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Author’s response: 1 

 2 

 3 

We thank the Referees for the careful revision and comments which helped in 4 
improving the overall quality of the manuscript.  5 

A point-by-point answer (in regular typeset) to the referees’ remarks (in the italic 6 
typeset) follows, while changes to the manuscript are indicated in blue font. 7 

In the following page and lines references refer to the manuscript version reviewed 8 
by anonymous referee #1 and #2. 9 

 10 

 11 
  12 
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Anonymous Referee #1 1 

Received and published: 20 June 2016 2 

 3 

This manuscript presents an analysis of the composition and source apportionment 4 
of PM1 filters collected at three sites in Lithuania. For this offline technique, the 5 
aqueous extracts from filters were nebulized with Ar for introduction into the HR-ToF-6 
AMS. The use of Ar as the nebulization gas enabled an analysis of the CO+/CO2

+ 7 
fragment ratio and trends in that ratio with season. Positive matrix factorization was 8 
also applied on both the offline AMS data set as well as an offline marker data set 9 
collected using the same filters. This manuscript provides a good demonstration of 10 
the type of data sets that can be generated via this offline AMS technique and the 11 
CO+/CO2+ analysis provides new insights into the interpretation of AMS data from 12 
ambient samples. Thus, I see this paper as appropriate for publication in ACP. 13 
However, I have a few concerns, mostly related to sampling artifacts that need to be 14 
addressed prior to publication. 15 

 16 

 17 

 18 
1) P2 L9: Traffic exhaust OA is listed as a PMF factor from AMS spectra, yet 19 

in the 20 

experimental it is noted that the contribution is too low to be resolved with 21 
PMF and is instead estimated using a CMB approach. I suggest rewording 22 
the abstract to clarify this. 23 

 24 

We reworded the abstract as follows: “AMS WSOA spectra were analyzed using 25 
positive matrix factorization (PMF), which yielded 4 factors. These factors included 26 
biomass burning OA (BBOA), local OA (LOA) contributing significantly only in Vilnius, 27 
and two oxygenated OA (OOA) factors, summer OOA (S-OOA) and background 28 
OOA (B-OOA) distinguished by their seasonal variability. The contribution of traffic 29 
exhaust OA (TEOA) was not resolved by PMF due to both low concentrations and 30 
low water solubility. Therefore, the TEOA concentration was estimated using a 31 
chemical mass balance approach, based on the concentrations of hopanes, specific 32 
markers of traffic emissions.” 33 

 34 

Changes in text:   35 

 36 
2) P5 L24: The nebulizer used was operated at 60°C, how long are the 37 

aerosols in this heated region? Was this temperature in the nebulizer also 38 
used in the Daellenbach et al. analysis? What effect might this high 39 
temperature have on the composition of the organics measured with the 40 
AMS compared to online analysis? If this temperature was not used for the 41 
Daellenbach analysis, what effect might this have on the factor specific 42 



 3

recoveries of this work compared to the results from that previous 1 
analysis? 2 

 3 

The nebulizing Ar flow was 0.4 L min-1. Considering the internal diameter (6 mm) and 4 
the length of our lines, we can estimate an aerosol residence time in our lines (from 5 
nebulization to AMS detection) of ca. 2 s. The aerosol residence time in the 60°C 6 
zone is significantly shorter (~100ms). A set of 40 PM1 filter samples collected in 7 
Lithuania (not included within the source apportionment presented in this work) was 8 
measured using both the Apex Q nebulizer (Elemental Scientific Inc., Omaha NE 9 
68131 USA) operated at 60°C and using a custom-built nebulizer (Daellenbach et al., 10 
2016). The comparable WSOA/SO4

2- ratio registered using the two systems indicates 11 
a negligible loss of volatile organics (Fig. Discussion 1 (Fig. D1)).  12 

We compared organic mass spectral time series and fragments fractional 13 
contributions retrieved from the two different nebulization systems. Mass spectra 14 
revealed a good correlation for all fragments (R = 0.94 on average), similarly the total 15 
organic signal showed a correlation of R = 0.94 (Fig. D1). Excluding CO2

+ and the 16 
related fragments (CO+, H2O

+, HO+, and O+, Aiken et al., 2008; Canagaratna et al., 17 
2007), the intensity of which can be affected by the vaporizer history (Fröhlich et al., 18 
2015, Pieber et al., 2016), we observed a good agreement between the normalized 19 
AMS mass spectral fingerprints obtained with the two different nebulizers, with 95% 20 
of the i, j elements not statistically different within 2σ. As stated in the manuscript, 21 
here i, and j represent a generic filter sample and a generic AMS fragment, 22 
respectively, while the uncertainty considered here includes blank variability, 23 
repeatability, uncertainty related to ion counting statistics and ion-to-ion signal 24 
variability at the detector. Overall the new nebulization system revealed a ~7 times 25 
higher sensitivity. Given the high correlation and the similarity in the mass spectral 26 
fingerprints, we can exclude substantial effects on the recoveries of the different 27 
factors.  28 

 29 
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 1 

Figure D1. Top: WSOA/SO4
2- ratio registered with a custom-made nebulizer 2 

(Daellenbach et al. 2016, here marked as “old nebulizer”) and our nebulization 3 

system (“new nebulizer”). Bottom: OA signal comparison. 4 

 5 

 6 
3) P18 L25: PM1 composition discussed here and shown in Figure 1 shows 7 

ions that can be measured with both the AMS and IC (e.g. SO4, NO3, 8 
etc.). Do the contributions shown in Figure 1 correspond to the IC 9 
measurements or AMS? For ions that can be quantified with both 10 
techniques, how do the values compare between the AMS and IC? 11 

 12 

Author’s response:  13 

As mentioned at P6, L30-31, the ion concentrations are from IC if not differently 14 
specified. For the sake of clarity we added this information in the Figure 1 caption.  15 

Following the recommendations of anonymous referees #1 and #2 we added in the 16 
revised SI a comparison between offline-AMS and IC: 17 

 18 

Offline-AMS comparison with IC and WSOC determinati on by TOC analyzer 19 

Overall, the comparison between offline-AMS and IC concentrations of NH4
+, SO4

2-, 20 
and NO3

- reveals a non-linear relation due to the lower IC detection limits. This is 21 

300

250

200

150

100

50

0

ne
w

 n
eb

ul
iz

er
 A

.U
.

403020100
old nebulizer A.U. (Daellenbach et al., 2016)

2

4

6

10

2

4

6

100

2

ne
w

 n
eb

ul
iz

er
 A

.U
.

2 3 4 5 6 7 8 9
10

2 3 4 5 6 7 8 9
100

2 3 4

old nebulizer (Daellenbach et al., 2016)

 WSOA concentration
R = 0.94

 linear fit

WSOA/SO4
2-

 1:1 line

org/SO4
2-

new nebulizer/org/SO4
2-

old nebulizer = 0.98
R = 0.75



 5

most likely related to the low transmission efficiency of the AMS lens for small 1 
particles, particularly predominant for diluted filter extracts. 2 

Nevertheless, considering internally mixed nebulized particles, the composition of the 3 
particles is not supposed to change with the solution concentration, as also 4 
confirmed by dilution tests conducted on our filter extracts (Fig. D2). 5 

 6 

 7 
Figure D2. Dilution tests: NR PM composition and comparison of mass spectra registered at 8 
different dilutions. 9 

 10 

 11 
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      1 

Figure D3. Offline-AMS comparison with different techniques with IC and WSOC 2 
measurements by TOC analyzer. 3 

 4 

Figure D2 and D3 were added to the SI as Fig. S16 and S17: 5 

The following paragraph was added to Fig. S17 caption: 6 

 7 

This low particle transmission efficiency for diluted solutions results in a high scattering at low 8 
concentration. Additional scattering is observed in the relation between offline-AMS and IC 9 
SO4

2-.  This is related to the presence of refractory sulfate salts (e.g. Na2SO4, ammonium 10 
sulfate) which are detectable by IC, but not with the AMS, consistent with lower slope 11 
obtained between offline-AMS and IC SO4

2-, compared to the other species.  12 

These species are likely formed during nebulization, e.g.     13 

(NH4)2SO4 + CaCl2 ⇌ CaSO4 + 2NH4Cl 14 

For these reasons we only reported inorganic ion concentrations from IC. 15 
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 1 

 2 
4) P19 L14-20: The nitrate concentration shows clear seasonality with larger 3 

contributions in the winter and the sulfate concentration looks relatively 4 
constant throughout the year. However, in Figure 1, the ammonium 5 
concentration appears to also be relatively constant throughout the year. Is 6 
this correct? If so, can the authors comment on potential counter ions for 7 
NO3 ? 8 

 9 

Author’s response:  10 

Considering the NH4
+, SO4

2- and NO3
- concentrations in µEq m-3, the agreement 11 

between (NH4
+) and (SO4

2- + NO3
-) is high, with an average (SO4

2- + NO3
-)/NH4

+ ratio 12 
of 0.99 over the year and 1.02 during winter. The Pearson correlation coefficient R 13 
between (SO4

2- + NO3
-) and NH4

+ was 0.92 considering the whole year and 0.84 14 
considering only winter. Therefore, the role of other counter ions is negligible. 15 

 16 

 17 



 8

 1 
Figure D4. NH4

+ correlation with SO4
2- + NO3

-. Data in µEq m-3 (top); ion balance (bottom). 2 

Figure D4 was added to Fig. S11. 3 

 4 
5) P20 L 28-31: The background-OOA factor appears to correlate with NH4

+ 5 
much better at Preila and Vilnius than Rugsteliskes (Figure S11). Are there 6 
any potential reasons for the lower apparent correlation at Rugsteliskes? 7 
How much uncertainty is there in the NH4

+ measurement? What is the 8 
significance of a correlation of B-OOA with NH4

+? 9 

 10 

Author’s response:  11 

The B-OOA factor correlation with NH4
+ is significant at all stations: R = 0.82 (R2 = 12 

0.67) for Vilnius, 0.87 (R2 = 0.76) for Preila, and 0.71 (R2 = 0.50) for Rūgšteliškis. The 13 
correlation of B-OOA with a secondary inorganic component such as NH4

+ could 14 
suggest the secondary origin of B-OOA, as also inferred by the comparison with the 15 
marker-source apportionment (section 4.4.2). The repeatability of NH4

+ IC 16 
measurements was 10%, while according to our error estimate (Section 3.1.3 ), the 17 
average relative uncertainty on the B-OOA factor for Rūgšteliškis was 12%. We 18 
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 9

estimated that up to half of the total unexplained variability in the relationship 1 
between NH4

+ and B-OOA in Rūgšteliškis can be due to the abovementioned errors, 2 
while in Preila and Vilnius the B-OOA vs NH4

+, most of the unexplained variability can 3 
be attributed to the errors. For Rūgšteliškis the remaining unexplained variability 4 
(27%) may be related to variability in the precursor composition and/or in the air 5 
masses photochemical age. 6 

This information was added to Fig. S11 caption. 7 

 8 
6) Section 2.1 and P21 L1-17: Were the High-Volume samplers located in 9 

temperature controlled rooms? If not, what effect could higher summer 10 
temperatures have on the composition of the organic compared to the 11 
winter samples? Could the S-OOA factor be complicated by collection 12 
differences caused by the loss (on the filter) of more volatile organic 13 
molecules during summer months? 14 

 15 

Author’s response:  16 

High volume were equipped with temperature control systems maintaining the filter 17 
storage temperature always below 25°C, which is lower or comparable to the 18 
maximum daily temperature during summer (Fig. 3b). This should prevent large 19 
negative artifacts involving the most volatile fraction.  20 

 21 

We added this information in P4, L16:  22 

 23 

In order to prevent large negative filter artifacts, the high-volume samplers were 24 
equipped with temperature control systems maintaining the filter storage temperature 25 
always below 25°C, which is lower or comparable to the maximum daily temperature 26 
during summer. 27 

 28 
7) P2 L6: the CO2

+:CO+ ratios reported in section 4.5 are greater than 1. The 29 
less than sign should be switched. 30 

 31 

Corrected as suggested 32 

 33 
8) P10 L22-23: a verb such as “was used” is missing. 34 

 35 

Corrected as “was constrained” 36 

 37 
9) P22 L3: I suggest some mention directing the reader to Figure 5 be made 38 

in the text as the time series for the factors are discussed in this section 39 
but no mention of Figure 5 is made. 40 

 41 
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We introduced a reference to Figure 5 at P22 L3 1 

 2 
10) P25 L13: “Using the ratio (1.88) calculated from offline-AMS”. Suggest 3 

adding 4 

OM/OCBBOA ratio to communicate what ratio is being used in the calculation here. 5 

 6 

Corrected as suggested 7 

 8 
11) P30 L 25-26: suggest rephrasing, the double negative “unlikely return 9 

uncertain CO+ values” is confusing. 10 

 11 

Rephrased as: “should return accurate CO+” 12 

 13 
12) P45 Figure 2 and P46 Figure 4: Suggest either writing out the factor 14 

names in the labels (background-OOA instead of B-OOA etc.) or giving the 15 
names and labels in the caption. 16 

 17 

Factor names and labels added in Figure 2 and Figure 4 captions. 18 

 19 

 20 

 21 

 22 

 23 

 24 

Anonymous Referee #2 25 

Received and published: 30 June 2016 26 

 27 

General Comments: 28 

 29 

This manuscript reported an analysis of PM1 compositions and sources at three 30 
different sites in Lithuania based on filter samples. The authors applied AMS and 31 
other instruments to analyze the filter samples, and then performed PMF analysis to 32 
study the sources of OA and PM1. This study presented a method/case to study the 33 
sources of total ambient OA based on the measurements of water soluble OA only. 34 
That is, apply PMF analysis on the water soluble organic mass spectra, identify 35 
multiple factors, and rescale the water soluble concentration to total concentration by 36 
applying recovery ratios. This is an interesting method but has large uncertainties, 37 
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which arise from the recovery ratio. I think this manuscript is suitable for publication 1 
in ACP once the following comments have been addressed.  2 

 3 

 4 

Source Apportionment 5 

 6 

 7 

We thank Anonymous Referee #2 for the careful review which indeed helped to 8 
improve the overall quality of our work. We want to state that while the uncertainty 9 
deriving from the recovery application is substantial, we do demonstrate that this 10 
uncertainty is comparable to that from PMF rotational uncertainty. The overall 11 
uncertainty of our source apportionment is factor dependent and is on average 14% 12 
for BBOA, 15% for B-OOA, 28% for S-OOA, and 100% for LOA, with the latter mostly 13 
due to the low concentrations during winter and . As a comparison, the RBBOA relative 14 
uncertainty (σRBBOA) was 10%, σROOA was 7%, and σRLOA 14%. Our factor 15 
uncertainties are comparable to the AMS mass uncertainty, which is commonly 16 
considered to be 30%, but does not affect our results, and instead affects online-17 
AMS source apportionment studies. Therefore the uncertainty relative to the offline-18 
AMS methodology is high, yet comparable to the online-AMS source apportionment. 19 

 20 
 21 
 Major comments  22 

1) Ambient total OA source apportionment based on the measurement of 23 
water soluble OA.  24 

 25 
The major uncertainty of this method arises from the recovery ratio (Rz), 26 
which is a reflection of the bulk extraction efficiency and water solubility of 27 
OA factors. It is not clear how the Rz values are obtained in this study. As I 28 
understand, the authors randomly selected Rz from Daellenbach et al. 29 
(2016) as initial conditions and fit Eq. (6) to get RLOA. If so, how are 30 
RBBOA and ROOA obtained? Why are they different from the values in 31 
Daellenbach et al. (2016). Also, it is not clear which Rz values are 32 
eventually applied, from Daellenbach et al. (2016) or the values calculated 33 
in this study?  34 

 35 
As anonymous referee #2 mentioned, factor recoveries were randomly selected from 36 
the combinations reported in Daellenbach et al. (2016). The randomly selected RZ 37 
combinations were perturbed assuming possible biases in the OC and WSOC 38 
measurements in Daellenbach et al. (2016) and in this study. The perturbed 39 
randomly selected RZ combinations were then used as input to fit RLOA according to 40 
Eq. (6). Only RZ combinations leading to unbiased OC fit residuals were retained (i.e. 41 
OC fitting residuals not statistically different from 0 within 1σ for summer and winter 42 
individually and for the whole period). The retained RZ combinations were displayed 43 
as PDF in Fig. S8. The newly obtained RBBOA and ROOA are systematically lower than 44 
those reported in Daellenbach et al. (2016), by 5.6% and 12.3% respectively, within 45 
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the expected biases of the different measurements. L23 P12- L6, P13 were modified 1 
as follows: 2 
 3 
For each of the 95 retained PMF solutions, Eq. (6) was fitted 100 times by randomly 4 
selecting a set of 100 RBBOA, ROOA value combinations from those determined by 5 
Daellenbach et al. (2016). Each fit was initiated by perturbing the input OCi and 6 
TEOCi within their uncertainties, assuming a normal distribution of the errors. 7 
Additionally, in order to explore the effect of possible bulk extraction efficiency 8 
(WSOC/OC) systematic measurement biases on our RZ estimates, we also perturbed 9 
the OC, WSOC (Daellenbach et al., 2016) inputs. Specifically, we assumed an 10 
estimated accuracy bias of 5% for each of the perturbed parameters, which 11 
corresponds to the OC and WSOC measurement accuracy. In a similar way, we also 12 
perturbed the input RBBOA and ROOA assuming an accuracy estimate of 5% deriving 13 
from a possible OC measurement bias in Daellenbach et al. (2016) which could have 14 
affected the RZ determination. In total 9.5·103 fits were performed (Eq. 6) and we 15 
retained only solutions (and corresponding perturbed RZ combinations) associated 16 
with average OC residuals not statistically different from 0 within 1σ for each station 17 
individually and for summer and winter individually (~8% of the 9.5·103 fits, Fig. S6). 18 
The OC residuals of the accepted solutions did not manifest a clear correlation with 19 
the LOA concentration (Fig. S7), indicating that the estimated RLOA was properly 20 
fitted, without compensating for unexplained variability of the PMF model or biases 21 
from the other Rz. Fig. S8 shows the probability density functions (PDF) of the 22 
retained perturbed Rz which account for all uncertainties and biases mentioned 23 
above. 24 
 25 
 26 

2) The authors mentioned that the bulk extraction efficiency in this study is 27 
lower than that in Daellenbach et al. (2016). This result is not surprising 28 
since one OA factor likely has contribution from multiple sources and the 29 
water solubility of OA factors may vary with site and season. For example, 30 
the water solubility of BBOA ranges from 64% to 80% (Sciare et al., 2011; 31 
Timonen et al., 2008). In addition, this method is not sensitive to primary 32 
OA factors (e.g., HOA and Cooking OA), which is largely water insoluble. 33 
This is another reason why HOA cannot be resolved from the PMF 34 
analysis. The limitations should be better discussed in the manuscript.  35 

What suggestions do the authors have for researchers who want to use the 36 
method as proposed in this manuscript? For example, should they follow 37 
the same filter extraction procedures as in this study? How to calculate the 38 
Rz?  39 

