

1 **Evaluation of biomass burning aerosols in the HadGEM3
2 climate model with observations from the SAMBBA field
3 campaign**

4

5 B. T. Johnson¹, J. M. Haywood^{1,2}, J. M. Langridge¹, E. Darbyshire³, W. T. Morgan³, K.
6 Szpek¹, J. Brooke¹, F. Marenco¹, H. Coe³, P. Artaxo⁴, K. M. Longo^{5*}, J. Mulcahy¹, G. Mann⁶,
7 M. Dalvi¹, and N. Bellouin⁷

8

9 ¹Met Office, Exeter, UK

10 ²CEMPS, University of Exeter, Exeter, UK

11 ³Centre for Atmospheric Science, University of Manchester, Manchester, UK

12 ⁴Physics Institute, University of São Paulo, São Paulo, Brazil

13 ⁵National Institute for Space Research (INPE), São José dos Campos, Brazil

14 *Now at NASA Goddard Space Flight Center and USRA/GESTAR, Greenbelt, MD, USA

15 ⁶National Centre for Atmospheric Science, School of Earth and Environment, University of
16 Leeds, Leeds, UK

17 ⁷Department of Meteorology, University of Reading, Reading, UK

18

19 Correspondence email: ben.johnson@metoffice.gov.uk

20

1 **Abstract**

2 We present observations of biomass burning aerosol from the South American Biomass
3 Burning Analysis (SAMBBA) and other measurement campaigns, and use these to evaluate
4 the representation of biomass burning aerosol properties and processes in a state-of-the-art
5 climate model. The evaluation includes detailed comparisons with aircraft and ground data,
6 along with remote sensing observations from MODIS and AERONET. We demonstrate
7 several improvements to aerosol properties following the implementation of the GLOMAP-
8 mode modal aerosol scheme in the HadGEM3 climate model. This predicts the particle size
9 distribution, composition and optical properties, giving increased accuracy in the
10 representation of aerosol properties and physical-chemical processes over the CLASSIC bulk
11 aerosol scheme previously used in HadGEM2. Although both models give similar regional
12 distributions of carbonaceous aerosol mass and Aerosol Optical Depth (AOD), GLOMAP-
13 mode is better able to capture the observed size distribution, single scattering albedo, and
14 Ångström exponent across different tropical biomass burning source regions. Both aerosol
15 schemes overestimate the uptake of water compared to recent observations, CLASSIC more
16 so than GLOMAP-mode, leading to a likely overestimation of aerosol scattering, AOD and
17 single scattering albedo at high relative humidity. Observed aerosol vertical distributions were
18 well captured when biomass burning aerosol emissions were injected uniformly from the
19 surface to 3 km. Finally, good agreement between observed and modelled AOD was gained
20 only after scaling up GFED3 emissions by a factor of 1.6 for CLASSIC and 2.0 for
21 GLOMAP-mode. We attribute this difference in scaling factor mainly to different
22 assumptions for the water uptake and growth of aerosol mass during ageing via oxidation and
23 condensation of organics. We also note that similar agreement with observed AOD could
24 have been achieved with lower scaling factors if the ratio of organic carbon to primary
25 organic matter was increased in the models toward the upper range of observed values.
26 Improved knowledge from measurements is required to reduced uncertainties in emission
27 ratios for black carbon and organic carbon, and the ratio of organic carbon to primary organic
28 matter for primary emissions from biomass burning.

29 **1 Introduction**

30 Biomass burning is a major source of tropospheric aerosol globally (van der Werf et al., 2010)
31 and dominates the aerosol burden in many tropical regions. Carbonaceous aerosols are
32 produced from open burning of vegetation, including both wild fires and managed fires for

1 clearing forest, pasture and arable land. These aerosols have a wide range of impacts
2 (Voulgarakis and Field, 2015) including short-term influences on local and regional weather
3 (e.g. Kolusu et al., 2015) and significant impacts on regional air quality and human health
4 (Johnston et al., 2012; Reddington et al. 2015). They also have a significant role in climate
5 change as they affect the global energy budget in a number of ways (e.g. IPCC, 2013; Bauer
6 and Menon 2012, Haywood and Boucher 2000).

7 The aerosols emitted from biomass burning (BB) are composed primarily of organic carbon
8 and black carbon and they both scatter and absorb solar radiation in the atmosphere. Such
9 aerosol-radiation interactions lead to large reductions of surface insolation and significant
10 radiative heating of the atmosphere (Ramanathan and Carmichael, 2008; Johnson et al.,
11 2008a; Malavelle et al., 2011; Milton et al., 2008). These effects may suppress the
12 hydrological cycle by stabilizing the lower troposphere, although strong absorption can in
13 some cases enhance precipitation regionally by increasing low-level convergence (Wu et al.,
14 2013; Ramanathan et al., 2001; Lau et al., (2006); Randles et al., 2008). The enhancement of
15 particulate numbers by BB can also increase the concentration of cloud condensation nuclei
16 modifying cloud microphysical properties (Spracklen et al., 2011). This can brighten clouds
17 (Twomey 1974) and modelling studies have also shown that smoke (aerosol) from BB can
18 delay the onset of precipitation and influence the evolution of convective clouds (Andreae et
19 al., 2004; Feingold et al. 2001). The localised heating associated with absorption of solar
20 radiation by the emitted particles can also suppress convection and change regional cloud
21 cover via the semi-direct aerosol effect (Koren et al., 2008; Tosca et al., 2014).

22 Quantifying the impact of BB aerosol emissions on the global radiation budget and climate is
23 therefore difficult with many competing effects and sources of uncertainty (Ten Hoeve et al.,
24 2012; Ward et al. 2012). Recent assessments suggest that on a global basis, changes in the top
25 of the atmosphere (TOA) radiation budget resulting from increased scattering due to aerosol
26 emitted from BB is approximately cancelled by increased absorption by the aerosol (Myhre et
27 al., 2013; Shindell et al., 2013; Bellouin et al., 2013). However, the extent to which scattering
28 and absorption compensate varies regionally as it depends on many factors including the
29 surface albedo, cloud cover, and the optical properties of the aerosol. In particular, the
30 single scattering albedo (e.g. Myhre et al., 2008), and the vertical distribution of the absorbing
31 aerosol relative to clouds (e.g. Samset et al., 2013) have a strong influence on this potential
32 balance. Absorption depends mainly on the black carbon content of the aerosol, but a

1 significant contribution in the UV, and to a lesser extent visible spectrum, can come from
2 organics, i.e. brown-carbon (Saleh et al., 2014).

3 Overall, BB aerosol emissions are estimated to lead to a global mean negative Effective
4 Radiative Forcing (ERF) as aerosol-cloud interactions in models are shown to exert a negative
5 forcing that outweighs any small positive forcing from aerosol-radiation interactions. This is
6 expected to have a cooling influence on global climate but the ERF and global temperature
7 responses are estimated to be relatively small, compared to those from sulphates or black
8 carbon from fossil fuel combustion (Jones et al., 2007; Shindell et al., 2013). Nevertheless,
9 increases in aerosol due to BB have potentially important impacts on regional climates, via
10 changes in atmospheric circulation and shifts in precipitation (Tosca et al., 2010, 2013; Ott et
11 al., 2010; Zhang et al., 2009; Jones et al., 2007).

12 Recent studies have also highlighted more complex Earth-system interactions associated with
13 BB emissions. By scattering solar radiation and increasing the ratio of diffuse to direct
14 radiation at the surface, aerosol can enhance photosynthesis over tropical forests, increasing
15 Net Primary Productivity (NPP) and carbon uptake (Rap et al., 2015; Mercado et al. 2009).
16 On the other hand, tropospheric ozone produced due to NO_x emissions from fires can damage
17 plants, reducing NPP (Pacifico et al. 2015). Mao et al. (2013) also showed that emission of
18 aerosol and trace gases from BB led to increases in global tropospheric ozone and methane
19 lifetime. In their study this led to a positive radiative forcing that offset the negative radiative
20 forcing from the sum of aerosol-radiation and aerosol-cloud interaction effects.

21 Quantifying these wide-ranging impacts of BB on climate, air quality and the earth-system
22 relies on the accurate representation of BB processes and aerosol properties in global models.
23 It is therefore important to evaluate their simulation in models with observations to reduce
24 inherent biases and identify priorities for future improvements to emissions, processes and
25 techniques used to represent aerosol properties. The properties of aerosols in BB-dominated
26 air masses have been investigated during a number of field experiments (e.g. Kaufmann et al.,
27 Swap et al., 2002; Haywood et al., 2008), and reviewed by Reid et al. (2005a, 2005b)
28 and Martin et al. (2010). A new set of observations is now available from the South American
29 Biomass Burning Analysis (SAMBBA), a field campaign that took place in Brazil during 14
30 September – 4 October 2012. The measurement campaign was a joint UK-Brazil project led
31 by the Met Office and NERC, in collaboration with the National Institute of Space Studies in
32 Brazil (INPE) and University of Sao Paulo (USP) in Brazil. The campaign involved the UK

1 Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 atmospheric research
2 aircraft coordinated with a range of ground-based observations (Allan et al., 2014; Brito et al.,
3 2014; Marenco et al., 2016). The airborne campaign comprised 20 flights investigating
4 aerosol properties, atmospheric chemistry, clouds, meteorology and the radiation budget over
5 Amazonia. The flights provided intensive measurement of aerosols across Amazonia
6 including aerosol dominated by BB emissions.

7

8 In this study we combined the observations from SAMBBA with those from previous
9 campaigns and from long-term remote sensing observations (MODIS, AERONET) to
10 evaluate the representation of Biomass Burning Aerosol (BBA) in a state-of-the-art global
11 climate model, the Hadley Centre Global Environment Model version 3 (HadGEM3). We
12 evaluate two aerosol schemes: (i) the mass-based CLASSIC aerosol scheme, (ii) the
13 microphysical scheme GLOMAP-mode. CLASSIC was previously used in HadGEM2-ES for
14 CMIP5 (Bellouin et al., 2011) and in this study is used within HadGEM3. GLOMAP-mode
15 has been implemented more recently in the Met Office Unified Model and is available in
16 HadGEM3 (e.g. Bellouin et al., 2013) (in some publications configurations of HadGEM3 that
17 include GLOMAP-mode have been referred to as HadGEM-UKCA). The study focuses on
18 aerosol properties important in simulating aerosol-radiation interactions, including the global
19 distribution of aerosol and their physical, chemical and optical properties. The study provides
20 an assessment of the influence of biomass burning on aerosol properties, as simulated by each
21 scheme, and assesses some of the assumptions commonly used to represent BB aerosol
22 emissions and aerosol processes in global models.

23 **2 Methods**

24 **2.1 HadGEM3 model configuration**

25 This work uses global simulations of the Met Office Unified Model (MetUM) within the
26 framework HadGEM3 (Hewitt et al., 2011). The scientific configuration of the physical
27 model was from the Global Atmosphere 7 (GA7) configuration and our simulations ran with a
28 resolution of N96 ($1.25^\circ \times 1.875^\circ$) and 85 vertical levels. Sea surface temperatures and sea ice
29 were prescribed using reanalysed daily-varying fields for the period 2002 – 2011 based on the
30 methodology of Reynolds et al. (2007) (as used in Atmosphere Model Intercomparison
31 Project). The atmospheric circulation was free-running including aerosol-radiative effects

1 from either CLASSIC or GLOMAP-mode. The atmospheric physics configuration includes
2 some updates to atmospheric processes over previous configurations presented in Williams et
3 al. (2015) and Walters et al. (2014). The main update affecting this study is the
4 implementation of the Global Model for Aerosol Processes (GLOMAP-mode) (Mann et al.,
5 2010) modal aerosol scheme. The implementation of GLOMAP-mode in the MetUM took
6 place as part of the UKCA (United Kingdom Chemistry and Aerosol) project along with
7 several alternative atmospheric chemistry schemes. In this study we use an offline-chemistry
8 configuration where concentrations of gas phase chemical species [ozone (O_3), hydrogen
9 peroxide (H_2O_2), and the hydroxyl (OH), nitrate (NO_3) and hydroperoxyl (HO_2) radicals]
10 required for the oxidation of aerosol precursor species are provided as monthly mean
11 climatologies. The climatology of oxidants was generated from a previous 20-year simulation
12 that included on-line gas-phase atmospheric chemistry using the UKCA combined
13 tropospheric and stratospheric chemistry scheme (O'Connor et al., 2014; Morgenstern et al.,
14 2009). For this study a parallel simulation was also run with the same model configuration
15 except that aerosols were simulated by the CLASSIC (Coupled Large-scale Aerosol Scheme
16 for Simulations in Climate Models) aerosol scheme. CLASSIC was the aerosol scheme used
17 in HadGEM2, including Hadley Centre contributions to the fifth Coupled Model
18 Intercomparison Project (CMIP5) (Bellouin et al., 2011). CLASSIC used a climatology of
19 oxidants generated separately from an earlier simulation. For both aerosol schemes fire
20 emissions of BBA were taken from the Global Fire Emission dataset (GFED) version 3.1 (van
21 der Werf et al., 2010). We use monthly mean emissions averaged over the period 2002 –
22 2011. Details of how these were implemented are given in section 2.3. Anthropogenic
23 emissions of SO_2 and carbonaceous aerosol (from fossil fuel and bio-fuel) for both aerosol
24 schemes were based on the 10-year average emissions from 2002-2011. These data were
25 provided by MACC/CityZEN (via ECCAD-Ether at <http://eccad.sedoo.fr>) that interpolates
26 across this time frame using historical emissions for 2000 from ACCMIP (Lamarque et al.,
27 2010) and emissions for 2005 and 2010 from the RCP8.5 scenario (Granier et al. 2011; Diehl
28 et al., 2012). However, we keep annual emissions constant at the 2002 – 2011 mean rate.
29 Volcanic degassing emissions of SO_2 were taken from Andres and Kasgnoc (1998).
30 Emissions of di-methyl sulphide (DMS) were calculated from the Kettle et al. (1999) ocean
31 DMS climatology with the Liss and Merlivat (1986) surface-exchange parameterization.
32 Stratospheric aerosol was represented via the climatology from Cusack et al. (1998). Nitrate
33 aerosols were not included in this study.

1 **2.2 Representation of aerosols**

2 **2.2.1 CLASSIC**

3 CLASSIC is a mass-based or “bulk” aerosol scheme that represents a range of aerosol species
4 (sulphate, fossil-fuel soot, fossil-fuel organic carbon, BBA, sea salt, and mineral dust) as
5 separate externally-mixed species with specified physical and optical properties. A full
6 description of the scheme is available in the appendix of Bellouin et al. (2011). CLASSIC
7 includes a representation of the sulphur cycle for the gas-phase and aqueous-phase production
8 of sulphate aerosol. Carbonaceous aerosols are represented as three separate species
9 depending on their emission source (soot, fossil-fuel organic carbon, BBA). Each has
10 different assumptions regarding their physical, chemical and optical properties. The
11 representation of the BBA species is based on the aircraft observations of Haywood et al.
12 (2003) and Abel et al. (2003) obtained over Southern Africa during SAFARI-2000 and is
13 described in more detail below. Mineral dust is simulated by the 6-bin scheme of Woodward
14 (2001), with modifications in Woodward (2011). CLASSIC uses a diagnostic scheme for
15 wind-driven sea salt, i.e. sea salt aerosol is not transported but instead is diagnosed locally
16 over ocean points as a function of wind speed and with a prescribed scale-height in the
17 vertical (see Bellouin et al., 2011, Jones et al., 2001). Secondary Organic Aerosol (SOA) is
18 not modelled explicitly by CLASSIC but the contribution to AOD and radiative effects is
19 included using an offline climatology. The SOA climatology is provided by the UK Met
20 Office Chemistry Transport Model (STOCHEM) (Derwent et al. 2003) based on the emission
21 of isoprene from biogenic sources.

22 The BBA species includes a fresh mode to represent the primary particles, and an aged mode
23 to represent the aerosols after chemical ageing and growth. A third tracer is used to track the
24 mass of in-cloud BBA particles that are either lost via wet deposition or return to the aged
25 BBA mode as rain water is lost via evaporation. The size distribution for each mode is
26 represented by a single log-normal with a standard deviation of 1.3 and mean diameter of 0.2
27 μm for the fresh mode and 0.24 μm for the aged mode. The total aerosol mass emitted into the
28 fresh mode is taken as the sum of BC and OC from GFED but the model makes its own
29 assumptions regarding the proportion of BC and OC in each BBA mode. Each BBA mode is
30 assumed to be an internal mixture of Black Carbon (BC) and Organic Carbon (OC) with an
31 organic carbon mass fraction of 91.5 % for the fresh mode and 94.6 % for the aged and in-
32 cloud modes. The ageing process occurs on a 6-hour e-folding timescale and during the

1 transfer from the fresh to aged mode the aerosol mass is increased by a factor of 1.62. This
2 representation of aerosol ageing is based on the evolution of aerosol properties in a large
3 smoke plume observed during SAFARI-2000 (Abel et al., 2003). Optical properties are
4 calculated from Mie theory with the refractive index (RI) computed as the volume-weighted
5 average of the BC and OC components assuming an aerosol mass density of 1.35g/cm³ for the
6 OC and 1.7g/cm³ for the BC. The RI of the BC component is based on WCP (1983) (1.75 –
7 0.44i at 550nm) and the RI of the OC component is assumed to be 1.53 – 0.0i across the solar
8 spectrum. This gives an RI of 1.54 - 0.025i for the fresh mode and 1.54 – 0.018i for the aged
9 mode, in the mid-visible (550nm). Both species are hygroscopic with empirical growth curves
10 from Magi and Hobbs (2003) (Section 3.5).

11 **2.2.2 GLOMAP-mode**

12 The GLOMAP-mode (Global Model for Aerosol Processes) scheme (Mann et al., 2010) has
13 an entirely different modelling philosophy to CLASSIC, being an aerosol microphysics
14 scheme including a size-resolved representation of the key processes which alter the particle
15 physical and chemical properties during its lifecycle (e.g. Mann et al., 2014). The
16 configuration of GLOMAP-mode in this study (GA7) includes four soluble modes
17 (nucleation, Aitken, accumulation, coarse) and one insoluble Aitken mode, and includes the
18 components of sulphate, particulate organic matter, black carbon and sea salt. Aerosol
19 particles within any given mode are assumed to be an internal mixture of the chemical
20 constituents in that mode. Particles within a mode can grow by condensation and coagulation.
21 Aerosol mass and number can also be transferred from smaller to larger modes, either via
22 coagulation between the modes, or as the diameter of particles within a mode exceeds the
23 specified limit for that mode (Mann et al., 2010). Insoluble Aitken particles also age as
24 sulphuric acid and oxidised organic vapours condense onto them and the aerosol are
25 transferred to the Aitken soluble mode when the coating exceeds 10 mono-layers. Although
26 GLOMAP-mode generally treats mineral dust within the modal framework, in the same way
27 as other aerosol components, in the runs here, this modal representation for mineral dust was
28 not used. Instead, for the GA7 configuration of the atmospheric model applied here, the
29 existing UM bin-resolved dust scheme (Woodward, 2001; Woodward et al., 2011) was used
30 to transport dust (and apply its radiative effects) alongside the GLOMAP representation for
31 other components (as in Bellouin et al., 2013). The simulation with GLOMAP-mode included
32 primary aerosol emissions from biomass burning, bio-fuel and fossil fuel combustion sources,

1 interactive sea spray emissions, and sub-grid sulphate particle formation (so-called “primary
2 sulphate”), assumed to be 2.5 % of emitted SO_2 . The scheme explicitly represents the
3 secondary aerosol particle source from binary nucleation of sulphuric acid vapour and water
4 vapour applying the parameterization of Kulmala et al. (1998). The transfer of secondary
5 organic aerosol (SOA) mass to the particle phase occurs following the oxidation of emitted
6 biogenic Volatile Organic Compounds (bVOCs), chemically producing a zero vapour
7 pressure gas phase species “SEC_ORG” which then condenses on to existing particles
8 (increasing the OA mass in each mode). In these simulations, no anthropogenic SOA was
9 produced, and the only SOA-producing bVOC being a lumped monoterpene species
10 “MONOTER” produced by emissions from Guenther et al., (1995). The chemical production
11 of SEC_ORG from MONOTER proceeds via reaction with OH, NO_3 and O_3 , with rates given
12 by oxidation rates for alpha-pinene, and assuming a 26 % molar yield to the particle phase.
13 The 26% value increased from the 13% used by Bellouin et al. (2013) to account for missing
14 SOA from isoprene.

15 Aerosol particle emissions from biomass burning are assumed to have an initial (emitted) size
16 distribution given by a single log-normal mode with geometric mean diameter of 0.15 μm and
17 geometric standard deviation of 1.59, as used by Stier et al. (2005) and consistent with the
18 range of log-normal parameters fitted to BB aerosol size distributions in Fig. C2 of Dentener
19 et al. (2006). The ratio of BC to OC varies interactively in GLOMAP-mode depending on
20 mixing of these components from the range of sources mentioned above. There is currently no
21 representation of the SOA from semi-volatile VOCs partitioning into the aerosol particle
22 phase.. In GLOMAP-mode, the BC component of carbonaceous particles is always assumed
23 hydrophobic, whereas the POM component is assumed to be hydrophobic in insoluble
24 particles, and hydrophilic in soluble particles. Further details on the hygroscopic growth are
25 given in section 3.5. Aerosol optical properties are derived for each mode as function on
26 aerosol mode diameter and RI using look-up-tables with pre-computed results from Mie
27 theory. For these the RI is computed by volume-weighted averages depending on the mixture
28 of components within any given mode. The RI of the BC component, as in CLASSIC, is
29 based on WCP (1983) and the OC component is assumed to be non-absorbing with an RI of
30 1.5 – 0.0i across the solar spectrum. Aerosol mass density for BC and OC are both assumed to
31 be 1.5 g/cm^3 .

32

1 **2.3 Biomass burning aerosol emissions and scaling factors**

2 **2.3.1 Global emission scaling factor**

3 Fire emissions of BBA were taken from the Global Fire Emission Dataset (GFED) version 3.1
4 (van der Werf et al., 2010). Preliminary simulations with GFED3.1 emissions led to large
5 underestimates in modelled aerosol mass and AOD over tropical BB regions. Therefore, we
6 apply global scaling factors of 1.6 for CLASSIC and 2.0 for GLOMAP-mode (Table 1) to
7 increase the total BB aerosol emissions to give better agreement between modelled and
8 observed mid-visible AOD (see section 3.1). These scaling factors were not calculated
9 precisely but were found to give good overall correspondence between modelled and
10 observed peak AODs (from AERONET and MODIS) over continental BB source regions in
11 the tropics, and a consistent AOD contribution from BB emissions in CLASSIC and
12 GLOMAP-mode over the BB source regions. Other modelling studies have also found it
13 necessary to apply global scaling factors to increase aerosol emissions from BB sources to
14 gain realistic AOD and/or particulate mass concentrations (Kaiser et al., 2012; Marlier et al.,
15 2013; Petrenko et al., 2012; Tosca et al., 2013; Archer-Nicholls et al., 2016; Kolusu et al.,
16 2015; Reddington et al., 2016). Note, observed AODs are also used to derive biome-specific
17 or spatially varying scaling factors in some top-down emission estimation methods such as
18 the Quick Fire Emission Dataset QFED (Darmenov and da Silva 2013) and the Fire
19 Energetics and Emissions Research (FEER) (Ichoku and Elison 2014) and these lead to global
20 total particulate matter emissions approximately 2-3 times greater than GFED3.1 (Ichoku and
21 Elison 2014). However, we acknowledge that the discrepancy between modelled and
22 observed AOD (prior to emission scaling) could be due to other biases or missing processes in
23 the models.

