

- 1 Evaluating Vehicle Emission Control Policies using on-Road Mobile
- 2 Measurements and Continuous Wavelet Transform: a Case Study
- 3 during the Asia-Pacific Economic Cooperation Forum, China 2014
- 4 Ziqiang Tan¹, Yanwen Wang¹, Chunxiang Ye², Yi Zhu¹, Yingruo Li¹, Pengfei Liang¹,
- 5 Qi Wang¹, Yiqun Han¹, Yanhua Fang¹, Junxia Wang¹, Lei Meng³, Yao Wang³ and Tong
- $6 \quad Zhu^{1, 4, *}$
- 7 ¹State Key Joint Laboratory of Environmental Simulation and Pollution Control,
- 8 College of Environmental Sciences and Engineering, Peking University, Beijing
- 9 100871, China
- 10 ²School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
- ³The Beijing Meteorological Service, Beijing, China
- 12 ⁴The Beijing Innovation Center for Engineering Science and Advanced Technology,
- 13 Peking University, Beijing, China
- 14 *Corresponding Author: tzhu@pku.edu.cn
- 15
- 16 Abstract. Vehicle emissions are major sources of atmospheric pollutants in urban areas,
- 17 especially in megacities around the world. Various vehicle emission control policies
- 18 have been implemented to improve air quality. However, the effectiveness of these
- 19 policies is unclear, due to a lack of systematic evaluation and sound methodologies.
- 20 During the Asia-Pacific Economic Cooperation (APEC) Forum, China 2014, the

21	Chinese government implemented the strictest vehicle emission control policy in the
22	country's history, which provided an opportunity to evaluate its effectiveness, based on
23	our recently developed method. To evaluate the vehicle emission decline, we used a
24	mobile research platform to measure the main air pollutants ($PM_{2.5}$, black carbon (BC),
25	SO ₂ , CO, NO _x and O ₃) on the 4^{th} ring road of the city of Beijing, combined with a
26	continuous wavelet transform method (CWT) to separate out 'instantaneous emissions'
27	by passing vehicles. The results suggested that our measurements captured the spatial
28	distribution and variation of atmospheric pollutant concentrations on the 4 th ring road.
29	The 'instantaneous concentration' decomposed by the CWT method represents on-road
30	emissions better than other methods reported in the literature. With this method, we
31	found that the daytime vehicle emission of CO and NOx decreased by 28.1 and 16.3 %,
32	respectively, during the APEC period relative to the period before APEC, and by 39.3
33	and 38.5 %, respectively, relative to the period after APEC. The night-time vehicle
34	emissions of CO and NOx decreased by 56.0 and 60.7 %, respectively, during the APEC
35	period relative to the period after APEC. Because vehicle emissions of $\ensuremath{\text{NO}_x}$ and CO
36	contribute considerably to the total emissions of these pollutants in Beijing, the vehicle
37	emission control policy implementation was extremely successful in controlling air
38	quality during APEC 2014, China.

39

40 **Keywords:** On-road mobile measurement, Continuous wavelet transform, Asia-Pacific

41 Economic Cooperation Forum, Air quality

42 **1 Introduction**

43	Particle and trace gases emissions from vehicles contribute significantly to urban air
44	pollution (Amato et al., 2016; Milando et al., 2016). Due to the increase in vehicle
45	numbers and the lack of control policies, vehicle emissions have become an important
46	issue for urban air quality management, especially in megacities (Denier van der Gon
47	et al., 2013; Cyrys et al., 2014; Kelly and Zhu, 2016). The megacity of Beijing has been
48	experiencing severe air pollution problems over the last three decades (Streets et al.,
49	2007; Tang et al., 2009; Han et al., 2013; Wang et al., 2014). Not only have the
50	concentrations of the main pollutants reached extremely high levels during pollution
51	episodes but the frequency of polluted days has also been high (Guo et al., 2014; Tian
52	et al., 2014). Vehicle emissions are a major pollution source in the complex emission
53	budget of Beijing, arising from the rapid increase in the number of vehicles in use,
54	which is now near six million (Beijing Traffic Management Bureau 2015, Kelly and
55	Zhu, 2016). Positive matrix factorization (PMF) results in a volatile organic compound
56	(VOC) source appointment study showed that vehicle exhaust contributed 27.82 ppb
57	(35 %), 8.17 ppb (17 %) and 19.65 ppb (14 %) before (18 - 31 October), during (3 -
58	12 November) and after APEC, China 2014 (13 - 22 November), respectively (Li et al.,
59	2015). The Fifth-Generation Penn State/NCAR Mesoscale Model - Community
60	Multiscale Air Quality (MM5-CMAQ) simulation suggested that road transport
61	contributed 27.4 \pm 4.8 % of PM_{2.5} to Beijing's atmosphere in 2011 (Cheng et al., 2013).
62	To improve air quality, a vehicle emission control policy was implemented by the

63	Beijing government in the early 2000s, and more comprehensive policies have been in
64	place since the 2008 Beijing Olympic Games (Wang et al., 2009; Kelly and Zhu, 2016).
65	These policies have improved the air quality to a certain degree, but they have also
66	inconvenienced the residents of the city (e.g., alternating restrictions on driving based
67	on the last digit of the car license number) and generated enormous economic losses.
68	Due to the enormous negative influence of vehicle emissions on daily life and economic
69	development, the effectiveness of vehicle emission control policies has attracted much
70	attention. Because of the inconsistent results from different station measurements and
71	model simulations, the efficiency of various vehicle emission control policies is
72	uncertain (Zhang et al., 2009; Wang et al., 2010; Zhou et al., 2010).
73	Measurements from a curbside station used by Zhou et al. (2010) suggest that
74	vehicle emissions of NO_x and CO decreased by 49.0 and 44.5 %, respectively, during

75 the 2008 Olympics, relative to the pre-control period. However, another study reported that the decreases of vehicle emissions of NO, NO₂, NO_x and CO were about 53, 27, 30 76 and 23 %, respectively, based on measurements made at a height of 20 m at the China 77 Meteorological Administration station near the 3rd ring road of Beijing (Zhang et al., 78 79 2009). The use of different measurement stations is likely to be the reason for the 80 inconsistent results between these two studies. The CMAQ model results indicate that 81 mobile source NOx and non-methane VOC (NMVOC) concentrations were reduced by 82 46 and 57 % during the 2008 Olympics, relative to the pre-control period (June 2008) 83 (Wang et al., 2010). Emission inventories have a large impact on model simulation

- 84 results. Overall, the inconsistent results are mainly due to the representation of vehicle
- 85 emissions by different station measurements and model simulations.

86 A mobile research platform has many advantages for measuring on-road air 87 pollutants directly and capturing fresh emissions from passing vehicles. Because of 88 these advantages, mobile research platforms have been widely used for mapping the 89 spatial and temporal distributions of air pollutants, estimating the emission factors of on-road air pollutants, identifying and apportioning sources of air pollutants in areas at 90 91 various geographical scales and evaluating the influence of specific point sources or 92 regional transport on air quality (Bukowiecki et al., 2002; Kolb et al., 2004; Fruin et al., 93 2004; Zavala et al., 2009; Wang et al., 2009, 2011; Thornhill et al., 2010; Hudda et al., 94 2013; Sun et al., 2014; Weichenthal et al., 2015). For example, the spatial and temporal 95 distributions of trace gases and aerosol parameters in Switzerland have been characterized (Bukowiecki et al., 2002). On-road emission factors of ammonia in New 96 97 Jersey and California, USA, have been estimated by mobile research platform 98 measurements (Sun et al., 2014). Additionally, the transport and distribution of SO₂ in 99 and around the city of Beijing have previously been characterized by our group (Wang 100 et al., 2011).

