
Answer to referee #2 James Campbell 
 
Dear J. Campbell: 
Thanks a lot for your useful comments, technical notes, editing recommendations and questions. We 
appreciate it very much; it will definitely improve our manuscript. Below you will find our replies and short 
descriptions of the changes we’ve made in the text. Your comments are in red and start with “R:” and our 
replies are in black and start with “A:”. Original manuscript text is shown in blue, with new text highlighted in 
yellow. 
 
We would like to warn you, however that we are still working on our data analysis to accommodate all 
suggestions from both referees and hence the final numbers might still change. You urged us to change our 
definition of cirrus clouds, but what is being more challenging is the request by Referee #1 to do a full 
multiple-scattering correction, instead of the approximate correction we have now. The new manuscript will 
be uploaded as soon as we finish all these changes. 
 
 
R1: My primary scientific concern relates to the definition of "cirrus" clouds in the manuscript. (…) In a 
recent paper that I authored (Campbell et al. 2015), we went to significant length to demonstrate a 
practical and viable definition for cirrus clouds in autonomous long-term datasets like this one, and in 
particular for those that lack a polarized backscatter measurement. (…) This absolutely has to be revised. I 
recognize that this is a serious request, and I raise this point very respectful of the work that has been put 
into the manuscript, the statistics and the analysis. However, I question every number you have in here, 
again respectfully, because of such a simple and non-physical definition applied for discriminating these 
clouds. 
 
I would respect if the authors were to disagree with our conclusions/recommendations in Campbell et al. 
(2015). But, in response, they’d better come up with a physically- based reason for doing so. Cloud top 
temperatures of -37°C makes physical sense for the class of clouds that we call cirrus. It’s a practical and 
defendable threshold.  
 
A: We agree with the reviewer that cirrus is a phenomenological classification based on surface visual 
observations. We also agree that such classification (and alternatives to make it more practical) has been 
debated in the literature. For instance, the -25 degC threshold that we applied has been used in previous 
papers (e.g. SEIFERT et al., 2007; GOLDFARB et al., 2011). However, we don’t agree that this criterion 
allows our numbers to be, although respectfully, strongly questioned. In the tropics, our threshold 
corresponds to a minimum cloud-base altitude of about 8 km. Likewise, the -37 degC cloud-top threshold 
suggested by the reviewer corresponds to roughly 11 km. The cloud-top histogram in figure 5 shows that 
less than 6% of what we’ve called cirrus would not fit the reviewer’s suggested criteria. Therefore, our 
numbers cannot be that far off from what would be obtained following Campbell et al (2015).  
 
Nonetheless, a physically based definition such as proposed by Campbell et al (2015) is indeed preferred. We 
will use this definition in the new version of the manuscript. We are already reprocessing all our data. 
 

R2: Its unclear what the authors are saying about the presence of SNR > 3 in the upper troposphere with 
respect to cloud observation. Do they mean clear-sky? Or, do they mean within particulate scattering 
layers? 
 
A: We apologize for not having stated this clearly in the manuscript. What we meant is that the molecular 
lidar signal just below the cirrus cloud-base should have a SNR of at least 3, in a single bin of 7.5m (our 
raw resolution). For 30m bins, for instance, the SNR will increase to about 6, and one should remember 
that the molecular fitting involves many points, which further reduce the noise. For the typical cirrus optical 
depths, SNR>3 means that the laser was not attenuated and hence we will most likely still have good 
enough SNR above the cloud top, which is needed for the retrieval of the optical depth and lidar ratio by 
the transmittance method. We also have to evaluate the SNR in cirrus-free profiles in order to count all the 
profiles in which cirrus could have been detected if they were present. This is necessary to compute 
frequency of occurrence correctly.  
 



The first paragraph of section 2.2 was modified as follows around lines 115-118: 
A total of 36,597 5-minute profiles were analyzed and only 20,752 had a signal to noise ratio (SNR) higher than 3, for 
a single 7.5 m bin just below the cirrus base. Given the typical cirrus cloud optical depths, this threshold means we 
will also have a SNR at cloud top that is good enough for estimating the optical depth with the transmittance method 
(see section 2.4). Statistical tests with the transmittance method based on simulations for various SNR, COD and 
cloud thickness (not shown) were conducted to obtain the SNR threshold. The number of 5-min lidar profiles and 
number of profiles with good SNR during each month of the studied period were analyzed. 
 

R3: Its unclear how the authors define the tropopause, and thus accommodate the potential for resolving 
the bottom/top of the tropopause transition layer, in Section 2. This hurts the discussion later on where 
context is necessary for understanding where the clouds are with respect to this boundary. 

 

A: We apologize for not having stated this clearly. As we wrote in the manuscript, we are using the WMO 
definition (International Meteorological Vocabulary, 1966). In this technical document the Tropopause is 
defined as: “the boundary between the troposphere and the stratosphere, where an abrupt change in lapse 
rate usually occurs. It is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, 
provided that the average lapse rate between this level and all higher levels within 2 km does not exceed 
2°C/km”. 