 40 

Indeed, Bulk EE (WSOC/OC) can vary between site and seasons and WSOC ranges 41 
reported in the literature for the different sources (e.g. BBOA, (Sciare et al., 2011; 42 
Timonen et al., 2008) cover the ranges obtained here and in Daellenbach et al. 43 
(2016). However, it is unexpected that all primary and secondary factors determined 44 
in this study in both seasons have systematically lower water solubility than those in 45 
Daellenbach et al. (2016). By contrast, the Bulk EE differences found between this 46 
work and Daellenbach et al. (2016) can be fully explained by the WSOC and OC 47 
accuracy measurements. 48 
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 1 

The following recommendations for future offline-AMS users were added at P13 L19: 2 

 3 

 In general the recovery estimates reported in Daellenbach et al. (2016) represent the 4 
most accurate estimates available, being constrained to match the online-ACSM 5 
source apportionment results. The RZ combinations reported by Daellenbach et al. 6 
(2016) demonstrated to positively apply to this dataset, enabling properly fitting the 7 
measured Bulk EE (WSOC/OC) with unbiased residuals and therefore providing a 8 
further confidence on their applicability (we note that in Eq. 6 we fitted OC as function 9 
of 1/RZ and WSOCZ,i, therefore RZ fitted WSOC/OC = Bulk EE). In general further RZ 10 
determinations calculated comparing offline-AMS and online-AMS source 11 
apportionments would be desirable in order to provide more robust RZ estimates. In 12 
absence of a-priori RZ values for specific factors (e.g. for LOA in this study) we 13 
recommend constraining the RZ combinations reported by Daellenbach et al. (2016) 14 
as a-priori information to fit the unknown recoveries, with the caveat that the RZ 15 
combinations reported by Deallenbach et al. (2016) were determined for filter 16 
samples water extracted following a specific procedure; therefore we recommend 17 
adopting these RZ combinations for filter samples extracted in the same conditions. 18 
Nevertheless the RZ combinations reported by Daellenbach et al. (2016) should be 19 
tested also for filters extracted with water in different conditions to verify whether they 20 
can properly fit the Bulk EE. In case the RZ combinations reported by Daellenbach et 21 
al. (2016) would not apply for a specific location or extraction procedure (i.e. not 22 
enabling a proper fit of Bulk EE) we recommend a RZ redetermination by comparing 23 
the offline-AMS source apportionment results with well-established source 24 
apportionment techniques. In absence of data to perform a well-established source 25 
apportionment, we recommend to fit all the RZ to match the bulk EE (i.e. fitting all the 26 
recoveries similarly as in Eq. 6 without constraining any a-priory RZ value).  27 

In general, the offline-AMS technique assesses less precisely the contribution of the 28 
lower water soluble factors. The higher uncertainty mostly stems from the larger PMF 29 
rotational ambiguity when separating a factor characterized by low concentration in 30 
the aqueous filter extracts. Nevertheless, the uncertainty is dataset dependent, as 31 
the separation of source components with low water solubility can be improved in 32 
case of distinct time variability characterizing those sources in comparison with the 33 
other aerosol sources. The low aqueous concentration of scarcely water soluble 34 
sources in fact can be partially overcome by the large signal/noise characterizing the 35 
offline-AMS technique (170 on average for this dataset). 36 

 37 
3) Discussions on instruments comparison are required.  38 

 39 
Inorganic ions such as NH4+, NO3-, and SO42- are measured by both 40 
AMS and IC. The authors should present the instruments comparison.  41 

 42 
The comparison between offline-AMS and IC ion concentrations was discussed and 43 
added to the SI, according also to Anonymous Referee #1 question (question 5). We 44 
note though that offline AMS data are not used for quantification, which will be the 45 
subject of an up-coming study.  46 
 47 
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4) Page 9 Line 29-30. The AMS measured concentration is scaled to match 1 
the WSOC measurement. What’s the scale ratio? Is the scale ratio the 2 
same for all filter samples?  3 

 4 
Similarly to NH4

+, SO4
2-, and NO3, and for the same reasons discussed above 5 

(Anonymous referee #1, question 5), the WSOC signal from offline-AMS does not 6 
follow a linear relation. Therefore the scaling factor is not constant. We would like to 7 
note once again that the AMS has not been used for quantification, specifically 8 
because of these issues related to particle transmission efficiency; moreover, as 9 
displayed in Fig. D2 the WSOM AMS mass spectral fingerprint does not show large 10 
changes when diluting our filter extracts. This comparison was inserted in the revised 11 
SI.  12 

  13 
Figure D5. Correlation between WSOC offline-AMS signal and WSOC 14 
measurements by TOC analyzer. 15 

 16 
 17 

5) The difference in separation and classification of OA factors between 18 
online and offline-AMS (Page 20 Line 14-27).  19 

 20 
I disagree with the statement that “online-AMS OOA factors are commonly 21 
classified based on their volatility”, because chemistry and sources also 22 
affect the factor separation. For example, the separation of IEPOX-OA 23 
factor (Budisulistiorini et al., 2013; Hu et al., 2015) or called isoprene-OA 24 
factor (Xu et al., 2015) is driven by IEPOX chemistry, but not volatility. 25 
Also, Xu et al. (2015) showed that nighttime monoterpene oxidation by 26 
nitrate radical contributes to less-oxidized OOA (as termed SV-OOA in this 27 
study).  28 

 29 
Following the suggestion of anonymous referee #2 we modified the lines at P20 L17-30 
18 as follows: 31 
 32 
Few online-AMS studies reported the separation of isoprene-related OA factor 33 
(Budisulistiorini et al., 2013; Hu et al., 2015, Xu et al., 2015) mostly driven by 34 
isoprene epoxides chemistry. Xu et al. (2015) showed that nighttime monoterpene 35 
oxidation by nitrate radical contributes to less-oxidized OOA. However, the large 36 
majority of online-AMS OOA factors are commonly classified based on their volatility 37 
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(semi-volatile OOA and low-volatility OOA) rather than on their sources and formation 1 
mechanisms. 2 
 3 

6) The authors stated that “the offline-AMS sources apportionment separates 4 
factors by seasonal trends rather than volatility”. However, sometimes, 5 
seasonal trend affects the source apportionment through volatility. For 6 
example, Page 23 Line 26-27 discussed that higher NO3--related SA 7 
exhibits higher concentration in winter than summer, which is due to the 8 
semi-volatile nature of NO3- (Page 19 Line 20).  9 

 10 
 11 
Concerning the relation between seasonality and volatility, we agree that OOA 12 
factors with different seasonal behaviors can be characterized by different volatilities. 13 
However in this work the offline-AMS OOA separation is not driven by volatility, given 14 
the low correlation between NO3

- and our OOA factors (this is also reflected by the 15 
low NO3

--related SOA correlation with B-OOA and S-OOA, Table 2). Additionally, the 16 
partitioning of semi-volatile OA at low temperatures would lead to a less oxidized 17 
OOA fingerprint during winter; however, this is not the case here. We observed a less 18 
oxidized OOA factor during summer, whose fingerprint closely resembles that of SOA 19 
from biogenic precursors, while similar to OOA from biomass burning emissions OOA 20 
during the cold season is more oxidized. This has been also reported from online-21 
ACSM monitoring campaigns (Canonaco et al., 2015), 22 
 23 
 24 

7) OM/OC ratio.  25 
 26 

In this study, the OM/OC is calculated by Aiken method (Page 12 Line 20). 27 
However, a recent study by Canagaratna et al. (2015) improved the 28 
estimation from Aiken method by including composition-dependent 29 
correction factors. The Canagaratna method is recommonded to use. 30 
Since many calculations in this study depend on the OM/OC ratio, how 31 
would it affect the results/conclusions if the authors use Canagaratna 32 
method to calculate the OM/OC ratio?  33 

 34 
Following the suggestion of anonymous referee #2 we included following discussion 35 
within the SI. 36 
 37 
We recalculated the OM:OC ratio for the water soluble collected spectra according to 38 
the new parametrization reported by Canagaratna et al. (2015). Consistently with 39 
Canagaratna et al. (2015), the newly calculated OM:OC ratio was on average 9% 40 
higher than the OM:OC ratio calculated according to Aiken method. More specifically, 41 
the OM:OC ratio was on average 9% higher during summer, and 10% during winter. 42 
The two methods reported well correlated OM:OC values (R = 0.98 over the whole 43 
monitoring period, R = 0.99 during winter, R = 0.97 during summer). In our study, the 44 
OM:OC ratios of our water soluble mass spectra were mostly used to determine the 45 
total WSOM concentrations. Considering the high correlations between the Aiken 46 
and Canagaratna OM:OC ratios, we can exclude large effects on the WSOM 47 
variability and therefore on the source apportionment. Nevertheless the WSOM 48 
estimated concentrations would be 10 % larger, when assuming the Canagaratna 49 
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OM:OC parametrization. In general Aiken assumed a CO2
+:CO+ ratio of 1, while 1 

Canagaratna stated that such an assumption would underestimate CO+. From our 2 
dataset, we observed a CO2

+:CO+ of 1.75med suggesting that the Aiken OM:OC 3 
parametrization would represent more accurately our data although both 4 
parametrizations are uncertain for this dataset. 5 
 6 

8) Background-OOA (B-OOA) factor.  7 
 8 

When the authors selected solutions, one criterion is the correlation 9 
between B-OOA and NH4+ (Page 12 Line 8). The authors should explain 10 
the use of NH4+. SO42- is regional and usually used as background OA. 11 
What’s the correlation between B-OOA and SO42-? In Page 20 Line 30, it 12 
is stated that B-OOA correlates well with NH4+. However, the correlation 13 
between B-OOA and NH4+ varies with site as shown in Fig. S11. For 14 
example, the correlation is really weak for the Rugsteliskis site.  15 

 16 

The lower correlation between NH4
+ and B-OOA in Rūgšteliškis (R2 = 0.5 vs R2 > 0.7 17 

at other locations) and its possible explanation were discussed in the response to 18 
anonymous referee #1 (question 5). The repeatability of NH4

+ measurements is 19 
estimated to be around 10%, while according to our error estimate (Section 3.1.3), 20 
the average relative uncertainty on the B-OOA factor for Rūgšteliškis was 12%. We 21 
estimated that up to half of the total unexplained variability in the relationship 22 
between NH4

+ and B-OOA in Rūgšteliškis can be due to the abovementioned errors, 23 
while for the B-OOA vs NH4

+ relationship in Preila and Vilnius most of the 24 
unexplained variability can be attributed to these errors. For Rūgšteliškis the 25 
remaining unexplained variability (27%) can be related to variability in the secondary 26 
precursor composition and/or in the air masses photochemical age. 27 
 28 
The criterion based on the NH4

+ vs B-OOA correlation did not reveal any negative 29 
correlation for each station individually and for all the stations together, therefore no 30 
PMF solution was discarded according to this criterion as well as for the criterion 31 
based on the correlation of levoglucosan with BBOA (this information was added to 32 
the manuscript). As previously discussed, NH4

+ [µEq m-3] matches the sum of SO4
2- 33 

and NO3
- [µEq m-3]. Therefore NH4

+ variability well represents the variability of 34 
inorganic secondary components of different origin (local: NO3

- and regional: SO4
2-) 35 

formed at different time scales.  Nevertheless, similar to B-OOA retrieved from the 36 
offline-AMS PMF, NH4

+ correlates most significantly with sulfate (R = 0.80) and the 37 
sulfate-rich factor from the marker-PMF, indicating that these species represent the 38 
background long range transported aerosols. 39 
 40 

9) If B-OOA represents background OA, why is B-OOA lower in urban site 41 
than the other sites? I disagree with the authors’ argument that this 42 
difference is caused by PMF residual uncertainties or biases (Page 29 Line 43 
10). The authors’ argument is flawed because it is based on circular 44 
assumptions. When the authors calculate B-OOAmarker, the LOA and S-45 
OOA are based on PMF analysis without considering “some residual 46 
uncertainties or biases”. If the authors considered “some residual 47 
uncertainties or biases” and re-performed PMF analysis, the 48 
concentrations of LOA and S-OOA would change, which would influence 49 
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and concentration of B-OOAmarker. In that circumstance, B-OOAoffline-1 
AMS may agree among all three sites, but B-OOAmarker may be different 2 
among all three sites.  3 

 4 
 5 
Showing that PMF results are affected by model residuals is exactly the point we 6 
wanted to make with this comparison. Therefore, drawing strong conclusions on site-7 
to-site differences should be done with caution. In the current version of the 8 
manuscript we elaborate further on these issues, as we discuss below. The 9 
discussion regarding B-OOA differences at different sites was modified as follows 10 
(added in P26, L31): 11 
 12 
 13 
Another advantage obtained in coupling the two source apportionment results is the 14 
possibility to study the robustness of the factor analyses by evaluating the 15 
consistency of the two approaches as we already discussed for the primary OA and 16 
Other-OA fractions. Figure S14a displays the PMF modelled WSOC:measured 17 
WSOC PMF for the offline-AMS case, indicating a clear bias between Vilnius and the 18 
rural sites, with a WSOC overestimation of ~5% in Preila and Rūgšteliškis. While this 19 
overestimation is negligible for WSOC mass, it might have significant consequences 20 
on single factor concentrations. By contrast, OM residuals are more homogeneous 21 
for the case of markers PMF (Fig. S14b). As we show in Fig. S6, these residuals 22 
marginally affect the apportionment of combustion sources, as suggested by the well 23 
comparing estimates of BBOA and TEOA using the two methods. Therefore, these 24 
residuals are more likely affecting non-combustion sources (LOA, S-OOA and B-25 
OOA). For the common days, the S-OOA concentration is not statistically different at 26 
the different stations during summer (confidence interval of 95%), indicating that the 27 
residuals are more likely affecting LOA and B-OOA, which instead show site-to-site 28 
differences. Now, the PMF WSOC residuals appear at all seasons, also during 29 
periods without significant LOA contribution in Vilnius. Therefore, we conclude that B-30 
OOA is the factor most significantly affected by the difference in the WSOC residuals. 31 
We could best assess the residual effects by comparing the B-OOAoffline-AMS with 32 
that estimated using the other technique that seem to yield more homogeneous 33 
residuals: B-OOAmarker. Here B-OOAmarker is estimated as Other-OAmarkers - 34 
LOA - S-OOA. While B-OOAoffline-AMS shows site-to-site differences, B-35 
OOAmarkers did not show statistically different concentrations at all stations within a 36 
confidence interval of 95%. Based on these observations, we conclude that observed 37 
site-to-site differences in B-OOA concentrations are likely to be related to model 38 
uncertainties. 39 
   40 
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 1 
Figure D6. a) Modelled OM : input OM for the markers-PMF. b) Modelled WSOC : 2 
measured WSOC for the offline-AMS PMF 3 

Figure D6 was added to revised SI as Fig. S14 4 

  5 
Minor comments  6 

10) TEOA is resolved from CMB, not PMF. This needs to be clarified in 7 
multiple places in the manuscript, such as Page 2 Line 9 and Page 23 Line 8 
30. Considering that the TEOA concentration is small and only one filter 9 
has statistical significant TEOA concentration (Page 22 Line 27), I suggest 10 
the authors to remove the comparison about TEOA concentration between 11 
sites (for example, Page 32 Line 15-17).  12 

We clarified in P2, L9, P25, L14, and P 23 L30 that PMF returned 4 factors, and 13 
TEOA was estimated by CMB. We replaced the TEOA comparison between sites 14 
with the comparison of the hopanes concentration at the different locations (P 25 15 
L19, P25, L31-32, and P32 L 15-17). 16 
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11) Page 2 Line 10. Please rephrase to “two oxygenated OA factors, summer 1 
OOA (S-OOA) and background OOA (B-OOA)”.  2 

Corrected as suggested. 3 

12)  Page 2 Line 16 vs. Line 18. Use OA or OM. Be consistent.  4 

Corrected as suggested. 5 

13) Page 4 Line 3. Please rephrase to “source apportionment on the 6 
submicron water soluble OA” in order to be precise about the method.  7 

We agree with anonymous referee #2 that our method access only the water soluble 8 
fraction, however the water soluble factor concentrations obtained from PMF analysis 9 
were subsequently  rescaled for the corresponding factor recoveries enabling 10 
accessing the total OA concentrations (as also previously pointed out by anonymous 11 
referee #2, the recovery correction increases the uncertainty of our source 12 
apportionment). 13 

14) Page 5 Line 24. The nebulizer temperature is 60°C, which is different from 14 
Daellenbach et al. (2016). Also, the nebulizer system in this study is 15 
different from that in Daellenbach et al. (2016). Would these differences 16 
cause the difference in Rz between studies?  17 

As previously discussed (anonymous referee #1, question 2), the use of two different 18 
nebulizing setups are unlikely to significantly affect our source apportionment results 19 
and therefore our Rz estimates. This is due to the well comparing time series of 20 
fragments and mass spectral fingerprints. The differences in the Rz estimates stem 21 
from the different bulk EE (WSOC/OC) values measured for the two different 22 
datasets. We note that those differences can be fully ascribed to WSOC and/or OC 23 
measurement biases assuming a mass accuracy of 5% for both measurements.  24 

15) Page 5 Line 27-28. The correction of blank is not appropriate. This is 25 
because the particles generated from nebulizing DI water only are too 26 
small to be detected by AMS. However, the organics associated with DI 27 
water will be detected by AMS when nebulizing real filter extracts because 28 
the particles are big. I suggest the authors to nebulize ammonium sulfate 29 
solution (i.e. dissolve ammonium sulfate in DI water with similar 30 
concentration as ambient filters) and use the detected organic 31 
concentration as blank.  32 

In this study we nebulized twice per day a NH4NO3 solution. We compared our blank 33 
OA mass spectra with the OA mass spectra collected during NH4NO3 nebulization. 34 
Excluding CO2

+ and the related fragments, which can be affected by NH4NO3 35 
induced non-OA CO2

+ signal, (Pieber et al. 2016, Friedel et al., 1953, Friedel et al., 36 
1959), none of the other OA AMS fragments showed significantly different 37 
concentration from our blanks (ultrapure water nebulization) within 2σ. Our average 38 
signal to blank ratio was 170, indicating that the blank represented only a small 39 
fraction of the total signal. . Therefore, we consider that under our conditions the 40 
nebulization of pure water and NH4NO3 solution yield equivalent results. 41 
Nevertheless, we recognize that nebulizing (NH4)2SO4 or NH4NO3 solutions would 42 
provide a better estimate of the OA blank. This methodology can be indeed 43 
implemented for future studies.   44 
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 1 

16) Page 9 Line 7-9. Although the detailed procedures have been discussed in 2 
Daellenbach et al. (2016), it is still helpful to briefly discuss the method in 3 
the manuscript, especially how the recovery ratios are calculated.  4 