101 On-road concentrations of pollutants are comprised of instantaneous emissions 102 from passing vehicles, on-road accumulative concentrations and the environmental 103 background concentration. The concentration from instantaneous vehicle emissions is 104 the most appropriate to evaluate the effectiveness of vehicle emission control policies

105 because there is less influence from meteorological conditions and other factors. Early
106 studies used several methods to separate out vehicle instantaneous emissions from the
107 on-road concentration, but they have proved to be complicated or it has been difficult
108 to obtain real 'instantaneous emissions' (Bukowiecki et al., 2002; Kolb et al., 2004
109 Jiang et al., 2005; Thornkill et al., 2010; Riley et al., 2014).
110 Measurement from a stationary site far from the road has been used to represent
111 the environmental background concentration, and then the difference between the on-
112 road and environmental background concentrations can be regarded as the vehicle
emission (Riley et al., 2014). This method can only approximate the environmental
background concentration and is limited by the availability of suitable stationary sites
115 In addition, this method cannot distinguish instantaneous emissions from the on-road
116 accumulative concentration. Bukowiecki et al. (2002) used the fifth-percentile of a five-
117 minute moving average of on-road concentrations as the on-road background
118 concentration, incorporating the on-road accumulative concentration and
119 environmental background concentration. The remaining concentration was ther
120 regarded as the concentration of instantaneous emissions. This method is affected by
121 vehicle volume, vehicle speed, road condition and other factors. Jiang et al. (2005) used
122 the fifth-percentile of a three-minute moving average of on-road concentrations as the
123 "baseline", then parked the mobile research platform far away from the road to measure
124 the "plume threshold", which was the difference between the "baseline" and 95 % of
125 the data points. By adding the "plume threshold" to the "baseline", the upper boundary

126	of the on-road background concentration was obtained. This modification did not
127	overcome the essential problems in Bukowieck's method, which relies on various
128	parameters, such as vehicle volume, vehicle speed and road condition. Thornkill et al.
129	(2010) applied PMF receptor modelling to on-road measurements to quantify diesel and
130	gasoline-vehicle emissions. However, the vehicle emission concentration consists of
131	both an instantaneous emission component and the on-road accumulative concentration.
132	Subjective judgement of the "gentle" and "peak" components of a raw signal has also
133	been used to represent the on-road background concentration and the instantaneous
134	concentration (Kolb et al., 2004). A clear line between the "gentle" and "peak"
135	components is required, but most of the time it is difficult to distinguish these two
136	components precisely. In this paper, we report the use of a continuous wavelet transform
137	(CWT) method to separate out instantaneous emission concentrations. A CWT has been
138	widely used in signal decomposition (Tian et al., 2014; Kang et al., 2007; Domingues
139	et al., 2005). The signal can be decomposed into low and high frequency components
140	(Torrence and Compo, 1998). In our study, a CWT was used to decompose the signals
141	of on-road measured pollutants. Because instantaneous emissions from vehicles are
142	random and change rapidly, the high frequency component of the CWT decomposition
143	represents the instantaneous emissions, while the low frequency component is the sum
144	of the on-road accumulated and environmental background concentrations.
145	The 21 st Asia Desifier Economic Community (ADEC) Martine and held in Design

The 21st Asia-Pacific Economic Cooperation (APEC) Meeting was held in Beijing,
China, between 5 and 11 November 2014. To avoid poor air quality during the APEC

147	period, the government formulated a series of air quality control policies in Beijing and
148	neighbouring regions (Table 1), which were even stricter than those of the Beijing 2008
149	Summer Olympics (Wang et al., 2009). These policies were aimed at reducing
150	emissions from vehicles, power plants, construction sites and factories. The vehicle
151	emission control policy removed more than 50 % of vehicles from the roads of Beijing
152	city. This provided a unique opportunity to assess the effectiveness of the vehicle
153	emission control policy. In our study, an on-road mobile research platform was used to
154	measure the spatial distribution of trace gases and particles on the 4 th ring road of
155	Beijing before (28 October - 2 November), during (3 - 12 November) and after (13 - 22
156	November) the APEC meeting. To accurately evaluate the effectiveness of the vehicle
157	emission control policy, we used a continuous wavelet transform method to separate
158	out instantaneous emissions from vehicles. The effectiveness of the vehicle emission
159	control policy was analysed and discussed.

160 2 Experimental methods

161 **2.1 Mobile research platform and instruments**

A mobile research platform was used to characterize the spatial and temporal
distribution of pollutants (NO_x, SO₂, CO, black carbon (BC) and PM_{2.5}) on the 4th ring
road of the city of Beijing in the periods "before APEC", "APEC" and "after APEC".
The details of our mobile research platform were described in a previous study (Wang
et al., 2009). Briefly, the mobile research platform was built in a diesel vehicle (IVECO

167	Turin V). Two sets of uninterruptible power systems (UPSs) were installed to ensure
168	the continuous operation of the instruments, and an isokinetic inlet system was designed
169	to enhance the sampling efficiency. The onboard instruments used to measure gaseous
170	and particulate pollutants were purchased commercially: NO-NO ₂ -NO _x , CO, O ₃ and
171	SO ₂ (ECOTECH, Australia), particle number concentrations (PNC) (TSI 3091, USA),
172	particle mass concentrations (Grimm Dust monitor 1.108, Germany) and BC (MAAP,
173	THERMO, USA). Meteorological parameters and GPS data, such as temperature,
174	relative humidity, barometric pressure, and latitude and longitude, were also recorded.
175	In addition, an automobile data recorder was used to record the road traffic situation.
176	The gas analysers (NO-NO ₂ -NO _x , CO, O_3 and SO ₂) were calibrated every week. The
177	traveling speed was maintained at 60 ± 5 km h ⁻¹ during on-road measurements.

178 2.2 Air quality control policies and measurement strategy

179 Table 1 summarizes the air quality control policies before, during, and after the 21st 180 APEC meeting in Beijing. The policies implemented were stricter than those implemented for the Beijing 2008 Summer Olympics. The vehicle emission control 181 policy was applied to a broader area and extended to neighbouring regions (Hebei, 182 183 Tianjin and Shandong). Industrial emission control policies limited the operation of, or 184 halted, more than 10,000 factories, mostly in the North China Plain (Beijing, Inner 185 Mongolia, Shandong, Shanxi, Hebei, Tianjin and Zhejiang). 186 To characterize on-road air quality and evaluate the effectiveness of air quality

187 control policies, the 4th ring road (65.3 km long) was chosen as the sampling route (Fig.