One should be careful when applying this definition, however, as the number of vertical levels in the 
sounding, reanalysis or model data might be too coarse. To overcome this issue, we follow the 
methodology suggested by the National Meteorological Center (McCalla, 1981). The lapse-rate is 
assumed to vary linearly with pressure, and the exact altitude where Γ=2°C/km (i.e. the tropopause) is 
found by linearly interpolating between the closest available pressure levels. 

We modified section 2.2 around lines 130-147 to better explain the calculation of the tropopause altitude: 

This dataset was used to obtain the mean high level winds, near to the cirrus clouds habits (200 hPa). The tropopause 
altitudes were obtained from vertical profiles over the site using the definition of the World Meteorological 
Organization (IMV WMO, 1966), i.e. “the lowest level at which the lapse rate decreases to 2°C/km or less, provided 
that the average lapse rate between this level and all higher levels within 2 km does not exceed 2°C/km”. We further 
assumed the lapse rate to vary linearly with pressure (McCalla, 1981), and the exact altitude where Γ=2°C/km (i.e. 
the tropopause) was found by linearly interpolating between the closest available pressure levels. A precipitation 
dataset for the same period was acquired from TRMM (Tropical Rainfall Measuring Mission) version 7 product 3B42 
(Huffman et al., 2007) with 0.25° and 3 h of spatial and temporal resolution, respectively. 

And we include these two references: 

International meteorological vocabulary. WMO, No. 182. TP. 91. Geneva (Secretariat of the World Meteorological 
Organization) 1966. Pp. xvi, 276. Sw. fr. 40. Q.J.R. Meteorol. Soc., 93: 148. doi:10.1002/qj.49709339524 

McCalla, C., 1981: Objective Determination of the Tropopause Using WMO Operational Definitions, Office Note 
246, U.S. Department of Commerce, NOAA, NWS, NMC, 18pp, October 1981.  

 

R4: Since the sample size is stated to relative to the ability to measure SNR > 3 in the upper troposphere, 
all of the samples appear to be relative occurrence frequencies and not absolute ones. This is HIGHLY 
confusing. There is no way that you’re resolving an absolute cloud frequency of 67%. In a new paper that 
we have in Early Online Release in JAMC (Campbell et al. 2016), we show in a year’s worth of MPLNET 
observations at Greenbelt, MD an absolute frequency near 16%, which owes to the attenuation of the 
beam from low-level clouds and undersampling of the upper troposphere. There are multiple places in the 
narrative where serious confusion arises and the speculative discussion becomes meaningless because of 
this confusion. 
 
A: We do not agree with the referee in this point.  
 
We know, based on satellite studies that the cirrus absolute frequency is much higher than the 16% found 
by the referee for Greenbelt. For instance, based on Calipso and CloudSat, Sassen et al., JGR 2001 show 
for US east coast a frequency about 25% (fig.1 of that paper). They also show a frequency about 50% at 
our site in the Amazon (3S, 60W). The only way one could have such a low frequency, as suggested by 



the reviewer, is if one divides the total number of cirrus detected by the total number of possible 
observations (i.e. including low-level clouds, etc…). We argue, however, that such number would not have 
a physical meaning. It would just reflect your sampling issues.  
 
On the other hand, it is very usual to report the cloud occurrence the way we do (e.g. Erika Kienast-
Sjögren et al. 2016; Nazaryan et al., 2008; and references therein). There is a broad but valid assumption 
behind, which is justifying this approach. The lifetime of cirrus is much longer than for other clouds. At the 
same time, the presence of cirrus clouds in the sky is rather independent of low-level water clouds that can 
fully attenuate the laser beam. Hence, you can estimate the absolute cirrus frequency simply by dividing: 
the number of lidar profiles with a cirrus, by the number of profiles where you could have detected a cirrus 
cloud.  
 
We agree this is not the true cirrus frequency, but it is the best estimate one can make. Besides, our cirrus 
frequencies are in agreement with values obtained from CALIPSO, if we consider the same time of the 
satellite overpass. See, for instance, the values reported by NAZARYAN et al. 2008 or SASSEN et al 2008  
and compare with the values in our paper. 
 
We want to give a very naïve example, and we do so very respectfully with the aim of making our point 
very clear. The approach we follow is the same as doing a pool to figure out who will win the next election 
for president. You take a small sample of 1000 people from a population of 150 million voters and you can 
still tell the outcome of the election (given that your sample was randomly selected). But please note that 
we don’t have to worry about the “random selection” in the case of cirrus frequency because: 1) the 
presence of cirrus and low-level clouds are independent (and also independent from our sampling 
failures); and 2) we sampled 37k profiles of 5-min, which is 1/3 of the maximum possible number of profiles 
during 1 year.  
 