Rephrased as: ”The offline-AMS source apportionment returns the water soluble 5 
PMF factor concentrations. Daellenbach et al. (2016) determined factor specific 6 
recoveries (including PMF factor extraction efficiencies), by comparing offline-AMS 7 
and online-ACSM OA source apportionments. In particular, the filter samples were 8 
collected for one year during an online-ACSM monitoring campaign conducted at the 9 
same sampling station. Briefly, the factor recoveries were determined as the ratio 10 
between the water soluble OA PMF-factor concentrations retrieved from offline-AMS 11 
source apportionment divided by the OA PMF factor concentrations obtained from 12 
ACSM OA source apportionment. Factor specific recoveries and corresponding 13 
uncertainties were determined for HOA, BBOA, COA, and OOA”. 14 

 15 
17) Page 10 Line 28. Please rephrase to “this factor has too small contribution 16 

in the water extracts to be resolved”.  17 

Corrected as suggested. 18 

18) Page 12 Line 6. This sentence has been repeated twice. Delete.  19 

Sentence deleted as suggested 20 

19) Page 12 Line 13-16. AMS measures OM, instead OC. Please be clear that 21 
the conversion from OM to OC is for the carbon mass closure in Eq. (6).  22 

The information was added to the manuscript as suggested: “Here the water-soluble 23 
OA factor concentrations were converted to the corresponding water-soluble OC 24 
concentrations to fit the measured OC.” 25 

20) Page 12 Eq. (6). WSW-OOA should be WSB-OOA. Is Rz the same for S-26 
OOA and B-OOA since the same ROOA is applied for both factors?  27 

WSW-OOA was corrected as WSB-OOA 28 

In this study we assumed RS-OOA = RB-OOA because the recoveries of the OOA factors 29 
reported in Daellenbach et al. (2015), were determined from the sum of two OOA 30 
factors. The two recoveries were not determined individually in Daellenbach et al. 31 
(2015) due to the dissimilar OOA classification between offline-AMS and online 32 
ACSM source apportionments, which prevented an unambiguous attribution of the 33 
offline-AMS OOA factors to the online-AMS ones. 34 

21) Page 14 Line 20. What’s the OMres/OM ratio?  35 

The information was added to the manuscript: “OMres represented on average 95±2% 36 
of total OM.” 37 

22) Page 15 Line 21. List the non-source specific variables.  38 

The information was added to the text: “(EC, OMres, (Me-)PAHs, S-PAHs, inorganic 39 

ions, oxalate, alkanes)”.  40 
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The entire list is reported here below: 1 

(EC, SO4
2-, NO3

-, Cl-, NH4
+, Na+, K+, Ca2+, Mg2+, oxalate, MSA, Phenanthrene, 2 

anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, triphenylene, 3 

retene, benzo[b,k]fluoranthene, benzo[j]fluoranthene, benzo-e-pyrene, 4 

benzo[a]pyrene, indeno[1,2,3 - cd]pyrene, dibenzo[a,h]anthracene, 5 

benzo[ghi]perylene, coronene, dibenzothiophene, phenanthro(4,5-bcd)thiophene, 6 

Benzo(b)naphtho(2,1-d)thiophene, Benzo(b)naphtha(1,2-d)thiophene,  7 

Benzo(b)naphtho(2,3-d)thiophene, Dinaphtho(2,1-b;1’,2’-d)thiophene, 8 

Benzo(b)phenantho(2,1-d)thiophene, 2-methylnaphtalene, 1-methylfluoranthene, 3-9 

methylphenanthrene, 2-methylphenanthrene, 2-methylanthracene, 4/9 10 

methylphenanthrene, 1-methylphenanthrene, 4-methylpyrene, 1-methylpyrene, 1+3-11 

methylfluoranthene, methylfluoranthene/pyrene, 3-methylchrysene, 12 

methylchrysene/benzoanthracene, Cholesterol, 6,10,14-trimethyl-2-pentadecanone, 13 

Undecane (C11), dodecane (C12), tridecane (C13), tetradecane (C14), pentadecane 14 

(C15), exadecane (C16), heptadecane (C17), octadecane (C18), nonadecane (C19), 15 

eicosane (C20), heneicosane (C21), docosane (C22), tricosane (C23), tetracosane 16 

(C24), pentacosane (C25), hexacosane (C26), heptacosane (C27), octacosane 17 

(C28), nonacosane (C29), triacontane (C30), untricontane (C31), totriacontane 18 

(C32), tritriacontane (C33), tetratriacontane (C34), pentatriacontane (C35), 19 

hexatriacontane (C36), heptatriacontane (C37), octatriacontane (C38), 20 

nonatriacontane (C39), tetracontane (C40), pristane, phytane, OMres) 21 

 22 

23) What’s the Hopanessum/OC ratio in the traffic exhaust factor? Is it 23 
consistent with the CMB method (i.e., 0.0012 in Page 11 Line 15)?  24 

Since our HOA matches between the two methods within our uncertainty, also the 25 
Hopanessum:OC ratio will be not statistically different. Note that the hopanes were 26 
constrained to contribute only to traffic in the markers source apportionment (Section 27 
5.3.2.2). 28 

24) Page 16 Line 25. Should be “EC/OMres” ratio.  29 

Text corrected as “while EC:BB ratio was constrained to 0.1”.  30 

25) Page 17 Line 10-16. The discussion is not clear. Suggest re-wording.  31 

Lines 10-16 were reformulated as: 32 

As discussed in section 3.2.2, we assumed the contribution of specific markers to be 33 
0 in different factor profiles. Such assumptions preclude the PMF model to vary the 34 
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contributions of these variables from 0 (Eq. 3). In order to explore the effect of such 1 
assumptions on our PMF results we loosened all these constraints assuming variable 2 
contributions equal to 50%, 37.5%, 25%, and 12.5% of their average relative 3 
contribution to measured PM1. In all cases the a-value was set to 1. 4 

26) Page 20 Line 1-3. List the levoglucosan/BBOC range in the literature. 5 
Similar suggestions for other places. For example, list the non-fossil 6 
primary organic carbon in Page 25 Line 13 and average fossil primary OC 7 
in Page 25 Line 29.  8 

Information added to the manuscript. 9 

27) Page 21 Line 2. I disagree with that S-OOA increases exponentially with 10 
average daily temperature from the data points in this study (Fig. S12). For 11 
example, many data points with T > 25°C do not have high S-OOA 12 
concentration and do not follow the exponential fit.  13 

Indeed data show a certain scattering. This scattering can stem from other 14 
parameters affecting the biogenic SOA concentrations, such as the photochemical 15 
aging of the air parcel, RH, rain, solar radiation, NOx concentration, accumulation 16 
during the previous days, and wind speed. When binning the data from Lithuania and 17 
Payerne in temperature steps of 5 degrees the exponential relation of S-OOA vs 18 
average daily temperature reveals a good agreement with the exponential relation 19 
reported by Leaitch et al. (2011). We also modified Fig. S12 adding the error bars 20 
and binning the S-OOA concentration in 5°C temperature steps. 21 
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 1 

Figure D7. S-OOA temperature dependence and submicron forest organic aerosol 2 
mass (SFOM) temperature parameterization by Leaitch et al. (2015). a) Lithuania; b) 3 
rural site of Payerne (Switzerland), Bozzetti et al. (2016); c) Binned S-OOA 4 
concentrations (average and standard deviation). 5 
 6 

28) Page 22 Line 13-15. This has been mentioned previously in Page 20 Line 7 
1-3. It is not proper to discuss BBOC here because this section focuses on 8 
the marker-PMF, instead of offline AMS. Similar problem for Page 22 Line 9 
23-24.  10 

The levoglucosan:BBOC ratios discussed in this section (P22 L13-15 and 23-24) 11 
actually refer to the marker-PMF source apportionment. In order to estimate the 12 
BBOC concentration from the marker source apportionment we used the OM:OCBBOA 13 
ratio retrieved from offline-AMS. 14 

29) Page 23 Line 14-15. The observation that nitrate concentration is higher in 15 
urban site than rural site has been shown in many previous studies (Xu et 16 
al., 2016; McMeeking et al., 2012), which should be cited here.  17 

 18 
Citations added as suggested 19 
 20 
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30) Page 23 Line 30-31. This sentence is confusing. The remaining OM 1 
fraction is termed as OMres in Page 10 Line 20, but termed as Other-OA 2 
here. It should be clearly stated that Other-OA refers to OA after excluding 3 
BB and TE.  4 

Text corrected as suggested: ”(Other-OA = OA – BBOA - TEOA)” 5 

31) Page 24 Line 18. Should be “higher”  6 

Text corrected as suggested 7 

32) Page 24 Line 21-23. (1) Which method did the authors use to get the 8 
BBOA concentration and correlation in this sentence? (2) It would be 9 
helpful to include a scatter plot between Preila and Vilnius. (3) I disagree 10 
with “the importance of regional meteorological conditions” as stated in this 11 
sentence and Page 32 Line 31-32. Firstly, the BBOA concentrations are 12 
different between two sites. Secondly, the BBOA in the Rugsteliskis site 13 
does not correlate with the other two sites.  14 

(1) The BBOA concentration reported at P24 L21-23 was estimated by offline-AMS. 15 
Information added to the text. 16 

(2-3) For this comparison we considered only filter samples collected simultaneously 17 
during winter at the different stations. In this case we observed high correlations 18 
between the winter BBOA concentrations estimated for Preila and Vilnius (R = 0.91), 19 
and significantly positive correlations between Preila and Rūgšteliškis (R = 0.72) and 20 
between Vilnius and Rūgšteliškis (R = 0.66). We do not mean that BBOA has a 21 
regional origin, as also confirmed by the different concentrations observed at the 22 
different stations. The high correlations between the sites only suggest either a 23 
common accumulation/depletion of pollutants due to similar meteorological 24 
conditions, or a concomitant increment/decrease of residential wood combustion 25 
activity at the different stations. We could exclude the latter hypothesis because, as 26 
mentioned in the text, most of the BBOA spikes were not directly related to a 27 
decrease of temperature (Section 4.4.1)y. Therefore the BBOA daily variability in the 28 
region seem to be mostly driven by regional meteorological patterns (rain episodes 29 
and anticyclonic conditions), however, the proximity to biomass burning emission 30 
spots can influence the total concentration, therefore not surprisingly Vilnius and 31 
Preila show higher concentrations than Rūgšteliškis. 32 
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Figure D8. S-OOA temperature dependence and submicron forest organic aerosol 1 
mass (SFOM) temperature parameterization by Leaitch et al. (2015). a) Lithuania; b) 2 
rural site of Payerne (Switzerland), Bozzetti et al. (2016); c) Binned S-OOA 3 
concentrations (average and standard deviation). 4 
 5 

P24 Lines 21-23 were corrected as: 6 

During winter, considering only the samples collected concomitantly, Preila and 7 
Vilnius showed well correlated BBOA time series (R = 0.91) and significantly positive 8 
correlations were observed for also for Preila and Rūgšteliškis (R = 0.72) and for 9 
Vilnius and Rūgšteliškis (R = 0.66) (offline-AMS BBOA time series). These results 10 
highlight the effect of regional meteorological conditions on the BBOA daily variability 11 
in the south east Baltic region. 12 
 13 

33) Page 24 line 29. Both methods have the same time resolution (one filter 14 
per day).  15 

As mentioned in the main text in Table 1, Table S1, section 2.3 and section 3.2.1 this 16 
is not the case as the marker-source apportionment is based on composite samples 17 
which were created by merging two consecutively collected filter samples, and 18 
therefore the time resolution is 48 h. 19 

34) Page 25 line 15. In the statistical significance test, why is sometimes 1σ is 20 
used but sometimes 3σ is used (for example, Page 26 Line 28).  21 

We homogenized all the statistical significances to the confidence interval of 3σ. 22 

35) Page 26 Line 30. Should be “factor” instead of “fraction”.  23 

Corrected as suggested 24 

36) Table 2. The correlation coefficient R between NO3-related SOA and B-25 
OOA is only 0.21. Thus, it is not meaningful to discuss the relationship 26 
between NO3-related SA and B-OOA (Page 28 Line 17). Similar problem 27 
for the relationship between MSA-related SOA and S-OOA (Page 28 Line 28 
21).  29 

The NO3-related SOA correlation with B-OOA is indeed small, however the 30 
correlation with LOA and S-OOA is negative, suggesting that the mass attributed to 31 
NO3-related SOA by the markers source apportionment is fully attributed to the B-32 
OOA factor in the offline-AMS source apportionment. This is also confirmed by the 33 
fact that the sum of LOA and S-OOA concentrations during winter (when the NO3-34 
related SOA substantially contributes) can’t explain the NO3

--related SOA mass, 35 
which therefore has to be attributed to B-OOA. We believe that this result is relevant 36 
because it relates the NO3

--related SOA factor, typically resolved from a marker 37 
source apportionment, to the OOA factor typically resolved by AMS source 38 
apportionment in winter datasets. In a similar way we found that large part of MSA-39 
related SOA is related to S-OOA, which provides more insight into the S-OOA 40 
precursors, moreover the precursor emissions of both factors (dimethyl sulfide, 41 
isoprene, and terpenes) are known to be strongly related to temperature, and not 42 
surprisingly the two factors increase during summer. 43 
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 1 

Lines 17-20, P28 were modified as follows: 2 

The NO3
--related SOA and the PBOA were mostly related to the B-OOA factor as 3 

they showed higher correlations with B-OOA than with S-OOA. The B-OOA factor 4 
therefore may explain a small fraction of primary sources (PBOA), which however 5 
represents only 0.6%avg of the total OA. In detail, the NO3-related SOA correlation 6 
with B-OOA was poor (R = 0.21), however the correlation with LOA and S-OOA was 7 
negative (Table 2), suggesting that the mass attributed to NO3-related SOA by the 8 
markers source apportionment was fully attributed to the B-OOA factor in the offline-9 
AMS source apportionment. This is also confirmed by the fact that the sum of LOA 10 
and S-OOA concentrations during winter (when the NO3-related SOA substantially 11 
contributes) can’t explain the NO3

--related SOA mass, which therefore has to be 12 
attributed to B-OOA.  13 

 14 

We added the following discussion at P 28, L26. 15 

 16 

The correlation between the two factors is therefore not surprising as the precursor 17 
emissions (dimethyl sulfide, isoprene and terpenes) are strongly related to 18 
temperature leading to higher summer MSA-related SOA and S-OOA concentrations. 19 
 20 

37) Page 29 Line 18. Please rephrase to “fCO2 value is higher than fCO”.  21 

Corrected as suggested 22 

38) Page 29 Line 24-25. The logic is not clear. Why does higher CO2+/CO+ 23 
ratio of gas CO2 suggest a minor contribution from WSOM decarboxylation 24 
to CO+.  25 

L24-25, P29 were modified as follows: 26 

The fragmentation of pure gaseous CO2 returned a CO2
+:CO+ ratio of 8.21avg which is 27 

significantly higher than our findings for the water-soluble bulk OA (1.75med).  28 
Assuming thermal decarboxylation of organic acids as the only source of CO2

+ does 29 
not explain the observed CO2

+:CO+ ratio of 1.75med and another large source of CO+ 30 
has to be assumed. Therefore, the carboxilic acid decarboxylation into CO2can be 31 
considered as a minor source of CO+.   32 

39) Page 30 Line 7. Many data points from the Rugsteliskis site are outside the 33 
triangle range in Fig. 7a.  34 

As discussed in Fig. 7 caption, some points from Rūgšteliškis lie outside the triangle, 35 
suggesting that CO+ and CO2

+ variabilities are not well explained by our PMF model 36 
for those specific filter samples. However, Fig. S5 displays flat residuals for 37 
Rūgšteliškis, indicating an overall good WSOM explained variability by the model. 38 

40) Page 31 Line 4. The correlation between CO+ and C2H3O+ is not shown 39 
in Fig. 7b. It would be helpful to show a scatter plot. 40 

We added to Fig. 7 the scatter plot fCO+ vs. fC2H3O
+ as suggested. 41 
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41) Page 31 Line 16. Canagaratna et al. (2015) carefully discussed the 1 
CO2+/CO+ ratio of a number of standards, which should be discussed and 2 
mentioned more in the manuscript. 3 

As mentioned in the manuscript (P31, L24), we can observe that the most 4 
representative standards of our aqueous filter extracts in terms of CO+:CO2

+ ratio 5 
were multifunctional carboxylic acids (only hydroxyl mono and poly-acids and keto 6 
acids) and 2 diacids used by Canagaratna et al. (2015)  . Specifically, These include 7 
citric acid, malic acid tartaric acid, ketobutyric acid, hydroxyl methylglutaric acid, 8 
pyruvic acid, oxaloacetic acid, tartaric acid, oxalic acid and malonic acid. Considering 9 
that the median OA bulk extraction efficiency was 0.59, and considering that the CO+ 10 
and CO2

+ fragmentation precursors tend to be more water soluble than the bulk OA, 11 
the listed compounds could be representative of  large part of the CO+ and CO2

+ 12 
fragmentation precursors. 13 

Lines 23-28, P31 were modified as follows: 14 

With the exception of some multifunctional compounds (citric acid, malic acid tartaric 15 
acid, ketobutyric acid, hydroxyl methylglutaric acid, pyruvic acid, oxaloacetic acid, 16 
tartaric acid, oxalic acid and malonic acid), the water-soluble single compounds 17 
analyzed by Canagaratna et al. (2015) mostly showed CO2

+:CO+ ratios <1, 18 
systematically lower than the CO2

+:CO+ ratios measured for the bulk WSOM in 19 
Lithuania (1st quartile 1.50, median 1.75, 3rd quartile 2.01), which represents a large 20 
fraction of the total OM (bulk EE: median = 0.59, 1st quartile = 0.51, 3rd quartile = 21 
0.72). Considering the relatively high extraction efficiency, and considering that the 22 
CO+ and CO2

+ fragmentation precursors tend to be more water soluble than the bulk 23 
OA, the aforementioned compounds could be representative of  a large part of the 24 
CO+ and CO2

+ fragmentation precursors. 25 

42) Figure 5. The grey caps of traffic exhaust are not clear in this figure.  26 
 27 
Traffic grey caps were highlighted with a marker 28 
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Figure D9. Figure 5. PM1 marker source apportionment: factor time series and 1 

relative contributions. Shaded areas indicate uncertainties (standard deviation) of 20 2 

bootstrap runs. 3 

 4 
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Minor revisions: 1 

Received and published: 07 October 2016 2 
 3 

Anonymous Referee #1 4 
 5 

43) I recommend that the authors should add a short bit of text, either to the 6 
manuscript or the supplemental that addresses the reviewer 2's comment- 7 
that volatility and seasonal trends are linked. 8 

 9 
In the revised manuscript we replaced P22, L21-22 with the following discussion:  10 
In general, OOA factors with different seasonal behaviors can be characterized by 11 
different volatilities. However in this work the offline-AMS OOA separation is not 12 
driven by volatility, given the low correlation between NO3