24 In the CLASSIC simulation the global scaling factor of 1.6 (Table 1) was applied to the total
25 mass emitted into the BBA tracer. For GLOMAP-mode a factor of 2.0 was applied to the BB
26 emissions of aerosol mass (both the OC and BC component) and number. The scaling used
27 here differs between the two aerosol schemes, and the aim of doing so is to quantify the
28 magnitude of the discrepancy between modelled and observed AOD (prior to scaling), and
29 highlight the fact that the discrepancy depends on assumptions and processes internal to the
30 aerosol schemes themselves. It should be noted that the scaling factors found here could be
31 substantially reduced if the overall mass of carbonaceous aerosol was increased in the models.
32 This could have been achieved either by increasing the ratio of organic carbon to primary

1 organic matter (section 2.3.2 below), or in the case of GLOMAP-mode by including a
2 representation for secondary organic aerosol formation from VOCs emitted during BB
3 (section 2.3.3).

4 **2.3.2 Scaling of organic carbon to primary organic matter**

5 In this study biomass burning emissions of the organic aerosol component are derived from
6 the OC flux provided by GFED3.1. As OC represents the mass of the carbon only, the
7 contribution of other elements (principally oxygen) to the total organic aerosol mass (i.e.
8 Primary Organic Matter POM) must be considered separately. In CLASSIC no scaling is
9 applied to convert the mass of OC to POM. In GLOMAP-mode OC is converted to POM
10 assuming a POM:OC mass ratio of 1.4 (Table 1). This conversion factor of 1.4 has been
11 broadly used in atmospheric models and was originally based on analysis of filter
12 measurements of fresh urban emissions from the 1970's onwards (see Turpin and Lim, 2001
13 and references therein). More recent analyses of aerosol mass spectra (e.g. Aitken et al., 2008;
14 Ng et al., 2010; Tiitta et al., 2014; Brito et al., 2014) and preliminary analysis of airborne data
15 from SAMBBA indicate POM:OC ratios in the range 1.5 – 1.8 for fresh particles / near-
16 source emissions from biomass burning. Therefore, an upward adjustment from the 1.4
17 conversion factor widely assumed may be warranted to more accurately simulate the aerosol
18 mass emissions from BB. However, the observations indicate considerable variability with
19 aerosol age and source region with POM:OC ratios increasing to 2.0-2.3 for aged and more
20 highly oxidised aerosol. This introduces considerable uncertainty in gauging a representative
21 POM:OC for global models where near-source ageing may not be represented.

22 **2.3.3 Growth of organic aerosol component during ageing**

23 In CLASSIC the condensation of VOCs onto BBA is represented in a simplified manner
24 increasing the aerosol mass by a factor of 1.62 (Table 1) when the fresh BB mode is
25 converted to the aged mode. This scaling factor is based on measurements from a large plume
26 during SAFARI-2000 (Abel et al. 2003). However, the evidence for growth of aerosol mass in
27 BB plumes is mixed. For example, Vakkari et al. (2014) concluded that oxidation and
28 subsequent secondary aerosol formation were important in the evolution of smoke plumes 2-4
29 hours after emission. In contrast, other studies based on aircraft measurements of aerosol
30 composition and emission ratios have shown no net mass gain, or even net loss of aerosol
31 mass between fresh and aged plumes, despite oxidation (chemical aging). These studies

1 include measurements from West Africa (Capes et al. 2008), from SAMBBA (Morgan et al.
2 2012), and from a synthesis of the West African measurements with three other campaigns
3 (Jolleys et al., 2012). These suggest that evaporation of organic material after initial emission
4 outweighs or at least compensates for mass added due to secondary formation of organic
5 aerosol. The assumed growth in CLASSIC is therefore not fully supported by recent
6 observational analyses and is an aspect of the scheme that must be considered as we evaluate
7 the model.

8 The configuration of GLOMAP-mode here does not include secondary aerosol formation
9 from VOCs emitted by biomass burning, or the associated variation of POM:OC during
10 chemical ageing. This is acknowledged as a potentially large source of bias that may to some
11 extent necessitate the global emission scaling.

12 **2.3.4 Vertical injection height assumptions**

13 Smoke plumes can rise several kilometres before detraining into the atmosphere, although this
14 depends critically on fire size / heat flux and atmospheric stability (Freitas et al., 2007).
15 Regional assessments show that the majority of smoke plumes detraining in the boundary layer
16 with maximum plume heights typically below 2 km, whereas vigorous plumes from some
17 large fires can extend into the free troposphere up to altitudes 6 km or more in exceptional
18 cases (Freitas et al., 2007; Kahn et al., 2008; Val Martin et al., 2010; Val Martin et al., 2012;
19 Sofiev et al., 2012; Tosca et al., 2011). During SAMBBA the concentration of aerosol was
20 generally highest in the lowest 2 – 3 km (corresponding to the maximum height of the
21 atmospheric boundary layer) and declined rapidly with height above this (Marenco et al.,
22 2015). Tenuous aerosol layers were frequently observed in the mid-troposphere up to altitudes
23 of 5 or 6 km but given the prevalence moist convection during SAMBBA (mainly in the
24 Western region) it was difficult to determine whether these elevated layers related to plume
25 injection heights or were the result of vertical transport and detrainment from cumulus (in
26 some cases pyrocumulus were also observed).

27 HadGEM3 does not include an explicit smoke plume-rise model but prescribes the vertical
28 profile of emissions depending on vegetation type provided by GFED. Following
29 recommendations from the 1st phase of AeroCom (see section 7 and Fig. 9 of Dentener et al.,
30 2006) fire emissions from peat fires, savannah and woodland are assumed to have small
31 plume rise and are emitted at the lowest model level, allowing sub-grid scale turbulence to
32 mix these through the boundary layer. Emissions from forest and tropical deforestation fires

1 are assumed to have more significant plume rise and are injected uniformly from the surface
2 to an assumed maximum injection height of 3 km. These injection height assumptions were
3 used identically for both the CLASSIC and the GLOMAP-mode simulations to maintain
4 consistency.

5 **2.4 Experimental design of simulations**

6 Five simulations were completed, each with a 3 month spin up followed by a 10 year run with
7 emissions, SSTs and sea ice based on the years 2002-2011. The main two simulations that are
8 evaluated in this study are: (i) CLASSIC aerosols with BB emission scaling factor of 1.6, (ii)
9 GLOMAP-mode aerosols with BB emission scaling factor of 2.0. A third simulation with
10 GLOMAP-mode with no BB aerosol emissions was required to enable the contribution of BB
11 emissions to AOD and aerosol mass to be inferred. Furthermore, to illustrate why emission
12 scaling was necessary we also include results in section 3.1 from CLASSIC and GLOMAP-
13 mode simulations without scaling of BB emissions. Apart from these changes in the
14 simulation of aerosols the scientific configuration of the atmospheric model was identical in
15 all simulations. In these simulations the atmospheric circulation was free-running (not nudged
16 to meteorological analyses) and so a ten year period is required to average over interannual
17 variability of meteorology. The selected time period 2002 – 2011 spans the last 10 years
18 where GFED3.1 data was available. One advantage of selecting this time period rather than
19 earlier years is that the GFED3.1 emissions benefit from inclusion of the burned area product
20 from Aqua MODIS from 2002 onwards. Unfortunately, the GFED3.1 data were not available
21 for 2012 (the period of the SAMBBA campaign). For this reason the evaluations against
22 aircraft campaign data in this study focus on the intrinsic properties of BBA (physical,
23 chemical and optical properties) that are expected to depend more on the vegetation and
24 burning practices in the observed regions than on year-to-year variability of burned area.

25 **2.5 In situ observations from SAMBBA and other biomass burning campaigns**

26 Aircraft measurements of aerosol properties have been taken from the SAMBBA campaign
27 that took place in Brazil during Sept-Oct 2012. As the aerosol properties differed regionally
28 we present average properties separately for the Western region (flights based from Rondonia:
29 7-12.5°S, 58-65°W) and Eastern region (flights over Tocantins: 10-12°S, 46.5-49°W) (Fig. 1).
30 The regional averages of aerosol particle size distribution, composition and optical properties
31 are based on data from straight level runs sampling the regional haze. Data sections

1 corresponding to plume penetrations (identified from spikes in CO, CO₂, BC and aerosol
2 scattering) were filtered out prior to averaging. An overview of the flights and full details of
3 instrumentation are provided in Darbyshire and Johnson (2012) and data processing methods
4 will be described in Darbyshire et al. (in preparation, 2016). Aircraft measurements have also
5 been taken from the Dust and Biomass Burning Experiment (DABEX) over West Africa (7-
6 15°N, 0-7°E) during Jan-Feb 2006 (Haywood et al., 2008; Johnson et al.; 2008) and from the
7 Met Research Flight C130 aircraft during the Southern African Regional Science Initiative
8 (SAFARI-2000) in Sept 2000 (Haywood et al. 2003) (15-25°S, 8-18°E). Similarly, we use the
9 regional averages for aged regional haze provided from these campaigns. The boxes in Fig. 1
10 indicate the regions where the flights took place and where model data was averaged.

11 Common to each of the aircraft datasets is the use of a wing-mounted Passive Cavity Aerosol
12 Spectrometer Probe (PCASP) to measure aerosol particle size distributions, a TSI three
13 wavelength nephelometer (440, 550, 700nm) to measure aerosol scattering, and a single
14 wavelength Particle Soot Absorption Photometer (523nm) to measure aerosol absorption and
15 the SSA (when combined with the nephelometer). During SAMBBA the PCASP suffered
16 some instrument / electronic processing errors after the first four flights (B731-734).
17 Therefore, stringent quality checks on the data were employed to filter out affected data. After
18 this, approximately 16 hours of PCASP data were available from 8 flights, with 75 % of this
19 from the first four flights (B731-734) that focussed mainly on sampling aerosol dominated by
20 biomass burning emissions. During SAMBBA, PCASP measurements of aerosol size
21 distribution were supplemented by a GRIMM Optical Particle Counter (OPC), and a TSI
22 Scanning Mobility Particle Sizer (SMPS). The aerosol composition was also measured during
23 SAMBBA and DABEX. In both cases the sulphate mass and the Organic Aerosol (OA) (i.e.
24 total carbonaceous aerosol mass from POM and Secondary Organic Aerosol) were measured
25 by an Aerodyne Aerosol Mass Spectrometer (Capes et al., 2008; Allan et al., 2014). During
26 SAMBBA the BC mass was estimated from a Single Particle Soot Photometer and during
27 DABEX the BC mass was estimated from the PSAP assuming a mass absorption coefficient
28 of 12m²/g. For each flight campaign the aircraft observations have been averaged over all
29 available measurements taken in biomass burning conditions to provide campaign mean BB
30 aerosol properties. Ground-based observations of aerosol composition have also been used
31 based on data presented in Tiitta et al. (2014) from the Welgegund station in South Africa
32 (Fig. 1). They used an Aerosol Chemical Speciation Monitor to measure OA and sulphate and

1 a Multi-Angle Absorption Photometer to measure BC assuming a mass absorption coefficient
2 of $6.6\text{m}^2/\text{g}$. We take an average composition from their measurements in September 2010.

3 **2.6 Remote sensing observations**

4 MODIS AOD retrievals have been obtained from the Aqua satellite. In this study we use
5 monthly mean level 3 MYD08_M3 data products and to aid the evaluation we include the
6 AOD products from both collection 5.1 and collection 6. In the case of collection 5.1 the dark
7 target (Levy et al., 2007, 2010) and ocean algorithms (Remer et al., 2005) have been used
8 where coverage is available, and the Deep Blue algorithm (Hsu et al., 2004, 2006) has been
9 used for pixels over bright land surfaces where dark-target retrievals were not available. For
10 collection 6 the merged product (Sayer et al., 2014) has been used that combines retrievals
11 from all three algorithms and includes various refinements to each (Sayer et al., 2013; Levy et
12 al., 2013). Terra products were not included as drift in the calibration of MODIS Terra in the
13 later years of our observation window may have affected the retrieved AODs (Polashenski et
14 al., 2015). The monthly mean data has been averaged over the period 2003-2012 to create
15 long-term monthly means.

16 AERONET data have also been used for direct sun retrievals of AOD and for inversion
17 products of aerosol size distribution and optical properties. Six sites with strong biomass
18 burning influence were selected for use in this study: Alta Floresta (Brazil), Mongu (Zambia),
19 Ilorin (Nigeria), Chiang Mai (Thailand), Jaribu (N. Australia), and Bonanza Creek (Alaska)
20 (Fig. 1). We used monthly mean products from the version 2 algorithm (Dubovik and King,
21 2000; Dubovik et al., 2006) and used level 2 products in all cases except Chiang Mai where
22 level 1.5 data was used as level 2 data coverage was limited. Level 1.5 data is not fully cloud-
23 screen and calibrated so may not be as reliable. Long-term monthly mean averages were
24 calculated for 2002-2011.

25 **2.7 Averaging methods**

26 The aircraft in-situ observations presented in this study have been averaged over all available
27 measurements in biomass burning dominated conditions in each campaign or campaign sub-
28 region, to provide representative “campaign-mean” values. The data averaging methods for
29 SAMBBA will be described in more detail in Darbyshire et al. (in preparation, 2016). The
30 DABEX campaign-means are taken from the observations of aged aerosol layers in (Johnson

1 et al., 2008). SAFARI-2000 campaign-means are based on a compilation of aged aerosol
2 measurements, as detailed in Haywood et al. (2003). Inevitably, aircraft flight patterns do not
3 provide unbiased spatial and temporal sampling of the atmosphere and tend to favour
4 sampling aerosol layers with medium-high aerosol loadings. However, by averaging over
5 large volumes of data focussed on regional sampling these aircraft datasets can provide useful
6 constraints on the physical, chemical and optical properties of the aged aerosol. Wherever
7 comparisons are made with model data, they are based on the 10-year (long-term) monthly
8 mean output from the models (September for SAMBBA and SAFARI-2000, January for
9 DABEX). For comparison with aircraft measurements, the model data has been averaged over
10 the latitude and longitude ranges of the relevant flight regions (boxes in Fig. 1) and over 0 – 5
11 km; the typical altitude range of the observed aerosol layers. For the comparison with
12 Welgegund surface measurements model data is taken from the lowest model level of the grid
13 box co-located with the site and for September, corresponding to the peak of the BB season in
14 Southern Africa. For comparisons with AERONET the 10-year (long-term) monthly mean
15 model output is selected for the gridbox co-located with the AERONET site and averaged
16 vertically to provide column-mean aerosol properties. For MODIS the level 3 data has been
17 further averaged to generate 10-year (long-term) monthly mean AODs at the native resolution
18 of the atmospheric model. These are compared against the long-term mean model values
19 without any sub-sampling of the model data on observation space-time points. Sampling
20 biases that may arise due to the lack of sub-sampling are discussed in section 3.1.

21

22 **3 Evaluation of CLASSIC and GLOMAP-mode with observations**

23 **3.1 Aerosol optical depth**

24 **3.1.1 Global AOD evaluation with MODIS**

25 Fig. 2 assesses the contribution of biomass burning to annual mean Aerosol Optical Depth
26 (AOD) at the global scale. Figures 2 (a-d) show the results from the scaled simulations where
27 the BB aerosol emissions scaling factors described in section 2.3.1 have been applied. For
28 CLASSIC the contribution of BB emissions to the total AOD (hereafter BBAOD) is
29 straightforward as carbonaceous aerosol originating from biomass burning emissions are
30 represented as separate (externally mixed) species in the model (Fig. 2a). For GLOMAP-
31 mode, aerosols from different sources are internally mixed and so BBAOD is estimated as the

1 difference in AOD between a simulation including BB emissions and one without (Fig 2b).
2 To aid the evaluation the annual mean AOD from MODIS Aqua collections 5 and 6 are
3 shown in Figs 2 (g & h). Finally, results are shown (Figs. 2 g & h) for the simulations where
4 the BB aerosol emission scaling factors described in section 2.3.1 were not applied.
5 The results show that biomass burning dominates the annual mean AOD over S. America and
6 Central to Southern Africa, even though BB emissions are highly seasonal in these regions.
7 Biomass burning also makes strong contributions to annual mean AOD in parts of Indonesia,
8 South East Asia, and Northern Australia and to a less extent the Boreal forests of N. America
9 and North East Asia. Globally BBA emissions account for 10 % of the total AOD in the
10 scaled CLASSIC simulation and 12 % in the scaled GLOMAP-mode simulation. The spatial
11 distributions of BBAODs are very similar in both models, which is not surprising since they
12 are driven by the same physical model and emission dataset. The magnitude of BBAOD is
13 also very similar in both models as BB aerosol emissions were scaled separately in each
14 model to ensure the modelled AOD approximately matched MODIS and AERONET AODs
15 observed over the main BB source regions during peak BB months where BB was the
16 dominant contributor to modelled AOD.
17 The impact of the BB aerosol emission scaling factors is shown by comparing the total
18 modelled AOD from scaled and unscaled simulations. The emission scaling factors have a
19 relatively modest impact on the global distribution of AOD when assessed on an annual mean
20 basis. This is due to the highly seasonal nature of BB emissions. Nevertheless, even in annual
21 means, it is clear that AODs over tropical South America and Africa are somewhat lower than
22 observed (from both MODIS collection 5 and 6) in the un-scaled simulations. The scaling
23 factors bring modelled AOD closer to the observations, although the benefit is clearer in later
24 figures (3 – 5).
25 A wider assessment of simulated AOD from GLOMAP-mode in HadGEM3 / GA7 is
26 expected in a future study but we note from Fig. 2 that GLOMAP-mode has improved the
27 distribution of AOD in several regions compared to simulation with CLASSIC. For instance,
28 it has reduced the low bias over high latitude continents (as found previously in Bellouin et
29 al., 2013) and reduced a high bias in the southern ocean associated with sea salt aerosol. The
30 AOD over the Sahara and North African Atlantic coast and Arabian Peninsula appear too low
31 in the simulations indicating that mineral dust emissions may have been too weak (in both
32 cases simulated by CLASSIC). We note however that the GLOMAP-mode simulation also

1 overestimates AOD in south-east Europe and eastern parts of USA which are dominated by
2 anthropogenic sources of sulphate. A strong caveat in these comparisons is that the modelled
3 AOD has not been sampled with the spatial and temporal incidence of the MODIS data.
4 Schutgens et al. (2015) showed that this can result in considerable regional biases between
5 modelled and observed monthly and annual mean AOD. In particular, the comparison may be
6 of limited value at high latitudes (beyond 60°N or S) where retrievals are not possible for
7 several months of the year (due to solar zenith angle being too high, or due to lack of solar
8 illumination altogether). Some degree of sampling bias may occur in regions that are
9 frequently overcast with cloud cover (e.g. marine stratocumulus regions including the South-
10 East Atlantic). The modelled AOD has however been calculated based on the clear-sky
11 relative humidity to avoid strong humidification biases in partially cloudy grid boxes.

12 **3.1.2 Seasonal AOD in biomass burning regions with MODIS**

13 Figs 3 and 4 focus on the contribution of biomass burning to AOD in the tropical regions. Fig.
14 3 shows the monthly mean BBAOD and AOD for September when BB emissions peak in the
15 Southern Hemisphere and equatorial regions. Fig. 4 shows the same for West African region
16 but for January when BB emissions peak in the zone 5 – 15° N. As in the global picture (Fig.
17 2) the simulations give very similar regional distributions of BBAOD and AOD. Over the BB
18 regions the modelled AOD is generally underestimated in the un-scaled simulations compared
19 to MODIS. In the scaled simulations total AODs agree very well with MODIS, especially
20 over South America and Indonesia. However, some discrepancies between modelled and
21 observed AODs remain over northern and southern parts of Africa. Firstly, the magnitude of
22 AOD in the plume over the South-East Atlantic is lower in the models than in MODIS, even
23 in the scaled simulations (Fig. 3). It is not clear if this is due to poor model performance or
24 biases related to limited temporal sampling by the satellite over the marine stratocumulus
25 region (personal communication Andrew Sayer). MODIS collection 5 and collection 6 in
26 particular, show a large contrast in AOD between the plume over the ocean and the AOD over
27 adjacent land areas of Southern Africa. Secondly, in Fig. 4 the peak AOD and BBAOD in the
28 models during January are centred over central Africa (Congo basin) rather than over the Gulf
29 of Guinea where MODIS AOD peaks. This leads to an overestimate of modelled AOD over
30 central Africa in the scaled simulations. Again, high cloud cover limits the spatial sampling
31 over the Congo basin and may affect the mean AOD retrieved from MODIS. This regional
32 bias was noted in previous modelling studies with GFED2 (Myhre et al., 2008; Johnson et al.,

1 2008a) and may suggest there is still an underestimation in West Africa (Liousse et al., 2012)
2 and potentially an overestimation of BB aerosol emissions in the Congo basin. The
3 comparison of modelled and observed AOD over the BB regions of the Sahel (north of 10°) is
4 less straightforward as mineral dust aerosol contributes strongly to the total AOD.

5 In the remainder of this study we assess results from the simulations where total BB aerosol
6 emissions have been scaled, as described in section 2.3.1.

7

8 **3.1.3 AOD comparison with AERONET**

9 To aid the evaluation of modelled AOD, six AERONET sites have been selected representing
10 locations that are strongly affected by seasonal biomass burning. Once again, due to the
11 scaling of total BB aerosol emissions both CLASSIC and GLOMAP-mode give very similar
12 AOD and BBAOD at these locations during peak months (Fig. 5). The seasonal cycle and
13 peak AODs seem well captured at Alta Floresta (Amazonia) and Mongu (Southern Africa).
14 The comparison at Ilorin (West Africa) shows the model does not capture the observed
15 seasonal cycle of AOD with a low-bias in AOD from Nov - April. This again suggests an
16 under-representation of BB emissions across West Africa during Northern hemisphere winter,
17 although the low-bias could be partly caused by a low-bias in mineral dust aerosol from the
18 Sahara. The secondary peak during June-Sept, which is not shown in the AERONET
19 observations, may be due to overestimation of BB aerosol emissions from the Congo basin
20 and long-range transport to West Africa. BBAOD appears to be underestimated at Chiang
21 Mai (South East Asia) and Jaribu (Northern Australia), perhaps by a factor of 2, but slightly
22 overestimated at Bonanza Creek (Alaska). Whilst these results give clues as to where BB
23 aerosol emissions may be over or under estimated the differences between modelled and
24 observed AOD may be affected by various other sources of uncertainty in the models and
25 measurements. In particular, temporal sampling biases may affect the results (Schutgens et al.,
26 2015) as we have not sampled the model data to match AERONET retrieval times. The
27 approach we have taken is to average over 10-years of data to gain more confidence in the
28 long-term monthly means. The standard error on the monthly means AODs are generally
29 much smaller than the differences between observed and modelled values, indicating that our
30 results are not strongly biased by interannual variability of either the simulated or observed
31 AOD. There main exceptions are for August at Bonanza Creek and Aug – Sept at Alta

1 Floresta where the larger standard error in AERONET AOD indicates that interannual
2 variability has a strong impact on the comparison.