But how do we know which profiles we could have detected a cirrus (if they were there)? We do that by 
looking at the SNR at the typical cirrus altitudes and knowing the efficiency of our algorithm as a function of 
the SNR. Based on the analysis of simulated profiles (GOUVEIA, 2014, Msc Thesis, U. of Sao Paulo), we 
know that our algorithm can detect 99% of cirrus clouds with COD > 0.005 if the SNR is at least 3 below 
cloud base. With this strategy, for example, profiles with low water clouds that kill the laser beam are not 
added in the denominator. The total number of profiles measured in each month and the number of profiles 
with good SNR was shown in figure S.1 in the supplement and discussed it in the text: 
 
Lines 119-125 
July, August and September, the driest months show the higher fraction of profiles with good SNR, while the wettest 
months have the lowest fraction of lidar profiles with good SNR (see figure S.1). The cloud fraction of low, optically thick 
clouds increases during this season, thereby attenuating the signal and reaching the cirrus clouds altitudes with a low SNR. 
The frequency was then defined as the ratio between the number of lidar profiles of 5 min with good SNR containing cirrus 
clouds and the total number of profiles with good SNR.  
 

R5: Speaking of this issue, nothing is said of the work of Thorsen et al. (2011) and Protat et al. (2014) and 
undersampling issues relating to ground-based profiling, attenuation, and the relative cloud samples that 
we have to analyze. This is a serious weakness that leads to three other points of concern. 

 

Now that the reviewer mentioned Thorsen and Protat, we believe to have understood his concerns. We 
probably did not explain very well how we count the profiles for our statistics and that might have lead to 
his confusion here and in the previous comment.  

As we explained above, properly counting how many profiles you have in the denominator of your cirrus 
cloud fraction is the key point (think of the election pool). You cannot include attenuated profiles otherwise 
you will introduce a bias. You also cannot average over a long period of time by simply averaging your 
data, unless it is uniformly distributed. 

All of these points are considered in our approach. For instance, how do we calculate the year average if 
we measured a different amount of days in each month (different sample sizes)? We just average the 
fractions of each month (weighted by the number of days), and the fraction in each month was calculated 
including in the denominator only the profiles for which you could have detected a cirrus. If our sampling 



varied too much within a month, we could’ve broken it up into weeks. The same strategy is applied when 
we calculate the diurnal cycle. The cirrus fraction in a given hour-bin is the number of profiles with cirrus in 
that hour divided by the number of profiles for which we could have detected a cirrus in that hour. 
Therefore, we can still have a good estimative of the true diurnal cycle even if we have different sample 
sizes for each hour.  

To our understanding, our approach (election pool) is the same as used by Thorsen et al JGR (2011) and 
Protat et al JAMC (2014), however, they’ve called it “conditional sampling”. See, for instance, what Protat 
says in section 3 of his paper: 

 
“Fortunately, conditional sampling (for instance excluding profiles where low-level obscuration occurs, as 
in Thorsen et al. 2011) can be carefully designed for sake of model and satellite product evaluation using 
data collected at the ground-based sites.” 

 

To make our approach more clear, we will modify section 2.2, removing the discussion about the SNR. 
That will be included in a new section called “sampling issues” where we will explain how we applied the 
conditional sampling of Thorsen (2011) and Protat (2014). That will be a summary of our replies to your 
comments R4 and R5. 

 

R6: It is discussed that the lowest cloud observations occur around solar noon (10-12 LT). This leads me to 
believe that your instrument is suffering from issues with SNR from the bright background, even at 355 nm. 
Whereas it is introduced that this is potentially a real artifact, I see no reason to take such a claim at face value. 
As I cannot evaluate your algorithm or its performance, and with the practical understanding that you are 
willing to deal with cloud samples in the algorithm at an SNR as low as 3, I cannot help but conclude that you’re 
dealing with sampling issues due to background noise. 

 

We thank the reviewer for carefully looking at all details of our results. We should say, however, that we 
also have looked into this minimum around solar noon to be sure that it was not a problem with the solar 
background. Our conclusion is that it is real for the reasons below. 

About the SNR of 3 -- We should emphasize that this is for a single bin of 7.5m in the molecular range 
below the cloud base, as explained in the reply to comment R2. The SNR of the cloud it self is, of course, 
always much larger than that. Besides, the molecular fitting (below and above the cloud) works as an 
averaging procedure and hence the effective molecular SNR is also much larger. 

About the algorithm performance -- We have done an extensive simulation study to validate the methods 
we use, which was not included in the original submission. We were planning to have a separate 
manuscript on AMT about the accuracy and precision of our cloud detection algorithm and of the 
transmission method for the retrieval of COD and LR from elastic lidars. However, as both referees have 
questioned about this, we believe that some of that needs to be included in the supplement material. We 
will consult the editor to see if he/she agrees with this approach. 

In the simulations, we varied the cloud thickness (from 15m to 4.5km), the cloud extinction coefficient (from 
0.02 to 0.1 km-1) and the SNR from 3 to 50. We verified that our cloud detection algorithm can identify 99% 
of clouds with COD > 0.005 if the molecular SNR is at least 3 below cloud base. This is evidence that we 
are not suffering from SNR issues from the bright background. 