- and our OOA factors (also 13 
reflected by the low NO3

--related SOA correlation with B-OOA and S-OOA, Table 2). 14 
Additionally, the partitioning of semi-volatile OA at low temperatures would lead to a 15 
less oxidized OOA fingerprint during winter than in summer; however, this was not 16 
the case. We observed a less oxidized OOA factor during summer, whose mass 17 
spectral fingerprint closely resembles that of SOA from biogenic precursors. 18 
Meanwhile similar to OOA from aging of biomass burning emissions, OOA during the 19 
cold season is more oxidized. This has been also reported in an urban environment 20 
in central Europe (Zurich) using an online-ACSM (Canonaco et al., 2015). 21 
Table 2 was moved below this section. 22 
  23 

Formatted: English (U.S.)
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Anonymous Referee #2 1 

Received and published: 07 October 2016 2 
 3 
General Comments: 4 
I thank the authors for taking time to revise the manuscript. The authors have 5 
addressed the comments adequately. However, I have two minor comments. 6 
 7 

44) 1. OM/OC ratio. While I agree with the authors that both Aiken and 8 
Canagaratna parameterizations are uncertain for this dataset, I want to 9 
point out that the OM/OC ratio would affect the recovery ratios determined 10 
by Eq. (6). Higher OM/OC ratio from Canagaratna parameterization would 11 
lead to lower recovery ratio and hence higher ambient concentration of 12 
factors. 13 
 14 

The recovery estimates are independent of the choice of Aiken or Canagaratna’s 15 
OM:OC parameterizations. Indeed the recovery fitting equation (Eq. 6) explicitly 16 
contains the PMF factors OM:OC ratio. However the water-soluble PMF factor 17 
concentrations (Eq. 6) implicitly depend on the bulk OM:OC ratio used to determine 18 
the bulk WSOM concentration (WSOMi = WSOCiˑOM/OCi) which was used as input 19 
for our PMF model. This leads to canceling corrections making the recovery 20 
estimates independent of the choice of the Aiken’s or Canagaratna’s OM:OC 21 
parameterizations. 22 
This information was added in the revised SI. 23 
 24 

45) 2. It is important to discuss why the same Rz is selected for both B-OOA 25 
and S-OOA (i.e.,response to comment#20) and mention that the Rz of 26 
OOA factors warrants further investigation in the manuscript.  27 

 28 
The factor recoveries determined in this work enabled properly fitting the OC time 29 
series according to Eq. (6). The OC fitting residuals were unbiased within our 30 
uncertainty in different seasons (summer and winter) and at the different stations. 31 
Therefore there’s no reason to consider statistically different recoveries for S-OOA 32 
and W-OOA. We also fitted the factor recoveries according to Eq. (6) without any a-33 
priori constrain from Daellenbach et al. (2016), and assuming different recoveries for 34 
S-OOA and B-OOA. The measured OC vs. fitted OC correlation was not statistically 35 
higher (95% confidence interval) than the correlation obtained when constraining the 36 
OOAs and BBOA factor recoveries according to Daellenbach et al. (2016). This 37 
suggests that the measured OC is equally well explained by the two fits. 38 
The completely unconstrained fit returned a wide RS-OOA range (Fig. D10, only 39 
solutions associated to unbiased OC residuals and Rks values comprised between 0 40 
and 1 were retained). This occurs despite the considerable contribution of S-OOA, at 41 
all sites. This suggests that the least square algorithm fails to independently estimate 42 
the recoveries of factors and a priori constrains are needed to get unambiguous 43 
results. We have assumed RS-OOA = RB-OOA based on the comparison between offline-44 
AMS and online ACSM, although obtained at another site, especially that this 45 
assumption fits our knowledge of OOA water solubility and returned a mathematically 46 
equivalent OC reconstruction compared to the completely unconstrained model. 47 



 33

 1 
Fig. D10. Rk probability density functions obtained by fitting Eq. (6) assuming RS-OOA 2 
≠ RB-OOA and without a-priori Rk information.  3 
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 1 

List of all relevant changes made in the manuscript  2 
In the following page numbers and lines refer to the originally submitted version of 3 
the manuscript. 4 
 5 

1) As suggested by both anonymous referee #1 and #2 we clarified in several 6 
points that TEOA concentrations and uncertainties were not resolved by 7 
offline-AMS source apportionment, but by a CMB approach using hopanes as 8 
molecular markers. (P2, L9, P25, L14, and P23 L30). 9 

2) A more complete description of the offline-AMS methodology was introduced 10 
in section 3.1 according to the suggestion of anonymous referee #2. 11 

3) A cleared description of Offline-AMS PMF factor recoveries (Rk) estimates was 12 
introduced in section 3.1.3 as suggested by anonymous referee #2. 13 

4) Recommendations for future offline-AMS users were added at P13 L19 14 
according to the suggestion of anonymous referee #2. 15 

5) Following the suggestion of anonymous referee #2 we modified P20 L17-18 in 16 
order to explicitly mention AMS-PMF works which resolved secondary aerosol 17 
factors according to their sources or formation mechanisms. 18 

6) We discussed more in depth the relation between NO3
--related SOA and B-19 

OOA (L 17-20, P28) in order to reply to a question raised by anonymous 20 
referee #2. 21 

7) We discussed more in details the relation between PMF residuals and B-OOA 22 
site-to-site differences observed in Vilnius (P26, L31), in order to answer a 23 
question raised by anonymous referee #2. 24 

8) We explicitly listed the standards most representative of observed water-25 
soluble ambient CO+/CO2

+ ratios (Lines 23-28, P31), as suggested by 26 
anonymous referee #2. 27 

9) We added the CO+ vs. C2H3O
+ scatter plot in Fig. 7, as suggested by 28 

anonymous referee #2. 29 
  30 
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site in Northern Europe 4 
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 19 

Abstract 20 

The widespread use of Aerodyne aerosol mass spectrometers (AMS) has greatly improved 21 

real-time organic aerosol (OA) monitoring, providing mass spectra that contain sufficient 22 

information for source apportionment. However, AMS field deployments remain expensive 23 

and demanding, limiting the acquisition of long-term datasets at many sampling sites. The 24 

offline application of aerosol mass spectrometry entailing the analysis of nebulized water 25 

extracted filter samples (offline-AMS) increases the spatial coverage accessible to AMS 26 

measurements, being filters routinely collected at many stations worldwide.  27 



 36

PM1 (particulate matter with an aerodynamic diameter <1 µm) filter samples were collected 1 

during an entire year in Lithuania at three different locations representative of three typical 2 

environments of the South-East Baltic region: Vilnius (urban background), Rūgšteliškis (rural 3 

terrestrial), and Preila (rural coastal). Aqueous filter extracts were nebulized in Ar, yielding 4 

the first AMS measurements of water-soluble atmospheric organic aerosol (WSOA) without 5 

interference from air fragments. This enables direct measurement of the CO+ fragment 6 

contribution, whose intensity is typically assumed to be equal to that of CO2
+. Offline-AMS 7 

spectra reveal that the water soluble CO2
+:CO+ ratio not only shows values systematically <>1 8 

but is also dependent on season, with lower values in winter than in summer. 9 

AMS WSOA spectra were analyzed using positive matrix factorization (PMF), which yielded 10 

4 factors. These factors included biomass burning OA (BBOA), local OA (LOA) contributing 11 

significantly only in Vilnius, and two oxygenated OA (OOA) factors, summer OOA (S-OOA) 12 

and background OOA (B-OOA) distinguished by their seasonal variability. The contribution 13 

of traffic exhaust OA (TEOA) was not resolved by PMF due to both low concentrations and 14 

low water solubility. Therefore, the TEOA concentration was estimated using a chemical 15 

mass balance approach, based on the concentrations of hopanes, specific markers of traffic 16 

emissions.AMS WSOA spectra were analyzed using positive matrix factorization (PMF), 17 

yielding 5 factors: traffic exhaust OA (TEOA), biomass burning OA (BBOA), local OA 18 

(LOA) contributing significantly only in Vilnius, and two oxygenated OA (OOA) factors 19 

distinguished by seasonal variability.  AMS-PMF source apportionment results were 20 

consistent with those obtained from PMF applied to marker concentrations (i.e. major 21 

inorganic ions, OC/EC, and organic markers including polycyclic aromatic hydrocarbons and 22 

their derivatives, hopanes, long-chain alkanes, monosaccharides, anhydrous sugars, and lignin 23 

fragmentation products). OA was the largest fraction of PM1 and was dominated by BBOA 24 

during winter with an average concentration of 2 µg m-3 (53% of OAOM), while summer-25 

OOA (S-OOA), probably related to biogenic emissions was the prevalent OA source during 26 

summer with an average concentration of 1.2 µg m-3 (45% of OM).  27 

PMF ascribed a large part of the CO+ explained variability (97%) to the OOA and BBOA 28 

factors. Accordingly we discuss a new CO+ parameterization as a function of CO2
+, and 29 

C2H4O2
+ fragments, which were selected to describe the variability of the OOA and BBOA 30 

factors. 31 
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1 Introduction 1 

Atmospheric aerosols affect climate (Lohmann et al., 2004, Schwarze et al., 2006), human 2 

health (Dockery et al., 2005, Laden et al., 2000), and ecosystems on a global scale.  3 

Quantification and characterization of the main aerosol sources are crucial for the 4 

development of effective mitigation strategies. The Aerodyne aerosol mass spectrometer 5 

(AMS, Canagaratna et al., 2007) and aerosol chemical speciation monitor (ACSM, Ng et al., 6 

2011, Fröhlich et al., 2013) have greatly improved air quality monitoring by providing real-7 

time measurements of the non-refractory (NR) submicron aerosol (PM1) components. 8 

Analysis of organic mass spectra using positive matrix factorization (PMF, Paatero, 1997; 9 

Paatero and Tapper, 1994) has enabled the quantitative separation of OA factors, which can 10 

be subsequently related to major aerosol sources and formation processes (e.g. Lanz et al., 11 

2007; Lanz et al., 2010; Zhang et al., 2011; Ulbrich et al., 2009; Elser et al., 2016 a). Despite 12 

its numerous advantages, AMS field deployment remains expensive and demanding, and 13 

therefore most of the studies are typically restricted to short-time periods and a single (or few) 14 

sampling site(s). The limited amount of long-term datasets suitable for OA source 15 

apportionment severely limits model testing and validation (Aksoyoglu et al., 2011; 16 

Aksoyoglu et al., 2014; Baklanov et al., 2014), as well as for the development of appropriate 17 

pollution mitigation strategies. AMS analysis of aerosol filter samples (Lee et al., 2011; Sun 18 

et al., 2011; Mihara and Mochida, 2011; Daellenbach et al., 2016), which are routinely 19 

collected at many stations worldwide, broadens the temporal and spatial scales available for 20 

AMS measurements.  21 

In this study we present the application of the offline-AMS methodology described by 22 

Daellenbach et al. (2016) to yearly cycles of filter samples collected in parallel at three 23 

different locations in Lithuania between September 2013 and August 2014. The methodology 24 

consists of water extraction of filter samples, followed by nebulization of the liquid extracts, 25 

and subsequent measurement of the generated aerosol by high-resolution time-of-flight AMS 26 

(HR-ToF AMS). In this work, organic aerosol water extracts were nebulized in Ar, permitting 27 

direct measurement of the CO+ ion (Fig. S1), which is typically not directly quantified in 28 

AMS data analysis due to interference with N2
+, but is instead estimated as being equal to 29 

CO2
+ (Aiken et al., 2008). Direct measurement of CO2

+ better captures the variability in the 30 

total OA mass and its elemental composition as well as potentially improving source 31 

apportionment of ambient aerosol. Aerosol elemental ratios and oxidation state are of 32 
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particular relevance as they provide important constraints for understanding aerosol sources, 1 

processes, and for the development of predictive aerosol models (Canagaratna et al., 2015).  2 

Aerosol composition in the south-east Baltic region has so far received little attention. To our 3 

knowledge the only investigation of OA sources in this area was during a five-day period of 4 

intense land clearing activity occurring in the neighboring Russian enclave of Kaliningrad 5 

(Ulevicius et al., 20152016; Dudoitis et al., 2016), in which transported biomass burning 6 

emissions dominated the aerosol loading. OA source contributions under less extreme 7 

conditions remain unstudied, with the most relevant measurements performed in Estonia with 8 

a mobile lab during March 2014 at two different locations (Elser et al., 2016b). On-road 9 

measurements revealed large traffic contributions with an increase of 20% from rural to urban 10 

environments. Also, residential biomass burning (BB) and oxygenated OA (OOA) 11 

contributions were found to be substantial.  12 

In this study we present a complete source apportionment of the submicron OA fraction 13 

following the methodology described by Daellenbach et al. (2016) in order to quantify and 14 

characterize the main OA sources affecting the Lithuanian air quality. The three sampling 15 

stations were situated in the Vilnius suburb (urban background), Preila (rural coastal 16 

background), and Rūgšteliškis (rural terrestrial background), covering a wide geographical 17 

domain and providing a good overview of the most typical Lithuanian and south-eastern 18 

Baltic air quality conditions and environments. PMF analysis of offline-AMS measurements 19 

are compared with the results reported by Ulevicius et al. (20152016) and with PMF analysis 20 

of chemical marker measurements obtained from the same filter samples.  21 

2 Sampling and offline measurements 22 

2.1 Site description and sample collection 23 

We collected 24-h integrated PM1 filter samples at 3 different stations in Lithuania from 30 24 

September 2013 to 2 September 2014 using 3 High-Volume samplers (Digitel DHA80, and  25 

DH-77) operating at 500 L min-1. In order to prevent large negative filter artifacts, the high 26 

volume samplers were equipped with temperature control systems maintaining the filter 27 

storage temperature always below 25°C, which is lower or comparable to the maximum daily 28 

temperature during summer. The particulate matter was collected on 150-mm diameter quartz 29 

fiber filters (Pallflex Tissuquartz 2500QAT-UP / pure quartz, no binder) pre-baked at 800°C 30 

for 8 h. Filter samples were wrapped in pre-baked aluminum foils (400°C for 6 h), sealed in 31 
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polyethylene bags and stored at -20°C after exposure. Field blanks were collected and stored 1 

following the same procedure.  2 

Sampling was conducted at urban (Vilnius), rural terrestrial (Rūgšteliškis) and rural coastal 3 

(Preila) monitoring sites (Fig. 1). The rural terrestrial site of Rūgšteliškis serves as a baseline 4 

against which urban-specific sources in the major population center of Vilnius can be 5 

compared. The rural coastal site of Preila provides an opportunity to distinguish terrestrial and 6 

marine sources. 7 

The sampling station in Vilnius is located at the Center for Physical Sciences and Technology 8 

campus (54°38' N, 25°10' E, 165 m a.s.l.) 12 km southwest of the city center (population: 9 

535000) and is classified as an urban background site. The site is relatively far from busy 10 

roads, and surrounded by forests to the north/northeast, and by a residential zone to the 11 

south/east. It is ca. 350 km distant from the Baltic coast, and 98 km from the Rūgšteliškis 12 

station (Fig. 1). 13 

The station in Preila (55°55' N, 21°04' E, 5 m a.s.l.) is a representative rural coastal 14 

background site, situated in the Curonian Spit National Park on the isthmus separating the 15 

Baltic Sea from the Curonian Lagoon. The monitoring station is located <100 m from the 16 

Baltic shore. The closest populated area is the village of Preila (population: 200 inhabitants), 17 

located 2 km to the south. 18 

The rural terrestrial station of Rūgšteliškis (55°26’ N and 26°04’ E, 170 m a.s.l.) is located in 19 

the eastern part of Lithuania, about 350 km from the Baltic Sea. The site is surrounded by 20 

forest and borders the Utenas Lake in the southwest. The nearest residential areas are 21 

Tauragnai, Utena (12 km and 26 km west of the station, population: 32000 inhabitants) and 22 

Ignalina (17 km southeast of the station, population: 6000 inhabitants). 23 

2.2 Offline-AMS analysis 24 

The term offline-AMS will be used herein to refer to the methodology described by 25 

Daellenbach et al. (2016) and summarized below. For each analyzed filter sample, four 16-26 

mm diameter filter punches were subjected to ultrasonic extraction in 15 mL of ultrapure 27 

water (18.2 MΩ cm at 25°C, total organic carbon (TOC) < 3 ppb) for 20 min at 30°C.  28 

The choice of water instead of an organic solvent is motivated by two arguments: 29 
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- Water yields the lowest offline-AMS background and hence the highest signal to noise 1 

compared to other highly pure solvents (including methanol, dichloromethane and 2 

ethyl acetate). 3 

- In contrast to the water extraction, the use of organic solvents precludes the 4 

quantification of the organic content in the extracts (e.g. by using a total OC analyzer), 5 

which in turn prevents a quantitative source apportionment.  6 

Liquid extracts were then filtered and atomized in Ar (≥99,998 % Vol. abs., Carbagas, CH-7 

3073 Gümligen, Switzerland) using an Apex Q nebulizer (Elemental Scientific Inc., Omaha 8 

NE 68131 USA) operating at 60°C. The resulting aerosol was then dried by passing through a 9 

Nafion drier (Perma Pure, Toms River NJ 08755 USA), and subsequently analyzed by a HR-10 

ToF-AMS. 12 mass spectra per filter sample were collected (AMS V-mode, m/z 12-232, 30 s 11 

collection time per spectrum). A measurement blank was recorded before and after each 12 

sample by nebulizing ultrapure water for 12 minutes. Field blanks were measured following 13 

the same extraction procedure as the collected filter samples, yielding a signal not statistically 14 

different from that of nebulized milliQ water. Finally we registered the AMS fragmentation 15 

spectrum of pure gaseous CO2 (≥99,7 % Vol, Carbagas, CH-3073 Gümligen, Switzerland), in 16 

order to derive its CO2
+:CO+ ratio.  17 

Offline-AMS analysis was performed on 177 filter samples in order to determine the bulk 18 

water-soluble organic matter (WSOM) mass spectral fingerprints. In total, 63 filters from 19 

Rūgšteliškis, 42 from Vilnius, and 71 from Preila were measured in Ar. The reader is referred 20 

to DeCarlo et al. (2006) for a thorough description of the AMS operating principles and 21 

calibration procedures.  22 

HR-ToF-AMS analysis software SQUIRREL (SeQUential Igor data RetRiEvaL, D. Sueper, 23 

University of Colorado, Boulder, CO, USA) v.1.53G and PIKA (Peak Integration by Key 24 

Analysis) v.1.11L for IGOR Pro software package (Wavemetrics, Inc., Portland, OR, USA) 25 

were utilized to process and analyze the AMS data. HR analysis of the AMS mass spectra was 26 

performed in the m/z range 12-115.  27 

2.3 Supporting measurements 28 

Additional offline analyses were carried out in order to validate and corroborate the offline-29 

AMS source apportionment results. This supporting dataset was also used as input for PM1 30 

source apportionment as discussed below. The complete list of the measurements performed 31 
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can be found in Table 1 and Table S1. Briefly, major ions were measured by ion 1 

chromatography (IC; Jaffrezo et al., 1998); elemental and organic carbon (EC, OC) were 2 

quantified by thermal optical transmittance following the EUSAAR2 protocol (Cavalli et al., 3 