188	1). In Beijing, most air pollution control policies are initially implemented within the
189	4 th ring road. For example, the city has adopted a vehicle emission control policy that
190	alternately limits the number of vehicles on workdays within the 5 th ring road (not
191	including the 5 th ring road) based on the last digit of the license plate number since the
192	2008 Beijing Olympics. In addition, just before APEC, the city completed a shift from
193	coal to natural gas as the fuel used for power generation within the 4 th ring road. Our
194	measurements were made twice each day, with one daytime and one night-time
195	measurement. Figure 1 shows the measurements route. For each measurement trip, we
196	travelled anticlockwise on the 4 th ring road from PKU station at 10:00 AM (local time)
197	for the daytime measurement, and at 1:00 AM for the night-time measurement. We
198	chose 10:00 AM for the daytime measurement to avoid the morning rush hour and the
199	rapid development of the boundary layer. We chose 1:00 AM for the night-time
200	measurement to measure the emissions from trucks, which were allowed into the city
201	between 12:00 AM to 6:00 AM. The daytime measurement trips, usually took around
202	90 min while the night-time trips lasted for around 70 min.

203

Figure 1. here

204 2.3 Continuous wavelet transform

The CWT was developed from the Fourier transform, and is considered to be a "mathematical microscope" that is widely used in image analysis, transient signal analysis and communication systems (Tian et al., 2014; Domingues et al., 2005; Kang et al., 2007). The CWT is defined by the following equation (Domingues et al., 2005):

209
$$\mathcal{W}_{f}^{\psi}(a,b) = \int_{-\infty}^{\infty} f(u) \bar{\psi}_{a,b}(u) du \quad a > 0,$$
 (1)

210 where

211
$$\psi_{a,b}(u) = \frac{1}{\sqrt{a}}\psi(\frac{u-b}{a})$$

212 is the so-called mother-wavelet; the parameter f represents the time series of a signal; 213 and a and b refer to the scale and translation parameters, respectively; and $\overline{\psi}_{a,b}(u)$ and 214 $\psi_{a,b}(u)$ are the conjugate complexes. 215 The One-Dimensional Stationary Wavelet Analysis Tool (SWT Denoising 1-D) 216 function of MATLAB (R2014a) tool cabinet was chosen to do the CWT decomposition 217 in this study. The sym4 wavelet was chosen as the mother-wavelet, decomposition level 218 5 was chosen and a threshold was selected to ensure the smoothness of the result. A

sensitivity test indicated that the decomposed instantaneous emission was insensitive(less than 6 %) to the selected mother-wavelet and the decomposition level (from 2 to

221 8). The result of the CWT decomposition included some negative values in the high

222 frequency component, which was due to the mother-wavelet and the noise reconstituted

223 by the CWT vibrating near to zero. To reconcile this problem, the high frequency

224 component was moved up to reference a special REF-line and the low frequency

225 component was moved down in a homologous manner (Fig. S1). This move made both

the low and high frequency components more reasonable.

227 3. Results and discussion

228 **3.1 Meteorological conditions**

229 Figure 2 shows the temporal variation of meteorological parameters, including wind

230	speed, wind direction, temperature and relative humidity, observed during the sampling
231	period from 28 October to 22 November 2014. Three wind rose plots are displayed for
232	the three separate periods, i.e., the period before APEC (28 October - 24 November),
233	APEC period (3 November – 12 November), and the period after APEC (13 November
234	– 22 November). The temporal variation of temperature (T) and relative humidity (RH)
235	during the three periods are shown accordingly. Meteorological parameters were
236	measured at Fengtai station, which is an urban site (Figure 1).
237	Figure 2. here
238	As shown in Figure 2, the APEC period and the period before APEC experienced
239	a high frequency of northwest winds, with high wind speeds; the prevalent wind
240	directions in the period after APEC were northeast and southwest. Beijing is surrounded
241	by emission hot spots, with industrial areas to the south, and the North China Plain and
242	the megacity of Tianjin to the southeast. In contrast, broad areas of desert and grassland
243	are located to the north and northwest of Beijing. Therefore, in terms of the air quality
244	in Beijing city, north winds are considered to be favourable for the diffusion of
245	pollutants and south winds are favourable for the transport of pollutants (Zhang et al.,
246	2014). The temperature declined with time, and the daily minimum temperature
247	dropped below 0 °C after 8th November. Low temperatures might lead to coal burning
248	in households in the suburban areas of Beijing, which constitutes a major source of air
249	pollutants in the winter (Lv et al., 2016; Yang et al., 2016). In summary, meteorological
250	conditions have an important influence on the background levels of air pollutants via

- 251 various mechanisms, such as the transport and diffusion of pollutants, and the
- 252 emergence of new pollutant sources.

253 **3.2 Temporal and spatial variations of on-road pollutants**

254	Figure 3 shows the temporal variation of the daily average concentrations of $PM_{2.5}$, SO_2 ,
255	NO_{x},BC,CO and O_{3} for both daytime and night-time measurements on the 4^{th} ring
256	road of Beijing over the whole measurement period. A significant difference between
257	the daytime and night-time average concentrations was observed. The daytime average
258	concentrations (mean \pm 1 SD) of PM_{2.5}, BC, SO_2, CO, NO_x and O_3 were 28.8 \pm 21.1 μg
259	m^-3, 1.8 \pm 1.0 μg m^-3, 8.2 \pm 4.6 ppb, 1.8 \pm 0.9 ppm, 306.0 \pm 104.8 ppb and 5.4 \pm 6.0
260	ppb, respectively, during the period before APEC; 11.8 \pm 5.3 μg m^-3, 1.2 \pm 0.7 μg m^-3,
261	6.9 ± 4.9 ppb, 1.2 ± 0.6 ppm, 215.1 ± 61.1 ppb and 7.8 ± 5.2 ppb, respectively, during
262	the APEC period; and were 40.4 \pm 35.5 μg m^-3, 6.1 \pm 2.9 μg m^-3, 18.4 \pm 9.5 ppb, 2.6 \pm
263	1.4 ppm, 350.5 \pm 82.8 ppb and 3.4 \pm 1.5 ppb, respectively, during the period after APEC.
264	In comparison, the night-time average concentrations of $PM_{2.5}$, BC, SO ₂ , CO, NO _x and
265	O_3 were 22.1 \pm 15.5 μg m^-3, 3.5 \pm 2.7 μg m^-3, 5.3 \pm 2.7 ppb, 1.5 \pm 1.0 ppm, 304.8 \pm
266	113.3 ppb, and 5.5 \pm 7.6 ppb, respectively, during the APEC period, and 66.2 \pm 54.1 μg
267	m^-3, 8.1 \pm 3.6 μg m^-3, 20.2 \pm 8.3 ppb, 3.3 \pm 1.9 ppm, 792.2 \pm 228.4 ppb, and 3.5 \pm 1.1
268	ppb, respectively, during the period after APEC.
269	Figure 3. here
270	The difference in the concentrations measured in the daytime and night-time could

271 not be fully attributed to the shift of mixing layer height. Specific reasons, such as the

272	influence of background and traffic emissions, are discussed below. Overall, these
273	values were in the range of previous on-road observations in the city of Beijing (Wang
274	et al., 2009; Wang et al., 2012). The concentrations of NO_x and BC were measured in
275	the winter of 2010 on the 6^{th} ring road, with peak values reaching 800 ppb and 10 μg
276	$m^{\text{-3}},$ respectively (Wang et al., 2012). In addition, NO_{x} and CO concentrations were
277	measured before the 2008 Beijing Olympics on the 4 th ring road, with peak values of
278	110.8 \pm 30.0 ppb and 2.4 \pm 0.7 ppm, respectively (Wang et al., 2009).