The second evidence is that other studies have also reported a minimum in the cirrus occurrence around 
noon. Hong et al JGR (2006) used the TOGA radar during the TRMM-WETAMC campaign in the Amazon, 
and also the PR and VIRS instruments onboard of TRMM. They showed that the diurnal cycle of thick 
anvils (hence no SNR x bright Background issue) has minimum around 8-12LT. This is similar to what we 
found and fits perfectly with the diurnal march of tropical convection (Machado JGR 2002). There are 
examples in other regions as well. Throsen et al JGR (2013) used ARM data from SGP together with 
CALIPSO and showed that the thinnest cirrus occurs around 12h LT. Liu et al Adv. Atmos. Sci. (2015) 
used an MPL in southeastern China and showed the diurnal cycle of total cloud fraction also has a 
minimum around noon. 

The third evidence is the diurnal cycle separated for sub-visual, thin and thick cirrus (see below). The left panel 



uses the column total COD, hence the sum of the 3 curves will give exactly the black line in fig. 4 of the paper. 
In the right panel, we used the layer COD and hence the sum might be more than the total occurrence (because 
of multiple cirrus layers). There is a well marked diurnal cycle for the thick cirrus clouds. These clouds have 
COD > 0.3, hence there can’t be any artifacts from SNR versus bright background issues. Their maximum 
occurs just after the maximum of precipitation and leads to the conclusion that they are actually formed from 
detrainment of the anvils, what fits nicely with our argument in the paper. The figure also shows that the 
maximum of thin cirrus occurs about 12h after the peak in thick cirrus. The COD of these clouds is way larger 
than the detection limit of our algorithm, and hence their diurnal cycle cannot be an artifact of low SNR during 
daytime. Together, thin and thick cirrus accounts for 60% of the total amount of cirrus and they both have a 
minimum around noon. The sub-visual cirrus (individual layers) show a prevalence during night-time. We are 
currently running more simulations to be sure that this is not an artifact. However, if there is one, it would be that 
we are missing day-time SVC and hence, that their true fraction is even larger than 40%.   

Last but not least, we thank the reviewer again for raising this point. This forced us to further explore our dataset 
producing the figure/analysis below. We will modify the manuscript to make our argument more clear and self-
evident, following this discussion. 

 
Column COD COD of individual layers 

  

Fig – Diurnal cycle of cirrus frequency for each cirrus type for the year average. The sum of the three curves 
gives exactly the black curve shown in figure 4 of the manuscript. 

 

R7: Furthermore, all of the speculation about the transport of clouds vs. near-source 
convective generation is very weak. The authors are forgetting that if the clouds are being 
generated at/near or on top of them, the lidar will not be profil ing the clouds. You are 
*always* dealing with transport of some kind, as such. I recognize what they are trying to 
say, but recommend they be much more circumspect about how they are delineating 
source/transport with respect to the limited information that they have.  

First of all let us clarify that when we talk about transported cirrus clouds we are specifically 
talking about long-range transport (Fortuin et al 2007). By the way, this was explained in the 
manuscript, at lines 256-258: 

As the tropical cirrus can be transported by advection thousands of kilometers (Fortuin et al., 2007), we speculate that 
during the wet period, the cirrus clouds observed in central Amazonia are a mixture of locally produced and clouds 
transported by advection from other regions. 

Nonetheless, we agree with the reviewer that our discussion about the sources of the cirrus 
we measured is weak, which was also noted by reviewer #1. He/she suggested that we 
could use back-trajectories to give further quantitative evidence that our cirrus clouds originate from deep 
convection. Hence, we did back-trajectory analysis using Hysplit forced by GDAS winds (1deg resolution), 
starting every 6h from 14.5 km over the site during the dry season period. Each of the 480 back-
trajectories were integrated for 7 days. Figure below shows the result of this analysis. In the top panel, we 
show the individual trajectories just for the 0:00 of each day and there are so many lines that clutter the 



plot. The lower panel shows the trajectory density, i.e., the number of trajectories in a point divided by the 
total number of trajectories (a number [0-1]). In this case we used a log-scale because the density will 
obviously be much higher closer to the trajectory start point. The result is quite interesting as it reveals that 
many trajectories actually don’t follow the average wind pattern (fig. 3 in the manuscript, top panel). On the 
other hand, many trajectories come from Colombia and Venezuela, exactly where precipitation from deep 
convection is found (also shown in fig. 3, top), and some even reach towards the ITCZ, far to the east. This 
comparison could be improved if we select only the trajectories starting at times when we detected a cirrus 
clouds (yet do be done).  
 
 

 
Figure C.1 – Hysplit 7day backward trajectories starting 14.5km above the site every 6h for the four months 
of the dry season. It should be compared to the top panel of figure 3 in the manuscript.  

A way we could make this analysis more quantitative would be to run the back trajectories 
for each cloud layer detected and use GOES images to locate deep convective cells, and 
then calculate the distance between each trajectories and the surrounding precipitation (as a 
function of backward time). This is a huge effort and, we believe, deserves its own paper. 
Another possibility would be to do that, but just for one case study in each season (e.g. as 
Fourtin et al., 2007JGR). This, however, would not be very representative of the full dataset.  

If the reviewer thinks these plots/analysis are interesting, we would be happy to extend it to 
the other seasons and include this discussion in the manuscript. 