2010); water-soluble OC (WSOC) was measured by water extraction followed by catalytic 4 

oxidation and non-dispersive infrared detection of CO2 using a total organic carbon analyzer 5 

(Jaffrezo et al., 2005). Organic markers were determined for 67 composite samples by gas 6 

chromatography-mass spectrometry (GC-MS; Golly et al., 2015); high performance liquid 7 

chromatography (HPLC) associated with a fluorescence detector (LC 240 Perkin Elmer) and 8 

HPLC-pulsed amperometric detection (PAD; Waked et al., 2014) for 67 composite samples. 9 

Composites were created merging two consecutive filter samples, but no measurements are 10 

available for Vilnius during summer. Organic markers measurements Measurements included 11 

18 polycyclic aromatic hydrocarbons (PAHs), alkanes (C21-C40), 10 hopanes, 13 12 

methoxyphenols, 13 methyl-PAHs (Me-PAHs), 6 sulfur-containing-PAHs (S-PAHs), 3 13 

monosaccharide anhydrides, and 4 monosaccharides (including glucose, mannose, arabitol, 14 

and mannitol). In this work ion concentrations always refer to the IC measurements if not 15 

differently specified.  16 

Table 1. Overview of supporting measurements. A complete list of measured compounds can 17 

be found in table S1. 18 

Analytical Method Measured compounds Filters measured 

IC (Jaffrezo et al., 1998) Ions All 

Thermal optical transmittance using Sunset Lab 

Analyzer (Birch and Cary, 1996) using 

EUSAAR2 protocol (Cavalli et al., 2010) 

EC/OC 

 

 

 

All 

TOC analyzer using persulphate oxidation at 

100°C of the OM, followed by CO2 

quantification with a non-dispersive infrared 

spectrophotometer (Jaffrezo et al., 1998) 

WSOC All 

HPLC associated with fluorescence detector 

(LC 240 Perkin Elmer) 
PAHs (table S1) 

67 composite 

samples 
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(Golly et al., 2015, Besombes et al., 2001) 

GC-MS 

(with and without derivatization step) 

(Golly et al., 2015) 

S-PAHs, Me-PAHs, 

alkanes, hopanes, 

methoxyphenols, others 

67 composite 

samples 

HPLC-PAD, (Waked et al., 2014) 

Anhydrous sugars, 

sugars alcohols, 

monosaccharides 

67 composite 

samples 

Chemiluminescence (Environnement S.A., 

Model AC31M) 
NOx 

Online (Vilnius 

only) 

In the following, subscripts avg, and med will denote average and median values, 1 

respectively. 2 

3 Source apportionment 3 

Positive matrix factorization (PMF, Paatero and Tapper, 1994) is a bilinear statistical model 4 

used to describe the variability of a multivariate dataset as the linear combination of a set of 5 

constant factor profiles and their corresponding time series, as shown in Eq. (1): 6 

��,	 =  ∑ (�,�  ∙  ��,	)  +  ��,	����     (1) 7 

Here x, g, f, and e denote elements of data, factor time series, factor profiles and residual 8 

matrices, respectively, while subscripts i,j  and z are indices for time, measured variables, and 9 

factor number. The value p represents the total number of factors chosen for the PMF 10 

solution. The PMF algorithm iteratively solves Eq. (1) by minimizing the objective function 11 

Q, defined in Eq. (2) Only non-negative gi,z and fz,j values are permitted: 12 

� =  ∑ ∑ ���,�
��,�

��
	�      (2) 13 

Here the si,j elements represent entries in the input error matrix. 14 

In this work the PMF algorithm was run in the robust mode in order to dynamically 15 

downweigh the outliers. The PMF algorithm was solved using the multilinear engine-2 (ME-16 

2) solver (Paatero, 1999), which enables an efficient exploration of the solution space by a 17 
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priori  constraining the gi,z or fz,j elements within a certain variability defined by the scalar a 1 

(0≤a≤1) such that the modelled gi,z’  and fz,j’  satisfy Eq. (3): 2 

(�� )!",#
(�$ )!",#% ≤ !",#&

!",%& ≤  
(�$ )!",#
(�� )!",%     (3) 3 

Here n and m are any two arbitrary columns (variables) in the normalized F matrix. The 4 

Source Finder toolkit (SoFi, Canonaco et al., 2013, v.4.9) for Igor Pro software package 5 

(Wavemetrics, Inc., Portland, OR, USA) was used to configure the ME-2 model and for post-6 

analysis. PMF analysis was applied to two complementary datasets: (1) organic mass spectra 7 

from offline-AMS measurements for the apportionment of OM sources and (2) molecular 8 

markers for the apportionment of the measured PM1 mass. These two analyses are discussed 9 

separately below. 10 

 11 

3.1 Offline-AMS PMF  12 

In the following section we describe the offline-AMS source apportionment implementation, 13 

optimization and uncertainty assessment. Briefly, we selected the number of PMF factors 14 

based on residual analyses and solution interpretability; subsequently we explored the 15 

rotational uncertainty of our source apportionment model and discarded suboptimal solutions 16 

providing insufficient correlation of factor time series with external tracers. The offline-AMS 17 

source apportionment returns the water soluble PMF factor concentrations. Daellenbach et al. 18 

(2016) determined factor specific recoveries (including PMF factor extraction efficiencies), 19 

by comparing offline-AMS and online-ACSM OA source apportionments. In particular, the 20 

filter samples were collected for one year during an online-ACSM monitoring campaign 21 

conducted at the same sampling station.  Briefly, the factor recoveries were determined as the 22 

ratio between the water soluble OA factor concentrations retrieved from offline-AMS PMF 23 

divided by the OA factor concentrations obtained from online-ACSM PMF. Factor specific 24 

recoveries and corresponding uncertainties were determined for HOA, BBOA, COA, and 25 

OOA. The offline-AMS source apportionment returns the water soluble PMF factor 26 

concentrations. Daellenbach et al. (2016) determined factor specific recoveries (including the 27 

extraction efficiencies), by comparing offline-AMS and online-ACSM source 28 

apportionments. In this work we applied the factor recoveries from Daellenbach et al. (2016) 29 

to scale the water soluble factor concentrations retrieved from offlne-AMS PMF to the 30 

corresponding bulk OA concentrations.  We conducted a sensitivity analysis on the applied 31 
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recoveries (Section 3.1.3)Applying these recoveries enabled scaling the water soluble factor 1 

concentrations to the corresponding bulk OA concentrations.  A sensitivity analysis of these 2 

recoveries was reported in Section 3.1.3, and the corresponding uncertainty was propagated to 3 

the source apportionment results. 4 

A second solution selection step was carried out on the rescaled solutions as described in 5 

section 3.1.3. In general, the offline-AMS technique assesses less precisely the contribution of 6 

the low water soluble factors. The higher uncertainty mostly stems from the larger PMF 7 

rotational ambiguity when separating factors characterized by low concentration in the filter 8 

extracts (i.e. low water solubility). Nevertheless, the uncertainty is dataset dependent, as the 9 

separation of such sources can be improved in case of distinct time variability of these 10 

sources. The low aqueous concentration of scarcely water soluble sources in fact can be 11 

partially overcome by the large signal/noise characterizing the offline-AMS technique (170 12 

on average for this dataset). 13 

The offline-AMS source apportionment results presented in this study represent the average 14 

of the retained rescaled PMF solutions, while their variability represents our best estimate of 15 

the source apportionment uncertainty.   16 

3.1.1 Inputs 17 

The offline-AMS input matrices include in total 177 filter samples (62 filters from 18 

Rūgšteliškis, 42 from Vilnius, and 73 from Preila). Each filter sample was represented on 19 

average by 12 mass spectral repetitions to explore the effect of AMS and nebulizer stability 20 

on PMF outputs. A corresponding measurement blank was subtracted from each mass 21 

spectrum. The input PMF matrices included 269 organic fragments fitted in the mass range 22 

(12-115). The input error si,j elements include the blank variability (σi,j) and the uncertainty 23 

related to ion counting statistic and ion-to-ion signal variability at the detector (δi,j, Allan et 24 

al., 2003; Ulbrich et al., 2009):  25 

'�,	 =  (δ�,	 � + σ�,	 �              (4) 26 

We applied a minimum error to the si,j matrix elements according to Ulbrich et al. (2009), and 27 

a down-weighting factor of 3 to all fragments with an average signal to noise lower than 2 28 

(Ulbrich et al., 2009). Input data and error matrices were rescaled such that the sum of each 29 

row is equal to the estimated WSOMi concentration, which is calculated as the product of the 30 Formatted: Font: Italic, Subscript
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measured WSOCi multiplied by the (OM:OC)i ratios determined from the offline-AMS PMF 1 

results.  2 

3.1.2 Overview of retrieved factors and estimate of traffic exhaust OA (TEOA) 3 

We used a 4-factor solution to represent the variability of the input data. The 4 separated OA 4 

factors included the following: 5 

1/ a biomass burning OA (BBOA) factor highly correlated with levoglucosan originating from 6 

cellulose pyrolysis; 7 

2/ a local OA (LOA) factor explaining a large fraction of N-containing fragments variability 8 

and contributing mostly in Vilnius during summer and spring; 9 

3/ a background oxygenated-OA (B-OOA) factor showing relatively stable contributions at all 10 

seasons; 11 

4/ a summer-OOA (S-OOA) factor showing increasing concentrations with the average daily 12 

temperature.  13 

If the number of factors is decreased to 3, a mixed BBOA/B-OOA factor is retrieved, and 14 

significant structure appears in the residuals during winter (Fig. S2, S3, S4). Increasing the 15 

number of factors to 5 and 6, leads to a splitting of OOA factors that cannot be interpreted in 16 

terms of specific aerosol sources/processes (Fig. S2, S3). The further separated OOA factor in 17 

the 5-factor solution possibly derived from the splitting of B-OOA; in fact the sum of the 18 

newly separated OOA and B-OOA in the 5-factor solution correlated well with the B-OOA 19 

time series from the 4-factor solution (R = 0.93). Overall, a clear structure removal in the 20 

residual time-series was observed until a number of factors equal to 4 (Fig. S4, S5).  21 

We also explored a 5-factor solution in which a hydrocarbon-like OA (HOA) profile from 22 

Mohr et al. (2012) was constrained to estimate the TEOA contribution. However, using 23 

hopanes as traffic tracers, the water-soluble TEOA (WSTEOA) contribution to WSOM was 24 

estimated as 0.2%avg (section 3.1.4), likely too small for PMF to resolve. We performed 100 25 

PMF runs by randomly varying the HOA a-value. The obtained results showed a low TEOA 26 

correlation with hopanes (Rmax = 0.25, Rmin = -0.15) with 45% of the PMF runs associated 27 

with negative Pearson correlation coefficients, supporting the hypothesis that this factor has 28 

too small contribution in the water extracts to be resolved.this factor has too small a 29 

contribution to be resolved.  Therefore, we selected the 4-factor solution as our best 30 

Formatted: Subscript



 46

representation of the data, while TEOA was instead estimated by a chemical mass balance 1 

(CMB) approach and not based on AMS mass spectral features. 2 

TEOA concentrations are were estimated using a CMB approach that assuminges hopanes, 3 

present in lubricant oils engines, (Subramanian et al., 2006) to be unique tracers for traffic. 4 

However, hopanes can also be emitted upon combustion of different types of fossil fuel, in 5 

particular by coal combustion (Rutter et al., 2009), therefore the traffic contribution estimated 6 

here, although very small (as discussed in the result section), should be considered as an 7 

upper estimate. Still, the EC/:hopanes ratio determined in this work (900±100) is consistent 8 

with EC/:hopanes for TE (1400±900: He et al., 2006; He et al., 2008; El Haddad et al., 2009; 9 

Fraser et al., 1998) and not with the coal EC/hopanes from literature profiles (300±200: 10 

Huang et al., 2014; supplementary information (SI)). To assess the traffic exhaust OC 11 

(TEOC) contribution we used the sum of the four most abundant hopanes (17a(H),21b(H)-12 

norhopane, 17a(H),21b(H)-hopane, 22S,17a(H),21b(H)-homohopane, and 13 

22R,17a(H),21b(H)-homohopane (hopanessum)). The TEOC contribution was estimated from 14 

the average hopanessum/:TEOC ratio (0.0012±0.0005) from tunnel measurements reported by 15 

He et al. (2006), He et al. (2008), El Haddad et al. (2009), and Fraser et al. (1998), where the 16 

four aforementioned hopanes were also the most abundant. In order to rescale TEOC to the 17 

total TEOA concentration we assumed an OM:OCTEOA ratio of 1.2±0.1 (Aiken et al., 2008, 18 

Mohr et al., 2012, Docherty et al., 2011, Setyan et al., 2012). The uncertainty of the estimated 19 

TEOA concentration was assessed by propagating the uncertainties relative to the 20 

(OM:OC)TEOA ratio (8.3%), the hopanessum/TEOC ratio (41.7%), the hopane measurement 21 

repeatability (11.5%), and detection limits (7 pg m-3). 22 

 23 

3.1.3. Source apportionment uncertainty 24 

A common issue in PMF is the exploration of the rotational ambiguity, here addressed by 25 

performing 100 PMF runs initiated using different input matrices. We adopted a bootstrap 26 

approach (Davison and Hinkley, 1997) to generate the new input data and error matrices 27 

(Brown et al., 2015). Briefly, the bootstrap algorithm generates new input matrices by 28 

randomly resampling mass spectra from the original input matrices. As already mentioned, 29 

the input matrices contained ca. 12 mass spectral repetitions per filter sample; therefore the 30 

bootstrap approach was implemented in order to resample random filter sample mass spectra 31 

together with the corresponding measurement repetitions. Each newly generated PMF input 32 
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matrix had a total number of samples equal to the original matrices (177 samples), although 1 

some of the original 177 filter samples are represented several times, while others are not 2 

represented at all. Overall we resampled on average 63±2% of the filter samples per bootstrap 3 

run. The generated data matrices were finally perturbed by varying each xi,j element within 4 

twice the corresponding uncertainty (si,j) assuming a normal distribution of the errors. 5 

Solutions were selected and retained according to three acceptance criteria. Solutions were 6 

selected and retained according to three acceptance criteria based on PMF factor correlations 7 

with corresponding tracers: BBOA vs. levoglucosan, B-OOA vs. NH4
+, and S-OOA vs. 8 

average daily temperature. In order to discard suboptimal PMF runs, we only retained 9 

solutions associated with positive Pearson correlation coefficients for each criterion, for both 10 

the individual stations and the entire dataset. In total 95% of the solutions were retained 11 

following this approach. We note that no solution was discarded based on the first two 12 

criteria. 13 

The offline-AMS PMF analysis provides the water-soluble contribution of the identified 14 

aerosol sources. Rescaling the water soluble OA factor concentrations to the total OA 15 

concentrations induce an uncertainty which was propagated to our source apportionment 16 

results as describes hereafter. In order to rescale the water-soluble organic carbon 17 

concentration of a generic factor z (WSZOC) to its total OC concentration (ZOC) we used the 18 

factor recoveries (RZ) determined by Daellenbach et al. (2016) according to Eq. (5): 19 

ZOCi = 
)*+,-�

."                  (5) 20 

Here for each PMF factor, theFor each PMF factor (BBOA, W-OOA, and S-OOA), the water-21 

soluble organic carbon time series (WSZOC)i werecontribution was determined dividing the 22 

WSZOAi time series by the from the OM:OC ratio calculated from the (water-soluble) factor 23 

mass spectrum spectra (Aiken et al. 2008). For LOA, whose recovery was not previously 24 

reported, RLOA was estimated from a single parameter fit according to Eq. (6) 25 

/0 = 12/0 + )*33,4
(,5/:,-)89::;<∙.::;< + )*3)�,,4

(,5/:,-)899=;;<∙.;;< + )**�,,4
(,5/:,-)89:=;;<∙.;;< + )*>,4

(,5/:,-)?;<∙@ABC       (6) 26 

Here the water-soluble OA factor concentrations were converted to the corresponding water-27 

soluble OC concentrations to fit the measured OC. For each of the 95 retained PMF solutions, 28 

Eq. (6) was fitted 100 times by randomly selecting a set of 100 RBBOA, ROOA combinations 29 

from those determined by Daellenbach et al. (2016). Each fit was initiated by perturbing the 30 

input OCi and TEOCi within their uncertainties, assuming a normal distribution of the errors. 31 
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Additionally we also perturbed the OC and WSOC inputs (Eq. 6) in order to explore the effect 1 

of possible bulk extraction efficiency (WSOC:OC) systematic biases on our RZ estimates. 2 

Specifically, we assumed an estimated accuracy bias of 5% for each of the perturbed 3 

parameters, which corresponds to the OC and WSOC measurement accuracy. In a similar 4 

way, we also perturbed the input RBBOA and ROOA assuming an accuracy estimate of 5% 5 

deriving from a possible OC measurement bias in Daellenbach et al. (2016) which could have 6 

affected the RZ determination. In total 9.5·103 fits were performed (Eq. 6) and we retained 7 

only solutions (and corresponding perturbed RZ combinations) associated with average OC 8 

residuals not statistically different from 0 within 1σ for each station individually and for 9 

summer and winter individually (~8% of the 9.5·103 fits, Fig. S6). The OC residuals of the 10 

accepted solutions did not manifest a clear correlation with the LOA concentration (Fig. S7), 11 

indicating that the estimated RLOA was properly fitted, without compensating for unexplained 12 

variability of the PMF model or biases from the other Rz. Fig. S8 shows the probability 13 

density functions (PDF) of the retained perturbed Rz which account for all uncertainties and 14 

biases mentioned above. For each of the 95 retained PMF solutions, Eq. (6) was fitted 100 15 

times by randomly selecting a set of 100 RBBOA, ROOA value combinations from those 16 

determined by Daellenbach et al. (2016). Each fit was initiated by perturbing the input OCi 17 

and TEOCi within their uncertainties, assuming a normal distribution of the errors. In order to 18 

explore the effect of possible bulk extraction efficiency (WSOC/OC) systematic measurement 19 

biases on our RZ estimates, we also perturbed the OC, WSOC, RBBOA, and ROOA (Daellenbach 20 

et al., 2016) inputs. Specifically, we assumed an estimated accuracy bias of 5% for each of the 21 

perturbed parameters, which corresponds to the OC and WSOC measurement accuracy. In 22 

total 9.5·103 fits were performed (Eq. 6) and we retained only solutions with average OC 23 

residuals not statistically different from 0 within 1σ for each station individually and for 24 

summer and winter individually (~8% of the 9.5·103 fits, Fig. S6). The OC residuals of the 25 

accepted solutions did not manifest a clear correlation with the LOA concentration (Fig. S7), 26 

indicating that the estimated RLOA was properly fitted, without compensating for unexplained 27 

variability of the PMF model or biases from the other Rz. Rz distributions shown in Fig. S8 28 

accounted for all uncertainties and biases mentioned above. RLOA,med was estimated to be equal 29 

to 0.66 (1st quartile  0.61, 3rd quartile  0.69, Fig. S8), while the retained RBBOA and ROOA values 30 