279 Both daytime and night-time measurements show similar temporal trends in this study. Generally, the concentrations of all pollutants except for O₃ declined during the 280 281 APEC period compared to the periods before and after APEC, with the highest 282 concentration occurring during the period after APEC (Figs. 3 & 4). For example, 283 daytime average concentrations of on-road PM2.5, BC, SO2, CO, NOx and O3 during the 284 APEC period decreased by 60, 33, 16, 33, 29 and -46 % relative to the period before 285 APEC, but decreased by 71, 80, 63, 55, 35 and -129 % relative to the period after APEC, 286 respectively. Stationary measurements at a site on the Peking University campus 287 showed similar temporal variations for both the daytime and night-time average 288 concentrations of these air pollutants (Fig. S2). Only the concentration of O3 increased 289 in the APEC period, which may be because Beijing has a NO_x-controlled regime for O₃ 290 formation. The decline in average NOx concentration during the APEC period led to an 291 increase in the average O3 concentration at the same time, while the significant increase in O3 concentrations on November 6th and 12th were the result of an inflowing air mass 292

293	from northwest China. A simultaneous decline in the concentrations of all other
294	pollutants and the strong northwest wind indicated the inflow of an air mass. However,
295	even with the strict vehicle emission control policy and a significant decline in vehicle
296	volume in Beijing during the APEC period, the daily average NO_x concentration was
297	not always lower than during the periods before and after APEC. The possible reasons
298	for this could be either a shift in background concentrations or favourable diffusion
299	conditions on certain days during the periods before and after APEC. In either situation,
300	the on-road measurement itself was not appropriate for the direct evaluation of the
301	effectiveness of the vehicle emission control policy.

302 Figure 4. here

303 The temporal trends in the concentrations of the different species could be 304 attributed to specific reasons other than the vehicle emission control policy. The sharp 305 increases in the concentrations of all pollutants except for O3 during the period after 306 APEC were mainly due to coal burning in the heating season, especially the unregulated 307 burning in suburban households within Beijing, as the temperature dropped (Fig. 2). 308 Because residential coal burning is the main source of BC in Beijing (Bond et al., 2013), 309 the mass ratio of on-road background BC to CO (NOx) can be used an indicator of the 310 prevalence of residential coal burning. The ratio of the on-road background 311 concentration of BC to CO (NO_x) (M(BC/CO) or M(BC/NO_x)) increased dramatically 312 in the period after APEC (Fig. 5), which provides further evidence of the contribution 313 of residential coal burning to background concentrations. Unfavourable meteorological

- 314 conditions, such as the prevalence of a southerly wind (Fig. 2), might be another reason
- 315 for the rapid increase in the concentration of primary pollutants in the period after
- 316 APEC.

317	Figure 4 shows the spatial variations of the average concentrations of pollutants
318	along the north, west, south and east sections of the 4 th ring road (Fig. 1) in the periods
319	before, during and after APEC. There were large spatial gradients in the concentrations
320	of all pollutants observed in the measurements made in a single trip, which were mainly
321	due to the number of vehicles on the road and wind direction. It is worth noting that no
322	consistent spatial distribution of the average concentration of pollutants was found
323	during the three periods in our measurements (Fig. 4). The average concentration on
324	the whole of the 4 th ring road was thus used for further analysis.
325	Figure 5. here

326 **3.3 Evaluation of the vehicle emission control policy**

327 3.3.1 Results of the CWT decomposition

To verify the effect of the CWT method in the signal decomposition of on-road measurements of air pollutants, a simulation experiment was conducted (Fig. S3). The CWT successfully decomposed the simulated high frequency signal, which had been previously added to the simulated low frequency signal. This gives us confidence that the high frequency instantaneous concentrations could be separated from the on-road concentration. Figure 6 shows the observational data decomposition both with the CWT

334	method and the moving five-minute fifth-percentile method; the results of these two
335	methods were similar in terms of magnitude and trend. An excellent correlation was
336	also found for both the on-road background ($R^2 = 0.99$) and instantaneous
337	concentrations ($R^2 = 0.97$) decomposed with the two methods, with slopes of 0.97 and
338	1.1, respectively (Fig. S4). This comparison indicates the agreement of both methods
339	in signal decomposition. However, the on-road background signals decomposed with
340	the CWT were smoother and without saltation, and better reflected the variation of the
341	on-road background signal, as compared to the results decomposed with the moving
342	five-minute fifth-percentile method. Moreover, the CWT decomposed vehicle
343	instantaneous concentrations of NO_x , CO, SO_2 and O_3 were relatively lower than the
344	on-road background concentration (Figs 7 & S5), which is reasonable as stated below.
345	The CWT decomposed instantaneous concentrations of NO_x and CO were strongly
346	correlated (Table S1), because they had a vehicle emission origin.
347	Figure 6. here

Figure 6. here

Figures 7 and S5 show the temporal variation of the average instantaneous and on-348 349 road background concentrations of CO, NOx, BC, PM2.5, SO2 and O3 decomposed with 350 the CWT method in both daytime and night-time measurements for the whole study 351 period. The average instantaneous concentrations of CO, BC, PM_{2.5}, SO₂ and O₃ were 352 far less than the on-road background concentrations, whereas the instantaneous 353 concentration of NOx was comparable to the on-road background concentration. This 354 was actually considered reasonable for several reasons. First, unlike CO and NOx, direct

355	vehicles emission are not a major source for BC, $PM_{2.5}$, SO_2 and O_3 on the expressways
356	in Beijing (Hao et al., 2005; Bond et al., 2013). Therefore, the instantaneous
357	concentrations of these pollutants should be lower than the on-road background
358	concentrations. Second, the accumulative concentration of vehicle direct-emission
359	pollutants should be high on-road and CO is chemically inert; thus, the on-road
360	background concentration of CO naturally accounts for a large proportion of the overall
361	concentration. Third, the NO_x analyser, CO analyser and GRIMM enabled our
362	measurement to capture the full spike of instantaneous emissions of NO_x , CO and $PM_{2.5}$
363	from passing vehicles. However, for SO ₂ , BC and O ₃ measurements, the full spike was
364	unlikely to be captured if it was shorter than the time resolution of the SO_2 (120 s), BC
365	(60 s) and O_3 analysers (60 s). Therefore, the instantaneous concentrations of BC, SO_2
366	and O ₃ decomposed by the CWT tended to underestimate the instantaneous emission
367	of passing vehicles. Finally, the instantaneous concentration decomposed by the CWT
368	method did not represent the instantaneous emission of vehicles on the 4 th ring road.
369	The difference between the instantaneous concentration and instantaneous emission
370	was acceptable for the evaluation of policy effectiveness because only the relative
371	changes of instantaneous emissions were meaningful in the evaluation.
372	Figure 7. here

373 **3.3.2 Effectiveness of the vehicle emission control policy**

374 Table 2 shows the percentage decline in the instantaneous concentrations of CO, NO_x,

375 BC and PM_{2.5} in the APEC period relative to the periods before and after APEC in both

376	the daytime and night-time. For the daytime, the decline in the instantaneous
377	concentration of CO, NO _x , BC and PM _{2.5} during the APEC period were 28.1, 16.3, -3.5
378	and 23.5 % relative to the period before APEC, and 39.3, 38.5, 44.6 and 24.0 % relative
379	to the period after APEC, respectively. For the night-time, the decline in the
380	instantaneous concentration of CO, NO _x , BC and PM _{2.5} during APEC period were 56,
381	60.7, 7.2 and 62.1 % relative to the period after APEC, respectively. The percentage
382	decline in the total concentration and on-road background concentration of CO, NO _x ,
383	BC and $PM_{2.5}$ were show in Table S2. As stated above, the absolute values of the
384	instantaneous concentrations of $PM_{2.5}$ and BC were small (Fig. 7), thus their decline
385	percentage provided less information about the effectiveness of vehicle emission
386	control policies.