3 **3.2 Aerosol composition**

4 Fig. 6a and b show the column loading of fine-mode aerosol mass from the model simulations
5 across the tropical regions during September. This is the sum of Black Carbon (BC), Organic
6 Aerosol (OA) and sulphate (SU) from all anthropogenic and natural sources but excluding the
7 coarse-mode contribution from GLOMAP. Clearly the fine-mode aerosol is dominated by BB
8 sources over Africa, South America, Indonesia and Northern Australia. Figs 6 c–h show the
9 relative contributions of OA, BC and SU to this fine-mode mass. CLASSIC and GLOMAP-
10 mode give very similar spatial distributions for the modelled fine-mode aerosol mass loading
11 and composition. OA clearly dominates the fine-mode aerosol mass (Fig. 6c and d) in both
12 models across most of the region shown, where BB emissions dominate the aerosol loading.
13 The two exceptions are the northern edge of the domain and some stretches along the Pacific
14 coast of South America where sulphates dominate due to anthropogenic emissions of SO_2 . In
15 Fig 6 stippling marks grid columns where over 75 % of the fine-mode aerosol mass originates
16 from BBA emissions, based on the speciation in the CLASSIC simulation. These mark the
17 main BB plumes from S. America, Africa and Indonesia. In GLOMAP-mode where aerosols
18 internally mix the origin of the aerosol in a grid cell can not be traced to its emission source
19 but it seems reasonable to assume that the grid cells strongly influenced by BB emissions in
20 CLASSIC will also be strongly influenced by BB emissions in the GLOMAP-mode given that
21 the simulation are driven with the same emissions data and physical model configuration. The
22 similarity in the spatial distribution of BBAOD (Fig. 2 – 4) and aerosol composition (Fig. 6)
23 between the two models support this assumption. The same areas are therefore marked with
24 stippling in the GLOMAP-mode plots. The mean values beneath each plot indicate the mean
25 from the stippled areas.

26 In the main BB plumes (marked by stippling) the CLASSIC simulations show a slightly
27 higher mass fraction of OA and a slightly lower mass fraction of BC compared to GLOMAP-
28 mode with BC mass fraction averaging 5.1 % in CLASSIC and 7.2 % in GLOMAP-mode
29 (Fig. 6e and f). These differences are due to differences in the way that BB composition is
30 represented in the two schemes. In CLASSIC the ratio of BC to OA in the BBA species is
31 specified, whereas in GLOMAP-mode it varies depending on the BC and OC mass provided
32 by the emissions data, and the OC to POM ratio assumed in the model (currently 1.4). In

1 GLOMAP-mode Secondary Organic Aerosol (SOA) is also added interactively via the
2 oxidation and condensation of organic vapours from bVOCs. This decreases the BC mass
3 fraction in North Western Amazonia compared to South Eastern Amazonia and Southern
4 Africa. In CLASSIC bVOCs are not modelled explicitly but SOA has been included using a
5 biogenic aerosol climatology. This increases the OC mass, particularly over tropical forests,
6 and therefore leads to a lower BC mass fraction over tropical forests compared to Savannah
7 regions. The localized peak in BC mass fraction near to Lake Victoria in the CLASSIC
8 simulation is due to local anthropogenic BC emissions rather than BB emissions. This shows
9 up less in GLOMAP-mode as the regional loading of BC from BB sources is higher.

10 In situ measurements from three observation campaigns have been used to evaluate the
11 aerosol composition in the simulations. The observations include FAAM aircraft
12 measurements from Western Amazonia (Rondonia) and Eastern Amazonia (Tocantins) during
13 SAMBBA (Darbyshire et al., in preparation, 2016), ground-based observations from the
14 Welgegund measurement station in South Africa (Vakkari et al. 2014), and FAAM aircraft
15 measurements from West Africa during DABEX (Capes et al. 2008). Fig. 7 compares the
16 observed and modelled aerosol composition by plotting the relative contributions from BC,
17 OA and sulphate to the total fine-mode aerosol. Nitrate, dust and sea salt have been excluded
18 from the analysis as nitrate was not available in the model simulations and accurate
19 measurements of dust and sea salt were not readily available from all observation campaigns.
20 Given that these components are neglected we can not provide a full analysis of the aerosol
21 composition here. The purpose of Fig 7 is rather to examine whether the relative proportions
22 of BC, OA and sulphate are in-line with the observational evidence (as these are the dominant
23 contributors to fine-mode mass and fine-mode AOD in the simulations).

24 In all cases the fine-mode aerosol is dominated by OA with modest contributions from
25 sulphate and generally a smaller contribution from BC. On the whole the models are able to
26 capture the typical make-up of the aerosol and some of the variations with region, such as the
27 higher contribution from sulphates in South Africa. GLOMAP-mode gives slightly higher BC
28 mass fractions than CLASSIC and in general GLOMAP-mode BC mass fractions are closer to
29 observed values. Modelling the BC mass fraction is of key importance for estimating
30 absorption and the sign of direct radiative forcing. Tentatively, GLOMAP-mode therefore
31 shows some improvement over CLASSIC, although it still appears to underestimate BC mass
32 fraction relative to the measurements from West Africa, Eastern Amazonia, and to a lesser

1 extent in South Africa. However, the use of the filter based absorption measurements in those
2 datasets may lead to a significant overestimation of observed BC mass (Lack et al., 2008).
3 Also, note that different mass absorption coefficients were assumed in the analyses of the
4 DABEX ($12\text{m}^2/\text{g}$) and Welgegund ($6.6\text{m}^2/\text{g}$) observations. Unifying this assumption to an
5 intermediate value of $10\text{m}^2/\text{g}$ would change the estimated BC mass fraction to 14.1 % for
6 DABEX and 8.2 % for Welgegund.

7 **3.3 Size distributions**

8 **3.3.1 Comparison with aircraft data**

9 Fig. 8 shows the size distributions from the models and in situ observations from the three
10 aircraft campaigns. The CLASSIC curve is simply the size distribution given by the average
11 mixture of fresh and aged BBA species in the model. Each of these CLASSIC modes is
12 represented by a single log-normal. Both modes have a small standard deviation of 1.3 and
13 the mean diameters are $0.2\text{ }\mu\text{m}$ for the fresh mode and $0.24\text{ }\mu\text{m}$ for the aged mode. Combining
14 these gives a fairly narrow distribution peaking in the accumulation mode. The GLOMAP-
15 mode size distribution is the sum of all five modes (nucleation, Aitken soluble and insoluble,
16 accumulation soluble, coarse soluble). Each campaign includes data from a common PCASP
17 instrument but SAMBBA included a GRIMM OPC behind a low-turbulence inlet and a
18 Scanning Mobility Particle Sizer (SMPS). These instruments provide a dry aerosol size
19 distribution as heating tends to remove water from the measured aerosol samples. The
20 three instruments from SAMBBA are in good agreement regarding the shape of the
21 accumulation mode and the rate of decline from the accumulation to coarse mode ($0.3 - 1\text{ }\mu\text{m}$). To avoid mismatches from sampling different total concentrations, the PCASP size
22 distributions have been normalized to give a total concentration of unity, and other observed
23 and modelled curves have been normalized to match the peak amplitude of the PCASP.
24

25 The dry particle size distribution simulated by GLOMAP-mode is shown in Fig. 8 and
26 matches the observed size distributions remarkably well. The broad peak in aerosol number
27 around $0.2\text{ }\mu\text{m}$ and the rate of decline either side of the peak seem well supported by the
28 available observations. The discrepancies between the GLOMAP-mode and observed size
29 distributions across the coarse mode ($D > 1\text{ }\mu\text{m}$) are most likely because mineral dust is not
30 represented in this version of the modal scheme (this is certainly the reason in the DABEX
31 case; Fig. 8b). Another potential issue in the Amazon case is the absence in the model of any

1 representation of primary biological aerosol particles which may contribute significantly to
2 the observed coarse mode in this forested region (e.g. Scot et al., 2012), though such particles
3 are only likely to be important in the surface mixed layer. Also, measurements of low
4 concentrations of super-micron particles will have bigger uncertainties than measurements of
5 the accumulation-mode peaks. The agreement between GLOMAP-mode and the observations
6 across the accumulation mode (0.1 – 0.6 μm) is partly due to a well chosen initial size
7 distribution that is assumed for primary emissions of BBA (this a log-normal with a mean
8 diameter of 0.15 μm and standard deviation of 1.59 as used by Stier et al., 2005). This sets the
9 mass and number of particles emitted into the Aitken insoluble mode. Subsequently, as a
10 result of ageing these particles grow and are transferred to the accumulation soluble mode,
11 where most of the BC and OA mass ultimately resides. Here coagulation and condensation
12 create an internal mixture of sulphate, sea salt, OC, BC and water from all modelled sources.
13 The combination of a well chosen initial size distribution for the primary emissions, and
14 subsequent microphysical and chemical processes operating through the modal framework,
15 are therefore very successful in predicting the aerosol size distribution over BB regions.

16 CLASSIC provides a reasonable representation of the aerosol size distribution through the
17 centre of the accumulation mode (0.1 – 0.6 μm) that is most important for optical properties in
18 the visible and near-infrared spectrum. CLASSIC naturally fits the SAFARI-2000 PCASP
19 observations (Fig. 8c), on which it was originally based (Haywood et al. 2003), but also fits
20 the DABEX and SAMBBA observations reasonably well across the intended size range.

21 It is interesting to note that the observed size distributions do not vary greatly across the
22 accumulation mode (0.1 – 0.6 μm) between the three BB campaigns. These campaigns span
23 three of the main continental source regions of BBA (Fig. 9a) and include a range of biomes
24 and fire conditions. This finding of little variation in size distribution between different
25 biomass burning source regions suggests the approach of using a globally representative size
26 distribution in CLASSIC, and of using a single “emission size distribution” for all primary
27 biomass burning emissions in GLOMAP-mode is a reasonable approximation. We note
28 however that Dentener et al. (2006) present a synthesis of observations from a wider
29 collection of observations, suggesting considerable variation in size distribution (their Figs.
30 C1 and C2). These indicate apparently large changes in physical and optical properties
31 between different biomass burning source regions and/or following ageing of plumes. The
32 large differences shown in Dentener et al. (2006) could in part be related to differences in

1 systematic biases or sizing corrections applied to differences instruments, while here we
2 present coherent results from essentially the same instrument (Fig 9b).

3 **3.3.2 Comparison with AERONET size distributions**

4 In Fig. 10 AERONET retrievals of particle size distribution are used as an additional
5 constraint to assess the modelled aerosol size distribution. These are given in terms of particle
6 volume across the fine and coarse modes (0.1 – 15 μm) and all distributions have been
7 normalized to give peak amplitudes of 1. The overall shape of the distribution varies very
8 little from year to year (Fig 10a) with a dominant fine-mode peaking around 0.3 μm . The
9 relative contribution from coarse-mode particles varies from year to year but is generally
10 small. A similar analysis was performed for Mongu and produced an almost identical fine-
11 mode size distribution giving some confidence that Alta Floresta is representative for tropical
12 biomass burning regions.

13 Fig. 10b compares the AERONET size distribution to the PCASP and GRIMM OPC aircraft
14 instrument data from the Western SAMBBA region. Again, all size distributions have been
15 normalized to give the same peak amplitude. It is encouraging that the PCASP gives an
16 almost identical size distribution to AERONET across the fine-mode. The GRIMM OPC size
17 distribution covers only a portion of the fine-mode size range but the data are consistent with
18 the existence of a peak at 0.3 μm , a minimum around 1 μm and a peak at coarser sizes. The
19 aircraft instruments do not agree so well with AERONET on the amplitude or diameter of the
20 coarse mode. The coarse-mode could be a mixture of mineral dust, primary biogenic particles
21 or fly ash from BB (Martin et al., 2010). Sampling issues (e.g. altitude) may be a large source
22 of representativeness error in the PCASP and GRIMM measurements of super micron
23 particles. However, the coarse-mode is not the focus of the assessment here as the sources are
24 unclear and it contributes very little (5 – 10 %) to the AOD or optical properties.

25 Fig. 10c compares the mean AERONET size distribution with the models. For CLASSIC the
26 size distribution of the BBA species is plotted whereas GLOMAP-mode is the column-mean
27 for September co-located with Alta Floresta. Both modelled size distributions peak at about
28 the same diameter (~0.3 μm) as AERONET. The CLASSIC size distribution is a little
29 narrower than AERONET whereas GLOMAP-mode predicts about the same width as
30 AERONET. This increases confidence that GLOMAP-mode is able to predict aerosol size
31 distributions accurately, and is an improvement over the specified distribution in CLASSIC.

1 **3.4 Optical properties**

2 In this section the aerosol optical properties from the models are compared and evaluated
3 against AERONET retrievals and in-situ measurements from aircraft campaigns. The methods
4 for deriving optical properties are described below and results are then discussed separately
5 for each optical property.

6 Firstly the column-average moist aerosol properties have been calculated from the models to
7 assess how these vary regionally in the two aerosol schemes. The fine-mode specific
8 extinction coefficient ($k_{ext,fm}$) (Fig. 11a & b) was calculated as the ratio of fine-mode moist
9 AOD to fine-mode dry aerosol mass. In GLOMAP-mode the fine-mode includes the Aitken
10 soluble, Aitken insoluble and accumulation-soluble modes. In CLASSIC the fine-mode is
11 taken to include all sulphate and carbonaceous aerosol species. The Single Scattering Albedo
12 (SSA) (Fig.11c & d) has been calculated from the AOD and Absorption-AOD (AAOD) at
13 550nm, and the Ångström exponent (\AA) (Fig. 11e & f) is calculated from the wavelength
14 dependence of AOD across 440 – 670nm. The stiples in Fig. 11 mark grid columns where
15 over 75 % of the fine-mode aerosol mass originates from BBA emissions (as in Fig. 6, based
16 on CLASSIC speciation) and the mean values beneath each plot indicate the mean from the
17 stippled areas.

18 Secondly, the modelled SSA and \AA are compared for all months against AERONET retrievals
19 for Alta Floresta and Mongu (Fig. 12). Monthly mean SSA retrievals were not available in all
20 months of the year due to low temporal sampling frequency outside of the dry season
21 (inversions require $\text{AOD} > 0.4$ and cloud-free skies). In addition to AERONET level 2 criteria
22 we only accept a monthly mean if data were available from at least 3 separate days in that
23 month, and only calculate the long-term monthly mean if at least 3 monthly means were
24 available in the time series. The AERONET retrievals of \AA relied on direct sun measurements
25 of AOD at 440 and 670nm and have better temporal sampling enabling long-term monthly
26 means to be calculated for every month.

27 Finally, Table 2 compares dry aerosol optical properties of SSA, \AA , $k_{ext,fm}$, and asymmetry
28 parameter (g) from the models and from the mean values from the aircraft campaigns
29 (references provided in the table). The comparison is made for dry aerosol since heating tends
30 to dry the aerosol samples measured by the aircraft instruments. For CLASSIC, the optical
31 properties are specified and so values in Table 2 are simply derived by averaging together the
32 optical properties for fresh and aged BBA species, based on the typical mixture simulated

1 over the BB regions (10 % fresh, 90 % aged). For GLOMAP-mode the dry optical properties
2 in Table 2 were calculated from Mie theory using the dry size distribution and refractive
3 index for each of the fine modes (Aitken soluble, Aitken insoluble and accumulation-soluble)
4 and then averaged across the modes weighting by total extinction (or by scattering for g).

5 **3.4.1 Fine-mode specific extinction coefficient ($k_{ext,fm}$)**

6 The fine-mode moist specific extinction (Fig. 11a & b) varied quite widely in both models but
7 was generally higher in GLOMAP-mode, especially in areas where sulphates were more
8 dominant (see Fig. 6h). This is due to a high water uptake by sulphate in the current
9 GLOMAP-mode configuration. In the main BB plumes (marked by stiples), where OA
10 dominates the aerosol mass, the values of $k_{ext,fm}$ range from $5 - 10 \text{ m}^2/\text{g}$ with the highest
11 values in both models over the moister regions of Indonesia and the lowest values in Southern
12 Africa where the average relative humidity was lower in the lower troposphere (not shown).
13 The average values from the BB plumes (stippled areas) are fairly similar with slightly lower
14 value of $6.2 \text{ m}^2/\text{g}$ for CLASSIC and a value of $6.9 \text{ m}^2/\text{g}$ for GLOMAP-mode. Note these
15 values are indicative of the aerosol mixture as a whole rather and so are affected by the
16 representation of other aerosols also. In Table 2 the dry values of $k_{ext,fm}$ are similar for
17 CLASSIC ($5.0 \text{ m}^2/\text{g}$) and GLOMAP-mode ($4.5 - 4.8 \text{ m}^2/\text{g}$) and are within the range given by
18 the aircraft measurement campaigns ($3.6 - 5.8 \text{ m}^2/\text{g}$). Note, in this case the dry value given for
19 CLASSIC corresponds to the BB species only.

20 **3.4.2 Single scattering albedo (SSA)**

21 The SSA of aerosol over BB dominated regions was generally lower in GLOMAP-mode than
22 in CLASSIC for both the ambient (moist) values (Fig. 11c and d; Fig. 12a and c) and dry
23 values (Table 2). This is consistent with the higher BC mass fraction in GLOMAP-mode (Fig
24 7). The lower dry SSA values from GLOMAP-mode ($0.85 - 0.87$) agree better with the range
25 from the aircraft campaigns ($0.79 - 0.88$) than CLASSIC (0.91). The ambient SSA values
26 from GLOMAP-mode during the dry season (July – Oct) ($0.87 - 0.94$) also agree better with
27 AERONET observations from Alta Floresta and Mongu (Fig. 12a and c). The ambient SSA
28 also shows a high degree of spatial variability in both models (Fig. 11c and d). These
29 variations are mainly caused by variability of composition and water content. As shown in
30 section 3.5 the hygroscopic growth may be overestimated in both models so the spatial
31 variation of ambient SSA and its relation to humidity may not be entirely realistic. However,

1 the AERONET observations do show a contrast between the drier region of Southern Africa
2 (represented by the Mongu site in Fig. 11c) where the long-term monthly mean SSA drops to
3 0.82 – 0.85 during July – September, and the moister Amazonian region (represented by the
4 Alta Floresta site in Fig. 11a) where the long-term monthly SSA is around 0.92 during August
5 – September. This observed variation may be explained more by variations in BC content
6 rather than due to variations in hygroscopic growth. There is likely a higher BC content in the
7 aerosol column over Mongu due to the drier vegetation burning more through flaming
8 combustion (some evidence for the higher BC content is found in Fig. 7d for the Welgegund
9 observations that are in the same continental region).

10 **3.4.3 Ångström exponent (Å)**

11 The CLASSIC aerosol scheme gives a fairly high Ångström exponent with a dry value of 2.3
12 for the BBA species (Table 2), and moist values of 1.9 – 2.1 for the fine-mode aerosol
13 mixture over BB dominated regions (Fig. 11e). This is due to the fairly narrow size
14 distribution assumed in CLASSIC. These values of Å are somewhat outside the observed
15 range from the aircraft campaigns (dry values of 1.7 – 2.1 from nephelometer measurements)
16 and AERONET (long-term monthly mean moist values of 1.7 – 1.9). GLOMAP-mode gives
17 slightly lower values of Å than CLASSIC, with dry values ranging from 2.0 – 2.1 (Table 2),
18 and ambient (moist) values ranging from 1.5 – 1.9 over the BB regions (Fig. 11f). These agree
19 quite well with the aircraft observations and AERONET observations during the peak of the
20 burning season (Aug-Sept) (Fig. 12b and d). The seasonal variation of Å observed by
21 AERONET (i.e. the drop to lower values outside the burning season in Fig. 12b & d) is not
22 well captured in either model. This could be due to insufficient representation of coarse
23 particles, such as mineral dust or primary organic particles outside the BB season.

24 **3.5 Hygroscopic growth**

25 The hygroscopic growth of aerosol (i.e. the growth of the aerosol with relative humidity due
26 to the uptake of water) leads to enhanced scattering. This can be expressed via the scattering
27 growth factor (GF_{sca}), which is the observed or modelled scattering of the aerosol at ambient
28 humidity divided by the scattering of the same aerosol when completely dried (i.e. at very low
29 relative humidity). For CLASSIC the hygroscopic growth is specified via an empirical fit that
30 reproduces the GF_{sca} curve observed by Magi and Hobbs (2003), hereafter MH03. In MH03
31 GF_{sca} curves were derived from a humidified nephelometer system operated on flights over

1 Southern Africa during SAFARI-2000. MH03 parameterized the GF_{sca} curves for a range of
2 aerosol conditions and the CLASSIC scheme uses their “heavy smoke” curve for the fresh
3 BBA species, and their “regional air” curve for the aged BBA species. These GF_{sca} curves are
4 shown on Fig 13, along with a representative curve for CLASSIC assuming a mixture with 10
5 % fresh BBA and 90 % aged BBA. These give a very strong increase of scattering with RH
6 for the CLASSIC BBA, with GF_{sca} rising to 2.05 at 80 % and to 3.4 at 100 %. With similar
7 instrumentation Kotchenruther and Hobbs (1998), hereafter KH98, found much lower GF_{sca}
8 for BB dominated aerosol over Brazil (Fig. 13). For $RH > 65 \%$ the range from KH98 does
9 not overlap that from MH03, and at 80 % the range from KH98 is only 1.05 – 1.29. The large
10 difference between these two observation sets is difficult to reconcile, especially as both were
11 derived from an airborne humidified nephelometer system. Possibly the regional aerosol
12 mixture (categorised as “regional air” in MH03) contained a substantial proportion of highly
13 hygroscopic sulphate from industrial sources in Southern Africa and is therefore not
14 representative of purely carbonaceous aerosol.

15 Additional constraints on hygroscopic growth have been provided more recently from
16 Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments. A wide range
17 of measurements, including Amazonian aerosol are summarized in the review of Swietlicki et
18 al. (2008). More recent measurements for Amazonia are also provided in Whitehead et al.
19 (2014). In these analyses the hygroscopic growth is summarized via the “ κ ” parameter
20 (κ) that can be used to reconstruct the growth curve from Kohler theory. Swietlicki et al.
21 (2008) give a range of κ values of 0.05 – 0.15 for Amazonian dry season / BB conditions,
22 leading to GF_{sca} of 1.16 – 1.49 at 80 %. The Kohler curves based on this range of κ are also
23 plotted in Fig. 13. For $RH < 90 \%$ the Kohler curves provide an intermediate range of growth
24 factors that overlap the upper range from KH98 and the lower range from MH03. However,
25 the Kohler curves have greater curvature and rise very steeply for $RH > 80 \%$ and exceed the
26 range from MH03 for $RH > 95 \%$. This reflects the increasing level of uncertainty in GF_{sca} at
27 higher RH where growth factors become increasingly difficult to verify from the
28 observations. Both the empirical fits in KH98 and MH03, and the theoretical Kohler curves
29 are essentially extrapolated from the observed growth up to 80 % or 90 %.