(RBBOA,med 0.57, 1st quartile 0.55, 3rd quartile 0.60; ROOA,med 0.84, 1st quartile 0.81, 3rd quartile 31 

0.88) were systematically lower than those reported by Daellenbach et al. (2016), reflecting 32 

the lower bulk extraction efficiency (bulk EE = WSOC/:OC) measured for this dataset 33 
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(median = 0.59, 1st quartile = 0.51, 3rd quartile = 0.72 vs. median = 0.74, 1st quartile = 0.66, 3rd 1 

quartile 0.90 in Daellenbach et al. (2016)). All the retained Rk combinations are available at 2 

DOI: doi.org/10.5905/ethz-1007-53. 3 

Source apportionment uncertainties (σS.A.) were estimated for each sample i and factor z as the 4 

standard deviation of all the retained PMF solutions (~8% of the 9.5·103 fits). In addition to 5 

the rotational ambiguity of the PMF model (explored by the bootstrap technique) and RZ 6 

uncertainty, each PMF solution included on average 10 repetitions for each filter sample, and 7 

hence σS.A. accounted also for measurement repeatability. In this work, the statistical 8 

significance of a factor contribution is calculated based on σS.A.,z,i (Tables S2 and S3). 9 

Overall the recovery estimates reported in Daellenbach et al. (2016) represent the most 10 

accurate estimates available, being constrained to match the online-ACSM source 11 

apportionment results. The RZ combinations reported by Daellenbach et al. (2016) 12 

demonstrated to positively apply to this dataset, enabling properly fitting the measured Bulk 13 

EE (WSOC:OC) with unbiased residuals and therefore providing a further confidence on their 14 

applicability (we note that in Eq. 6 we fitted OC as function of (RZ)
-1 and WSOCZ,i, therefore 15 

RZ fitted WSOC/OC = Bulk EE). In general further RZ determinations calculated comparing 16 

offline-AMS and online-AMS source apportionments would be desirable in order to provide 17 

more robust RZ estimates. In absence of a-priori RZ values for specific factors (e.g. for LOA in 18 

this study) we recommend constraining the RZ combinations reported by Daellenbach et al. 19 

(2016) as a-priori information to fit the unknown recoveries (similarly to Eq. 6), with the 20 

caveat that the RZ combinations reported by Deallenbach et al. (2016) were determined for 21 

filter samples water extracted following a specific procedure; therefore we recommend 22 

adopting these RZ combinations for filter samples extracted in the same conditions. 23 

Nevertheless the RZ combinations reported by Daellenbach et al. (2016) should be tested also 24 

for filters water extracted in different conditions to verify whether they can properly fit the 25 

Bulk EE. In case the RZ combinations reported by Daellenbach et al. (2016) would not apply 26 

for a specific location or extraction procedure (i.e. not enabling a proper fit of Bulk EE) we 27 

recommend a RZ redetermination by comparing the offline-AMS source apportionment results 28 

with well-established source apportionment techniques (e.g. from online-AMS or ACSM 29 

data). In absence of data to perform a well-established source apportionment, we recommend 30 

to fit all the RZ to match the bulk EE (i.e. fitting all the recoveries similarly as in Eq. 6 without 31 

constraining any a-priory RZ value).  32 
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3.1.4. Sensitivity of PMF to the un-apportioned TEOA fraction 1 

Despite representing only a small fraction, the un-apportioned water-soluble TEOA 2 

(WSTEOA) contribution could in theory affect the apportionment of the other sources in the 3 

offline-AMS PMF model. To assess this, we performed a PMF sensitivity analysis by 4 

subtracting the estimated WSTEOA concentration from the input PMF data matrix, and by 5 

propagating the estimated WSTEOA uncertainty (section 3.1.2) in the input error matrices. To 6 

estimate the WSTEOA concentration we assumed RTEOA of 0.11±0.01 (Daellenbach et al., 7 

2016) and we used the HOA profile reported by Mohr et al. (2012) as surrogate for the TEOA 8 

mass spectral fingerprint. This approach is equivalent to constraining both the WSTEOA time 9 

series and factor profile. Overall the WSTEOA contribution to WSOM was estimated as 10 

0.2%avg, making a successful retrieval of WSTEOA unlikely (Ulbrich et al., 2009). 11 

Consistently, PMF results obtained from this sensitivity analysis indicated that BBOA and B-12 

OOA were robust, showing only 1% difference from the average offline-AMS source 13 

apportionment results, with BBOA increased and B-OOA decreased. S-OOA and LOA 14 

instead showed larger deviations from the average source apportionment results (S-OOA 15 

increased by 8% and LOA decreased by 15%), yet within our source apportionment 16 

uncertainties. These results highlight the marginal influence of the un-apportioned WSTEOA 17 

fraction on the other factors. 18 

 19 

3.2 Marker-PMF: measured PM1 source apportionment 20 

In the following section we describe the implementation of source apportionment using 21 

chemical markers (marker-PMF), as well as its optimization and uncertainty assessment. We 22 

discuss the number of factors and the selection of specific constraints to improve the source 23 

separation. Subsequently we discuss the source apportionment rotational uncertainty, and the 24 

sensitivity of our PMF results to the number of source specific markers, and to the assumed 25 

constraints.  26 

3.2.1 Inputs 27 

The marker-PMF yields a source apportionment of the entire measured PM1 fraction (organic 28 

and inorganic). Measured PM1 is defined here as the sum of EC, ions measured via IC, and 29 

OM estimated from OC measurements multiplied by the (OM:OC)i ratio determined from the 30 
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offline-AMS PMF results by summing the factor profiles OM:OC ratios weighted by the time 1 

dependent factor relative contributions (rescaled by the recoveries). PMF was used to analyze 2 

a data matrix consisting of selected organic molecular markers, ions measured by IC, EC, and 3 

the remaining OM fraction (OMres) calculated as the difference between total OM and the sum 4 

of the organic markers already included in the input matrix. (OMres represented on average 5 

95±2% of total OM). The marker-PMF analysis in this work is limited by the lack of 6 

elemental measurements (e.g. metals and other trace elements) typically used to identify 7 

mineral dust and certain anthropogenic sources. All Overall we selected as input variables all 8 

markers showing concentrations above the detection limits for more than 25% of the samples 9 

were selected as input variables (72 in total). The PMF input matrices contain 67 composite 10 

samples (31 for Rūgšteliškis, 29 for Preila, and 7 for Vilnius). The errors (si,j) were estimated 11 

by propagating for each j variable the detection limits (DL) and the relative repeatability (RR) 12 

multiplied by the xi,j concentration according to Eq. (7) (Rocke and Lorenzato, 1995): 13 

   si,j=((DE	� + (��,	 ∙ FF�,	)�)     (7) 14 

3.2.2 Number of factors and constraints 15 

We selected a 7-factor solution to explain the variability of the measured PM1 components. 16 

The retrieved factors were biomass burning (BB), traffic exhaust (TE), primary biological 17 

organic aerosol (PBOA), SO4
2--related secondary aerosol (SA), NO3

--related SA, methane 18 

sulfonic acid (MSA)-related SA, and a Na+-rich factor explaining the variability of inorganic 19 

components typically related to resuspension of mineral dust, sea salt, and road salt.  20 

We first tested an unconstrained source apportionment. This led to a suboptimal separation of 21 

the aerosol sources, with large mixings of PMF factors associated with contributions of 22 

markers originating from different sources. In particular we observed mixing of BB markers 23 

(e.g. levoglucosan) with fossil fuel combustion markers such as hopanes, as well as with 24 

inorganic ions such as NO3
- and Ca2+. All these markers, although related to different 25 

emission/formation processes, are characterized by similar seasonal trends, i.e. higher 26 

concentrations during winter than in summer. Specifically, the BB tracers increase during 27 

winter because of domestic heating activity, hopanes presumably because of the accumulation 28 

in a shallower boundary layer and lower photochemical degradation, NO3
- because of the 29 

partitioning into the particle phase at low temperatures, and Ca2+ because winter was the 30 

windiest season and therefore was associated with the most intense resuspension.  31 
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We subsequently exploited the markers’ source-specificity to set constraints for the profiles 1 

output by our model: for each individual source, we treated the contribution of the unrelated 2 

source-specific markers as negligible (e.g. we assumed that TE, SA, Na-rich factor and PBOA 3 

do not contribute to levoglucosan). In contrast, the non-source specific variables (EC, OMres, 4 

(Me-)PAHs, S-PAHs, inorganic ions, oxalate, alkanes) were freely apportioned by the PMF 5 

algorithm. In a similar way we set constraints for primary markers (e.g. K+ and Ca2+) and 6 

combustion related markers (e.g. PAHs), which are not source-specific but the contribution of 7 

which can be considered as negligible in the SA factors. In this case the algorithm can freely 8 

apportion these markers to all the primary factors and combustion-related factors, 9 

respectively. 10 

In details, EC, PAHs, and methyl-PAHs were constrained to zero in non-combustion sources, 11 

i.e. all profiles but TE and BB. While EC could partially derive from dust resuspension, 12 

literature profiles for this source suggest an EC contribution below 1% (Chow et al., 2003). 13 

This is expected to be also the case here given the distance of the three stations from 14 

residential areas and busy roads. Methoxyphenols and sugar anhydrides, considered to be 15 

unique BB markers, were constrained to zero in all sources but BB. Similarly, hopanes were 16 

constrained to zero in all factors but TE. We also assumed no contribution from glucose, 17 

arabitol, mannitol, and sorbitol to all secondary factors, and traffic exhaust. The SO4
2- 18 

contribution from primary traffic emissions was estimated to be negligible, given the use of 19 

desulfurized fuel for vehicles in Lithuania. Likewise, alkane contributions were assumed to be 20 

zero in the SA factors, similar to the contribution of Ca2+, Na+, K+ and Mg2+ in the SA factors 21 

and TE.  22 

The number of factors was increased until no mixing between source-specific markers for 23 

different aerosol sources/processes was observed any more. Secondary sources instead were 24 

explained by three factors because of the distinct seasonal and site-to-site variability of MSA, 25 

NO3
- and SO4

2-. Oxalate correlated well with NH4
+ (R=0.62) and the latter well with the sum 26 

of SO4
2- and NO3

- equivalents (R=0.98). Note that the aforementioned secondary tracers were 27 

not constrained in any factor with the exception of SO4
2- contributions which were assumed to 28 

be negligible in the TE factor. Moreover the 7-factor solution showed unbiased residuals 29 

(residual distribution centered at 0 within 1σ) for all the stations together and for each station 30 

individually, while lower order solutions showed biased residuals for at least one station or all 31 

the stations together.  32 
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PMF results obtained assuming only the aforementioned constraints returned suboptimal 1 

apportionments of OMres and Na+ between the BB and the Na+-rich factor, with unusually 2 

high OMres fractional contributions in the Na+-rich factor and unusually high Na+ 3 

contributions in the BB profile in comparison with literature profiles (Chow et al., 2003; 4 

Huang et al., 2014 and references therein; Schauer et al., 2001). Similarly the EC/:OMres 5 

value for TE was substantially lower than literature profiles (El Haddad et al., 2013 and 6 

references therein). Other constraints were therefore introduced to improve the separation of 7 

these three variables. Specifically, EC and OMres were constrained in the traffic profile to be 8 

equal to 0.45 and 0.27 (a-value = 0.5) according to El Haddad et al. (2013), while EC:BB 9 

ratio was constrained to 0.1while EC was constrained to 0.1 (a-value = 1) in the BB profile 10 

according to Huang et al. (2014) and references therein. Na+ was constrained to 0.2% (a-value 11 

= 1) in BB according to Schauer et al. (2001), while OMres was constrained to zero in the Na+-12 

rich factor to avoid mixing with BB. Although this represents a strict constraint, we preferred 13 

avoiding constraining OMres to a specific value for the Na+-rich factor which could not be 14 

linked to a unique source but possibly represents different resuspension-related sources (e.g. 15 

sea salt, mineral dust and road dust). However, we expect none of the aforementioned sources 16 

to explain a large fraction of the submicron OMres (the OC:dust ratio for dust profiles is 1-17 

15% according to Chow et al., 2003). The sensitivity of our source apportionment to the 18 

constraints listed in this section is discussed in the next section. 19 

 20 

3.2.3. Source apportionment uncertainty and sensitivity analyses 21 

We explored the model rotational uncertainty by performing 20 bootstrap PMF runs, and by 22 

perturbing each input ��,	  element within 2·'�,	 assuming a normal distribution of the errors. 23 

Results and uncertainties of the PMF model reported in this paper represent the average and 24 

the standard deviation of the bootstrap runs. 25 

As discussed in section 3.2.2, we assumed the contribution of specific markers to be 0 in 26 

different factor profiles. Such assumptions preclude the PMF model to vary the contributions 27 

of these variables from 0 (Eq. 3). In order to explore the effect of such assumptions on our 28 

PMF results we loosened all these constraints assuming variable contributions equal to 50%, 29 

37.5%, 25%, and 12.5% of their average relative contribution to measured PM1. In all cases 30 

the a-value was set to 1.We tested the sensitivity of our solution to the constraints listed in 31 

section 3.2.2. All the constraints assuming variable contributions equal to zero were loosened, 32 
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assuming for each variable a contribution equivalent to 50%, 37.5%, 25%, and 12.5% of its 1 

average relative contribution to measured PM1. In all cases the a-value was set to 1. As 2 

expected, results showed better agreement with the fully constrained solution in the cases of 3 

stronger constraints, meaning that the highest agreements were observed for the 12.5% case 4 

both in terms of mass balance and factor time-series correlations (Fig. S9). The average factor 5 

concentrations for the 12.5% case and the fully constrained average bootstrap PMF solutions 6 

were not statistically different (confidence interval of 95%, Fig. S9). Statistically significant 7 

differences arose for the of the SO4
2--related SA in the 50% and 37.5% cases, and the Na+-8 

rich factor in the 25% and 37.5% cases, indicating that loosening the constraints allowed 9 

additional rotational uncertainty in comparison to the uncertainty explored by the bootstrap 10 

approach. By contrast, the factors associated with large relative uncertainties from the marker 11 

source apportionment (TE and PBOA, Table S3) showed the best agreement in terms of 12 

concentrations (Fig. S9) with the fully constrained solution, suggesting that the variability 13 

introduced by loosening the constraints did not exceed that already accounted for by the 14 

bootstrap approach. As previously mentioned, the largest contribution discrepancies were 15 

observed for the SO4
2--related SA and Na+-rich factor. Looser constraints increased the 16 

explained variability of primary components such as EC, arabitol, sorbitol, K+, Mg2+, and 17 

Ca2+ by the (secondary) SO4
2--related SA factor. The Na+-rich factor showed increasing 18 

contributions from OMres and from BB components such as methoxyphenols, and anhydrous 19 

sugars, which exhibited similar seasonal trends as the Na+-rich factor. None of the marker-20 

PMF factors showed statistically different average contributions (confidence interval of 95%) 21 

when tolerating a variability of the constrained variables within 12.5% of their relative 22 

contribution to PM1. Note that with this degree of tolerance the contribution of OM to the 23 

Na+-rich was 28%, which is unrealistically high compared to typically reported values for 24 

OM:dust ratios (<15% Chow et al., 2003). Therefore, we consider the fully constrained PMF 25 

solution to represent best the average composition of the contributing sources.  26 

The marker-PMF source apportionment depends strongly on the input variables (i.e. measured 27 

markers), as these are assumed to be highly source specific. That is, minor sources, such as 28 

MSA-related SA and PBOA, are separated because source-specific markers were used as 29 

model inputs. Meanwhile, more variables were used as tracers for TE and BB 30 

(methoxyphenols (5 variables), sugar anhydrides (3 variables), and hopanes (5 variables)), 31 

which gives more weight to these specific sources. We explored the sensitivity of the PMF 32 

results to the number and the choice of traffic and wood burning markers, by replacing them 33 
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with randomly selected input variables. In total 20 runs were performed and the average 1 

contribution of the different sources to OMres was compared with the marker source 2 

apportionment average results, where bootstrap was applied to resample time points. Results 3 

displayed in Fig. S10 are in agreement the apportionment of OMres from BB within 11%avg, 4 

highlighting its robustness. The agreement for TE was lower, which is not surprising given 5 

the lower contribution of this source and the smaller number of specific markers (hopanes). 6 

However, these uncertainties were within the marker source apportionment uncertainty (Fig. 7 

S10), implying that the results were not significantly sensitive to the number and the choice of 8 

input markers for BB and traffic exhaust. 9 

 10 

4 Results and Discussion 11 

4.1 PM1 composition 12 

An overview of the measured PM1 composition can be found in Fig. 1. Measured PM1 13 

average concentrations were in general low, with lower values detected at the rural terrestrial 14 

site of Rūgšteliškis (5.4 µg m-3
avg) than in Vilnius (6.7 µg m-3

 avg) and Preila (7.0 µg m-3
 avg). 15 

OM represented the major fraction of measured PM1 for all seasons and stations, with 57%avg 16 

of the mass. The average OM concentrations were higher during winter (4.2 µg m-3) than in 17 

summer (3.0 µg m-3) at all sites probably due to a combination of domestic wood burning 18 

activity and accumulation of the emissions in a shallower boundary layer. For similar reasons, 19 

EC average concentrations showed higher values during winter (0.42 µg m-3) than in summer 20 

(0.25 µg m-3). During summer, the average EC concentration was ~5 times higher in Vilnius 21 

(0.54 µg m-3) than in Preila and Rūgšteliškis (0.12 and 0.11 µg m-3, respectively), indicating 22 

an enhanced contribution from combustion emissions. In the absence of domestic heating 23 

during this period, a great part of these emissions may be related to traffic. During winter, EC 24 

concentrations were comparable at all sites (only 25% higher in Vilnius than in Preila and 25 

Rūgšteliškis). This suggests that a great share of wintertime EC may be related to BB, the 26 

average contribution of which is significant at all stations within 3σ (table S2). It should be 27 

noted that the highest measured PM1 concentrations were detected at the remote rural coastal 28 

site of Preila during three different pollution episodes. In particular, the early March episode 29 

corresponded to the period analyzed by Ulevicius et al. (20152016) and Dudoitis et al. 30 

(20152016), and was attributed to regional transport of polluted air masses associated to an 31 
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intense land clearing activity characterized by large scale grass burning in the neighboring 1 

Kaliningrad region. SO4
2-

 represented the second major component of measured PM1 2 

(20%med) at all sites and seasons. Its average concentration remained rather constant with only 3 

slightly higher concentrations in summer than in winter (1.2±0.7 µg m-3, and 1.1±0.6 µg m-3 4 

respectively). Overall SO4
2- concentrations did not show large differences from site-to-site, 5 

suggestive of regional sources. By contrast NO3
- showed a clear seasonality with larger 6 

contributions in winter (average 0.9±0.8 µg m-3 equivalent to 12% of measured PM1) than in 7 

summer (0.03±0.03 µg m-3), as expected from its semi-volatile nature. 8 

4.2 OM source apportionment (Offline-AMS PMF) 9 

The apportioned PMF factors were associated to aerosol sources/processes according to their 10 

mass spectral features, seasonal contributions and correlations with tracers. The four 11 

identified factors were BBOA, LOA, B-OOA, and S-OOA, which are thoroughly discussed 12 

below. The TEOA contributions instead were determined using a CMB approach. 13 

BBOA was identified by its mass spectral features, with high contributions of C2H4O2
+, and 14 