387 For the daytime, we observed large variation of the instantaneous concentration of 388 NO_x and CO throughout the periods before, during and after APEC. The large decline during APEC could be explained by the stringent vehicle emission control policies that 389 390 reduced on-road vehicle numbers. In the periods before and after APEC, a 20 % decline 391 in the number of vehicles on the road was expected, based on the policy to control the 392 number of cars driving on road on weekdays using the last digit of the license plate. 393 During the APEC period, the odd/even plate number rule for traffic control was 394 implemented in Beijing, thus, more than 50 % of all potential vehicles were banned 395 from driving on roads in Beijing during the APEC period. As such, a relative decline of 396 38 % (=(80-50)/80) in the overall vehicle volume on the roads was calculated for the

397	APEC period, relative to the periods before and after APEC. We noticed the change of
398	the traffic volume based on the average time taken for one full trip measurements on
399	the 4 th ring road, it was 72 min during APEC period, shorter than that in the periods
400	before (87 min) and after APEC (92 min). The decline of instantaneous concentration
401	of CO and NO _x during APEC period relative to the period before APEC was lower than
402	the decline relative to the period after APEC. This could be attributed to the additional
403	control policies implemented in the period before APEC, such as diesel vehicles that
404	did not meet the National Vehicle Emission Standard III were strictly banned from
405	driving on road, and vehicles from other provinces were restricted from entering Beijing.
406	Thus, more vehicles (especially high emission diesel vehicle) were under controlled in
407	the period before APEC relative to the period after APEC.
408	It is worth to note that the decline of instantaneous concentration of $\ensuremath{\text{NO}}_x$ and $\ensuremath{\text{CO}}$
409	during APEC period relative to the period before APEC were different. This might be
410	due to the different emission factors of $\ensuremath{\mathrm{NO}}_x$ and CO between gasoline and diesel
411	vehicles, while different control policies were aimed at diesel and gasoline vehicles.
412	Lang et al (2012) reported that gasoline vehicle is the dominant vehicle type in Beijing
413	(account for more than 90 %) and the main contributor to vehicular emission of CO
414	(close to 60 %), while diesel vehicle account less than 10 % of the total vehicle
415	population in Beijing, contributed about 70 % to the total vehicular emission of NO_x .
416	The decline of instantaneous concentration of CO (28.1 %) in APEC period relative to
417	the period before APEC was significantly, mainly due to the stringent control of

418	gasoline vehicles emission during APEC period. In comparison, the decline of
419	instantaneous concentration of NO _x (16.3 %) in APEC period relative to the period
420	before APEC was less than the decline of CO, this could be due to two reasons: 1) as
421	stated above, additional control policies for diesel vehicles were implemented in the
422	period before APEC; 2) the increase in diesel buses for public transit needs during the
423	APEC period. The small increase of instantaneous concentration of BC also indicated
424	the increase use of diesel vehicles in the APEC period relative to the period before
425	APEC.

The decline of instantaneous concentration of CO and NO_x in the APEC period relative to the period after APEC in daytime were 39.3 % and 38.5 %, respectively. Same as above, the decline of instantaneous concentration of CO was mainly due to control of gasoline vehicles, and it is about the same as the decline of the number of gasoline vehicles allowed driving on road (38 %). The decline of instantaneous concentration of NO_x was mainly due to the decline of diesel vehicle emission, also evidenced by the decline of instantaneous concentration of BC.

For the night-time, the relative decline in instantaneous concentration was 56.0 %for CO and 60.7 % for NO_x in the APEC period relative to the period after APEC, which was significantly higher than the daytime decline (Table 2). The difference between daytime and night-time results could be explained with two reasons. First, the ratio of the number of diesel vehicles to gasoline vehicles was different between the daytime and night-time. The vehicular emission of CO was dominated by gasoline vehicles, and

439	NO_x by diesel vehicles, the ratio of the instantaneous concentrations of NO_x to CO
440	$(M(NO_x/CO))$ could be used to indicate the ratio of the number of diesel vehicles to
441	gasoline vehicles. The ratio M(NO _x /CO) was higher in the night-time than daytime (Fig.
442	5), indicates a higher proportion of diesel vehicles in the night-time. Moreover, even
443	though the vehicle volume in the night-time was much less than in daytime, as
444	evidenced by the video recorder installed in our mobile research platform, we found the
445	instantaneous concentrations of CO, NO_x , BC and $PM_{2.5}$ in the night-time were higher
446	than those in daytime in the APEC period and the period after APEC (Fig. 7). This
447	could be mainly attributed to higher proportion of diesel vehicles driving in the night
448	time, the emission factors of diesel vehicles are 1-2 times higher than those of gasoline
449	vehicles (Zhang et al., 2014; Lang et al., 2012). Secondly, the declines of the emission
450	of gasoline and diesel vehicle during APEC period relative to the period after APEC
451	were different due to the different vehicle emission control policies (Table 1). Diesel
452	vehicles were strictly controlled in the night-time during the APEC period, only a
453	portion of diesel vehicles (e.g. support cargo trucks which meet the National Vehicle
454	Emission Standard III) were permitted to drive on roads, while no such control policies
455	implemented in the period after APEC. Strict control of diesel vehicles (especially those
456	with high emission of air pollutants) during APEC period favoured the decline of diesel
457	vehicle emission. Because of the lack of night-time measurement in the period before
458	APEC, the effect of control policy in night-time in the period before APEC cannot be
459	evaluated.