 

R8: The distribution of clouds as a function of COD also relates to sample bias and 
attenuation effects.  

It is unclear which figure the reviewer is refereeing to. Moreover, we believe that after our 
reply to comment R6, it is now well explained how we are counting the profiles and how the 
method takes into account (and corrects for) sample bias and attenuation effects. 

 



R8 (cont.) Yes, there is an exponential distribution of cirrus cloud occurrence with respect to 
COD (again, see what we have in Campbell et al. 2015). However, the distributions that you 
have with respect to subvisible, optically-thin and opaque clouds is absolutely not consistent 
with other studies.  

We do not agree with the reviewer. Our distribution is very consistent with other studies! We 
have listed 7 papers in table 1, including one co-authored by the reviewer, which report 
distributions similar to ours. The fraction of SVC from these studies varies from 15 to 65% 
(but also vary the latitude), and we have found 40% of SVC. To mention the specific values: 
15% (Seifert et al., 2007), 25% (Antuna and Barja, 2006), 38% (Goldfarb et al, 2001; 
Hoareau et al., 2013), 50% (Sassen and Campbel, 2000), 52% (Pandit et al., 2015), and 
65% (Cadet et al., 2013). 

 

R8 (cont.) There should rougly be a 50-60%/40-50% distribution between transluscent and 
opaque clouds. In Campbell et al. (2016), we see a very similar distribution as yours that we 
fully attribute to sampling bias. I see no reason to think this sample is not subject to the 
same effects. 

We believe that after our reply to comment R6, it is now well explained how we are counting 
the profiles and how the method takes into account (and corrects for) sample bias and 
attenuation effects. Moreover, the proportion of 60%/40% mentioned by the reviewer cannot 
be taken as absolute. Firstly, it will not be the same in different locations. Particularly, there 
is no physical reason why it would be same over the Amazon (i.e. cirrus formed by deep 
convection, year precip > 2200m) and Greenbelt (frontal systems, year precip < 1100mm). 

Secondly, the proportion will be different depending on the algorithm. Let’s say the same 
dataset is analyzed by two different cloud-detection algorithms, one that can see clouds with 
very low COD (e.g. down to 0.001) and another that can detect only COD > 0.01. Of course, 
the amount of SVC detected will be very different, and hence the proportion of transluscent / 
opaque will be different!   

 

R9: Although there is a point where the authors show a correlation between COD and cloud 
base, cloud base is a nearly useless parameter for such vigorous study. As myriad Sassen 
papers discuss and describe, cloud top is the most important layer because this is where 
cirrus cloud nucleate, grow and begin falling. Cloud base, as such, is redundant. Its simply 
the boundary where evaporation/sublimation is complete in falling crystals. So much effort in 
the narrative is spent on cloud base and drawing physical correlation, where it seems to 
have no physical meaning. Cloud top should be the focal point 

 

We thank the reviewer for the suggestion. We will change the manuscript to focus on the cloud top.  

 

R10: As such, there is absolutely no physical basis for evaluting lidar ratio versus mid- cloud temperature. It 
makes absolutely no physical sense. Now, I recognize that the CALIPSO team has done this very thing with 
their analyses. I don’t agree with them either. But, they are dealing with a downward looking dataset, at least, 
and this offers other challenges that the authors are not dealing with in the zenith. Whereas I would accept if 
the authors referenced Garnier et al. (2015) and wanted to leave this as is, I still wouldn’t think that it made 
much physical sense. In particular, as with CALIPSO, you’re never actually going to know for certain what the 
mid-cloud temperature is (or unfortunately the cloud top temperature is) because of attenuation. For CALIOP, 
this is actually a bigger issues, since they can attenuate working downward with clouds that ground-based 
lidars would likely never reach. But, the comment still remains. I recommend sticking with what you can 
physically interpret, and particle effective size and habit are likelier in the long run to relate with available water 
vapor and temperature found at cloud top than somewhere within the cloud 

 

We thank the reviewer for the suggestion. We will change the manuscript to evaluate the LR as a function of the 
cloud top temperature. 



R11: No uncertainty analysis is provided for the lidar ratio analysis. This concerns me, 
again, because of the low SNR environments that you claim to be working with. As such, its 
unclear to me that you can actually develop meaningful correlative relationships, like 
Garnier, with a relatively low number of cases that the SNR would be sufficient and 
uncertainty suppressed. The uncertainty term presented appears to me to be a standard 
deviation, which again seems misrepresentative in context. 

 

In the paper, we did not show any individual retrieved quantity. The tables and figures show 
average values, sometimes for the whole year, or season, or hours in a day. Hence, the 
uncertainties of individual retrieval are not given. Depending on the discussion, we reported 
either the error in the mean value, or the variability of the values.  

However, we recognize that we should better explain how we evaluated the uncertainties in 
the LR and COD obtained by combination of the transmittance and Klett methods. Indeed, 
this was a request made be reviewer #1 as well.  