30 For GLOMAP-mode the hygroscopic growth curve is calculated based on the Zdanovski-
31 Stokes–Robinson (ZSR; Stokes and Robinson, 1966) mixing rule. For this comparison we
32 take the average fine-mode composition from the four regions / sites in Fig 7, which gives a

1 mixture with 82.6 % organic carbon, 9.4 % sulphate, and 8 % black carbon. The black carbon
2 is assumed to be hydrophobic whereas organic carbon is assumed hydrophobic when in the
3 Aitken insoluble mode (where approximately one third of the OA resides) and hygroscopic in
4 the soluble modes (most of the remaining two-thirds of OA). The water uptake by soluble OA
5 is based on sulphuric acid but scaled down such that the carbonaceous aerosol from BB takes
6 up approximately 25 % of the water of an equivalent dry mass of H_2SO_4 . The GF_{sca} curve in
7 GLOMAP-mode is capped at a RH of 90 % to avoid overestimation of aerosol scattering and
8 AODs close to saturation. For relative humidity above 60 % GLOMAP-mode gives lower
9 GF_{sca} than CLASSIC, with GF_{sca} reaching 1.66 at 80 % and 2.19 for 90-100 % (compared to
10 2.1 and 2.6 – 3.4 for CLASSIC). For $RH < 60$ % GLOMAP-mode has a slightly higher GF_{sca}
11 than CLASSIC and has an unrealistic shape, but this is unlikely to be important compared to
12 the difference at higher RH.

13 Overall, although there is large uncertainty from the observations it seems likely that the
14 CLASSIC scheme overestimates the GF_{sca} and therefore aerosol scattering, AOD and single
15 scattering albedo for BBA in moist conditions (e.g. $RH > 60$ %). GLOMAP-mode may also
16 overestimate the hygroscopic growth, though to a lesser extent. The representation of
17 hygroscopic growth could be improved in both aerosol schemes. One option would be to use
18 Kohler curves with observationally constrained κ values, though care would be needed in
19 dealing with the growth assumed at the upper RH range.

20 **3.6 Vertical distribution of aerosol**

21 The vertical distribution of BBA in the models depends on the vertical profile of emissions
22 and on transport and removal processes. The emission profiles and transport processes are
23 treated identically for the two aerosol schemes but the representation of wet and dry removal
24 processes are different. The modelled profiles of fine-mode aerosol mass are assessed in Fig.
25 14 by comparing them with campaign-mean aircraft observations. For the SAMBBA and
26 DABEX cases the observed profile of fine-mode mass has been estimated from the
27 nephelometer measurement of dry aerosol scattering multiplied by the fine-mode specific
28 extinction ($k_{ext,fm}$) and SSA. Due to use of a modified Rosemount inlet serving the
29 nephelometer on the FAAM aircraft, coarse-mode particles are not well sampled. We
30 therefore make the assumption that the total nephelometer scattering serves as a reasonable
31 guide to fine-mode aerosol concentration. For the conversion of scattering to fine-mode mass
32 we take the $k_{ext,fm}$ and SSA values derived from the in-situ aircraft observations in Table 2.

1 For SAMBBA (Fig. 14a) the campaign mean profile is representative of the Western
2 Amazonia region around Porto Velho, Rondonia. The aerosol extinction coefficient derived
3 from the airborne lidar in SAMBBA was also averaged over a range of flights observing
4 regional BBA layers in the Amazonian region (Marenco et al., 2015). The lidar-derived
5 extinction at 355nm was converted to dry extinction at 550nm using an Ångström exponent of
6 1.7 based on the AERONET September monthly mean at Alta Floresta (Fig. 12a), and the
7 average humidity growth factor from KH98 (Fig. 13). For DABEX the campaign mean
8 profile is taken from Johnson et al. (2008a) and included a correction to subtract the scattering
9 associated with mineral dust aerosol. For SAFARI-2000 no campaign mean profile was
10 available but Haywood et al. (2003) provides information on the observed range of heights for
11 the elevated layers observed over the South East Atlantic. To indicate the degree of sampling
12 error in the mean profiles the standard error is also shown in Fig. 14 for both the observations
13 and models. For the observations the standard error has been calculated as the standard
14 deviation of aerosol mass at a given altitude divided by the square root of the number of
15 profiles (for the nephelometer) or flight sections (for the lidar). For the models the standard
16 error is calculated as the standard deviation from the ten monthly mean profiles in each
17 simulations, divided by the square root of ten (the number of years).

18 The two models predict very similar vertical distributions of fine-mode aerosol with
19 approximately the same profile shape and magnitude of aerosol mass. In most places
20 differences between the models are comparable to the standard error associated with
21 interannual variability. The models also agree quite well with the observations in terms of
22 reproducing the basic vertical structure and profile shape. Over Amazonia the observed
23 profile shows a fairly well mixed layer up to 1.5 km, a small increase around 1.5- 2 km and
24 then a gradual decline from 2 – 6 km and very little above 6 km. The lidar gives a similar
25 shaped profile to the nephelometer except with a more pronounced peak around 2 km.
26 Although the concentrations of aerosol mass observed during SAMBBA were highly variable
27 in space and time (Marenco et al., 2016), the relatively low standard error shows that by
28 averaging over a sufficient sample of flight sections (lidar) or profiles (nephelometer) the
29 campaign mean nephelometer and lidar profiles do provide a useful guide for evaluating the
30 models. The lidar and nephelometer profiles are not expected to match exactly as the spatial
31 and temporal sampling frequency was different and lidar profiles are more uncertain near the
32 ground. Both models capture the shape of the observed profiles reasonably well even showing
33 the increase around 2 km. During DABEX the BB dominated aerosol layers were observed to

1 reside in an elevated layer from 1.5 – 5 km with only low concentrations below. These
2 elevated layers originated from BB emissions further south but had been undercut by Saharan
3 air, lofted and transported north and west towards the observed region (mainly around
4 Niamey, Niger). The models capture the elevated layer but predicted concentrations are lower
5 than observed. During SAFARI-2000 the BB dominated aerosol over the South Eastern
6 Atlantic were observed to reside in elevated layers with a fairly consistent layer base at 1.5 +/-
7 0.6 km and layer top at 4.9 +/- 0.7 km. The models both simulate an elevated layer peaking
8 within this altitude range but with some spread above and below the observed limits of the
9 layers. The two models give very similar vertical profiles though the mass concentration
10 peaks at slightly higher values in CLASSIC in the centre of the layer.

11 Overall the results show that HadGEM3 predicts the vertical profile of BBA quite well
12 despite the current rather crude set of assumptions for plume injection height. As detailed in
13 section 2.3 the emissions from Savannah were injected at the surface and emissions from
14 forest/deforestation uniformly over the lowest 3 km. More sophisticated approaches where
15 plume injection heights are predicted online in the model should certainly be investigated, but
16 it is encouraging that the current approach works reasonably well for the cases investigated
17 here.

18 **4 Conclusions**

19 We conclude that the implementation of GLOMAP-mode has improved the representation of
20 biomass burning aerosol in HadGEM3. The modal scheme is able to predict the full aerosol
21 size distribution, and simulate the variation of aerosol composition and optical properties
22 giving the scheme increased accuracy over the CLASSIC bulk scheme of HadGEM2-ES. The
23 simulated aerosol properties, AOD and aerosol vertical distribution are shown to compare
24 well with observations from SAMBBA and two other aircraft campaigns (DABEX, SAFARI-
25 2000), and with remote sensing retrievals from MODIS and AERONET.

26 The analysis of field observations showed biomass burning aerosols to have reasonably
27 consistent size distributions, Ångström exponents (1.7 – 2.1) and dry specific extinction
28 coefficients (3.6 – 5.8 m²/g) across different tropical biomass burning regions. CLASSIC
29 represents this reasonably well by specifying a globally-representative size distribution that
30 includes the particle size range most important for interaction with solar radiation. GLOMAP-
31 mode simulated the full size distribution from nucleation to coarse (0.01-10 μ m), showing
32 realistic features with good agreement against the available observations. The agreement

1 between modelled and observed size distributions stems from a well constrained initial size
2 distribution for the emitted particles, followed by a good representation of how this size
3 distribution evolves with chemical and microphysical processes. GLOMAP-mode was also
4 able to predict the optical properties with improved accuracy.

5 However, the analyses suggest that both aerosol schemes overestimate the uptake of water at
6 high relative humidity. This overestimation is greater in CLASSIC and is likely to cause an
7 overestimation of aerosol scattering, AOD and SSA in moist regions. In CLASSIC the aerosol
8 scattering coefficient rises by a factor of 2.1 from dry conditions to 80 % relative humidity,
9 whereas in GLOMAP-mode it rises by a factor of 1.7. Although there is considerable
10 uncertainty and variability amongst observations, recent measurement from H-TDMA
11 suggest lower growth factors for aged BB aerosol with the factor of increase in aerosol
12 scattering in the region of 1.2 – 1.5 from dry to 80 % relative humidity.

13 The analysis of observations in this study also highlights the strong variations in black carbon
14 (BC) mass fraction (5 – 12 %) and Single Scattering Albedo (SSA) (0.79 – 0.88) in the
15 average biomass burning aerosol composition from different tropical source regions. These
16 variations are a challenge for the models to capture. Whilst the dry BC mass fraction and SSA
17 in GLOMAP-mode (7-10 %; 0.85 – 0.87) are closer to the observed values than CLASSIC (5-
18 9 %; 0.91), the modelled variability between source regions is lower than observed. This may
19 point to the need for a wider range of BC:OC ratios in the emissions data, which in GFED3
20 are based on Andreae and Merlet (2001). These have been updated in GFED4 (Giglio et al.,
21 2013) based on Akagi et al. (2011) and future studies may provide useful feedback on
22 whether these improve the variability of aerosol composition in models. The emissions of
23 BBA had the same prescribed vertical profile in both models and led to very similar vertical
24 distributions of fine-mode aerosol mass over the main tropical BB regions that compared well
25 with the airborne in-situ and lidar observations.

26 Whilst both schemes gave good agreement between observed and modelled AODs over BB
27 regions, this was achieved by scaling up the total aerosol emissions from GFED3.1 by a
28 global scaling factor of 1.6 for CLASSIC and 2.0 for GLOMAP-mode. This might suggest
29 that the emissions of BC and OC from GFED3 lead to an underestimate of the aerosol mass.
30 However, we note that there is considerable uncertainty in other parameters in the models that
31 affect the aerosol mass and AOD from BB sources. Firstly, there is considerable uncertainty
32 in the ratio used to convert the OC (i.e. carbon mass provided by the emissions data) to the

1 total mass of POM emitted in the models. This depends on the ratio of carbon to oxygen and
2 other elements in the emitted aerosol. In the current configuration of HadGEM3 CLASSIC
3 does not account for this issue (effectively neglecting the non-carbon mass) and GLOMAP-
4 mode converts the OC to POM using a ratio of 1.4 that is likely too low for biomass burning
5 emissions. On the other hand CLASSIC increases the total aerosol mass by a factor of 1.62 on
6 a 6 hour e-folding timescale to represent condensation growth during ageing (a process that
7 GLOMAP-mode does not include). Therefore, the emission scaling factors required to
8 generate agreement between modelled and observed AODs clearly depend on these other
9 scaling applied within the aerosol schemes, as well as aerosol optical properties. For instance,
10 the global emission scaling factor for GLOMAP-mode could be decreased from 2.0 to 1.5 if
11 the POM:OC ratio was increased from 1.4 to 1.9, which would still be within the range
12 reported from observations of aerosol mixtures heavily impacted by biomass burning or wood
13 smoke (e.g. Turpin and Lim, 2001; Aitken et al., 2008; Ng et al., 2010; Tiitta et al., 2014;
14 Brito et al., 2014). This would reduce the black carbon emissions from BB by 25% leading to
15 a slightly less favourable comparison of modelled chemical composition and single scattering
16 albedo with the observations presented in this study. An upward revision to the refractive
17 index of BC and/or the inclusion of brown-carbon absorption could be implemented to
18 address the reduction of BC absorption. Aerosol lifetimes also clearly will affect the loading
19 of aerosol mass and AOD, implying that the global emission scaling factors could change
20 with the representation of aerosol removal processes and the simulation of moist processes.
21 Other models may not require emission scaling to gain good agreement with observed AODs
22 or may require different scaling factors outside the range 1.6 – 2.0 found in this study.
23 Moreover, due to the difficulties of comparing large-scale models with limited observations,
24 these scaling factors are not precise but rather indicate the approximate scale of the AOD
25 biases. It is also worth noting that there are large differences between emission factors
26 estimated for different measures of the aerosol mass: BC + OC, Total Carbon (TC), Total
27 Particulate Matter (TPM), PM2.5 and PM10 (see Andreae and Merlet 2001; Akagi et al.,
28 2011). For instance the emission factors for TPM are a factor of 2.3 – 2.4 higher than the sum
29 of BC + OC in GFED3 (based on Andreae and Merlet 2001) for tropical BB sectors. Using
30 TPM instead of BC and OC in our simulations would therefore have led to an overestimation
31 of AOD in tropical regions unless the global emission scaling factor was reduced to
32 approximately 0.67 in CLASSIC and approximately 1.15 in GLOMAP-mode. With such large
33 uncertainty and observed variability in emission factors, POM:OC ratios, hygroscopic growth

1 and secondary formation of organics, it is difficult to advocate any particular set of changes
2 that would improve the models, though clearly there is scope to reduce the discrepancy
3 between modelled and observed AOD without the use global emission scaling factors.

4 Furthermore, although tuning the emissions gave good overall agreement with observed AOD
5 in the dominant tropical BB regions, some regional discrepancies remained. In particular, we
6 note a low bias over West Africa and a high bias over the Congo basin during Northern
7 hemisphere winter. The AOD over South East Asia and Northern Australia during their BB
8 seasons were also underestimated in our simulations, but the contribution of BB to AOD in
9 the high latitude Boreal forests seems to be slightly overestimated. Regional biases in AOD
10 may be caused, to some extent, by regional (or biome specific) biases in the total emission
11 rate. Other factors may include variations in aerosol optical properties between different
12 regions (e.g. due to different size distribution or water uptake) that may not be captured in the
13 models. Applying a globally uniform scaling factor to account for current uncertainties in BB
14 emission datasets is therefore not sufficient to reconcile the modelled AOD with observations.
15 GFED version 4 (Giglio et al., 2013) has already made significant progress in addressing
16 biases related to small fires (Randerson et al., 2012) that are difficult to identify from burned
17 area products. Follow on studies from this work are recommended to assess the impact of
18 recent developments in fire emission modelling on reducing such regional biases.

19 Overall we conclude that GLOMAP-mode provides a good simulation of BB aerosol for
20 modelling their impacts on radiation and climate. Impacts on CCN and cloud microphysics
21 have not been evaluated here but have been assessed previously in Bellouin et al. (2013). This
22 study does show clear improvements to the aerosol size distribution and composition in
23 GLOMAP-mode that is important for aerosol indirect effects. This shows the benefits of
24 including a more detailed representation of aerosol microphysical and chemistry processes.
25 However, the model could merit from further improvements to BB processes, including more
26 accurate estimates of the emission flux, the composition of emitted particles (which can vary
27 considerably with vegetation / fuel type), and the injection height profile. We also note large
28 uncertainties in the representation of hygroscopic growth, ageing, and absorption (including
29 the role of brown carbon). This is partly due to the complexity of these processes and
30 difficulties in constraining them with observations.

1 **Author contributions**

2 J. Langridge, E. Darbyshire, W. Morgan, K. Szpeck, J. Brooke, F. Marenco contributed
3 towards the analysis of FAAM aircraft observations from SAMBBA, J. Haywood, H. Coe, P.
4 Artaxo, K. Longo were co-principal investigators on the SAMBBA project, J. Mulcahy, G.
5 Mann, N. Bellouin, M. Dalvi contributed to the implementation of GLOMAP-mode aerosol
6 scheme in HadGEM3.

7

8 **Acknowledgements**

9 The Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 Atmospheric
10 Research Aircraft is jointly funded by the Met Office and Natural Environment Research
11 Council and operated by DirectFlight Ltd. We would like to thank the dedicated efforts of
12 FAAM, DirectFlight, INPE, University of Sao Paulo, and the Brazilian Ministry of Science
13 and Technology in making the SAMBBA measurement campaign possible. For AERONET
14 data we thank the PI investigators and their staff for establishing and maintaining the sites
15 used in this investigation (Alta Floresta and Mongu: Brent Holben, Ilorin: Rachel T. Pinker,
16 Chiang Mai: Serm Janjai, Bonanza Creek: John R. Van de Castle, Jabiru: Ross Mitchell). We
17 thank Andrew Sayer and Robert Levy from Goddard Space Flight Centre for their advice with
18 MODIS aerosol products. We thank Ville Vakkari for help in selecting data from the
19 Wellegund station. JMH, ED, WTM, HC, GM and NB were funded by SAMBBA (NERC
20 grant NE/J009822/1). BJ, JMH and JM were funded under the Joint UK BEIS/DEFRA – Met
21 Office Hadley Centre Climate Programme (GA01101). JMH was part funded by the IMPALA
22 grant (NE/M017214/1) via Future Climates for Africa (FCA) funding provided by NERC and
23 DFID.

24 **References**

- 25 Abel, S. J., Haywood, J. M., Highwood, E. J., Li, J., and Buseck, P. R.: Evolution of biomass
26 burning aerosol properties from an agricultural fire in southern Africa., *Geophys. Res.*
27 *Lett.*, 530, 1783, 2003.
- 28 Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crouse,
29 J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use
30 in atmospheric models, *Atmos. Chem. Phys.*, 11, 4039–4072, doi:10.5194/acp-11-4039-2011,
31 2011.

- 1 Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K.,
2 Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A.,
3 Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot,
4 A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jiménez, J. L.:
5 O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with a
6 High Resolution Time-of-Flight Aerosol Mass Spectrometer, *Environ. Sci. Technol.*, 42,
7 4478–4485, 2008.
- 8 Allan, J. D., Morgan, W. T., Darbyshire, E., Flynn, M. J., Williams, P. I., Oram, D. E.,
9 Artaxo, P., Brito, J., Lee, J. D., and Coe, H.: Airborne observations of IEPOX-derived
10 isoprene SOA in the Amazon during SAMBBA, *Atmos. Chem. Phys.*, 14, 11393-11407,
11 doi:10.5194/acp-14-11393-2014, 2014.
- 12 Andreae, M. O., Merlet, P.: Emission of trace gases and aerosols from biomass burning,
13 *Glob. Biogeochem. Cycles*, 15, Issue 4, 955-966, 2001.
- 14 Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and
15 Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, *Science*, 303, 1337–1342,
16 doi:10.1126/science.1092779, 2004.
- 17 Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial volcanic sulfur
18 emissions, *J. Geophys. Res.*, 103, 25 251–25 261, 1998.
- 19 Andrews, E., Sheridan, P., Fiebig, M., McComiskey, A., et al.: Comparison of methods
20 for deriving aerosol asymmetry parameter, *J. Geophys. Res.*, 111, D05S04,
21 doi:10.1029/2004JD005734, 2006.
- 22 Archer-Nicholls, S., Lowe, D., Schultz, D. M., and McFiggans, G.: Aerosol–radiation–cloud
23 interactions in a regional coupled model: the effects of convective parameterisation and
24 resolution, *Atmos. Chem. Phys.*, 16, 5573-5594, doi:10.5194/acp-16-5573-2016, 2016.
- 25 Bauer, S. E., and Menon S.: Aerosol direct, indirect, semidirect, and surface albedo effects
26 from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day
27 conditions, *J. Geophys. Res.*, 117, D01206, doi:10.1029/2011JD016816.
- 28 Bellouin, N., Mann, G. W., Woodhouse, M. T., Johnson, C., Carslaw, K. S., and Dalvi, M.:
29 Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre
30 Global Environmental Model, *Atmos. Chem. Phys.*, 13, 3027-3044, doi:10.5194/acp-13-
31 3027-2013, 2013.

- 1 Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and
2 Boucher, O.: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5)
3 simulations by HadGEM2-ES and the role of ammonium nitrate, *J. Geophys. Res.*, 116,
4 D20206, doi:10.1029/2011JD016074, 2011.
- 5 Brito, J., Rizzo, L. V., Morgan, W. T., Coe, H., Johnson, B., Haywood, J., Longo, K., Freitas,
6 S., Andreae, M. O., and Artaxo, P.: Ground-based aerosol characterization during the South
7 American Biomass Burning Analysis (SAMBBA) field experiment, *Atmos. Chem. Phys.*, 14,
8 12069–12083, doi:10.5194/acp-14-12069-2014, 2014.
- 9 Brooke, J. K.: Airborne Observations of the Physical and Optical Properties of Atmospheric
10 Aerosol, PhD Thesis, School of Earth and Environment, University of Leeds, UK, 2014. Met
11 Office CASE project.
- 12 Capes, G., Johnson, B., McFiggans, G., Williams, P. I., Haywood, J., and Coe, H.: Aging of
13 biomass burning aerosols over West Africa: Aircraft measurements of chemical composition,
14 microphysical properties, and emission ratios, *J. Geophys. Res. Atmos.*, 113, D00C15,
15 doi:10.1029/2008JD009845, 2008.
- 16 Cusack, S., Slingo, A., Edwards, J., and Wild, M.: The radiative impact of a simple aerosol
17 climatology on the Hadley Centre climate model, *Q. J. Roy. Meteorol. Soc.*, 124, 2517–2526,
18 1998.
- 19 Darbyshire, E., and Johnson B.: The South American Biomass Burning Analysis (SAMBBA)
20 Field Experiment, Sept-Oct 2012, Brazil, Summary booklet. Available on request from the
21 authors, 2012.
- 22 Darbyshire, E., Morgan, W. T., Allan, J., Liu, D., Flynn, M., Dorsey, J., O’Shea, S.,
23 Trembath, J., Johnson, B., Szpek, K., Marenco, F., Haywood, J., Brito, J., Artaxo, P., Longo,
24 K., Coe, H.: Effect of fire regime on the physical and chemical properties of biomass burning
25 aerosol over tropical South America – Perspectives from airborne in-situ observations during
26 SAMBBA, *In preparation*, 2016.
- 27 Darmenov, A. and da Silva, A.: The Quick Fire Emissions Dataset (QFED) –
28 Documentation of versions 2.1, 2.2 and 2.4 NASA Technical Report Series on
29 Global Modeling and Data Assimilation NASA TM-2013-104606 version 32
30 <http://gmao.gsfc.nasa.gov/pubs/docs/Darmenov609.pdf>, 2013

- 1 Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S.,
2 Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J., Putaud, J.-P., Textor, C., Schulz, M., Van
3 der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the
4 years 2000 and 1750 prescribed data-sets for AeroCom, *Atmos. Chem. Phys. Discuss.*, 6,
5 2703–2763, 2006, <http://www.atmos-chem-phys-discuss.net/6/2703/2006/>
- 6 Diehl, T., Heil, A., Chin, M., Pan, X., Streets, D., Schultz, M., and Kinne, S., 2012,
7 Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon,
8 and SO₂ from 1980 to 2010 for hindcast model experiments. , doi:10.5194/acpd-12-24895-
9 2012 , *Atmospheric Chemistry and Physics Discussion* 12 : 24895-24954
- 10 Derwent, R.G., Collins, W.J., Jenkin, M.E., and Johnson, C.E., The global distribution of
11 secondary particulate matter in a 3-D Lagrangian chemistry transport model, *J. Atmos.*
12 *Chem.*, 44, 57-95, 2003.
- 13 Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol
14 optical properties from Sun and sky radiance measurements, *J. Geophys. Res.*, 105,
15 20673–20696, 2000.
- 16 Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M.,
17 Yang, P., et al.: Application of spheroid models to account for aerosol particle
18 nonsphericity in remote sensing of desert dust, *J. Geophys. Res.-Atmos.*, 111(D11),
19 D11208, doi:10.1029/2005JD006619, 2006.
- 20 Feingold, G., Remer, L. A., Ramaprasad, J., and Kaufman, Y. J.: Analysis of smoke impact
21 on clouds in Brazilian biomass burning regions: An extension of Twomey's approach, *J.*
22 *Geophys. Res.*, 106, 22907–22922, 2001.
- 23 Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., Andreae, M. O.,
24 Prins, E., Santos, J. C., Gielow, R., and Carvalho Jr., J. A.: Including the sub-grid scale plume
25 rise of vegetation fires in low resolution atmospheric transport models, *Atmos. Chem. Phys.*,
26 7, 3385–3398, doi:10.5194/acp-7-3385-2007, 2007.
- 27 Gao, R.S., Schwarz, J. P., Kelly, K. K., Fahey, D. W., Watts, L. A., Thompson, T.L.,
28 Spackman, R, Slowik, J.G., Cross, E.S., Han, J.-H., Davidovits, P., Onasch, T.B., and
29 Worsnop, D.R., A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols
30 Using a Modified Single-Particle Soot Photometer, *Aerosol Science and Technology*, 41:2,
31 125-135 (2007).