460 **4. Conclusion**

461	We used a mobile research platform to measure on-road air pollutant concentrations on
462	the 4 th ring road of Beijing before, during and after the 21 st APEC from 28 October to
463	24 November, 2014. A signal decomposition method, namely a continuous wavelet
464	transform, was introduced to separate out instantaneous concentrations to represent the
465	instantaneous emissions from passing vehicles. The relative changes of instantaneous
466	emission were then used to evaluate the effectiveness of the vehicle emission control
467	policy during the APEC period. Our study suggests that the daytime vehicle emission
468	of NOx and CO declined by around 38 - 39 $\%$ in the APEC period, relative to the periods
469	when the vehicle reduction policy was only based on the last digit of the license plate
470	number in the city of Beijing. The observed effectiveness was consistent with what was
471	expected from the details of the vehicle emission control policy, which suggested the
472	representability of our measurements and the rationality of the CWT decomposed
473	instantaneous concentration for the effective assessment of a vehicle emission control
474	policy. Due to the contribution of on-road emissions to the $\ensuremath{\text{NO}_x}$ and CO emission
475	budget in Beijing, it was concluded that the vehicle emission control policy
476	implemented during the 21st APEC period was crucial to the successful control of
477	emissions.
478	

479

480 The English in this document has been checked by at least two professional editors,

481 both native speakers of English. For a certificate, please see:

- 482 http://www.textcheck.com/certificate/DwYimP
- 483 Data availability. The data of mobile and stationary measurements are available upon
- 484 requests.
- 485 Author contribution. T. Zhu and Z. Tan designed the experiments. T. Zhu secured the
- 486 research grants. Z. Tan, Y. Zhu, Y. Han, Y. Fang, Y. Wang and P. Liang carried out the
- 487 experiments. Y. Wang and Z. Tan applied the continuous wavelet transform method in
- 488 decomposition of on-road measure signals. J. Wang managed the data. Q. Wang
- 489 compiled emission control policies implement during APEC. L. Meng and Y. Wang
- 490 provided the data of meteorological parameters. Z. Tan analyzed the data with
- 491 contributions from all co-authors. Z. Tan prepared the manuscript with helps from T.
- 492 Zhu, C. Ye and Y. Li.
- 493 Acknowledgement. This study was supported by the National Natural Science
 494 Foundation Committee of China (21190051, 41121004, 41421064), the European 7th
 495 Framework Programme Project PURGE (265325), the Collaborative Innovation Center
 496 for Regional Environmental Quality.

497

498 **Reference**

Amato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., Bruge, B.,
Verlhac, S., Orza, J. A. G., Bonnaire, N., Le Priol, T., Petit, J.-F. and Sciare, J.:
Traffic induced particle resuspension in Paris: emission factors and source
contributions, Atmos. Environ., 129, 114-124, 2016.

503	Beijing Traffic Management Bureau, http://www.bjjtgl.gov.cn/.
504	Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J.,
505	Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.
506	K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H.,
507	Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser,
508	J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T.,
509	Warren, S. G. and Zender, C. S.: Bounding the role of black carbon in the climate
510	system: A scientific assessment, J. Geophys. Res.: Atmospheres. 118, 5380-5552,
511	doi:10.1002/jgrd.50171, 2013.
512	Bukowiecki, N., Dommen, J., Prévôt, A. S. H., Richter, R., Weingartner, E., and
513	Baltensperger, U.: A mobile pollutant measurement laboratory-measuring gas
514	phase and aerosol ambient concentrations with high spatial and temporal
515	resolution, Atmos. Environ., 36, 5569-5579, 2002.
516	Cyrys, J., Peters, A., Soentgen, J., and Wichmann, H. E.: Low emission zones reduce
517	PM_{10} mass concentrations and diesel soot in German cities, J. Air Waste Manage.
518	Assoc., 64, 481-7, 2014
519	Thornhill, D. A., Williams, A. E., Onasch, T. B., Wood, E., Herndon, S. C., Kolb, C. E.,
520	Knighton, W. B., Zavala, M., Molina, L. T. and Marr, L. C.: Application of positive
521	matrix factorization to on-road measurements for source apportionment of diesel-
522	and gasoline-powered vehicle emissions in Mexico City, Atmos. Chem. Phys., 10,
523	3629–3644, 2010.
524	Denier van der Gon, H. A. C., Jozwicka, M., Cassee, F. R., Gerlofsnijland, M. E.,
525	Gehrig, R., Gustafsson, M., Janssen, N., Harrison, R. M., Hulskotte, J., Johansson,
526	C., Jozwicka, M., Keuken, M., Krijgsheld, K., Ntziachristos, L., Riediker, M. and
527	Cassee, F. R.: The Policy Relevance of Wear Emissions from Road Transport, Now
528	and in the Future-An International Workshop Report and Consensus Statement, J.
529	Air Waste Manage. Assoc., 63, 136–149, 2013.
530	Domingues, M. O., Mendes, O., and Costa, A. M. D.: On wavelet techniques in
531	atmospheric sciences. Advances in Space Research, 35, 831-842, 2005.
532	Fruin, S. A., Winer, A. M., Rodes, C. E.: Black carbon concentrations in California
533	vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures,
534	Atmos. Environ., 38, 4123-4133, 2004.
535	Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J. Du Z., Wu, Z. Shao, M.
536	Zeng, L. Molina, M. J. and Zhang R.: Elucidating severe urban haze formation in
537	china, Proc. Natl. Acad. Sci. U. S. A., 49, 17373-8, 2014.
538	Han, X., Zhang, M. G., Tao, J. H., Wang, L. L., Gao J., Wang, S. L., and Chai, F. H.:
539	Modeling aerosol impacts on atmospheric visibility in Beijing with RAMS-

540	CMAQ, Atmos. Environ., 72, 177–191, 2013.
541	Hao, J. M. and Wang, L. T.: Improving Urban Air Quality in China: Beijing Case Study,
542	J. Air Waste Manage. Assoc., 55, 1298–1305, 2005.
543	Hudda, N. Fruin, S. Delfino, R. J. and Sioutas, C.: Efficient determination of vehicle
544	emission factors by fuel use category using on-road measurements: downward
545	trends on Los Angeles freight corridor I-710, Atmos. Chem. Phys., 13, 347-357,
546	doi:10.5194/acp-13-347-2013, 2013.
547	Jiang, M., Marr, L. C., Dunlea, E. J., Herndon, S. C., Jayne, J. T., Kolb, C. E., Knighton,
548	W. B., Rogers, T. M., Zavala, M., Molina, L. T. and Molina, M. J.: Vehicle fleet
549	emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants
550	measured by a mobile laboratory in Mexico City, Atmos. Chem. Phys., 5, 3377-
551	3387, 2005.
552	Kang, S., and Lin, H.: Wavelet analysis of hydrological and water quality signals in an
553	agricultural watershed, J. Hydrol., 338, 1-14, 2007.
554	Kelly, F. J., and Zhu, T.: Transport solutions for cleaner air, Science, 352, 934-936,
555	2016.
556	Kolb, C. E., Herndon, S. C., Mcmanus, J. B., Shorter, J. H., Zahniser, M. S., Nelson, D.
557	D., Jayne, J. T., Canagaratna, M. R. and Worsnop, D. R.: Mobile laboratory with
558	rapid response instruments for real-time measurements of urban and regional trace
559	gas and particulate distributions and emission source characteristics, Environ. Sci.
560	Technol., 38, 5694-5703, 2004.
561	Lang, J., Cheng, S., Wei, W., Zhou, Y., Wei, X. and Chen, D.: A study on the trends of
562	vehicular emissions in the Beijing-Tianjin-Hebei (BTH) region, China, Atmos.
563	Environ., 62(15), 605-614.
564	Lv, B., Zhang, B. and Bai, Y.: A systematic analysis of PM2.5 in Beijing and its sources
565	from 2000 to 2012, Atmos. Environ., 124, 98-108, 2016.
566	Milando, C., Huang, L., and Batterman, S.: Trends in PM _{2.5} emissions, concentrations
567	and apportionments in Detroit and Chicago, Atmos. Environ., 129, 197-209, 2016.
568	Padro-Martinez, L. T., Patton, A. P., Trull, J. B., Zamore, W., Brugge, D. and Durant, J.
569	L.: Mobile monitoring of particle number concentration and other traffic-related
570	air pollutants in a near-highway neighborhood over the course of a year, Atmos.
571	Environ., 61, 253—264, 2012.
572	Pirjola, L., Paasonen, P., Pfeiffer, D., Hussein, T., Hameri, K., Koskentalo, T., Virtanen,
573	A., Ronkko, T., Keskinen, J. and Pakkanen, T.: Dispersion of particles and trace
574	gases nearby a city highway: Mobile laboratory measurements in Finland, Atmos.
575	Environ., 40, 867–879, 2006.
576	Riley, E. A., Banks, L., Fintzi, J., Gould, T. R., Hartin, K., Schaal, L., Davey, M.,