To make it clear, we have calculated the uncertainties in the optical depth and LR. That 
comes from a simulation study we performed to access the accuracy and precision of our 
algorithms. In the simulations, we varied the cloud thickness (from 15m to 4.5km), the cloud extinction 
coefficient (from 0.02 to 0.1 km-1) and the SNR from 3 to 50. Even for SNR=3, the difference between the 
true and retrieved LR was < 5 sr for COD = 0.01. 

More details about the simulation can be found in the file attached with this answer. This is a draft of the 
material that we are preparing for the supplement.  

 

R12: Please see my note about how you interpreted Chew et al. (2011). Its not correct. 34% 
of Level 2 AERONET observations were found biased by unscreened cirrus. 
 

Thanks for pointing that out. We changed that in the manuscript.  

 

R13: I recognize that this is a lot of stuff. I offer this with full respect to what you are trying to do, because its in 
my direct interest working so many years with MPLNET to see this sort of work get published. I present these 
thoughts in detail with the sincere hope of helping resolve what I believe to be significant scientific shortcomings 
in the narrative 

 

We really appreciate your suggestions and, particularly, the time you dedicated for doing such a careful review 
of our manuscript. Your constructive criticism helped a lot to improve our work.   

 

ATTACHED DOCUMENT – Hand written notes with many suggestions for improving the manuscript text.  

 

We thank the referee for carefully reading. The suggestions for improving the English writing will definitely make 
the paper easier to follow. We have accepted all suggestions and made the changes in the manuscript.  



TO	BE	INCLUDED	IN	THE	SUPPLEMENT	MATERIAL	

S.1	Simulations	for	evaluating	the	retrieval	methods	

It	is	important	to	know	the	uncertainties	in	the	retrieved	cloud	optical	depth	and	lidar	ratio,	
particularly	because	we	are	using	the	transmission	method	(Chen	et	al.,	2002),	which	becomes	
very	sensitive	to	signal	noise	for	low	optical	depths.	To	estimate	the	effect	of	random	signal	
noise	in	our	retrievals	and	evaluate	the	errors	for	different	COD,	we	did	numerical	simulations	
of	lidar	profiles	having	cirrus	clouds	with	fixed	LR	of	20	sr.	Cloud-base	was	fixed	at	12	km	and	
eight	cloud-thickness	were	simulated:	15,	30,	45,	90,	150,	450,	1200,	and	4500	m.	For	the	
cloud	extinction	coefficient,	two	values	were	simulated:	0.02	and	0.1	km-1,	thus	the	COD	
ranged	from	3	x	10-4	to	0.45.	Random	noise	following	a	Poisson	distribution	was	added	to	the	
simulated	photon-count	signal	to	get	signal	to	noise	ratios	of	50,	10,	5	and	3	in	a	single	bin	just	
below	the	cloud	base.	For	each	combination	of	COD	and	S/N,	100	simulations	were	performed.	
The	simulated	profiles	were	processed	with	the	same	algorithm	used	for	atmospheric	data.	
Therefore,	we	can	evaluate	the	uncertainty	in	the	COD	and	LR	as	a	function	of	the	S/N	by	
calculating	the	mean,	the	standard	deviation,	and	the	standard	deviation	of	the	mean	over	
these	100	realizations.	The	standard	deviation	will	give	how	the	signal	random	noise	might	
affect	the	retrievals,	while	the	mean	and	the	standard	deviation	of	the	mean	will	show	if	the	
retrieved	values	converge	to	the	expected	values,	after	many	observations.		

	
Figure	S1:	Example	of	background	and	range	corrected	signals	(top)	and	the	corresponding	S/N	ratio	(bottom)	are	shown.	The	blue	
curve	is	a	measured	lidar	profile	with	5-min	temporal	average	and	7.5	m	vertical	resolution,	while	the	red	curve	is	a	simulated	
profile	with	similar	S/N	ratio	at	cloud	base	and	a	cirrus	cloud	of	optical	depth	0.12.	The	black	curve	is	the	same	measured	profile	
but	with	a	5-bin	vertical	binning	(37.5	m),	and	thus	a	higher	S/N	ratio.		

	



Figure	S1	shows	an	example	of	a	measured	profile	with	5	min	average	and	original	7.5	m	
vertical	resolution,	from	some	day	in	July	2011.	The	system	shows	a	good	performance.	Typical	
S/N	ratio	for	the	molecular	backscatter	at	12	km	of	altitude,	for	this	temporal	and	spatial	
resolution,	varies	from	6	to	20,	depending	on	the	presence	of	low	clouds	and	the	solar	
background.	This	S/N	ratio	can	be	improved,	for	instance,	by	reducing	the	vertical	resolution	as	
shown	in	the	lower	panel	(black	curve).		