- 1 Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and
2 annual burned area using the fourth-generation global fire emissions database (GFED4) J.
3 Geophys. Res. Biogeosci., 118, 317–328, doi:10.1002/jgrg.20042, 2013.
- 4 Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P.,
5 Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju,
6 R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound
7 emissions, J. Geophys. Res., 100, 8873–8892, 1995.
- 8 Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., van der Gon, H. D., Frost, G. J., Heil, A.,
9 Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J. F., Liousse, C., Masui, T.,
10 Meleux, F., Mieville, A., Ohara, T., Raut, J. C., Riahi, K., Schultz, M. G., Smith, S. J.,
11 Thompson, A., van Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of
12 anthropogenic and biomass burning emissions of air pollutants at global and regional
13 scales during the 1980-2010 period, Clim. Change, 109, 163–190, doi:10.1007/s10584-011-
14 0154-1, 2011.
- 15 Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative forcing due to
16 tropospheric aerosols: A review, Rev. Geophys., 38, 513–543, 2000.
- 17 Haywood, J. M., Osborne, S. R., Francis, P. N., Keil, A., Formenti, P., Andreae, M. O., and
18 Kaye, P. H.: The mean physical and optical properties of regional haze dominated by
19 biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys.
20 Res.-Atmos., 108(D13), 8473, doi:10.1029/2002JD002226, 2003.
- 21 Haywood, J. M., et al.: Overview of the Dust and Biomass-burning Experiment and African
22 Monsoon Multidisciplinary Analysis Special Observing Period-0, J. Geophys. Res., 113,
23 D00C17, doi:10.1029/2008JD010077, 2008.
- 24 Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B.,
25 McLaren, A. J., and Hunke E. C.: Design and implementation of the infrastructure of
26 HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model
27 Dev., 4, 223–253, 2011.
- 28 Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Aerosol properties over bright-
29 reflecting source regions, IEEE Trans. Geosci. Remote Sens., 42 (3), 557–569,
30 doi:10.1109/TGRS.2004.824067, 2004.

- 1 Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Deep Blue retrievals of Asian
2 aerosol properties during ACE-Asia, *IEEE Trans. Geosci. Remote Sens.*, 44 (11), 3180–
3 3195, doi:10.1109/TGRS.2006.879540, 2006.
- 4 Ichoku, C. and Ellison, L.: Global top-down smoke-aerosol emissions estimation using
5 satellite fire radiative power measurements, *Atmos. Chem. Phys.*, 14, 6643–6667,
6 doi:10.5194/acp-14-6643-2014, 2014.
- 7 Johnson, B. T., Osborne, S. R., Haywood, J. M., and Harrison, M. A. J.: Aircraft
8 measurements of biomass burning aerosol over West Africa during DABEX, *J. Geophys.*
9 *Res.-Atmos.*, 113, D00C06, doi:10.1029/2007JD009451, 2008.
- 10 Johnson, B., T., Heese, B., McFarlane, S., Chazette, P., Jones, A. and Bellouin, N.:
11 Vertical distribution and radiative forcing of mineral dust and biomass-burning aerosols
12 over West Africa during DABEX, *J. Geophys. Res.*, 113, D00C12,
13 doi:10.1029/2008JD009848, 2008b.
- 14 Johnston, F. H., Henderson, B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S.,
15 Kinney, P., Bowman, D. M. J. S., and Brauer, M.: Estimated Global Mortality
16 Attributable to Smoke from Landscape Fires, *Environ. Health Perspect.*, 120, 695–701,
17 doi:10.1289/ehp.1104422, 2012.
- 18 Jolleys, M. D., Coe, H., McFiggans, G., Capes, G., Allan, J. D., Crosier, J.,
19 Williams, P. I., Allen, G., Bower, K. N., Jimenez, J. L., Russell, L. M., Grutter, M., and
20 Baumgardner, D.: Characterizing the Aging of Biomass Burning Organic Aerosol by Use
21 of Mixing Ratios: A Meta-analysis of Four Regions, *Environ. Sci. Tech.*, 46, 13093–
22 13102, doi:10.1021/es302386v, 2012.
- 23 Jones, A., Roberts, D. L., Woodage, M. J., and Johnson, C. E.: Indirect sulphate aerosol
24 forcing in a climate model with an interactive sulphur cycle, *J. Geophys. Res.*, 106, 20293–
25 20310, doi: 10.1029/2000JD000089, 2001.
- 26 Jones, A., Haywood, J. M., and Boucher, O.: Aerosol forcing, climate response and
27 climate sensitivity in the Hadley Centre climate model, *J. Geophys. Res.*, 112, D20211,
28 doi:10.1029/2007JD008688, 2007.
- 29 Kahn, R. A., Chen, Y., Nelson, D. L., Leung, F.-Y., Li, Q., Diner, D. J., and Logan, J. A.:
30 Wildfire smoke injection heights: two perspectives from space, *Geophys. Res. Lett.*, 35,
31 18–21, doi:10.1029/2007GL032165, 2008.

- 1 Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L.,
2 Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.:
3 Biomass burning emissions estimated with a global fire assimilation system based on
4 observed fire radiative power, *Biogeosciences*, 9, 527–554, doi:10.5194/bg-9-527-2012,
5 2012.
- 6 Kaufman, Y. J., Hobbs, P. V., Kirchhoff, V., et al.: Smoke, Clouds, and Radiation-Brazil
7 (SCAR-B) Experiment, *J. Geophys. Res.*, 103(D24), 31 783–31 808, 1998.
- 8 Kettle, A., Andreae, M., Amouroux, D., Andreae, T., Bates, T., Berresheim, H.,
9 Bingemer, H., Boniforti, R., Curran, M., DiTullio, G., Helas, G., Jones, G., Keller, M.,
10 Kiene, R., Leck, C., Levasseur, M., Malin, G., Maspero, M., Matrai, P., McTaggart, A.,
11 Mihalopoulos, N., Nguyen, B., Novo, A., Putaud, J., Rapsomanikis, S., Roberts, G.,
12 Schebeske, G., Sharma, S., Sim, R., Staubes, R., Turner, S., and Uher, G.: A global
13 database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict
14 sea surface DMS as a function of latitude, longitude and month, *Global Biogeochemical
15 Cycles*, 13, 399–444, 1999.
- 16 Kolusu, S. R., Marsham, J. H., Mulcahy, J., Johnson, B., Dunning, C., Bush, M., and
17 Spracklen, D. V.: Impacts of Amazonia biomass burning aerosols assessed from short-
18 range weather forecasts, *Atmos. Chem. Phys.*, 15, 12251-12266, doi:10.5194/acp-15-
19 12251-2015, 2015.
- 20 Koren, I., Martins, J.V., Remer, L. A., Afargan, H.: Smoke invigoration versus inhibition
21 of clouds over the amazon. *Science*. 2008, 321:946–9, doi:10.5194/acp-14-9641-2014,
22 2008.
- 23 Kotchenruther, R. A., and P. V. Hobbs, Humidification factors of aerosols from biomass
24 burning in Brazil, *J. Geophys. Res.*, 103(D24), 32081–32089 (1998).
- 25 Kulmala, M., Petäjä, T., Mönkkönen, P., Koponen, I. K., Dal Maso, M., Aalto, P. P.,
26 Lehtinen, K. E. J., and Kerminen, V.-M.: On the growth of nucleation mode particles: source
27 rates of condensable vapor in polluted and clean environments, *Atmos. Chem. Phys.*, 5, 409-
28 416, doi:10.5194/acp-5-409-2005, 2005.
- 29 Lack, D. A., Cappa, C. D., Covert, D. S., Baynard, T., Massoli, P., Sierau, B., Bates, T. S.,
30 Quinn, P., Lovejoy, E. R., and Ravishankara, A. R.: Bias in filter-based aerosol light

- 1 absorption measurements due to organic aerosol loading: Evidence from ambient
2 measurements, *Aerosol Sci. Technol.*, 42(12), 1033–1041, 2008.
- 3 Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D.,
4 Lioussse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest,
5 E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R.,
6 Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded
7 anthropogenic and biomass burning emissions of reactive gases and aerosols:
8 methodology and application, *Atmos. Chem. Phys.*, 10, 7017–7039, doi:10.5194/acp-10-
9 7017-2010, 2010.
- 10 Lau, K.-M., Tsay, S. C., Hsu, C., Chin, M., Ramanathan, V., Wu, G.-X., Li, Z., Sikka, R.,
11 Holben, B., Lu, D., Chen, H., Tartari, G., Koudelova, P., Ma, Y., Huang, J., Taniguchi,
12 K., and Zhang, R.: The joint aerosol-monsoon experiment: A new challenge for Monsoon
13 Climate Research, *B. Am. Meteorol. Soc.*, 89, 369–383, 2008.
- 14 Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.: Second-
15 generation operational algorithm: Retrieval of aerosol properties over land from
16 inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, *J.*
17 *Geophys. Res.*, 112, D13211, doi:10.1029/2006JD007811, 2007.
- 18 Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck,
19 T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over
20 land, *Atmos. Chem. Phys.*, 10, 103,999–10,420, doi:10.5194/acp-10-10399-2010, 2010.
- 21 Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., and Hsu, N. C.:
22 The Collection 6 MODIS aerosol products over land and ocean, *Atmos. Meas. Tech.*
23 *Discuss.*, 6, 159–259, doi:10.5194/amtd-6-159-2013, 2013.
- 24 Lioussse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont, V., Akpo, A.,
25 Bedou, M., Castéra, P., Dungall, L., Gardrat, E., Granier, C., Konaré, A., Malavelle, F.,
26 Mariscal, A., Mieville, A., Rosset, R., Serça, D., Solmon, F., Tummon, F., Assamoi, E.,
27 Yoboué, V., and Van Velthoven, P.: Updated African biomass burning emission
28 inventories in the framework of the AMMA-IDAF program, with an evaluation of
29 combustion aerosols, *Atmos. Chem. Phys.*, 10, 9631–9646, doi:10.5194/acp-10-9631-
30 2010, 2010.

- 1 Liss, P. and Merlivat, L.: The Role of Air-Sea Exchange in Geochemical Cycling, chap.
2 Air-sea gas exchange rates: Introduction and synthesis, 113–127, D. Reidel, Norwell,
3 Mass., 1986.
- 4 Magi, B. I. and Hobbs, P. V.: Effects of humidity on aerosols in southern Africa during
5 the biomass burning season, *J. Geophys. Res.*, 108, 8495, doi:10.1029/2002JD002144,
6 2003.
- 7 Malavelle, F., Pont V., Mallet M., Solmon F., Johnson B., Leon J.-F., and Liousse C.:
8 Simulation of aerosol radiative effects over West Africa during DABEX and AMMA SOP-0,
9 *J. Geophys. Res.*, 116, D08205, doi:10.1029/2010JD014829, 2011.
- 10 Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T.,
11 Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of
12 GLOMAP-mode: A modal global aerosol microphysics model for the UKCA
13 composition-climate model, *Geosci. Model Dev.*, 3, 519–551, doi:10.5194/gmd-3-519-
14 2010, 2010.
- 15 Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A.,
16 Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J.,
17 Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E.,
18 Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson,
19 C. E., Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A., Heintzenberg,
20 J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U., Jennings, S. G.,
21 O'Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen, Y., Ulevicius,
22 V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H.-C., Swietlicki, E., and Henzing, J.
23 S.: Intercomparison and evaluation of global aerosol microphysical properties among
24 AeroCom models of a range of complexity, *Atmos. Chem. Phys.*, 14, 4679-4713,
25 doi:10.5194/acp-14-4679-2014, 2014.
- 26 Mao, J., Horowitz, L. W., Naik, V., Fan, S., Liu, J., and Fiore, A., M.: Sensitivity of
27 tropospheric oxidants to biomass burning emissions: implications for radiative forcing,
28 *Geophys. Res. Lett.*, 40, 1241–1246, doi:10.1002/grl.50210, 2013.
- 29 Marenco, F., Johnson, B., Langridge, J. M., Mulcahy, J., Benedetti, A., Remy, S., Jones,
30 L., Szpek, K., Haywood, J., Longo, K., and Artaxo, P.: On the vertical distribution of

- 1 smoke in the Amazonian atmosphere during the dry season, *Atmos. Chem. Phys.*, 16,
2 2155-2174, doi:10.5194/acp-16-2155-2016, 2016.
- 3 Marlair, M. E., DeFries, S. R., Voulgarakis, A., Kinney, P. L., Randerson, J. T., Shindell,
4 D. T., Chen, Y., and Faluvegi, G.: El Nino and health risks from landscape fire emissions
5 in southeast Asia, *Nature Climate Change*, 3, 131–136, doi:10.1038/nclimate1658,
6 2013.
- 7 Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. H.,
8 Guenther, A., Heald, C. L., Mayol Bracero, O. L., McMurry, P. H., Pauliquevis, T., Poschl,
9 U., Prather, K. A., Roberts, G. C., Saleska, S. R., Silva-Dias, M. A., Spracklen, D. V.,
10 Swietlicki, E., and Trebs, I.: Sources and properties of Amazonian aerosol particles, *Rev.*
11 *Geophys.*, 48, RG2002, doi:10.1029/2008RG000280, 2010.
- 12 Mercado, L., Bellouin, N., Stich, S., Boucher, O., Huntingford, C., Wild, M., and Wild,
13 P.: Impacts of changes in diffuse radiation on the global land carbon sink, *Nature*, 458,
14 01014–01018, doi:10.1028/nature07949, 2009.
- 15 Morgan, W., Allan, J., Flynn, M., Darbyshire, E., Liu, D., Szpek, K., Langridge J., Johnson,
16 B., Haywood, J., Longo, K. M., Artaxo, P., Coe, H.: Transformation of aerosol chemical
17 composition and resultant impact on climate during the South American Biomass Burning
18 Analysis (SAMBBA), iCACGP/IGAC-2014 Science Conference on Atmospheric Chemistry,
19 Brazil Natal, 22-26 September, 2014.
- 20 Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey,
21 S. M., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model – Part 1:
22 The stratosphere, *Geosci. Model Dev.*, 2, 43-57, doi:10.5194/gmd-2-43-2009, 2009.
- 23 Milton, S. F., Greed G., Brooks, M. E., Haywood, J., Johnson, B., Allan, R. P., Slingo, A.,
24 and Grey, W. M. F.: Modeled and observed atmospheric radiation balance during the West
25 African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo, *J.*
26 *Geophys. Res.*, 113, D00C02, doi:10.1029/2007JD009741, 2008.
- 27 Moteki, N., and Kondo Y.: Method to measure time-dependent scattering cross-sections of
28 particles evaporating in a laser beam, *J. Aerosol Sci.*, 39, doi:10.1016/j.jaerosci.2007.12.002,
29 2008.
- 30 Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian,
31 H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J.,

- 1 Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X.,
2 Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland,
3 Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu,
4 H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the
5 direct aerosol effect from AeroCom Phase II simulations, *Atmos. Chem. Phys.*, 13, 1853-
6 1877, doi:10.5194/acp-13-1853-2013, 2013.
- 7 Myhre, G., Hoyle C. R., Berglen T. F., Johnson B. T., and Haywood J. M.: Modeling of the
8 solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning
9 Experiment (DABEX), *J. Geophys. Res.*, 113, D00C16, doi:10.1029/2008JD009857, 2008.
- 10 Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I.
11 M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M.,
12 Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt,
13 A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components
14 observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry,
15 *Atmos. Chem. Phys.*, 10, 4625–4641, doi:10.5194/acp-10-4625-2010, 2010.
- 16 O'Connor, F. M., Johnson, C. E., Morgenstern, O., Abraham, N. L., Braesicke, P., Dalvi,
17 M., Folberth, G. A., Sanderson, M. G., Telford, P. J., Voulgarakis, A., Young, P. J.,
18 Zeng, G., Collins, W. J., and Pyle, J. A.: Evaluation of the new UKCA climate-
19 composition model – Part 2: The Troposphere, *Geosci. Model Dev.*, 7, 41-91,
20 doi:10.5194/gmd-7-41-2014, 2014.
- 21 Ott, L., Duncan, B., Pawson, S., Colarco, P. R., Chin, M., Randles, C., Diehl, T., and
22 Nielsen, E.: The influence of the 2006 Indonesian biomass burning aerosols on tropical
23 dynamics studied with the GEOS-5 AGCM, *J. Geophys. Res.*,
24 doi:10.1029/2009JD013181, D14121, 2010.
- 25 Pacifico, F., Folberth, G. A., Sitch, S., Haywood, J. M., Rizzo, L. V., Malavelle, F. F., and
26 Artaxo, P.: Biomass burning related ozone damage on vegetation over the Amazon forest: a
27 model sensitivity study, *Atmos. Chem. Phys.*, 15, 2791-2804, doi:10.5194/acp-15-2791-2015,
28 2015.
- 29 Petrenko, M., Kahn, R., Chin, M., Soja, A., Kucsma, T., and Harshvardhan, N.: The use of
30 satellite-measured aerosol optical depth to constrain biomass burning emissions source

- 1 strength in the global model GOCART, *J. Geophys. Res.*, 117, D18212,
2 doi:10.1029/2012JD017870, 2012.
- 3 Polashenski, C.M., Dibb, J.E., Flanner, M.G., Chen, J.Y., Courville, Z.R., Lai, A.M., Schauer,
4 J.S., Shafer, M.M., Bergin, M.: Neither dust nor black carbon causing apparent albedo decline
5 in Greenland's dry snow zone; implications for MODIS C5 surface reflectance, *Geophys.*
6 *Res. Letts*, 10.1002/2015GL065912, 2015.
- 7 Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black
8 carbon, *Nature Geosci.*, 1, 221–227, doi:10.1038/ngeo156, 2008.
- 9 Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and
10 the hydrological cycle, *Science*, 294, 2119–2124, 2001.
- 11 Randles, C. and Ramaswamy, V.: Absorbing aerosols over Asia:
12 A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study
13 of model response to aerosol optical depth and aerosol absorption, *J. Geophys.*
14 *Res.*, 113, D21203, doi:10.1029/2008JD010140, 2008.
- 15 Rap, A., Spracklen, D. V., Mercado, L., Reddington, C. L., Haywood, J. M., Ellis, R. J.,
16 Phillips, O. L., Artaxo, P., Bonal, D., Coupe, N. R., and Butt, N.: Fires increase Amazon
17 forest productivity through increases in diffuse radiation, *Geophys. Res. Lett.*, 42, 4654–
18 4662, doi:10.1002/2015GL063719, 2015.
- 19 Reddington, C. L., Butt, E. W., Ridley, D. A., Artaxo, P., Morgan, W. T., Coe, H., and
20 Spracklen, D. V.: Air quality and human health improvements from reductions in
21 deforestation-related fire in Brazil. *Nature Geoscience* 8, 768–771
22 doi:10.1038/ngeo2535, 2015.
- 23 Reddington, C. L., Spracklen, D. V., Artaxo, P., Ridley, D., Rizzo, L. V., and Arana, A.:
24 Analysis of particulate emissions from tropical biomass burning using a global aerosol model
25 and long-term surface observations, *Atmos. Chem. Phys. Discuss.*, doi:10.5194/acp-2015-
26 967, in review, 2016.
- 27 Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning
28 emissions part II: intensive physical properties of biomass burning particles, *Atmos.*
29 *Chem. Phys.*, 5, 799–825, doi:10.5194/acp-5-799-2005, 2005.

- 1 Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D. P.,
2 Holben, B. N., Reid, E. A., and Zhang, J.: A review of biomass burning emissions part III:
3 intensive optical properties of biomass burning particles, *Atmos. Chem. Phys.*, 5, 827-849,
4 doi:10.5194/acp-5-827-2005, 2005b.
- 5 Remer, L., Kaufman, Y., Tanre, D., Mattoo, S., Chu, D., Martins, J., et al.: The MODIS
6 aerosol algorithm, products, and validation, *J. Atmos. Sci.*, 62(4), 947–973, 2005.
- 7 Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax,
8 M. G.: Daily High-Resolution-Blended Analyses for Sea Surface Temperature, *J.*
9 *Climate*, 20, 5473–5496, doi:10.1175/2007JCLI1824.1, 2007.
- 10 Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., Sullivan, R. C.,
11 Presto, A. A., Dubey, M. K., Yokelson, R. J., Donahue, N. M., and Robinson, A. L.:
12 Brownness of organics in aerosols from biomass burning linked to their black carbon content,
13 *Nat. Geosci.*, 7, 647–650, 2014.
- 14 Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian,
15 H., Bellouin, N., Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kinne, S., Kirkevåg,
16 A., Lamarque, J.-F., Lin, G., Liu, X., Penner, J. E., Seland, Ø., Skeie, R. B., Stier, P.,
17 Takemura, T., Tsigaridis, K., and Zhang, K.: Black carbon vertical profiles strongly
18 affect its radiative forcing uncertainty, *Atmos. Chem. Phys.*, 13, 2423–2434,
19 doi:10.5194/acp-13-2423-
20 2013, 2013.
- 21 Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and Jeong M.-
22 J.: MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue,
23 Dark Target, and “merged” data sets, and usage recommendations, *J. Geophys. Res.*
24 *Atmos.*, 119, 13,965–13,989, doi:10.1002/2014JD022453, 2014.
- 25 Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J.,
26 Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J.,
27 Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G.,
28 Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T.,
29 Voulgarakis, A., Yoon, J.-H., and Lo, F.: Radiative forcing in the ACCMIP historical and
30 future climate simulations, *Atmos. Chem. Phys.*, 13, 2939-2974, doi:10.5194/acp-13-2939-
31 2013, 2013.