C3H5O2
+ (Fig. 2), typically associated with levoglucosan fragmentation from cellulose 15 

pyrolysis (Alfarra et al., 2007), accordingly the BBOA factor time series correlated well with 16 

levoglucosan (Pearson correlation coefficient: R=0.90, Fig. S11). BBOA contributions were 17 

higher during winter and lower during summer (Fig. 3a). We determined the biomass burning 18 

organic carbon (BBOC) concentration from the BBOA time series divided by the 19 

OM:OCBBOA ratio determined from the corresponding HR spectrum. The winter 20 

levoglucosan/:BBOC ratio was 0.16med, consistent with values reported in continental Europe 21 

for ambient BBOC profiles (levoglucosan/BBOC range: 0.10-0.21, Zotter et al., 2014; 22 

Minguillón et al., 2011; Herich et al., 2014).  23 

The second factor was defined as LOA because of its statistically significant contribution 24 

(within 3σ) only in Vilnius during summer (table S2), in contrast to other potentially local 25 

primary (e.g. BBOA) and secondary (S-OOA) sources which contributed at all sites. The 26 

LOA mass spectrum was characterized by a high contribution of N-containing fragments 27 

(especially C5H12N
+, and C3H8N

+), with the highest N:C ratio (0.049) among the apportioned 28 

PMF factors (0.029 for BBOA, 0.013 for S-OOA, 0.023 for B-OOA). This factor could be 29 

related to the activity of theA similar factor was also observed by Byčenkienė et al. (2016) 30 

using an ACSM at the same station. In that work, high LOA concentrations were associated 31 



 57

with wind directions from N-NW, and the authors suggested the sludge utilization system of 1 

Vilnius (UAB Vilniausvandenys) situated 3.9 km NW from the sampling station as a probable 2 

source.  3 

Two different OOA sources (S-OOA and B-OOA) were resolved and exhibited different 4 

seasonal trends. Separation The separation and classification of OOA sources from offline-5 

AMS is typically different from that of online online-AMS and ACSM measurements, mainly 6 

due to the different time resolution. In this section we describe the separation and 7 

classification of OOA factors retrieved from online- and offline-AMS. 8 

Few online-AMS studies reported the separation of isoprene-related OA factor 9 

(Budisulistiorini et al., 2013; Hu et al., 2015, Xu et al., 2015) mostly driven by isoprene 10 

epoxides chemistry. Xu et al. (2015) showed that nighttime monoterpene oxidation by nitrate 11 

radical contributes to less-oxidized OOA. However, the large majority of online-AMS OOA 12 

factors are commonly classified based on their volatility (semi-volatile OOA and low-13 

volatility OOA) rather than on their sources and formation mechanisms.Online-AMS OOA 14 

factors are commonly classified based on their volatility (semi-volatile OOA and low-15 

volatility OOA). This differentiation is typically achieved only for summer datasets when the 16 

temperature gradient between day and night is sufficiently high, yielding a detectable daily 17 

partitioning cycle of the semi-volatile organic compounds and NO3
- between the gas and the 18 

particle phases. Online- AMS datasets have higher time resolution than filter sampling, but 19 

sampling periods typically cover only a few weeks. Therefore the apportionment is driven by 20 

daily variability rather than seasonal differences. By contrast, in the offline-AMS source 21 

apportionment, given the 24-h time resolution of the filter sampling and the yearly cycle time 22 

coverage, the separation of the factors is driven by the seasonal variability of the sources and 23 

by the site-to-site differences.  24 

In general, OOA factors with different seasonal behaviors can be characterized by different 25 

volatilities. However in this work the offline-AMS OOA separation is not driven by volatility, 26 

given the low correlation between NO3
- and our OOA factors (also reflected by the low NO3

--27 

related SOA correlation with B-OOA and S-OOA, Table 2). Additionally, the partitioning of 28 

semi-volatile OA at low temperatures would lead to a less oxidized OOA fingerprint during 29 

winter than in summer; however, this was not the case. We observed a less oxidized OOA 30 

factor during summer, whose mass spectral fingerprint closely resembles that of SOA from 31 

biogenic precursors. Meanwhile similar to OOA from aging of biomass burning emissions, 32 
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OOA during the cold season is more oxidized. This has been also reported in an urban 1 

environment in central Europe (Zurich) using an online-ACSM (Canonaco et al., 2015). 2 

Therefore, the offline-AMS source apportionment tends to separates OOA factors by seasonal 3 

trends rather than volatility.  4 

Table 2: Pearson correlation coefficients between non-combustion factors (Other-OA 5 

components) from offline-AMS and marker-source apportionment. 6 

 Other-OAmarker 

SO4

2-
-related SOA MSA-related SOA NO3

-
-related SOA PBOA 

Other-
OAoffline-

AMS 

LOA 0.33 0.16 -0.08 0.10 

B-OOA 0.70 0.22 0.21 0.47 

S-OOA 0.60 0.45 -0.47 0.05 

 7 

In this work, Tthe resolved B-OOA factor explained a higher fraction than S-OOA. It was 8 

associated with background oxygenated aerosols as no systematic seasonal pattern was 9 

observed. However, B-OOA correlated well with NH4
+ (R=0.69, Fig. S11), and had the 10 

highest OM:OC ratio among the apportioned PMF factors (2.21).  11 

Analyzing the B-OOA and S-OOA time series and seasonal trends, we could obtain more 12 

insights into the origin of two factors. Unlike B-OOA, S-OOA showed a clear seasonality 13 

with higher contributions during summer, increasing exponentially with the average daily 14 

temperature (Fig. S12a). During summer the site-to-site S-OOA concentrations were not 15 

statistically different within a confidence interval of 95%, while during winter the site-to-site 16 

agreement was lower, possibly due to the larger model uncertainty associated with the low S-17 

OOA concentrations. A similar S-OOA vs. temperature relationship was reported by Leaitch 18 

et al. (2011) for a terpene dominated Canadian forest using an ACSM and by Daellenbach et 19 

al. (2016) and Bozzetti et al. (2016) for the case of Switzerland (Fig. S12b), using a similar 20 

source apportionment model. This increase in S-OOA concentration with temperature is 21 

consistent with the exponential increase in biogenic SOA precursors (Guenther et al., 2006). 22 

Therefore, even though the behavior of S-OOA at different sites might be driven by several 23 

parameters, including vegetation coverage, available OA mass, air masses photochemical age 24 

and ambient oxidation conditions (e.g. NOx concentration), temperature seems to be the main 25 

driver of S-OOA concentrations. Overall more field observations at other European locations 26 

are needed to validate this relation. While the results indicate a probable secondary biogenic 27 

origin of the S-OOA factor, the precursors of the B-OOA factor are not identified. In section 28 
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4.4.2 more insights into the OOA sources deriving from the comparison with the markers 1 

source apportionment will be discussed. 2 

The B-OOA and S-OOA mass spectra were also compared with OOA profiles from literature. 3 

The S-OOA profile showed a CO2
+/C2H3O

+ ratio of 0.61avg, placing it in the region of semi-4 

volatile SOA from biogenic emissions in the f44/f43 space (Ng et al., 2011), as attributed by 5 

Canonaco et al. (2015). Despite the higher summer photochemical activity, the water-soluble 6 

bulk OA showed more oxidized mass spectral fingerprints during winter (O:C=0.61avg) than 7 

in summer (O:C=0.55avg), similar to the results presented by Canonaco et al. (2015) for 8 

Zurich. Accordingly, the S-OOA profile also showed a less oxidized water-soluble mass 9 

spectral fingerprint than B-OOA, with an O:C ratio of 0.40avg, in comparison with 0.80avg for 10 

B-OOA. Considering the sum of B-OOA and S-OOA, the median OOA:NH4
+ ratios for 11 

Rūgšteliškis, Preila, and Vilnius were 3.2, 2.4, and 2.5 respectively, higher than the average 12 

but within the range of the values reported by Crippa et al. (2014) for 25 different European 13 

rural sites (2.0avg; minimum value 0.3; maximum 7.3). 14 

 15 

4.3 PM1 source apportionment (marker-PMF) 16 

The PMF factors in this analysis were associated with specific aerosol sources/processes 17 

according to their profiles, seasonal trends and relative contributions to the key variables. Fig. 18 

4 displays factor profiles, and the relative contribution of each factor to each variable. The 19 

Na+-rich factor explained a large part of the variability of Ca2+, Mg2+, and Na+ (Fig. 4) and 20 

showed higher contributions during winter than in summer (Fig. 5), suggesting a possible 21 

resuspension of sand and salt typically used during winter in Lithuania for road de-icing. This 22 

seasonal trend is also consistent with wind speed, which showed the highest monthly values 23 

during December 2013 and January 2014. We cannot exclude the possibility that this factor 24 

may include contributions from sea salt, although Na+ and Cl- were not enhanced at the 25 

marine station in comparison with the other stations. The overall contribution of this Na+-rich 26 

factor to measured PM1 was relatively small (1%avg), but may be larger in the coarse fraction. 27 

The BB factor showed a well-defined seasonality, with high contributions during winter. This 28 

factor explained a large part of the variability of typical wood combustion tracers such as 29 

methoxyphenols, sugar anhydrides (including levoglucosan, mannosan, and galactosan), K+, 30 

Cl-, EC, PAHs, and methyl-PAHs (Fig. 4). Using the OM:OCBBOA ratio (1.88) calculated 31 

from offline-AMS, we estimated the levoglucosan:BBOC ratio to be 0.18avg, which is within 32 
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the range of previous studies (Ulevicius et al., 2015 2016 and references therein). Note that 1 

this factor explained also large fractions of variables typically associated with non-vehicular 2 

fossil fuel combustion, such as benzo(b)naphtho(2,1-d)thiophene (BNT[2,1]) and 6,10,14-3 

trimethyl-2-pentadecanone (DMPT, Fig. 4, Manish et al., 2007; Subramanian et al., 2007), 4 

indicating a potential mixing of BB with fossil fuel combustion sources. However, the fossil 5 

fuel combustion contribution to BB is unlikely to be large, considering the low concentrations 6 

of fossil fuel tracers such as hopanes (66% of the samples below quantification limit (<QL)), 7 

BNT[2,1] (64%<QL), and DMPT (55%<QL). Moreover, the above mentioned agreement of 8 

the levoglucosan:BBOC ratio with previous studies corroborates the BB estimate from the 9 

marker-PMF. 10 

The traffic exhaust factor explained a significant fraction of the alkane variability, with a 11 

preferential contribution from light alkanes (Fig. 4). Its contribution was never statistically 12 

significant within 1σ3σ only for one filter collected in Vilnius. However on average the 13 

concentration was higher in Vilnius than at the other stations and in general higher in winter 14 

than in summer. 15 

The PBOA factor explained the variability of the primary biological components, such as 16 

glucose, mannitol, sorbitol, arabitol, and alkanes with an odd number of carbon atoms 17 

(consistent with Bozzetti et al., 2016 and references therein). Highest PBOA concentrations 18 

were observed during spring, especially at the rural site of Rūgšteliškis. Overall the 19 

contribution of this factor was uncertain with an average relative model error of 160% 20 

probably due to the small PBOA contributions (0.6%avg of the total OM), which hampers a 21 

more precise determination by the model. In particular OMres was the variable showing the 22 

highest mass contribution to the PBOA factor. , Hhowever, the large contribution and the 23 

large uncertainty of OMres to this factor (0.3±0.4) resulted in a large uncertainty in the PBOA 24 

estimated concentration. 25 

The last three factors were related to SA, as indicated by the large contributions of secondary 26 

species such as oxalate, SO4
2-, MSA, and NO3

- to the factor profiles (Fig. 4). The three factors 27 

showed different spatial and temporal contributions.  28 

The NO3
--related SA exhibited highest contributions during winter, suggesting temperature-29 

driven partitioning of secondary aerosol components. Moreover the NO3
--related SA, 30 

similarly to BB and TE, showed the highest concentrations in Vilnius, and the lowest in 31 
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Rūgšteliškis suggesting its possible relation with anthropogenic gaseous precursors (e.g. 1 

NOx), as already reported in other studies (e.g. Xu et al., 2016; McMeeking et al., 2012).  2 

The MSA-related SA factor manifested the highest concentrations at the marine site of Preila 3 

during summer, and in general larger contributions during summer than winter, suggesting its 4 

relation with marine secondary aerosol. MSA has been reported to be related to marine 5 

secondary biogenic emissions deriving from the photo-oxidation of dimethyl sulfide (DMS) 6 

emitted by the phytoplankton bloom occurring during the warm season (Li et al., 1993, 7 

Crippa et al., 2013 and references therein).  8 

The last factor (SO4
2--related SA) showed higher contributions during summer than in winter 9 

without clear site-to-site variability, following the seasonal behavior of SO4
2- showing slightly 10 

higher concentrations during summer than in winter, which is probably driven by the 11 

secondary formation from gaseous photochemical reactions and aqueous phase oxidation. 12 

This factor explained the largest part of the oxalate and SO4
2- variability and represented 13 

48%avg of the measured PM1 by mass. 14 

4.4 Comparison of the source apportionment methods 15 

In this section we compare the offline-AMS PMF and marker-PMF results. We begin with 16 

BBOA and TEOA emissions which were resolved by  marker-PMF and offline-AMS (as 17 

already mentioned TEOA was actually not resolved by offline-AMS but determined through a 18 

CMB approach)both approaches. The remaining OM fraction (Other-OA = OA – BBOA - 19 

TEOA) was apportioned by the offline-AMS source apportionment to B-OOA, S-OOA and 20 

LOA (Other-OAoffline-AMS). However, the LOA contribution was statistically significant 21 

(within 3σ) only in Vilnius during summer (Table S2), while no data were available for these 22 

periods from the marker source apportionment. The marker source apportionment instead 23 

attributed the Other-OA mass fraction to 4 factors (Other-OAmarker): PBOA, as well as to 24 

SO4
2-, NO3

-, and MSA-related secondary organic aerosols (SOA, Fig. S13). The OA 25 

concentrations of the factors retrieved from the PM1 markers source apportionment were 26 

obtained by multiplying the factor time series by the sum of the organic markers and OMres 27 

contributions to the normalized factor profiles. The PM concentrations from the marker PMF 28 

factors are displayed in Fig. 5. 29 
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4.4.1 Primary OA sources 1 

Offline-AMS and marker source apportionments provided comparable BBOA estimates, with 2 

concentrations agreeing within a 95% confidence interval (Fig. 6). Results revealed that 3 

BBOA contributed the largest fraction to the total OM during winter in Preila and Vilnius, 4 

while in Rūgšteliškis the largest OA source derived from B-OOA. The average winter BBOA 5 

concentration was 1.1±0.8 µg m-3 in Rūgšteliškis and 2±1 µg m-3 in Vilnius (errors in this 6 

section represent the standard deviation of the temporal variability). Overall the average 7 

BBOA concentrations were higher at the urban background site of Vilnius and lower at the 8 

rural terrestrial site of Rūgšteliškis. Preila showed the higheshigher values (3±3 µg m-3) 9 

driven by the grass burning episode occurred at the beginning of March (Ulevicius et al., 10 

2016). Excluding this episode, the BBOA winter concentration was lower than in Vilnius (1.8 11 

µg m-3). During winter, considering only the samples collected concomitantly, Preila and 12 

Vilnius showed well correlated BBOA time series (R = 0.91) and significantly positive 13 

correlations were observed for also for Preila and Rūgšteliškis (R = 0.72) and for Vilnius and 14 

Rūgšteliškis (R = 0.66) (offline-AMS BBOA time series). These results highlight the effect of 15 

regional meteorological conditions on the BBOA daily variability in the south east Baltic 16 

region.During winter, Preila and Vilnius showed well correlated BBOA time series (R=0.91). 17 

These results highlight the important role of regional meteorological conditions on the air 18 

quality in the south east Baltic region.  19 

By contrast, during summer BBOA concentrations were much lower, with 40% of the points 20 

showing statistically not significant contributions within 3σ for the offline-AMS source 21 

apportionment and 100% for the marker source apportionment. Between late autumn and 22 

early March the offline-AMS source apportionment revealed three simultaneous episodes 23 

with high BBOA concentrations at the three stations, while the maker source apportionment 24 

which is characterized by lower time resolution did not capture some of these episodes. The 25 

first episode occurred between 19 and 25 December 2013 during a cold period with an 26 

average daily temperature drop to -9.7 °C as measured at the Rūgšteliškis station (no 27 

temperature data were available for the other stations). The third episode occurred between 5 28 

and 10 March 2014 and was associated with an intense grass burning episode localized mostly 29 

in the Kaliningrad region (Ulevicius et al., 20152016, Dudoitis et al., 20152016, Mordas et 30 

al., 2016). The episode was not associated with a clear temperature drop, with the highest 31 

concentration (14 µg m-3) found at Preila on 10 March 2014, the closest station to the 32 



 63

Kaliningrad region. Similarly, at the beginning of February high BBOA concentrations were 1 

registered at the three stations, without a clear temperature decrease. Other intense BBOA 2 

events were detected but only on a local scale, with intensities comparable to the regional 3 

scale episodes. Using the OM:OCBBOA ratio calculated from the HR water-soluble BBOA 4 

spectrum (1.88), we estimated the BBOCavg concentrations during the grass burning episode 5 

(5-10 March 2014) to span between 0.8 and 7.2 µg m-3. On a daily basis our BBOC 6 

concentrations are consistent with the estimated ranges reported by Ulevicius et al. 7 

(20152016) for non-fossil primary organic carbon (0.6-6.9 µg m-3 during the period under 8 

consideration), showing also a high correlation (R=0.98). 9 

TEOA estimates obtained by CMB offline-AMS and marker-PMF always agreed with each 10 

other agreed well with each other, with 99% of the points being not statistically different 11 

within 1σ3σ (Fig. 6). The two approaches confirm that TEOA is a minor source (Fig. 6). at all 12 

three stations with on average higher concentrations in Vilnius (up to 0.8 µg m-3), than in 13 

Preila and Rūgšteliškis (up to 0.2 µg m-3). HopaneConsistently, hopane concentrations (used 14 

in this work as TEOA treacers), concentrations were below detection limits (7 pg m-3) for 15 

66% of the collected samples. Similarly to NOx, hopanes, TEOA, similarly to hopanes and 16 

NOx, showed a clear spatial and seasonal variability with higher concentrations in Vilnius 17 

during winter, suggesting an accumulation of traffic emissions in a shallower boundary layer 18 