S1.1	Uncertainty	in	the	retrieval	of	COD	

As	discussed	in	section	2.4,	for	the	calculation	of	the	optical	depth	with	the	transmittance	
method,	it	is	necessary	to	fit	the	molecular	part	of	the	signal	below	and	above	the	cloud.	
Considering	a	large	region	for	those	fits,	in	our	case	1	to	10	km,	helps	to	reduce	the	effect	of	
the	noise.	The	difference	between	the	two	fits	gives	the	cirrus	transmittance	and	the	optical	
depth	is	half	the	natural	logarithm	of	that	value	(eq.	2	and	3).	Figure	S2	shows	the	mean	COD	
and	the	standard	deviation	of	that	mean	value,	for	the	100	simulations.	These	results	show	
that	the	magnitude	of	absolute	mean	error	(mean	COD	–	truth)	is	independent	of	the	true	
COD.	The	root	mean	square	error	(RMSE)	is	2.5	x	10-3,	for	S/N	=	3,	and	only	2.3	x	10-4,	for	S/N	=	
50.	That	is	for	the	averages	over	100	simulations,	for	single	profiles	it	is	10	times	larger.	The	
relative	error	is	smaller	for	large	COD	values.	This	error	is	less	than	20%	for	COD	>	0.005	and	
S/N	=	3,	and	less	than	6%	for	COD	>	4.5	x	10-4	(minimum	value)	and	S/N	=	50	(largest	value).	
We	note	that	even	for	very	low	S/N	ratio	and	small	COD	the	method	still	find	a	mean	value	
compatible	with	the	true	COD.		

	
Figure	S2:	COD	calculated	by	the	transmittance	method	as	a	function	of	the	true	COD	for	different	S/N	ratios.	The	error	bars	are	
the	standard	deviation	of	the	mean	values.	The	absolute	differences	(lower	panel)	are	all	compatible	with	zero	(i.e.	mean	
calculated	COD	is	compatible	with	true	COD).		



The	cloud	optical	depth	can	also	be	calculated	by	integrating	the	extinction	coefficient	
obtained	with	the	Klett	method,	however	an	a-priori	LR	is	required.	We	use	this	method	in	two	
cases.	First,	when	there	is	more	than	one	cloud	layer.	In	this	situation,	the	transmittance	
method	gives	the	total	cloud	optical	depth	(all	layers	combined)	and	that	is	used	to	obtain	an	
average	LR	(all	layers	combined),	the	same	way	as	explained	in	section	2.4.	The	extinction	
profile	from	the	Klett	method	(with	that	average	LR)	is	then	used	to	divide	the	total	optical	
depth	into	contributions	from	each	layer.	The	second	case	is	when	the	interactive	method	
described	in	section	2.4	fails	to	converge,	i.e.,	when	it	cannot	find	a	reasonable	LR	value	that	
makes	the	Klett	inversion	give	the	same	optical	depth	as	the	transmission	method.	This	
happens	for	XX	%	of	our	profiles	with	clouds	and	they	have	very	low	optical	depth,	about	YY,	
and	only	ZZ	m	of	thickness.	These	profiles	are	usually	those	near	the	edges	of	the	clouds.	In	
these	cases,	the	cloud	optical	depth	is	obtained	with	the	Klett	method	by	assuming	a	LR	equal	
to	the	average	value	obtained	from	all	the	other	profiles	(i.e.	the	ones	when	we	could	
determine	the	LR,	for	the	current	version	of	the	manuscript	it	is	about	20	sr).		

Figure	S3	shows	the	COD	obtained	by	this	method	in	the	best	scenario,	i.e.	when	imposing	the	
true	LR	for	the	simulations	(20	sr).	We	can	see	that	the	Klett	method	is	much	less	sensitive	to	
the	S/N	ratio.	The	RMSE	is	2.8	x	10-4,	for	S/N	=	3,	and	5.5	x	10-5,	for	S/N	=	50,	both	much	
smaller	than	the	mean	errors	obtained	with	the	transmittance	method,	but	also	closer	to	each	
other.	As	for	the	transmittance	method,	the	Klett	method	also	finds	a	mean	value	compatible	
with	the	true	COD	even	for	very	low	S/N	ratios	and	small	CODs.		

	
Figure	S3:	COD	calculated	by	the	Klett	method,	assuming	the	true	LR	=	20	sr,	as	a	function	of	the	true	COD	for	different	S/N	ratios.	
The	error	bars	are	the	standard	deviation	of	the	mean	values.	The	absolute	differences	(lower	panel)	are	all	compatible	with	zero	
(i.e.	mean	calculated	COD	is	compatible	with	true	COD).		



It	should	be	noted,	however,	that	a	wrong	guess	about	the	LR	would	bias	the	retrieved	CODs	
obtained	with	the	Klett	method.	To	quantify	that	effect,	we	applied	the	Klett	method	assuming	
a	LR	value	50%	higher	and	lower	than	the	true	value	(i.e.	10	and	30	sr)	and	S/N	of	50	(so	that	it	
can	be	disregarded).	The	result	is	shown	in	figure	S4	together	with	the	result	for	the	
transmission	method	with	S/N	ratio	of	10.	It	is	clear	that	the	COD	retrieved	by	the	Klett	
method	is	only	as	good	as	the	estimative	of	the	LR.		

	
Figure	S4:	COD	calculated	by	the	Klett	method,	for	LR	=	10,	20	(true)	and	30	sr,	is	shown	as	a	function	of	the	true	COD	for	S/N	=	50.	
Points	in	green	are	the	transmittance	method	for	S/N	=	10.	The	error	bars	are	the	standard	deviation	of	the	mean	values.		