- 1 Schutgens, N. A. J., Partridge, D. G., and Stier, P.: The importance of temporal
2 collocation for the evaluation of aerosol models with observations, *Atmos. Chem. Phys.*,
3 *Discuss.*, 15, 26191-26230, doi:10.5194/acpd-15-26191-2015, 2015.
- 4 Sofiev, M., Ermakova, T., and Vankevich, R.: Evaluation of the smoke-injection height
5 from wild-land fires using remote-sensing data, *Atmos. Chem. Phys.*, 12, 1995–2006,
6 doi:10.5194/acp-12-1995-2012, 2012.
- 7 Spracklen, D. V., Carslaw, K. S., Pöschl, U., Rap, A., and Forster, P. M.: Global cloud
8 condensation nuclei influenced by carbonaceous combustion aerosol, *Atmos. Chem.*
9 *Phys.*, 11, 9067-9087, doi:10.5194/acp-11-9067-2011, 2011.
- 10 Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L.,
11 Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold,
12 A.: The aerosol-climate model ECHAM5-HAM, *Atmos. Chem. Phys.*, 5, 1125–1156,
13 doi:10.5194/acp-5-1125-2005, 2005.
- 14 IPCC: Climate Change 2013: The Physical Science Basis: Sum-
15 mary for Policymakers, Cambridge, UK, 2013.
- 16 Stokes, R. H., and Robinson, R. A.: Interactions in aqueous nonelectrolyte solutions, solute-
17 solvent equilibria, *J. Phys. Chem.*, 70(7), 2126–2131, 1966.
- 18 Swap, B., Annegarn H. J., Suttles, J. T., Haywood, J., Helmlinger M. C., Hely C., Hobbs, P.
19 V., Holben B., Ji, J., King, M. D., Landmann T., Maenhaut W., Otter L., Pak B., Piketh, S. J.,
20 Platnick, S., Privette, J. L., Roy, D., Thompson, A. M., Ward, D., and Yokelson, R.: The
21 Southern African Regional Science Initiative (SAFARI 2000): Overview of the dry season
22 field campaign, *S. African J. Sci.*, 98, 125-130, 2002.
- 23 Swietlicki, E., Hansson, H. C., Hameri, K., Svenningsson, B., Massling, A., McFiggans,
24 McMurry, P., Petaja, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E.,
25 Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala, M.: Hygroscopic
26 properties of submicrometer atmospheric aerosol particles measured with H TDMA
27 instruments in various environments – A review, *Tellus B*, 60, 432–469, 2008.
- 28 Ten Hoeve, J. E., Jacobson, M. Z., and Remer, L. A.: Comparing results from a physical
29 model with satellite and in situ observations to determine whether biomass burning aerosols

- 1 over the Amazon brighten or burn off clouds, *J. Geophys. Res.*, 117, D08203,
2 doi:10.1029/2011JD016856, 2012.
- 3 Tiitta, P., Vakkari, V., Josipovic, M., Croteau, P., Beukes, J. P., van Zyl, P. G., Venter,
4 A. D., Jaars, K., Pienaar, J. J., Ng, N. L., Canagaratna, M. R., Jayne, J. T.,
5 Kerminen, V.-M., Kulmala, M., Laaksonen, A., Worsnop, D. R., and Laakso, L.:
6 Chemical composition, main sources and temporal variability of PM1 aerosols in
7 southern African grassland, *Atmos. Chem. Phys.*, 14, 1909–1927, doi:10.5194/acp-14-
8 1909-2014, 2014.
- 9 Tosca, M. G., Randerson, J. T., Zender, C. S., Flanner, M. G., and Rasch, P. J.: Do
10 biomass burning aerosols intensify drought in equatorial Asia during El Nino?, *Atmos.*
11 *Chem. Phys.*, 10, 3515–3528, doi:10.5194/acp-10-3515-2010, 2010
- 12 Tosca, M. G., Randerson, J. T., Zender, C. S., Nelson, D. L., Diner, D. J., and Logan, J.
13 A.: Dynamics of fire plumes and smoke clouds associated with peat and deforestation
14 fires in Indonesia, *J. Geophys. Res.*, 116, 1–14, doi:10.1029/2010JD015148, 2011.
- 15 Tosca, M. G., Randerson, J. T., and Zender, C. S.: Global impact of smoke aerosols from
16 landscape fires on climate and the Hadley circulation, *Atmos. Chem. Phys.*, 13, 5227–
17 5241, doi:10.5194/acp-13-5227-2013, 2013.
- 18 Tosca, M. G., Diner, D. J., Garay, M. J., and Kalashnikova, O. V.: Observational
19 evidence of fire-driven reduction of cloud fraction in tropical Africa, *J. Geophys. Res.*
20 *Atmos.*, 119, 8418–8432, doi:10.1002/2014JD021759, 2014.
- 21 Turpin, B. J., Saxena, P., and Andrews, E.: Measuring and simulating particulate
22 organics in the atmosphere: problems and prospects, *Atmos. Environ.*, 34, 2983–
23 3013, 2000.
- 24 Turpin, B. J., and Lim, H. J.: Species Contributions to PM2.5 Mass Concentrations:
25 Revisiting Common Assumptions for Estimating Organic Mass, *Aerosol Sci.* 35, 602–610,
26 2001.
- 27 Twomey, S.: Pollution and the planetary albedo, *Atmos. Environ.*, 8, 1251–1256, 1974.
- 28 Val Martin, M., Logan, J. A., Kahn, R. A., Leung, F.-Y., Nelson, D. L., and Diner, D. J.:
29 Smoke injection heights from fires in North America: analysis of 5 years of satellite
30 observations, *Atmos. Chem. Phys.*, 10, 1491–1510, doi:10.5194/acp-10-1491-2010, 2010.

- 1 Val Martin, M., Kahn, R. A., Logan, J. A., Paugam, R., Wooster, M., and Ichoku, C.:
2 Space-based observational constraints for 1-D fire smoke plume-rise models, *J. Geophys.*
3 *Res.*, 117, D22204, doi:10.1029/2012JD018370, 2012.
- 4 Vakkari, V., Kerminen, V.-M., Beukes, J., Tiitta, P., van Zyl, P., Josipovic, M., Venter,
5 A., Jaars, K., Worsnop, D., Kulmala, M., and Laakso, L.: Rapid changes in biomass
6 burning aerosols by atmospheric oxidation, *Geophys. Res. Lett.*, 41, 2644–2651,
7 doi:10.1002/2014GL059396, 2014.
- 8 van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S.,
9 Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the
10 contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), *Atmos.*
11 *Chem. Phys.*, 10, 11707-11735, doi:10.5194/acp-10-11707-2010, 2010.
- 12 Voulgarakis, A., and Field, R. D.: Fire influences on atmospheric composition, air quality,
13 and climate. *Curr. Pollut. Rep.*, 1, no. 2, 70-81, doi:10.1007/s40726-015-0007-z, 2015.
- 14 Walters, D. N., Williams, K. D., Boutle, I. A., Bushell, A. C., Edwards, J. M., Field, P.
15 R., Lock, A. P., Morcrette, C. J., Stratton, R. A., Wilkinson, J. M., Willett, M. R.,
16 Bellouin, N., Bodas-Salcedo, A., Brooks, M. E., Copsey, D., Earnshaw, P. D., Hardiman,
17 S. C., Harris, C. M., Levine, R. C., MacLachlan, C., Manners, J. C., Martin, G. M.,
18 Milton, S. F., Palmer, M. D., Roberts, M. J., Rodríguez, J. M., Tennant, W. J., and
19 Vidale, P. L.: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global
20 Land 4.0 configurations, *Geosci. Model Dev.*, 7, 361-386, doi:10.5194/gmd-7-361-2014,
21 2014.
- 22 Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T., and Hess, P.
23 G.: The changing radiative forcing of fires: global model estimates for past, present and
24 future, *Atmos. Chem. Phys.*, 12, 10857–10886, doi:10.5194/acp-12-10857-2012, 2012.
- 25 World Climate Programme (WCP): Report of the experts meeting on aerosols and their
26 climatic effects, edited by Deepak, A. and Gerber, H. G., World Meteorological Organization,
27 Geneva, Switzerland, Rep. WCP-55, 107 pp., 1983.
- 28 Williams, K. D., Harris, C. M., Bodas-Salcedo, A., Camp, J., Comer, R. E., Copsey, D.,
29 Fereday, D., Graham, T., Hill, R., Hinton, T., Hyder, P., Ineson, S., Masato, G., Milton,
30 S. F., Roberts, M. J., Rowell, D. P., Sanchez, C., Shelly, A., Sinha, B., Walters, D. N.,
31 West, A., Woollings, T., and Xavier, P. K.: The Met Office Global Coupled model 2.0

- 1 (GC2) configuration, *Geosci. Model Dev.*, 8, 1509-1524, doi:10.5194/gmd-8-1509-2015,
2 2015.
- 3 Whitehead, J. D., Irwin, M., Allan, J. D., Good, N., and McFiggans, G.: A meta-analysis of
4 particle water uptake reconciliation studies, *Atmos. Chem. Phys.*, 14, 11833-11841,
5 doi:10.5194/acp-14-11833-2014, 2014.
- 6 Woodward, S.: Modelling the atmospheric life cycle and radiative impact of mineral dust in
7 the Hadley Centre climate model, *J. Geophys. Res.*, 106, 18155–18166, 2001.
- 8 Woodward, S.: Mineral Dust in HadGEM2, Hadley Centre Technical Note 87, Met Office
9 Hadley Centre for Climate Change, Exeter, United Kingdom,
10 <http://www.metoffice.gov.uk/archive/science/climatescience/> hctn87, 2011.
- 11 Wu, P., Christidis, N. and Stott, P.: Anthropogenic impact on Earth's hydrological cycle *Nat.*
12 *Clim. Change*, 3, 807–10, doi:10.1038/nclimate1932, 2013.
- 13 Xia, L., Robock, A., Tilmes, S., and Neely III, R. R.: Stratospheric sulfate
14 geoengineering enhances terrestrial gross primary productivity, *Atmos. Chem. Phys.*
15 *Discuss.*, 15, 25627-25645, doi:10.5194/acpd-15-25627-2015, 2015.
- 16 Zhang, Y., R. Fu, H. Yu, Y. Qian, R. Dickinson, M. A. F. Silva Dias, P. L. da Silva Dias,
17 and K. Fernandes (2009), Impact of biomass burning aerosol on the monsoon circulation
18 transition over Amazonia, *Geophys. Res. Lett.*, 36, L10814, doi:10.1029/2009GL037180.
19

Aerosol scheme	Emitted particle properties			Scaling factors applied		
	Dg	σ	BC:OC	POM:OC conversion	Ageing growth factor	Global emission scaling
CLASSIC	0.20	1.3	0.093	n/a	1.62	1.6
GLOMAP-mode	0.15	1.59	Variable (GFED3.1)	1.4	n/a	2.0

1

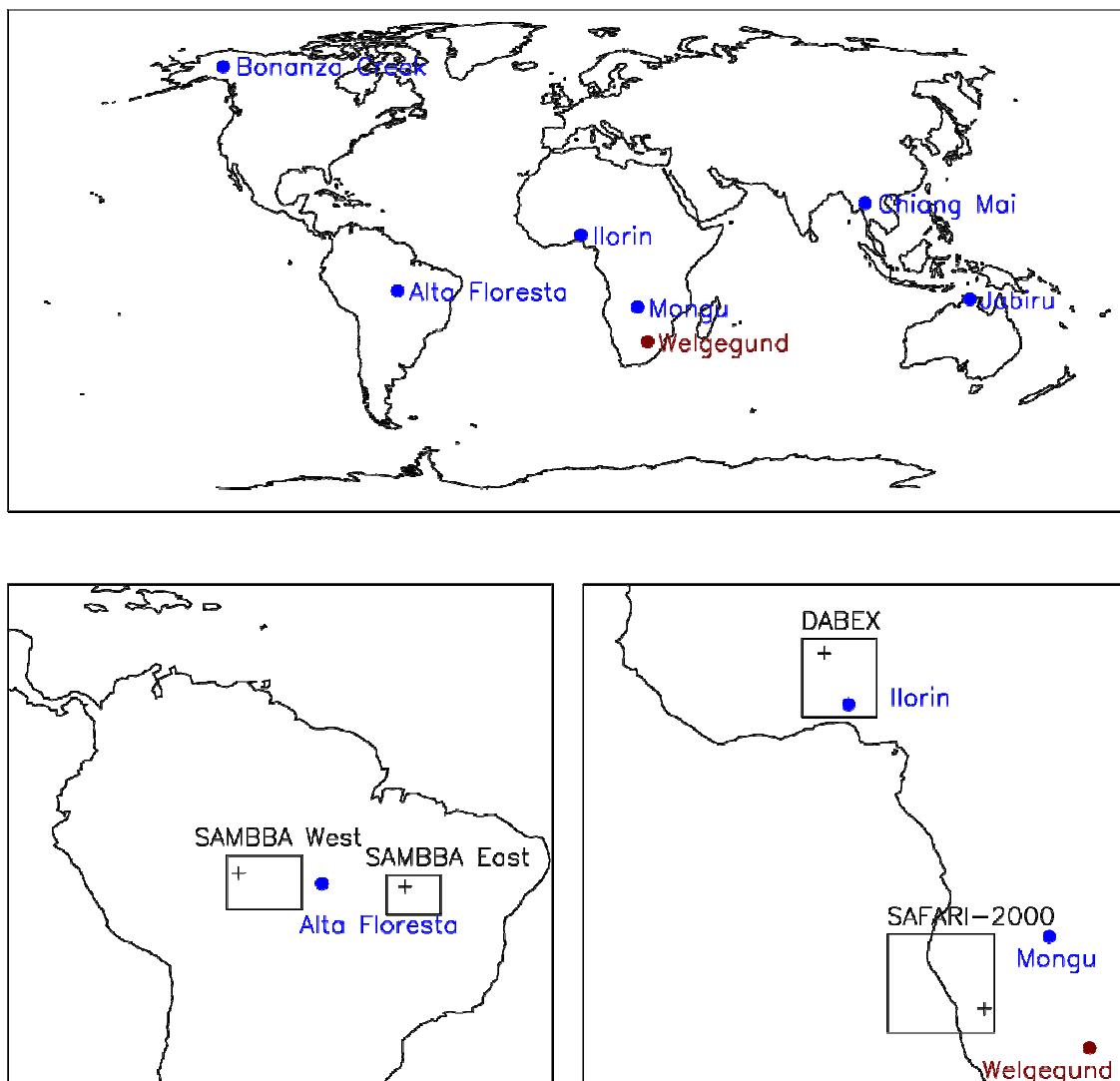
2 **Table 1.** Biomass burning aerosol emissions: emitted particle properties and scaling factors
3 applied.

Data source	Campaign / region	SSA	Å	$k_{ext,fm}$ (m^2/g)	g	References
<i>models</i>						
CLASSIC	Global	0.91	2.3	5.0	0.58	Haywood et al. (2003)
aged BBA						
GLOMAP-mode	SAMBBA West (Rondonia)	0.87	2.0	4.8	0.63	
fine-mode	SAMBBA East (Tocantins)	0.86	2.1	4.5	0.60	
	DABEX (West Africa)	0.85	2.0	4.6	0.61	
	SAFARI (S. Africa)	0.86	2.0	4.8	0.62	
<i>Observations</i>						
In-situ aircraft observations	SAMBBA West (Phase 1, Rondonia) ^b	0.88 +/- 0.05	1.9 +/- 0.3	3.6 +/- 0.06	^c 0.66 +/- 0.06 ^d 0.59 +/- 0.05	Darbyshire et al. (in preparation, 2016), Brooke (2014)
	SAMBBA East (Tocantins)	0.79	2.1 +/- 0.2	n/a	0.57 +/- 0.05	Darbyshire et al. (in preparation, 2016).
	DABEX (West Africa)	0.81 +/- 0.05	1.7	5.8	0.63	Johnson et al. (2008)
	SAFARI-2000 (S. Africa)	0.88 +/- 0.04	n/a	4.3	0.58	Haywood et al. (2003) ^e

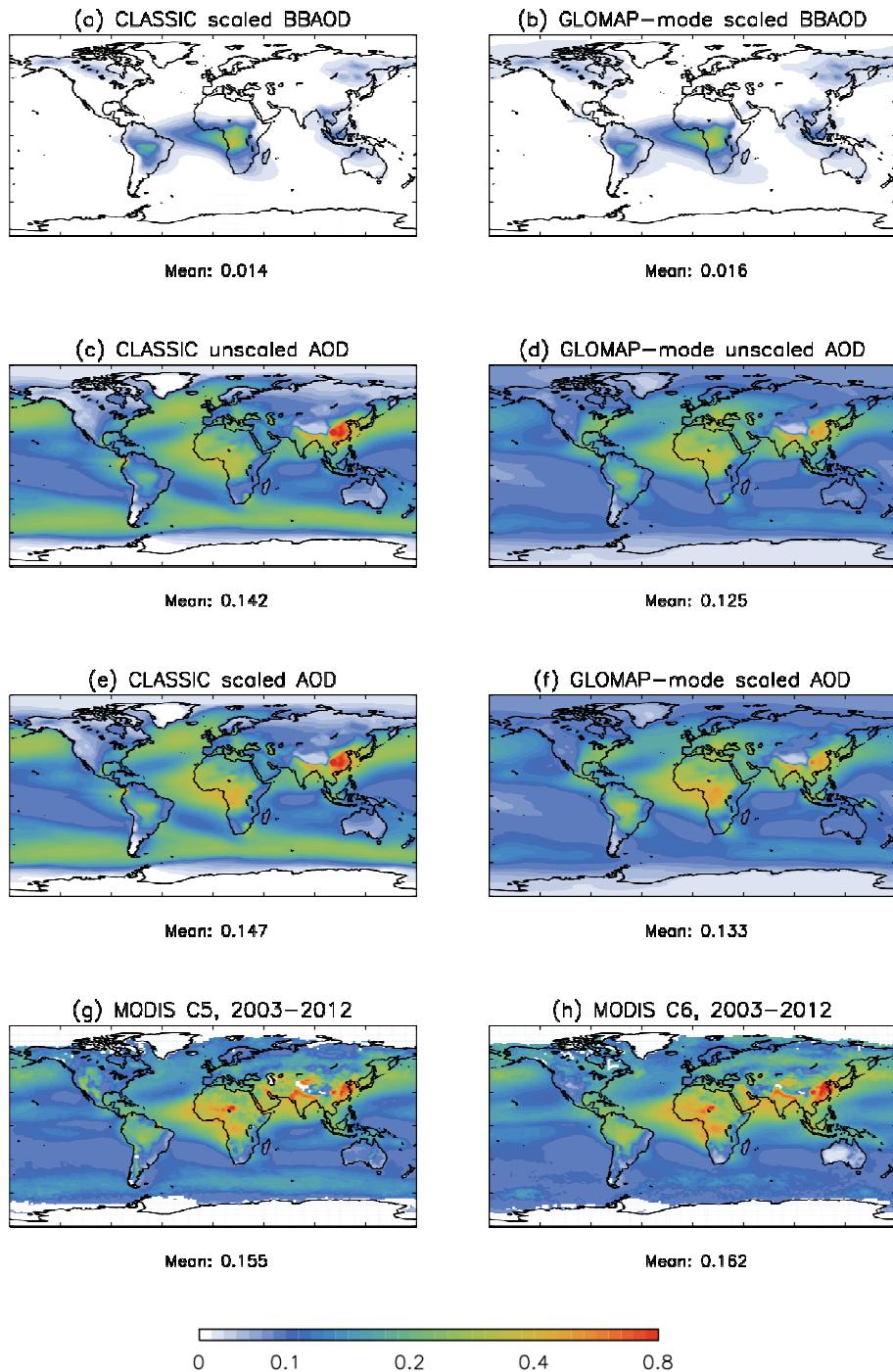
1

2 **Table 2.** Dry aerosol optical properties at 550nm from model and observations including Single Scattering
 3 Albedo (SSA), Ångström exponent (Å), fine-mode specific extinction coefficient ($k_{ext,fm}$), and asymmetry
 4 parameter (g). Error bounds are given to observed parameters, where available, to reflect uncertainty in
 5 the measurement.

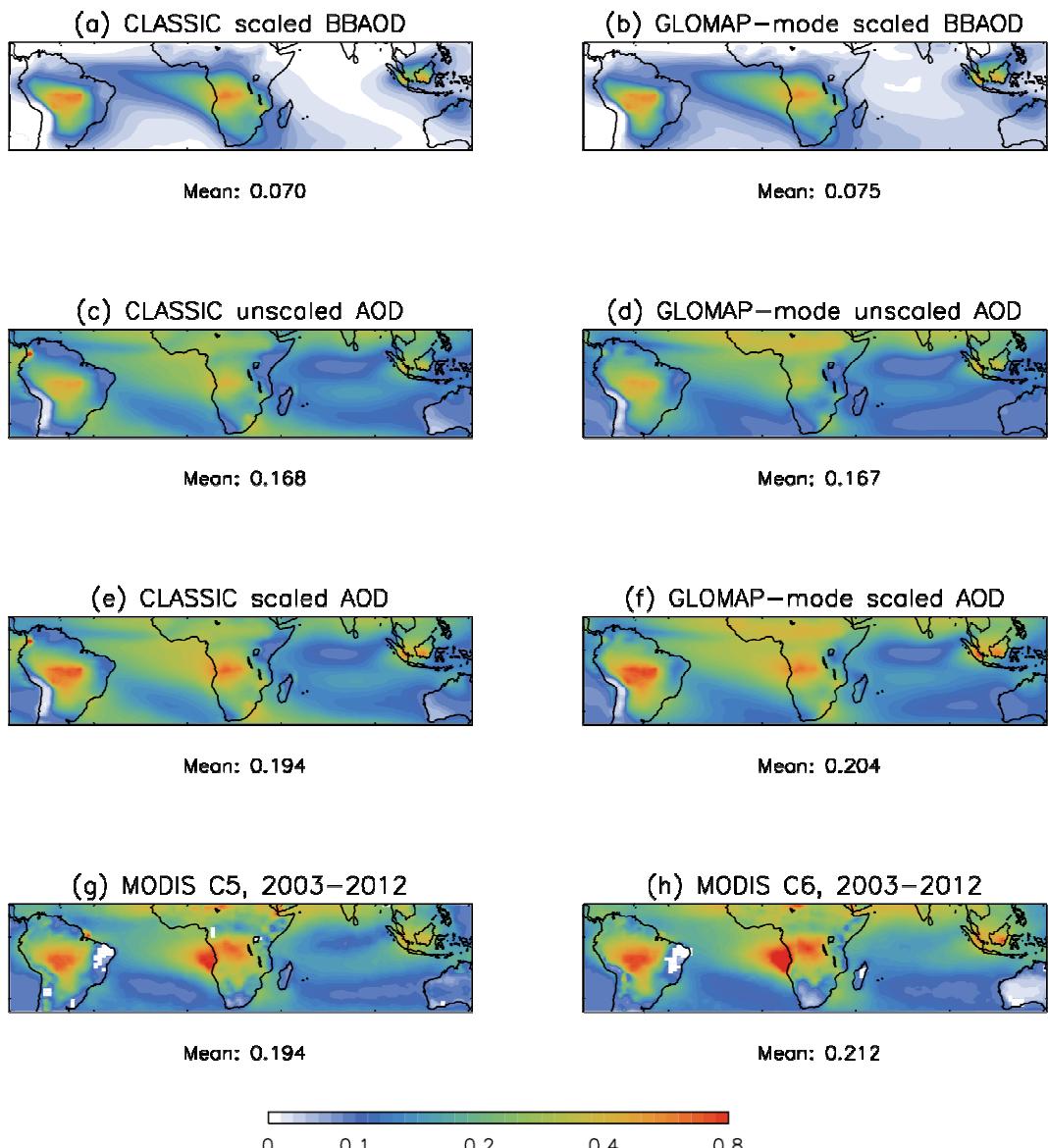
1 ^a Assuming a representative mixture with 10 % fresh and 90 % aged BB aerosol.