577	Sheppard, L., Larson, T., Yost, M. G. and Simpson, C. D.: Multi-pollutant mobile
578	platform measurements of air pollutants adjacent to a major roadway, Atmos.
579	Environ., 98, 492—499, 2014.
580	Streets, D. G., Fu, J. S., Jang, C. J., Hao, J. M., He, K. B., Tang, X. Y., Zhang, Y. H.,
581	Wang, Z. F., Li, Z. P., Zhang, Q., Wang, L. T., Wang, B. Y., and Yu, C.: Air quality
582	during the 2008 Beijing Olympic Games, Atmos. Environ., 41, 480–492, 2007.
583	Sun, K., Tao, L., Miller, D. J., Khan, M. A. and Zondlo, M. A.: On-road ammonia
584	emissions characterized by mobile, open-path measurements, Environ. Sci.
585	Technol., 48, 3943-3950, 2014.
586	Tang, G., Li, X., Wang, Y., Xin, J., and Ren, X.: Surface ozone trend details and
587	interpretations in Beijing, 2001–2006, Atmos. Chem. Phys., 9, 8813–8823, 2009.
588	Tian, G., Qiao, Z., and Xu, X.: Characteristics of particulate matter (PM_{10}) and its
589	relationship with meteorological factors during 2001-2012 in Beijing, Environ.
590	Pollut., 192, 266–274, 2014.
591	Torrence, C. and Compo, GP. : A practical guide to wavelet analysis, B. Am. Meteorol.
592	Soc., 79, 61-78, 1998.
593	Wang, M., Zhu, T., Zheng, J., Zhang, R. Y., Zhang, S. Q., Xie, X. X., Han, Y. Q., and
594	Li Y.: Use of a mobile laboratory to evaluate changes in on-road air pollutants
595	during the Beijing 2008 Summer Olympics, Atmos. Chem. Phys., 9, 8247-8263,
596	2009.
597	Wang, M., Zhu, T., Zhang, J. P., Zhang, Q. H., Lin, W. W., Li, Y., and Wang, Z. F.: Using
598	a mobile laboratory to characterize the distribution and transport of sulfur dioxide
599	in and around Beijing, Atmos. Chem. Phys., 11, 11631-11645, doi:10.5194/acp-
600	11-11631-2011, 2011.
601	Wang, S., Zhao, M., Xing, J., Wu, Y., Zhou, Y., Lei, Y., He, K., Fu, L. and Hao, J.:
602	Quantifying the air pollutants emission decline during the 2008 Olympic Games
603	in Beijing, Environ. Sci. Technol., 44, 2490-6, 2010.
604	Wang, Y. S., Yao, L., Wang, L. L., Liu, Z. R., Ji, D. S., Tang, G. Q., Zhang, J. K., Sun,
605	Y., Hu, B., and Xin, J. Y.: Mechanism for the formation of the January 2013 heavy
606	haze pollution episode over central and eastern China, Sci. China-Ser. D, 57, 14-
607	25, 2014.
608	Westerdahl, D., Wang, X., Pan, X., and Zhang, K. M.: Characterization of on-road
609	vehicle emission factors and micro environmental air quality in Beijing, China,
610	Atmos. Environ., 43, 697-705, 2009.
611	Weichenthal, S., Van, R. K., Kulka, R., Sun, L., Wallace, L., Joseph, L.: In-vehicle
612	exposures to particulate air pollution in Canadian metropolitan areas: the urban
613	transportation exposure study, Environ. Sci. Technol., 49, 597-605, 2015.

614	Yang, H., Chen, J., Wen, J., Tian, H. and Liu, X.: Composition and sources of PM _{2.5}
615	around the heating periods of 2013 and 2014 in Beijing: Implications for efficient
616	mitigation measures, Atmos. Environ., 124, 378-386, 2015.
617	Zavala, M., Herndon, S. C., Wood, E. C., Onasch, T. B., Knighton, W. B., Marr, L. C.,
618	Kolb, C. E. and Molina, L. T.: Evaluation of mobile emissions contributions to
619	Mexico city's emissions inventory using on-road and cross-road emission
620	measurements and ambient data, Atmos. Chem. Phys., 9, 6363-6395, 2009.
621	Zhang, S. J., Wu, Y., Wu, X. M., Li, M. L., Ge, Y. S., Liang, B., Xu, Y. Y., Zhou, Y., Liu,
622	H., Fu, L. X. and Hao, J. M.: Historic and future trends of vehicle emissions in
623	Beijing, 1998–2020: A policy assessment for the most stringent vehicle emission
624	control program in China, Atmos. Environ., 89: 216-229, 2014.
625	Zhang, X. Y., Wang, Y. Q., Lin, W. L., Zhang, Y. M., Zhang, X. C., Zhao, P., Yang, Y.
626	Q., Wang, J. Z., Hou, Q., Che, H. Z., Guo, J. P., Li, Y., Gong, S., and Zhang, X. L.:
627	Changes of atmospheric composition and optical properties over Beijing-2008
628	Olympic monitoring campaign, B. Am. Meteorol. Soc., 90, 1633-1651,
629	doi:10.1175/2009BAMS2804.1, 2009.
630	Zhang, W., Zhu, T., Yang, W., Bai, Z., Sun, Y. L., Xu, Y., Yin, B., and Zhao, X.:
631	Airborne measurements of gas and particle pollutants during CAREBeijing-2008,
632	Atmos. Chem. Phys., 14, 301-316, doi:10.5194/acp-14-301-2014, 2014.
633	Zhou, Y., Wu, Y., Yang, L., Fu, L., He, K., Wang, S., Hao, J., Chen, J., Li, C.: The
634	impact of transportation control measures on emission declines during the 2008
635	Olympic Games in Beijing, China, Atmos. Environ., 44, 285-293, 2010.
636	
637	
620	
038	

639 Figure Captions:

Fig. 1 The measurement route on the 4th ring road in Beijing (map Version: Google map
2014). The anti-clockwise trip was started from the monitoring station in the campus of
Peking University (PKU station). The yellow line shows the main road. The red star
shows stationary stations. The black dotted line separates the 4th ring road into the North,
the West, the South and the East parts.