Figure	S5	shows	the	relative	errors	for	both	methods.	This	is	defined	as	RMSE/True_COD.	As	
expected,	the	lower	the	S/N	ratio	the	higher	the	error.	In	the	worst	case,	i.e.	S/N	=	3,	the	
relative	error	from	a	single	retrieval	using	the	transmittance	method	is	below	20%	only	for	
COD	>	0.1.	For	S/N	=	10,	this	limit	is	COD	>	0.025.	This	error,	however,	is	random	and	fluctuates	
around	zero	as	shown	previously.	By	averaging	over	100	profiles	(right	panel,	Fig.	S5),	the	
relative	errors	decrease	by	a	factor	of	10.	Under	these	circumstances,	i.e.	with	many	profiles,	
or	if	the	S/N	is	high	or	if	the	COD	is	not	very	small,	it	is	advantageous	to	use	the	transmittance	
method	because	it	does	not	depend	on	an	a-priori	LR.	In	our	study,	we	analyzed	about	37k	5-
min	profiles,	where	21k	had	S/N	>	3	at	12km	and	in	14k	of	these	we	found	a	cirrus	cloud.	Thus,	
the	error	in	the	mean	cloud	optical	depth	reported	in	Table	1	is	indeed	much	lower	than	
shown	in	the	right	panel	of	Fig.	S5.	

As	expected,	the	relative	errors	for	the	Klett	method	with	the	true	LR	are	always	smaller	than	
those	from	the	transmittance	method	for	the	same	COD	(Fig.	S5,	compare	the	respective	lines	
with	triangles	and	circles).	However,	there	is	a	large	uncertainty	from	the	value	of	choice	for	
the	LR.	The	dashed	black	line	shows	the	relative	error	from	choosing	a	LR	of	10	or	30	sr.	The	
induced	bias	in	the	retrieved	COD	is	proportional	to	the	change	in	LR,	hence	the	relative	error	
is	approximately	constant.	The	50%	change	in	the	LR	translates	in	a	relative	error	of	about	50%	
for	small	COD,	and	30%	for	large	COD.	

	



	
Figure	S5:	Relative	error	(in	%)	in	determining	the	COD	for	both	methods	as	a	function	of	the	true	COD	for	the	different	signal	to	
noise	ratios	are	shown.		

S1.2	Uncertainty	in	the	retrieval	of	LR		

As	explained	in	section	2.4,	the	LR	is	estimated	by	a	minimization	procedure	in	which	the	LR	is	
allowed	to	vary	from	2	to	50	sr.	The	optimal	LR	is	the	one	making	the	cloud	optical	depth	from	
the	Klett	algorithm	equal	to	that	from	the	transmittance	method.	Typically,	we	are	able	to	
estimate	the	LR	for	clouds	with	COD	>	0.01,	which	is	about	91%	of	our	observations.	Below	
that	threshold,	the	COD	is	not	very	sensitive	to	changes	in	the	LR	and	the	method	does	not	
converge.	That	is	why	we	estimate	the	COD,	in	these	cases,	with	the	Klett	method	and	a	fixed	
LR	=	20sr.		

Figure	S6	shows	the	results	of	the	LR	estimated	for	the	same	simulated	profiles	used	for	the	
evaluation	of	the	COD	retrievals	but	only	for	the	cases	when	the	LR	algorithm	converged.	
When	the	S/N	is	low	or	when	the	COD	is	small,	there	is	a	tendency	of	overestimating	the	LR	(all	
deviations	are	positive).	However,	all	retrieved	values	are	still	compatible	with	the	true	value	
(t-score	<	3)	and	the	maximum	deviation	is	just	4.7	sr.	Moreover,	the	variability	of	the	
calculated	LR	(standard	deviation,	i.e.	10	times	the	error	bars	in	Fig.	S6)	decreases	with	
increasing	COD.	For	S/N	of	5,	it	is	12	sr	for	COD	=	0.02	and	3	sr	for	COD	=	0.45.	The	variability	
also	decreases	with	increasing	S/N	ratio.	This	is	shown	in	the	histograms	in	figure	S7,	for	COD	>	
0.02	and	S/N	of	5	and	10.	The	variability	was	reduced	from	5	to	2.5	sr,	respectively.	For	these	
cases	with	somewhat	larger	COD,	it	is	clear	that	there	is	no	bias	in	the	mean	retrieved	LR.		



	
Figure	S6:	LR	calculated	from	the	combination	of	the	transmittance	and	Klett	methods,	as	a	function	of	the	true	COD	for	different	
S/N	ratios.	The	error	bars	are	the	standard	deviation	of	the	mean	values.	The	absolute	differences	(lower	panel)	are	all	compatible	
with	zero	(i.e.	mean	calculated	LR	is	compatible	with	true	LR).		

	

Figure	S7:	Histograms	of	LR	calculated	from	the	combination	of	the	transmittance	and	Klett	methods	for	S/N	=	5	(left)	and	S/N	=	10	
(right)	are	shown	just	for	COD	>	0.02.		

	