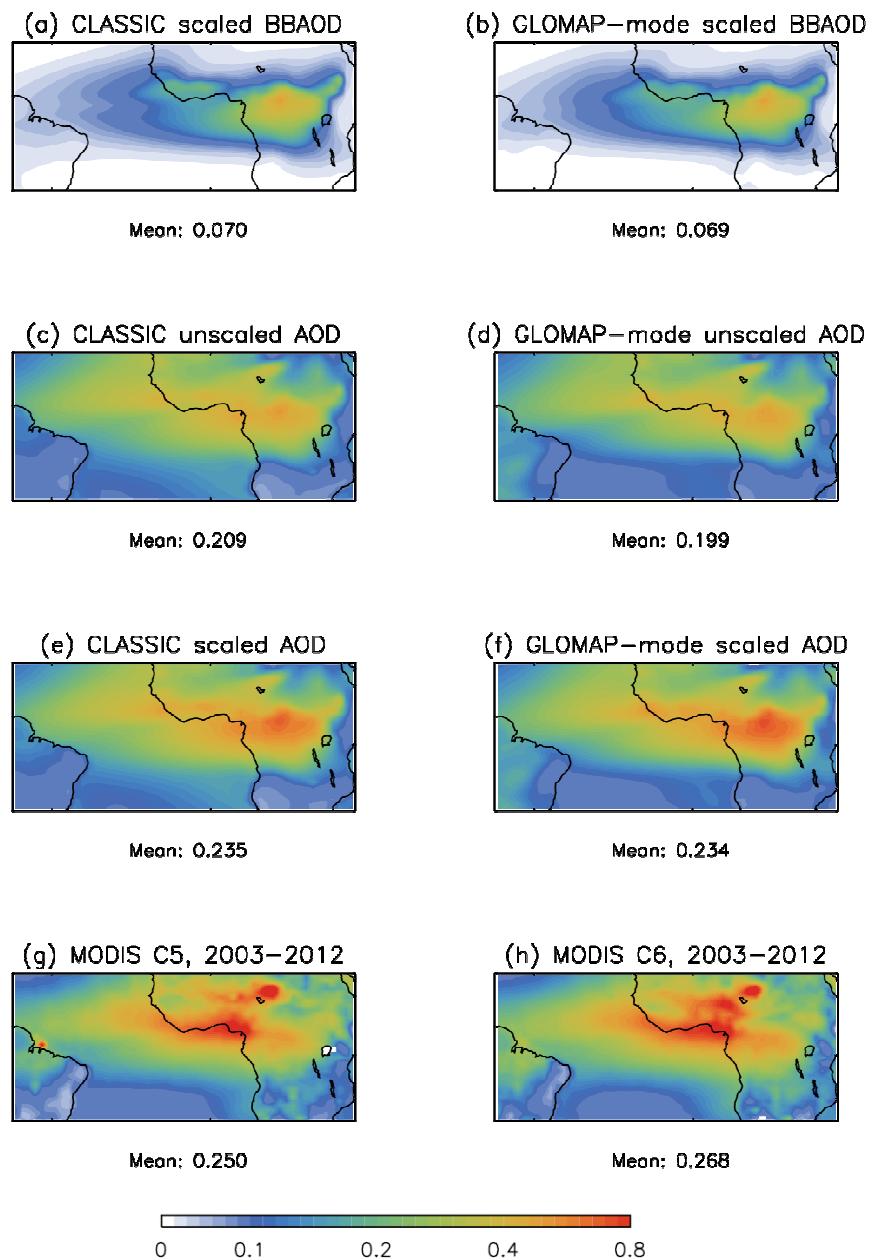

2 ^b Phase 1 of SAMBBA was from 14 – 22 September 2012.

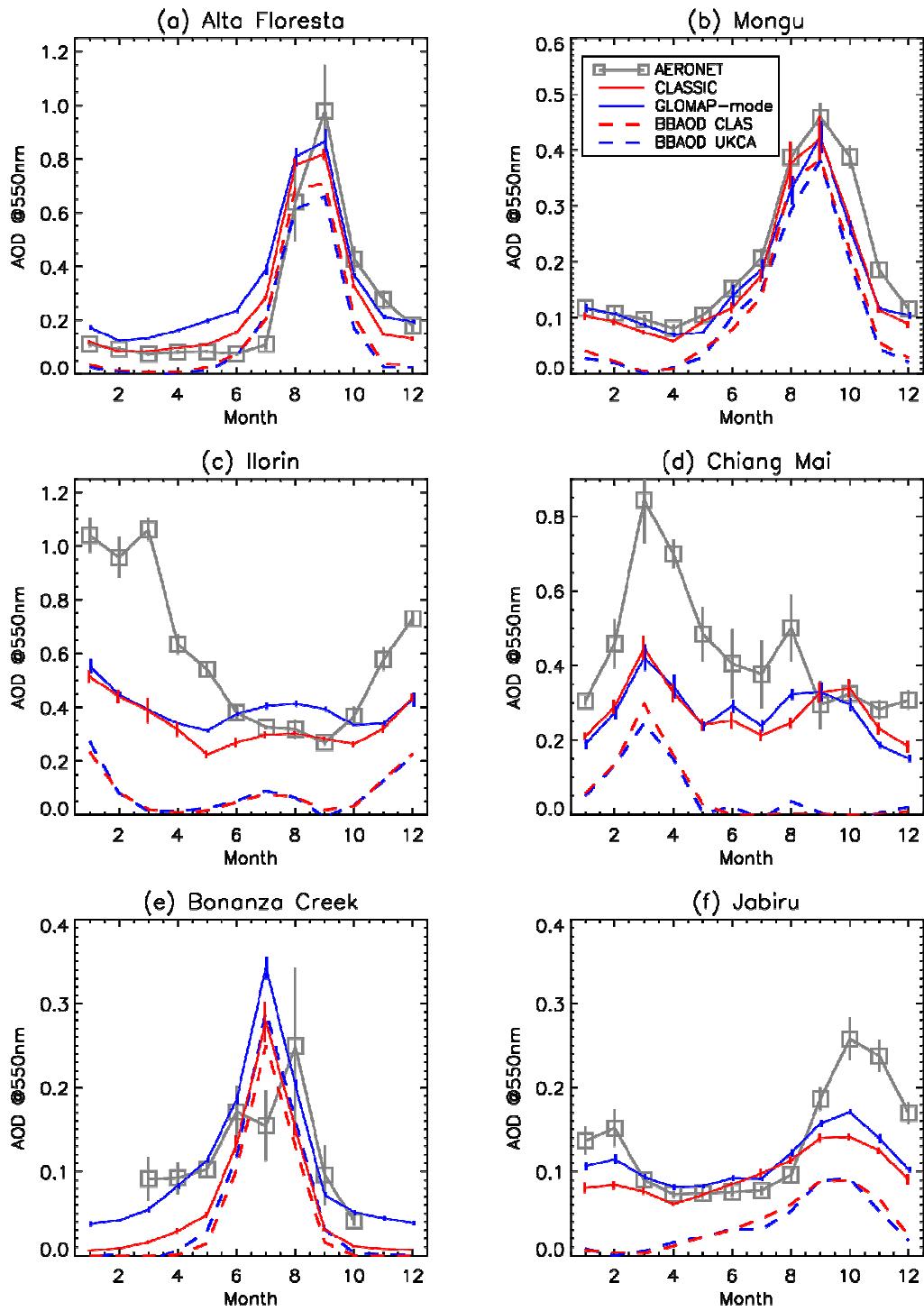
3 ^c Calculated from the nephelometer backscatter fraction based on Andrew et al. (2006).


4 ^d Derived from Mie calculations in Brooke (2014)

5 ^e Haywood et al. (2003) results for SSA reassessed in Johnson et al. (2008).

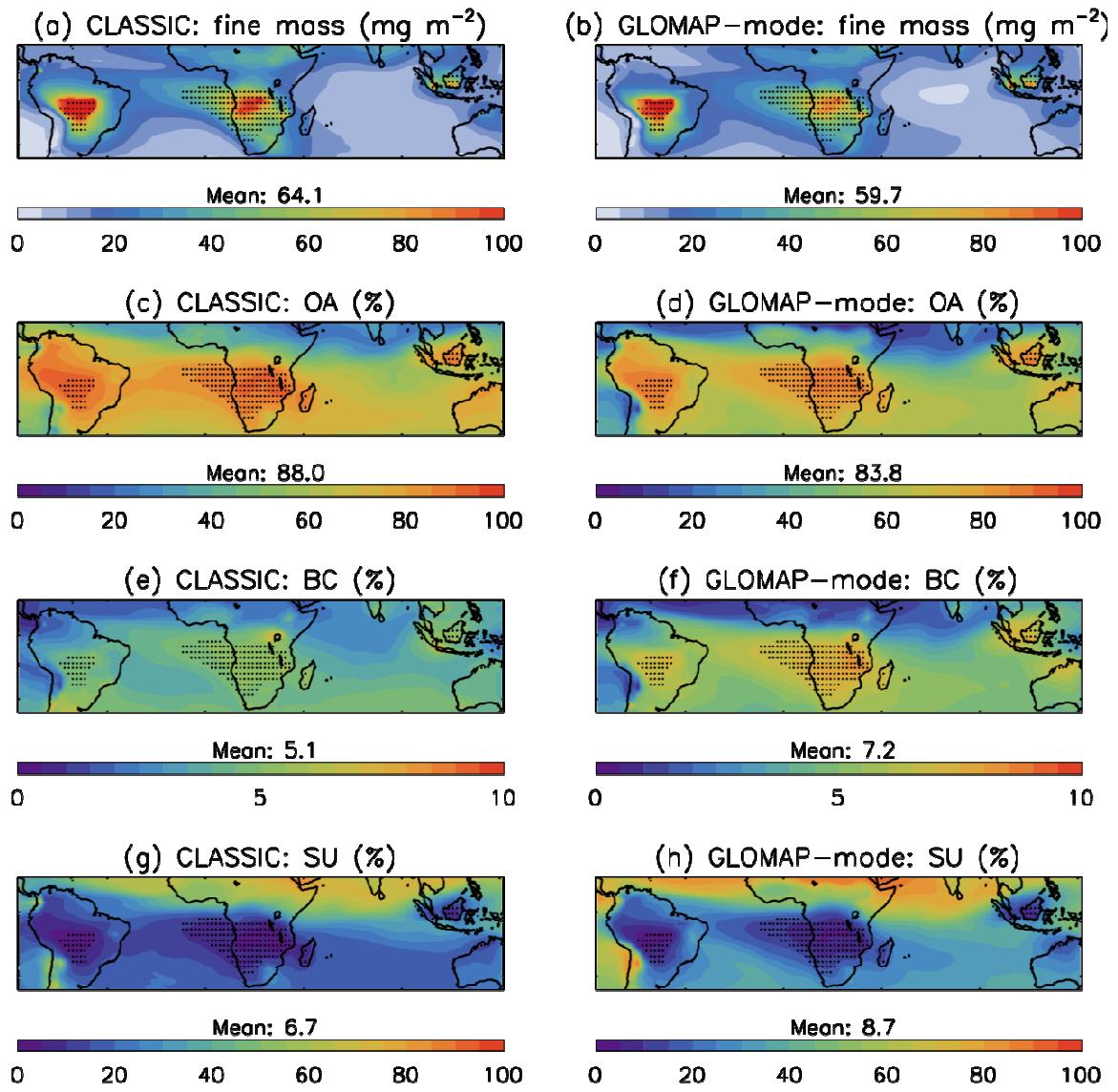

6

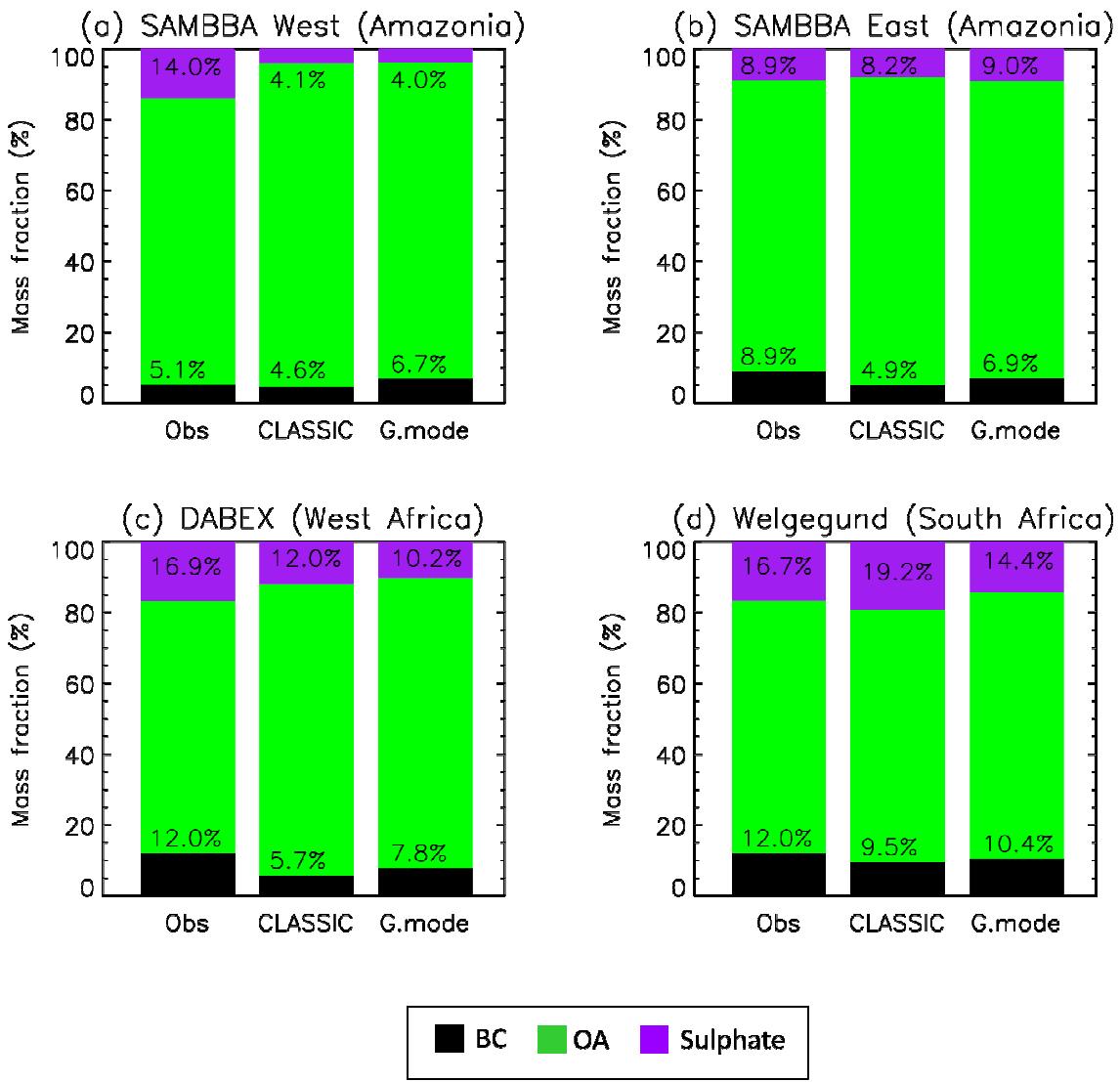

7 **Figure 1.** Maps showing the location of AERONET sites (blue), the Welgegund ground
8 station, and the averaging boxes used corresponding to the flight regions from SAMBBA
9 (West and East), DABEX and SAFARI-2000. Plus symbols indicate the locations of the main
10 airbases used for the flights: Porto Velho for SAMBBA West, Palmas for SAMBBA East,
11 Niamey for DABEX, and Windhoek for SAFARI-2000.



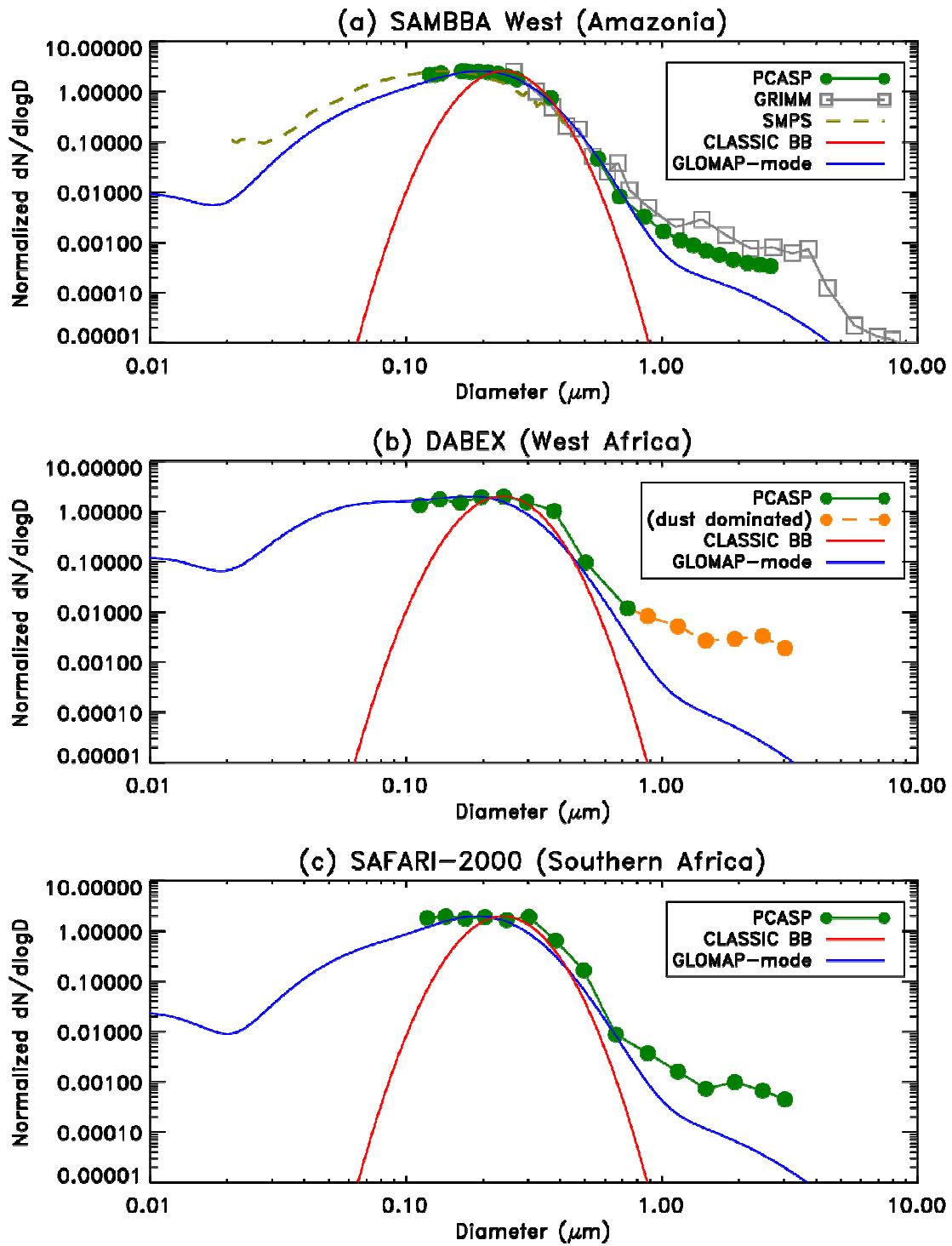
1 **Figure 2.** Decadal mean AOD at 550nm. Panels include: (a,b) BB AOD, the contribution of
 2 BBA emissions to the total AOD in the standard (scaled) simulations, (c,d) unscaled model
 3 AODs are from simulations that did not include scaling of BB aerosol emissions, (e,f) model
 4 AOD from the standard (scaled) simulations, (g,h) MODIS data from Aqua collections 5 and
 5 6, averaged from 2003 – 2012. Model means from 2002 – 2011. Missing data values from
 6 MODIS are plotted as white.

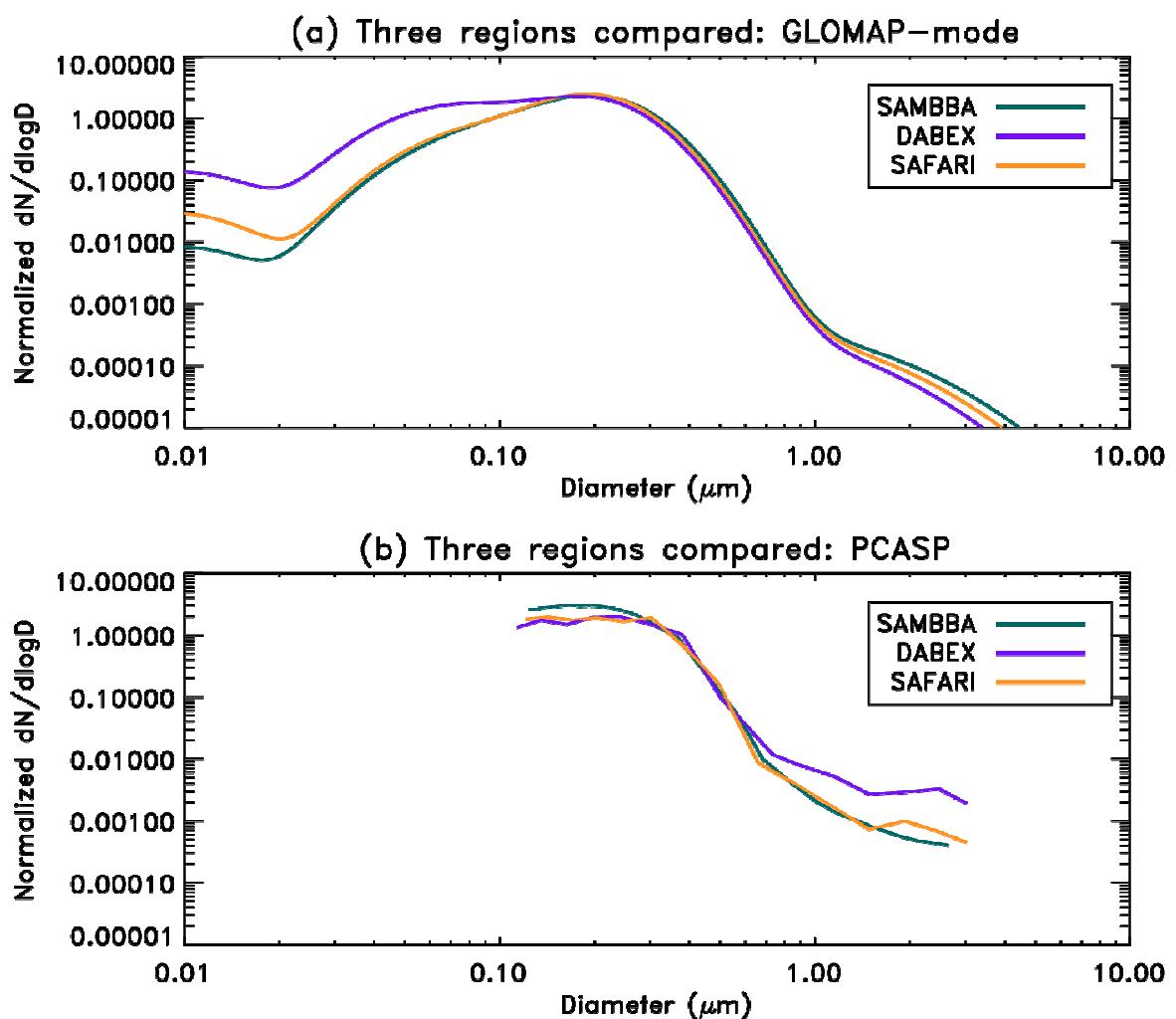
Figure 3. Same as Fig 2 but for the month of September.