Fig. 2 Meteorological parameters (Wind speed, wind direction, temperature, and relative humidity) measured during sampling period at the Fengtai meteorological station. Three wind rose plots were for the period before APEC (from 24th October to 2nd November) (a), APEC period (from 3rd November to 12th November) (b) and the period after APEC (from 12th November to 22th November) (c). Blue shaded area shows the APEC period.

Fig. 3 Temporal variations of the concentrations of air pollutant (PM_{2.5}, SO₂, NO_x, BC,
CO and O₃) averaged along the 4th ring road of Beijing. The solid dots and the open
dots represent average concentrations of daytime measurement beginning at 10:00 AM
and night-time measurement beginning at 1:00 AM, respectively. Those missing dots
were caused by instrument failure.

Fig. 4 Box whisker plots of the concentrations of selected traffic-related air pollutants
(PM_{2.5}, BC, SO₂, CO, O₃, and NO_x) averaged along the four parts (north, west, south
and east) of the 4th ring road of Beijing, in the periods before, during, and after APEC.
The box part represents the central 50 % of the data, the lower and upper edge represent
the 25th and 75th percentile, respectively. The whiskers in the plot represent the error
bars.

Fig. 5 The temporal variations of the mass ratios between CO, NO_x and BC during daytime and night-time measurements. The black solid dots represent mass ratios between instantaneous concentrations decomposed by CWT method, the open dots represent mass ratios between on-road background concentrations decomposed by CWT method. The left panel is for daytime and the right panel is for night-time measurements.

Fig. 6 Background signals of on-road measured NOx concentration decomposed by a
continuous wavelet transform (CWT) and the moving five-minute fifth-percentile
method. The grey line is the original pollutant concentration (Original), the red line is

- 671 the on-road background concentration decomposed from the original concentration by
- 672 the CWT (Background_CWT) and the black line is the on-road background 673 concentration decomposed from the original concentration by a moving five-minute
- 674 fifth-percentile method (Background_5%).
- Fig. 7 Temporal variations of the average instantaneous concentrations and on-road
 background concentrations of CO, NO_x, BC, and PM_{2.5} decomposed from on-road
 measurements results by CWT for both daytime and night-time measurements. The
 solid dots and the open dots represent instantaneous concentration and on-road
 background concentration, respectively. Middle area shows the APEC period.
- 680
- 681
- 682

683	Table 1. Air pollution con	ntrol measures implemented	l before, during and	d after the 21 th
684	APEC.			

684

Periods	Periods Starting Dates		Detail of measures
	1 Oct. 2014	Early warning	Enhancing air quality monitoring.
Before APEC	1 Nov. 2014	Coal-fired control	Reduce coal-fired power plant productions; operate units were required to reduce emission by more than 30 % in Beijing; Postpone centralized heating.
	3 Nov. 2014	Traffic control	The odd/even plate number rule for traffic control in Beijing, Tianjin, Hebei and Shandong; "Yellow label vehicles" and 70 % of official vehicle were banned from Beijing's roads; Trucks were limited to drive inside the 6 th Ring Road between 6 AM and 24 PM. Restricted vehicles with license plate of other province entering Beijing.
During APEC	3 Nov. 2014	Industrial Emission Control	148 factories were required to be halted or reduce production in Beijing; More than 10,000 factories were required to reduce production or to be halted in Hebei, Tianjin, Shandong, Shanxi and Inner Mongolia.
	3 Nov. 2014	Dust pollution control	Dust emission factories and outdoor constructions were shut down or reduced in activities in Beijing and surrounding region; Increasing road cleaning and water spraying in Beijing.
	6 Nov. 2014	Emergency measures	State-owned enterprises were required to reduce more productions, 40 % of coal- fired boilers were shut down in Beijing; more special pollutant emission factories were required to reduce production around Beijing.
After APEC	13 Nov. 2014		Lifting of regulations adopted from 13 November; continuous controlling 20 % of private cars based on the last digital of plate number.

687	pollutants during APEC period relative to the periods before and after APEC.						
		Compared period	CO (%)	$NO_{x}(\%)$	BC (%)	PM _{2.5} (%)	
	Day	Before APEC	28.1	16.3	-3.5	23.5	
		After APEC	39.3	38.5	44.6	24.0	
	Night	After APEC	56.0	60.7	7.2	62.1	
	Day-night average	After APEC	50.1	53.6	25.8	49.4	
688							

Table 2. The percentage declines of instantaneous concentrations of traffic-related

688

686

690

Fig. 1 The measurement route on the 4th ring road in Beijing (map Version: Google map
2014). The anti-clockwise trip was started from the monitoring station in the campus of
Peking University (PKU station). The yellow line shows the main road. The red star
shows stationary stations. The black dotted line separates the 4th ring road into the North,
the West, the South and the East parts.

Fig. 2 Meteorological parameters (Wind speed, wind direction, temperature, and
relative humidity) measured during sampling period at the Fengtai meteorological
station. Three wind rose plots were for the period before APEC (from 24th October to
2nd November) (a), APEC period (from 3rd November to 12th November) (b) and the
period after APEC (from 12th November to 22th November) (c). Blue shaded area shows
the APEC period.

704

705

Fig. 3 Temporal variations of the concentrations of air pollutant (PM_{2.5}, SO₂, NO_x, BC,
CO and O₃) averaged along the 4th ring road of Beijing. The solid dots and the open
dots represent average concentrations of daytime measurement beginning at 10:00 AM
and night-time measurement beginning at 1:00 AM, respectively. Those missing dots
were caused by instrument failure.

- 713Fig. 4 Box whisker plots of the concentrations of selected traffic-related air pollutants714 $(PM_{2.5}, BC, SO_2, CO, O_3, and NO_x)$ averaged along the four parts (north, west, south715and east) of the 4th ring road of Beijing, in the periods before, during, and after APEC.716The box part represents the central 50 % of the data, the lower and upper edge represent717the 25th and 75th percentile, respectively. The whiskers in the plot represent the error718bars.719720
- 721
- 722 723
- Istantaneous -O-Background 9 Day Night APEC APEC M(BC/CO) 6 3 0 M(BC/NO_x) 0.02 0.01 0.00 2 M(NO_x/CO) 1 0 11/16 -11/20 -11/08 11/12 11/0411/0811/16 11/2010/27 11/0410/27 11/12 10/31 10/31 Date(mm/dd)

Fig. 5 The temporal variations of the mass ratios between CO, NO_x and BC during daytime and night-time measurements. The black solid dots represent mass ratios between instantaneous concentrations decomposed by CWT method, the open dots represent mass ratios between on-road background concentrations decomposed by CWT method. The left panel is for daytime and the right panel is for night-time measurements.

Fig. 6 Background signals of on-road measured NOx concentration decomposed by a continuous wavelet transform (CWT) and the moving five-minute fifth-percentile method. The grey line is the original pollutant concentration (Original), the red line is the on-road background concentration decomposed from the original concentration by the CWT (Background_CWT) and the black line is the on-road background concentration decomposed from the original concentration by fifth-percentile method (Background_5%).

741

Fig. 7 Temporal variations of the average instantaneous concentrations and on-road background concentrations of CO, NO_x, BC, and PM_{2.5} decomposed from on-road measurements results by CWT for both daytime and night-time measurements. The solid dots and the open dots represent instantaneous concentration and on-road background concentration, respectively. Middle area shows the APEC period.