>2014</u>	<u>//03/16 05:00</u>	2014/03/16 20:00	<u>15</u>	<u>4.46±0.47</u>	<u>2261.7±440.2</u>	<u>0.0010</u>	<u>0.79</u>		
<u>9</u>	<u>2014</u>	<u>//03/17 06:00</u>	2014/03/18 12:00	<u>30</u>	<u>8.85±2.46</u>	<u>2697.1±590.3</u>	<u>0.0030</u>	<u>0.51</u>		
<u>10</u>	<u>2014</u>	/05/21 00:00	2014/05/21 11:00	<u>11</u>	<u>5.74±0.94</u>	<u>3676.7±1690.0</u>	<u>0.0050</u>	<u>0.79</u>		
	1307	Notes: these	e episodes were ider	ntified using	g the followir	ng criteria: (a) the	e duration of			
	1308	elevated GE	EM concentration la	sted for >1	<u>0h; (b) the s</u>	elected hourly av	verage GEM			
	1309	concentratio	on higher than the se	asonal avera	age GEM con	centration.				
	1310									
	1311									

58

1312 Table 4. The production of NO₂HgOH and d[NO₂HgOH]/dt at different NO₂*

带格式的: 行距: 1.5 倍行距

1313 concentrations

NO2 (ppbv)	10	20	30	40	50	60	70	80	90	100
d(NO ₂ HgOH)/dt	0.36	0.71	1.04	1.37	1.68	1.99	2.28	2.56	2.83	3.10
(molecule $\text{cm}^{-3} \text{ s}^{-1}$)										
NO2HgOH	0.56	1.10	1.63	2.13	2.61	3.08	3.54	3.97	4.40	4.81
(pg m ⁻³ , 1hr)										

1314

带格式的:两端对齐

带格式的:中文(中国)

1321 1322

I

带格式的:中文(中国)

I

带格式的:中文(中国)

63

Fig. 3. Diurnal trends of GEM, RGMGOM and PBM concentrations in Hefei during
non-haze and haze days (Local time = UTC + 8 hr). The data were two-hour averages.

64

67

λ	带格式的:	字体颜色: 红色
λ	带格式的:	字体颜色: 红色
-{	带格式的:	字体颜色: 红色
/	带格式的:	字体颜色: 红色
-(带格式的:	字体颜色: 红色
\neg	带格式的:	字体颜色: 红色
(带格式的:	字体颜色: 红色
-	带格式的:	字体颜色:红色
1	带格式的:	中文(中国)

带格式的:中文(中国)

69


```
带格式的: 居中, 行距: 单倍行距
```

 1373
 Fig. 75. Wind direction and speed at the Science Island Meteorological Station during

 1374
 the study period. (A) the wind rose for the whole study period; (B), (C) and (D) are

 1375
 the wind rose diagrams for GEM, RGMGOM and PBM concentrations above the 90th

 1376
 percentile values, respectively.

1377

带格式的:中文(中国)

I

带格式的:中文(中国)

带格式的:字体颜色:红色
带格式的:字体颜色:红色
带格式的:字体颜色:红色
带格式的: 左
带格式的: 字体颜色:红色,下标
带格式的:字体颜色:红色
带格式的:字体:加粗,字体颜色: 红色

72

-{	带格式的: 字体颜色:红色
-(带格式的: 字体颜色:红色
1	带格式的: 字体颜色:红色
Y	带格式的: 字体颜色:红色
1	带格式的: 字体颜色:红色

带格式的:中文(中国)

73

带格式的:中文(中国)

74