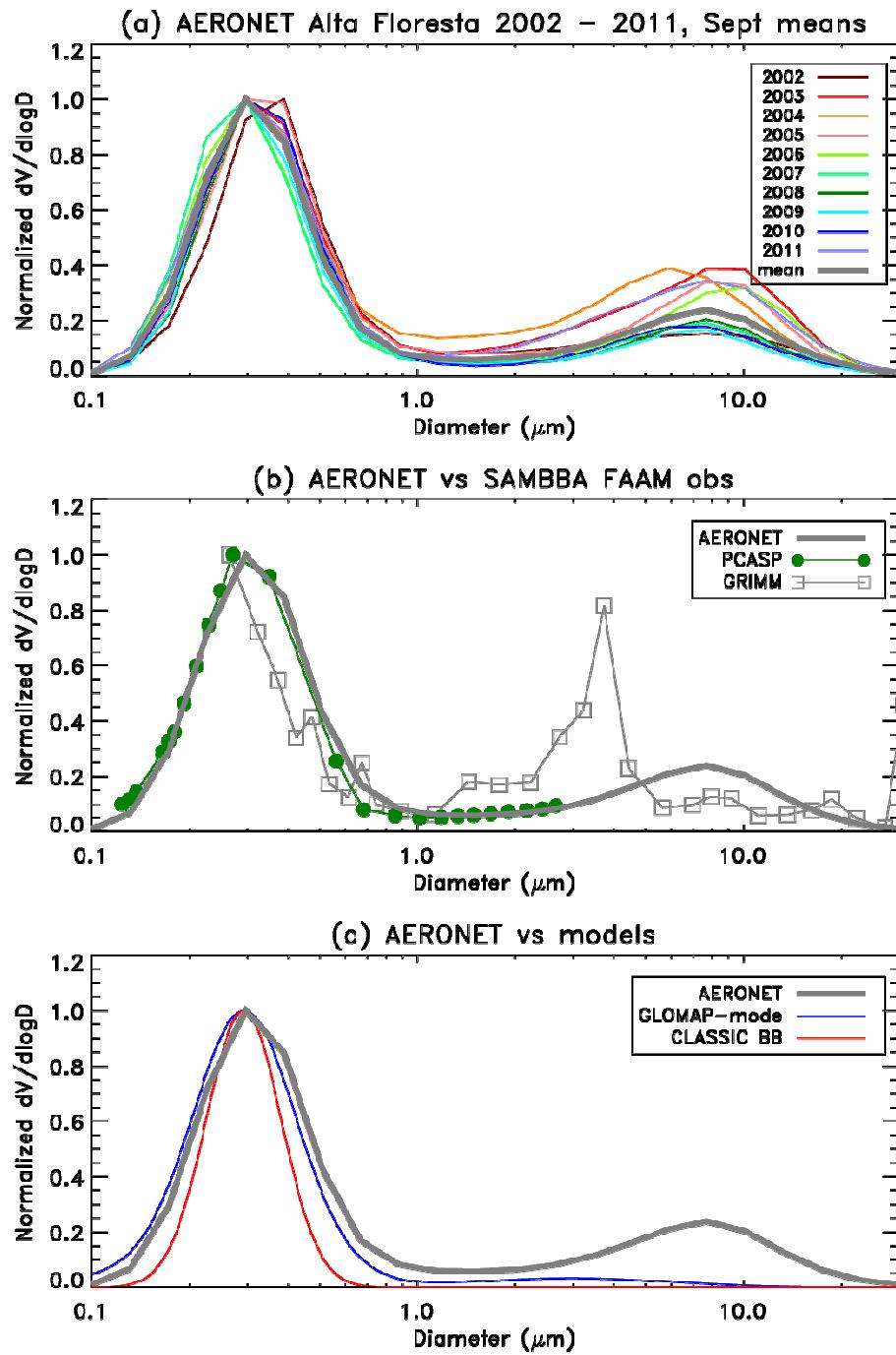

1

2 **Figure 5.** Monthly mean AOD at 550nm from six AERONET sites (grey squares), and the
3 same locations from GLOMAP-mode (blue) and CLASSIC (red). The contribution to AOD
4 from BBA is shown by dashed lines. Vertical lines show ± 1 standard error.


5


Figure 6. Modelled fine-mode aerosol composition from HadGEM3 for CLASSIC and GLOMAP-mode (including sulphate, BC and OA only). Plots show: (a, b) fine-mode mass burden (mg m^{-2}), (c, d) mass fraction of OA (%), (e, f) mass fraction of BC (%), (g, h) mass fraction of sulphate (%). Stipples indicate grid columns where more than 75 % of the fine-mode aerosol mass originates from biomass burning emissions (based on the speciation in the CLASSIC simulation). Mean values beneath each plot give the average from grid columns marked by these stipPLES.

1
2
3
4 **Figure 7.** Mass fractions (%) of black carbon (black), organic aerosol (green), and
5 sulphate (purple) (excluding other fine-mode aerosol components). Observed data are
6 monthly averages from field campaigns including: SAMBBA (Amazonia, September
7 2012), DABEX (West Africa, Jan 2006), and the Welgegund site (South Africa,
8 September 2010). Modelled data are long-term monthly mean values corresponding to
9 the month and location of the observations. Welgegund model data is for aerosol
10 composition at the surface (lowest model level), SAMBBA and DABEX model data is
11 averaged over 0 – 5 km. The BC and sulphate mass fractions are labelled on each bar.



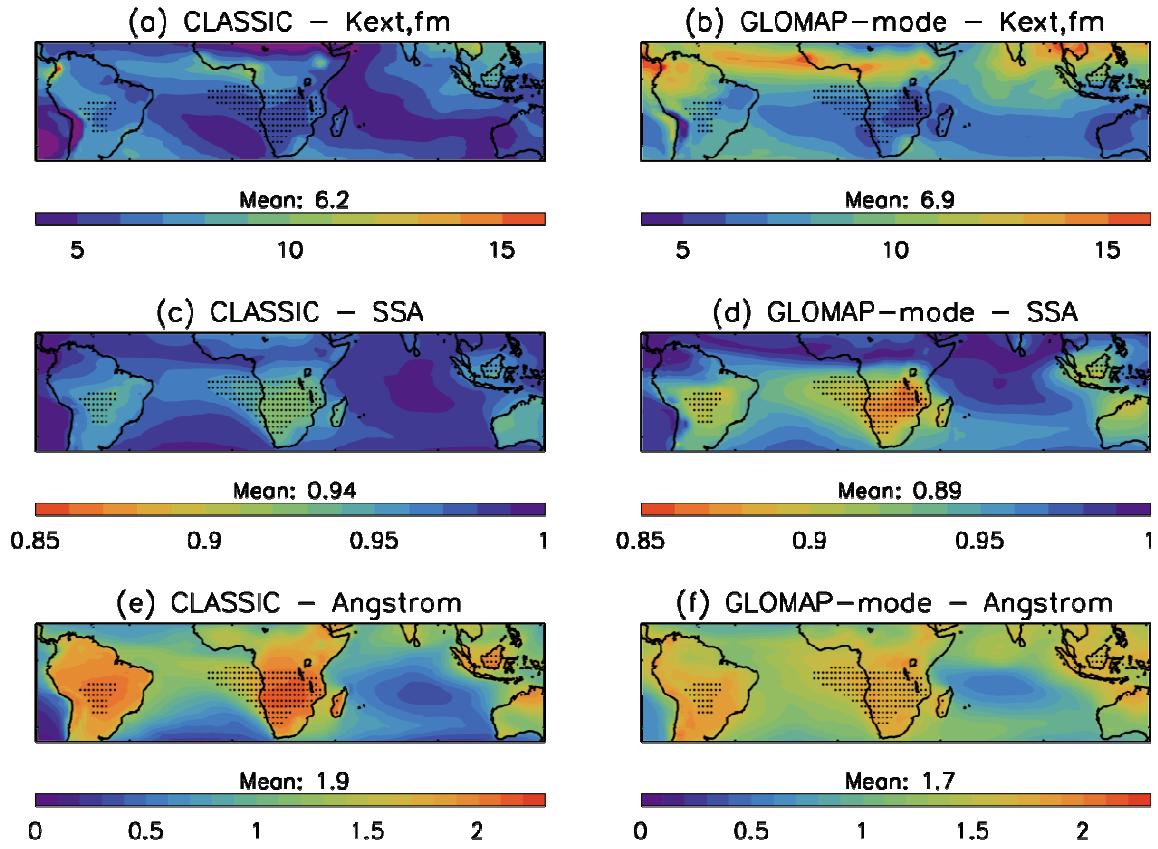
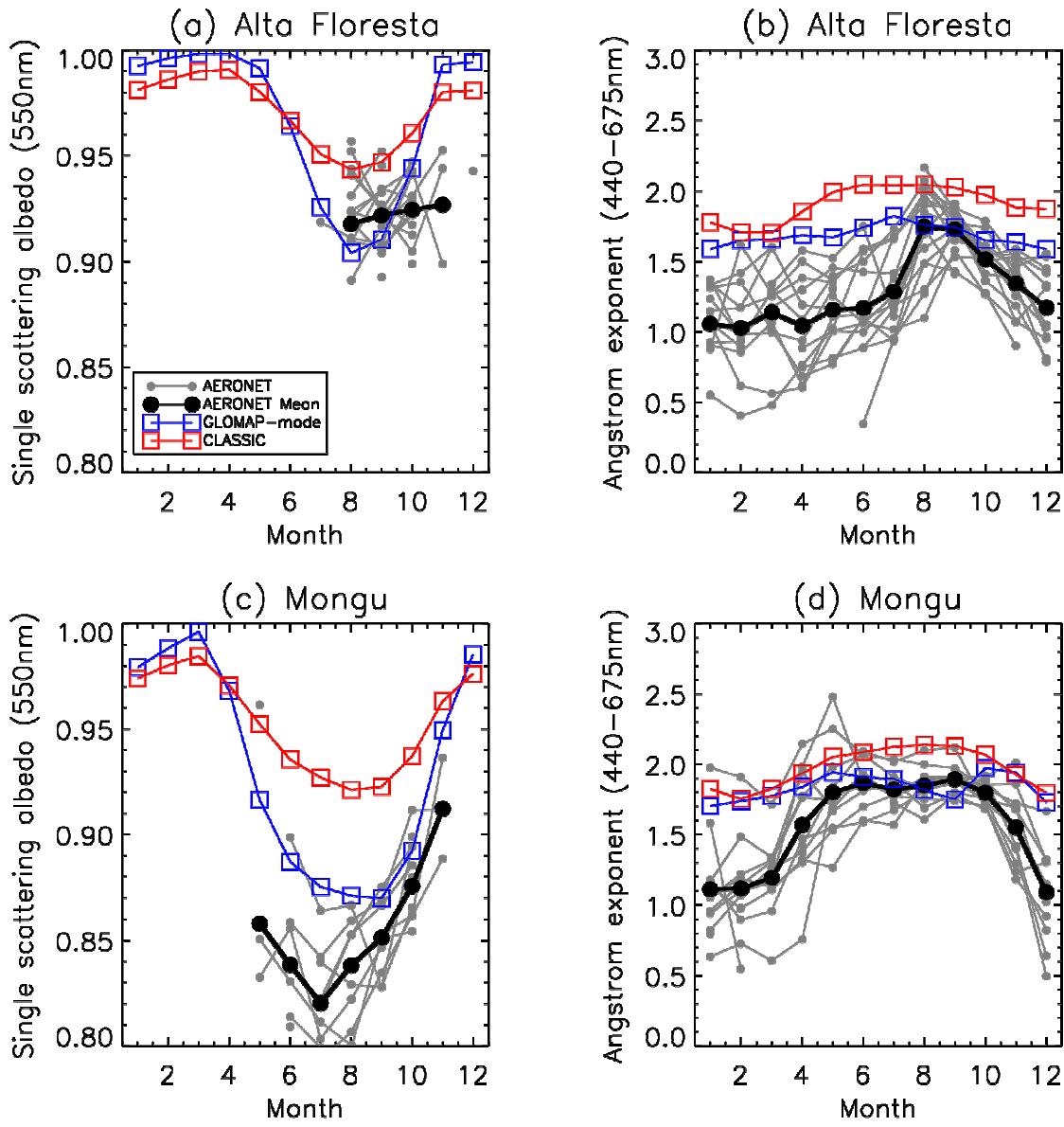
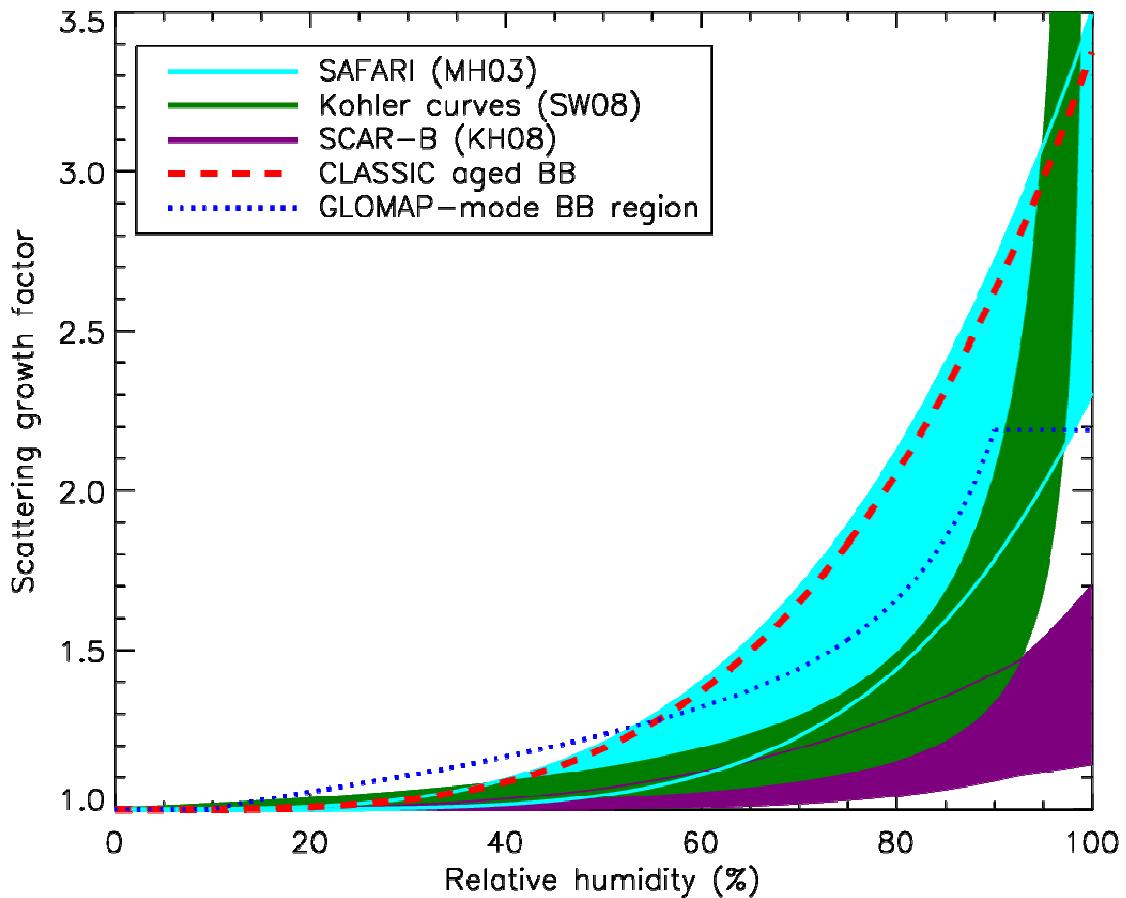
1
2 **Figure 8.** Aerosol number size distributions ($dN/d\log D$) versus particle diameter from aircraft
3 observations (PCASP, GRIMM, SMPS) showing the mean distribution from three campaigns.
4 CLASSIC curve is a representative mixture of 10 % fresh and 90 % aged BBA species,
5 GLOMAP-mode is the complete size distribution over all 5 modes averaged over the flight
6 regions in Fig. 1 and over 0 – 5 km.
7

1

2 **Figure 9.** Same as Fig. 7 but showing only GLOMAP-mode curves and PCACP data.

1

2 **Figure 10.** Aerosol volume size distributions ($dV/d\log D \mu\text{m}^3/\mu\text{m}^2$) vs. particle diameter for
3 (a) September means from AERONET Alta Floresta (Southern Amazonia) for 2002-2011
4 along with the long-term monthly mean from all years, (b) Comparison of AERONET 10-
5 year September mean with FAAM averages from SAMBBA West region, normalized by peak
6 concentration, (c) Comparison of AERONET 10-year September mean with HadGEM3
7 September monthly mean output, column-integrated mean over Alta Floresta for GLOMAP-
8 mode (all active size modes) and CLASSIC (BB species only).

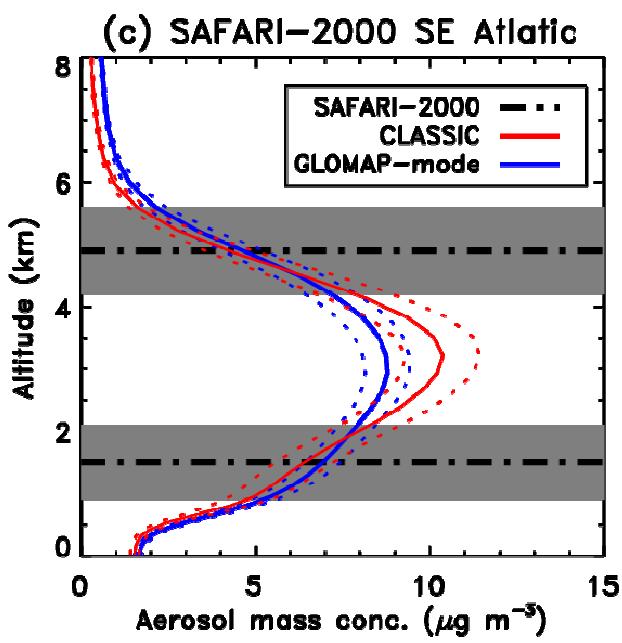
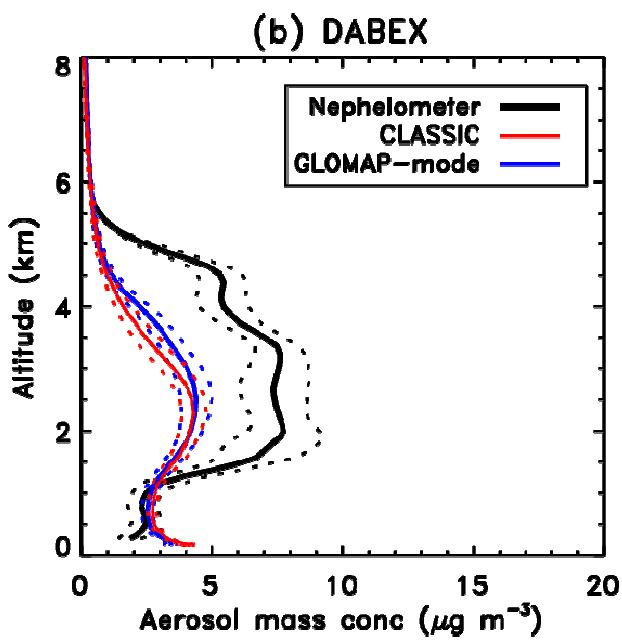
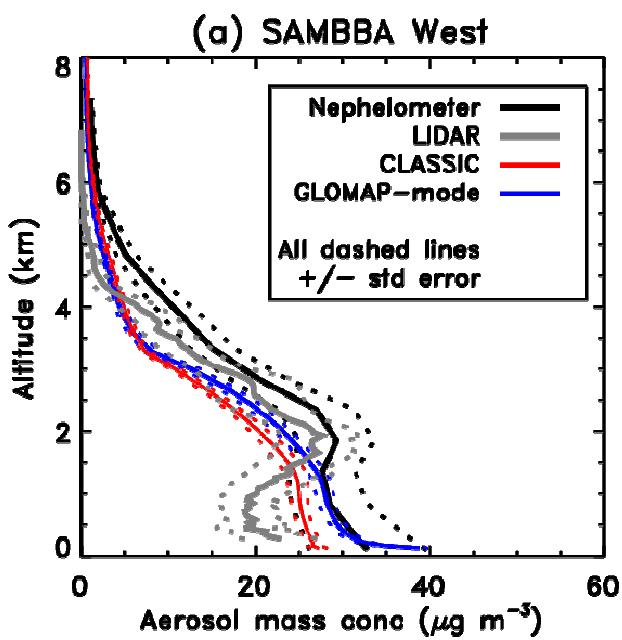



Figure 11. Column average moist aerosol optical properties from CLASSIC and GLOMAP-mode for September long-term monthly mean. Properties are the fine-mode specific extinction coefficient ($k_{ext,fm}$), Single Scattering Albedo (SSA) and Ångström exponent. Stipples indicate grid columns where more than 75 % of the fine-mode aerosol mass originates from biomass burning emissions (based on the speciation in the CLASSIC simulation). Mean values beneath each plot give the average from grid columns marked by these stipples.

Figure 12. Seasonal cycle of moist aerosol optical properties (single scattering albedo and Ångström exponent). AERONET data from Alta Floresta (Southern Amazonia) and Mongu (Southern Africa) include all available monthly means (grey) and the long-term monthly mean (black) for months with good data coverage (see text). Co-located model data from GLOMAP-mode (red) and CLASSIC (blue) are shown taking the column average long-term monthly means.

1
 2 **Figure 13.** Hygroscopic growth curves showing the increase in aerosol scattering at 550nm
 3 with ambient relative humidity from a variety of observational sources and from the models.
 4 The curve for CLASSIC assumes a mixture of 10 % fresh and 90 % aged BBA. The curve for
 5 GLOMAP-mode is calculated based on the average composition from the four BB regions in
 6 Fig. 7. The solid filled areas show the range of growth factors estimated from each
 7 observation source (see text).
 8

1 **Figure 14.** Vertical profiles of fine-mode aerosol mass concentration for the SAMBBA,
2 DABEX and SAFARI-2000 airborne campaigns, including model averages for CLASSIC
3 (red) and GLOMAP-mode (blue). Dashed lines show the mean +/- the standard error. Profiles
4 of mass concentrations have been estimated from campaign-averaged nephelometer (black)
5 and lidar (green) observations using the fine-mode specific scattering ($k_{sca,fm}$) and extinction
6 coefficients ($k_{ext,fm}$), respectively, derived from the in-situ aircraft observations (see the
7 second half of Table 2; $k_{sca,fm} = k_{ext,fm} * SSA$). The SAFARI-2000 observations indicate the
8 average altitude of BBA layer base and top (black dot-dashed line) +/- the standard deviation
9 (grey shading).