(Fig. 3b, NOx data available only for Vilnius). During the grass burning event, we observed a 19 

peak in the total hopane concentration, and therefore also a peak of the estimated TEOA (2.4 20 

µg m-3 maximum value). This relatively high concentration is most probably not due to a local 21 

increase of TE, but rather due to a regional transport of polluted air masses from neighboring 22 

countries (Poland and the Russian Kaliningrad enclave). By assuming an (OM:OC)TEOA ratio 23 

of 1.2±0.1 (Aiken et al., 2008, Mohr et al., 2008, Docherty et al., 2011, Setyan et al., 2012), 24 

we determined the corresponding organic carbon content (TEOC). Our TEOC concentration 25 

was consistent within 1σ3σ with the average fossil primary OC over the whole episode as 26 

estimated by Ulevicius et al. (20152016), (0.4-2.1 µg m-3) although on a daily basis the 27 

agreement was relatively poor.  28 

Overall, offline-AMS source apportionment and marker-PMF returned comparable results for 29 

BBOA and similarly the TEOA estimate by markers-PMF and CMB were 30 

comparableOverall, the offline-AMS source apportionment and the marker-PMF returned 31 

comparable results for TEOA and BBOA emissions, therefore not surprisingly the two 32 
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approaches yielded OA concentrations also for the Other-OA fractions which agreed within 1 

1σ3σ for 90% of the points (Figure 6). This agreement was better for Rūgšteliškis and Preila 2 

(94% and 90%, respectively of the points not statistically different within 1σ), and worse for 3 

Vilnius (71% of the points not statistically different within 1σ). 4 

4.4.2 Other-OA sources: offline-AMS and marker-source apportionment 5 

comparison 6 

The marker-source apportionment, in comparison to the offline-AMS source apportionment 7 

enables resolving well-correlated sources (e.g. BBOA and NO3
--related SOA) as well as 8 

minor sources (e.g. MSA-related SOA and PBOA) because source-specific markers were 9 

used as model inputs. By contrast, the offline-AMS source apportionment is capable of 10 

resolving OA sources for which no specific markers were available such as LOA, which was 11 

separated due to the distinct spatial and temporal trends of some N-containing AMS 12 

fragments. We first briefly summarize the Other-OA factor concentrations and their site-to-13 

site differences retrieved by the two techniques; subsequently we compare the two source 14 

apportionment results. 15 

The Other-OAoffline-AMS factor time series are displayed in Fig. S13. The B-OOA factor 16 

showed relatively stable concentrations throughout the year with 0.9±0.8avg µg m-3 during 17 

summer and 1.1±0.9avg µg m-3 during winter. Although B-OOA concentrations were relatively 18 

stable throughout the year, higher contributions were observed in Preila and Rūgšteliškis 19 

compared to Vilnius. The extreme average seasonal concentrations were between 0.8 and 1.3 20 

µg m-3 at Rūgšteliškis during fall and winter, between 0.9 and 1.1 µg m-3 at Preila during 21 

spring and winter, and between 0.4 and 0.6 µg m-3 in Vilnius during summer and winter. 22 

These values do not evidence clear seasonal trends, but highlight a site-to-site variability 23 

which will be further discussed in the following. S-OOA instead was the largest contributor to 24 

total OM during summer with an average concentration of 1.2±0.8 µg m-3, always agreeing 25 

between sites within a confidence interval of 95% (2 tails t-test). By contrast, during winter 26 

the S-OOA concentration dropped to an average value of 0.3±0.2 µg m-3, with 81% of the 27 

points not statistically different from 0 µg m-3 within 3σ. Finally, the LOA factor showed 28 

statistically significant contributions within 3σ only during summer and late spring in Vilnius. 29 

Despite its considerable day-to-day variability this fraction factor contributed 1.0±0.8 µg m-30 
3
avg in Vilnius during summer.  31 
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The markers source apportionment instead attributed 85%avg of the Other-OAmarker mass to the 1 

SO4
2--related SOA, while NO3

--related SOA, MSA-related SOA, and PBOA explained 2 

respectively 9%avg, 5%avg and 1%avg of the Other-OAmarker mass (Fig. S13). The SO4
2--related 3 

SOA average concentration was 2.4 µg m-3 during summer and 1.7 µg m-3 during winter with 4 

no significant differences from station to station, suggesting a regional origin of the factor. 5 

The NO3
--related SOA concentration was 0.4 µg m-3

avg during winter and, only 0.03avg µg m-3, 6 

during summer, corresponding to 10%avg and 1% of the OA, respectively. Moreover, the NO3
-7 

-related SOA during winter showed the highest average concentrations in Vilnius with 0.5 µg 8 

m-3 and the lowest in Rūgšteliškis with 0.3 µg m-3
avg. The MSA-related SOA instead 9 

manifested the highest concentrations during summer with an average of 0.12 µg m-3
avg. 10 

Higher The highest values were observed during summer at the rural coastal site of Preila 11 

where the average concentration was 0.28 µg m-3
avg corresponding to 10%avg of the OM.  12 

Finally, the PBOA factor exhibited the largest seasonal concentrations during spring at the 13 

rural terrestrial site of Rūgšteliškis with an average of 0.05 µg m-3
avg, while the summer 14 

average concentration was 0.02 µg m-3 consistent with the low PBOA estimates reported in 15 

Bozzetti et al. (2016) for the submicron fraction during summer. 16 

Many previous studies reported a source apportionment of organic and inorganic markers 17 

concentrations (Viana et al., 2008 and references therein). In these studies SO4
2-, NO3

-, and 18 

NH4
+ were typically used as tracers for secondary aerosol factors commonly associated with 19 

regional background and long-range transport; here we compare the apportionment of the 20 

SOA factors obtained from the marker source apportionment and the OOA factors separated 21 

by the offline-AMS source apportionment. Moreover, contrasting the two source 22 

apportionments may provide insight into the origin of the OOA factors retrieved from the 23 

offline-AMS source apportionment, and into the origin of the SOA factors resolved by the 24 

offline-AMS source apportionment. To our knowledge an explicit comparison has not yet 25 

been reported in the literature. 26 

 27 

Table 2: Pearson correlation coefficients between Other-OA components from offline-AMS 28 

and marker-source apportionment. 29 

 Other-OAmarker 

SO4

2-
-related SOA MSA-related SOA NO3

-
-related SOA PBOA 

Other-
OAoffline-

LOA 0.33 0.16 -0.08 0.10 

B-OOA 0.70 0.22 0.21 0.47 
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AMS S-OOA 0.60 0.45 -0.47 0.05 

 1 

Table 2 reports the correlations between the time series of the Other-OAmarker factors and the 2 

Other-OAoffline-AMS factors (Figs. 6 and S13). These correlations are mostly driven by seasonal 3 

trends as none of these sources shows clear spikes except for LOA during summer in Vilnius. 4 

Using the correlations coefficients we can identify the mostly related factors from the two 5 

source apportionments. 6 

The SO4
2--related SOA explained the largest fraction of the Other-OAmarker mass (85%avg), 7 

and it was the only Other-OAmarker factor always exceeding the individual concentrations of 8 

B-OOA and S-OOA, indicating that the variability explained by the SO4
2--related SOA in the 9 

marker-source apportionment is explained by both OOA factors in the offline-AMS source 10 

apportionment. Moreover, the SO4
2--related SOA seasonality seems consistent with the sum 11 

of S-OOA and B-OOA with higher concentrations in summer than in winter. This observation 12 

suggests that the OOA factors resolved by offline-AMS are mostly of secondary origin and 13 

the SO4
2--related SOA, typically resolved by the marker source apportionment, explains the 14 

largest fraction of the OOA factors apportioned by offline-AMS which includes both biogenic 15 

SOA and aged background OA. 16 

The NO3
--related SOA and the PBOA were mostly related to the B-OOA factor as they 17 

showed higher correlations with B-OOA than with S-OOA (Table 2). The B-OOA factor 18 

therefore may explain a small fraction of primary sources (PBOA), which however represents 19 

only 0.6%avg of the total OA. The NO3
--related SOA and the PBOA were mostly related to the 20 

B-OOA factor as they showed higher correlations with B-OOA than with S-OOA. The B-21 

OOA factor therefore may explain a small fraction of primary sources (PBOA), which 22 

however represents only 0.6%avg of the total OA. In detail, the NO3-related SOA correlation 23 

with B-OOA was poor (R = 0.21), but the correlation with LOA and S-OOA was negative 24 

(Table 2), suggesting that the mass attributed by the markers source apportionment to NO3-25 

related SOA was fully attributed to the B-OOA factor in the offline-AMS source 26 

apportionment. This is also confirmed by the fact that the sum of LOA and S-OOA 27 

concentrations during winter (when the NO3-related SOA substantially contributes) was much 28 

smaller than the NO3
--related SOA mass, which therefore was attributed to B-OOA.  29 

The NO3
--related SOA and the PBOA were mostly related to the B-OOA factor as they 30 

showed higher correlations with B-OOA than with S-OOA. The B-OOA factor therefore may 31 
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explain a small fraction of primary sources (PBOA), which however represents only 0.6%avg 1 

of the total OA. 2 

 The MSA-related SOA showed the highest correlation with the S-OOA factor, as the two 3 

sources exhibited the highest concentrations during summer, although the MSA-related SOA 4 

preferentially contributed at the rural coastal site of Preila. While we already discussed the 5 

probable secondary biogenic origin of S-OOA, the correlation with the MSA-related SOA 6 

suggests that the S-OOA factor, especially at the rural coastal site of Preila, explains also a 7 

large fraction of the marine biogenic SOA. The correlation between the two factors is 8 

therefore not surprising as the precursor emissions (dimethyl sulfide, isoprene and terpenes) 9 

are strongly related to the temperature leading to higher summer MSA-related SOA and S-10 

OOA concentrations. Assuming all the MSA-related SOA to be explained by the S-OOA 11 

factor, we estimate a marine biogenic SOA contribution to S-OOA of 27%avg during summer 12 

at Preila, while this contribution is lower at the other stations (12%avg in Rūgšteliškis during 13 

summer, 7% in Vilnius during spring, no summer data for Vilnius Fig. S13). As already 14 

mentioned, here we assume all the MSA-related SOA to be related to marine secondary 15 

biogenic emissions, however other studies also report MSA from terrestrial biogenic 16 

emissions (Jardine et al., 2015), moreover a certain fraction of the MSA-related SOA can also 17 

be explained by the B-OOA factor. Overall these findings indicate that the terrestrial sources 18 

dominate the S-OOA composition, nevertheless the marine SOA sources may represent a 19 

non-negligible fraction, especially at the marine site. 20 

Another advantage obtained in coupling the two source apportionment results is the 21 

possibility to study the robustness of the factor analyses by evaluating the consistency of the 22 

two approaches as we already discussed for the primary OA and Other-OA fractions. Figure 23 

S14b displays the ratio between PMF modelled WSOC and measured WSOC for the offline-24 

AMS case. A clear bias between Vilnius and the rural sites can be observed, with a WSOC 25 

overestimate of ~5% in Preila and Rūgšteliškis. While this overestimate is negligible for the 26 

WSOC mass, it might have significant consequences on single factor concentrations. By 27 

contrast, for the markers source apportionment (Fig. S14a), OM residuals are more 28 

homogeneous. As we show in Fig. S6, these residuals marginally affect the apportionment of 29 

combustion sources, as suggested by the well comparing estimates of BBOA and TEOA using 30 

the two methods. Therefore, these residuals are more likely affecting non-combustion sources 31 

(LOA, S-OOA and B-OOA). For the common days, the S-OOA concentration is not 32 
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statistically different at the different stations during summer (confidence interval of 95%), 1 

indicating that the residuals are more likely affecting LOA and B-OOA, which instead show 2 

site-to-site differences. Now, the PMF WSOC residuals appear at all seasons, also during 3 

periods without significant LOA contribution in Vilnius. Therefore, we conclude that B-OOA 4 

is the factor most significantly affected by the difference in the WSOC residuals. We could 5 

best assess the residual effects by comparing the B-OOAoffline-AMS with that estimated 6 

using the other technique that seem to yield more homogeneous residuals: B-OOAmarker. 7 

Here B-OOAmarker is estimated as Other-OAmarkers - LOA - S-OOA. While B-8 

OOAoffline-AMS shows site-to-site differences, B-OOAmarkers did not show statistically 9 

different concentrations at all stations within a confidence interval of 95%. Based on these 10 

observations, we conclude that observed site-to-site differences in B-OOA concentrations are 11 

likely to be related to model uncertainties.Another advantage obtained in coupling the two 12 

source apportionment results is the possibility to study the robustness of the factor analyses by 13 

evaluating the consistency of the two approaches as we already discussed for the primary OA 14 

and Other-OA fractions. By subtracting LOA and S-OOA from Other-OAmarker we can 15 

estimate the equivalent B-OOA concentration from the marker source apportionment (B-16 

OOAmarker). Unlike the B-OOA factor from offline-AMS, whose contribution is lower at 17 

Vilnius, B-OOAmarker did not show statistically different concentrations at all stations within a 18 

confidence interval of 95%. This discrepancy could indicate some PMF residual uncertainties 19 

or biases not considered in our error estimate for offline-AMS and/or markers source 20 

apportionments for Vilnius, which could not be detected without coupling the 2 source 21 

apportionment approaches. 22 

 23 

4.5 fCO+ vs. fCO2
+ 24 

Figure 7 displays the water-soluble fCO+ vs. fCO2
+ scatter plot. A certain correlation (R=0.63) 25 

is seenobserved, with fCO+ values being systematically lower than fCO2
+ (CO2+:CO+: 1st 26 

quartile 1.50, median 1.75, 3rd quartile 2.01), whereas a 1:1 CO2
+:CO+ ratio is assumed in 27 

standard AMS/ACSM analyses (Aiken et al., 2008; Canagaratna et al., 2007). Comparing the 28 

measured CO2
+:CO+ values for the bulk WSOM and for pure gaseous CO2 might provide 29 

insight into the origin of the CO+ fragment in the AMS. The fragmentation of pure gaseous 30 

CO2 returned a CO2
+:CO+ ratio of 8.21avg which is significantly higher than our findings for 31 

the water-soluble bulk OA (1.75med). Assuming thermal decarboxylation of organic acids as 32 
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the only source of CO2
+ does not explain the observed CO2

+:CO+ ratio of 1.75med and another 1 

large source of CO+ has to be assumed. Therefore, the carboxylic acid decarboxylation can be 2 

considered as a minor source of CO+. suggesting that the WSOM decarboxylation on the 3 

AMS vaporizer represents only a minor source of CO+.  4 

Figure 7b 7a and Fig. 8 show that not only does the water-soluble (WS) CO2
+:CO+ ratio 5 

systematically differ from 1, but it also varies throughout the year with higher CO2
+:CO+ 6 

values associated with warmer temperatures (Fig. 7b7c). The lower CO2
+:CO+ ratios in winter 7 

are primarily due to BB, as the WSBBOA factor profile showed the lowest CO2
+:CO+ ratio 8 

(1.20avg) among all the apportioned WS factors (2.00avg for B-OOA, 2.70avg for S-OOA, and 9 

2.70avg for LOA). We observed a seasonal variation of the CO2
+:CO+ ratio also for the water-10 

soluble OOA (S-OOA + B-OOA) mass spectral fingerprint. The CO2
+:CO+ ratio was slightly 11 

lower for B-OOA than for S-OOA (2.00avg for B-OOA, 2.70 for S-OOA). Nevertheless, given 12 

the low S-OOA relative contribution during winter (Fig. 3), we note that the total OOA 13 

showed a slightly lower CO2
+:CO+ ratio during winter than in summer (Fig. S14S15), 14 

indicating that the OOA mass spectral fingerprint evolves over the year, possibly because of 15 

different precursor concentrations, and different photochemical activity.  16 

Fig. 7a shows that most of the measured {fCO+;fCO2
+} combinations lies within the triangle 17 

defined by the BBOA, S-OOA and B-OOA {fCO+;fCO2
+} combinations. The LOA factor 18 

{ fCO+;fCO2
+} combination lies within the triangle as well, but is anyways a minor source and 19 

thus unlikely to contribute to the CO2
+/+:CO+ variability. We parameterized the CO+ 20 

variability as a function of the CO2
+, and C2H4O2

+ fragment variabilities using a multi-21 

parameter fit according to Eq. (8). CO2
+ and C2H4O2

+ were chosen as B-OOA and BBOA 22 

tracers, respectively, with B-OOA and BBOA being the factors that explained the largest 23 

fraction of the fCO+ variability (85% together). 24 

CO+
i = a· CO2

+
i+ b· C2H4O2

+
i
    (8) 25 

Although this parameterization is derived from the WSOM fraction CO2
+, C2H4O2

+, and CO+ 26 

originate from the fragmentation of oxygenated, i.e. mostly water-soluble compounds. 27 

Accordingly, this parameterization might also well represent the total bulk OA (as the offline-28 

AMS recoveries of these oxygenated fragments are relatively similar: F-,GH=0.74, 29 

F-GIJ,GH=0.61, Daellenbach et al., 2016). Note that this parameterization may represent very 30 

well the variation of CO+ in an environment impacted by BBOA and OOA, but should be 31 

used with caution when other sources (such as COA) may contribute to CO+, CO2
+ and 32 
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C2H4O2
+. In order to check the applicability of this parameterization to a PMF output, we 1 

recommend monitoring the CO2
+ and C2H4O2

+ variability explained by the OOA and BBOA 2 

factors. In case a large part of the CO2
+ and C2H4O2

+ variability is explained by OOA and 3 

BBOA, the parameterization should unlikely return accurate uncertain CO+ values. The 4 

coefficients a and b of Eq. (8) were determined as 0.52 and 1.39 respectively, while the 5 

average fit residuals were estimated to be equal to 10% (Fig. S15S16). In contrast, 6 

parameterizing CO+ as proportional to CO2
+ only (as done in the standard AMS analysis 7 

scheme with coefficients updated to the linear fit between CO+ and CO2
+ (1.75)) yielded 8 

20%avg residuals, indicating that such a univariate function describes the CO+ variation less 9 

precisely. 10 

An alternative parameterization is presented in the SI in which the contribution of moderately 11 

oxygenated species (such as S-OOA) to CO+ was also considered by using C2H3O
+ as an 12 

independent variable. We show that the dependence of CO+ on C2H3O
+ is statistically 13 

significant (Fig. 7b7c) as also suggested by the PMF results (S-OOA contributes 12% to the 14 

CO+ variability). However, the parameter relating CO+ to C2H3O
+ is negative, because the 15 

CO+:CO2
+ and CO+:C2H4O2

+ ratios are lower in moderately oxygenated species compared to 16 

species present in BBOA and B-OOA. While this parameterization captures the variability of 17 

CO+ across the seasons better compared to a 2-parameter fit for the present dataset, it may be 18 

more prone to biases in other environments due to the known contributions of other factors to 19 

C2H3O
+

.  For example, cooking-influenced organic aerosol (COA) often accounts for a 20 

significant fraction of C2H3O
+. For ambient datasets we propose the use of CO2

+ and C2H4O2
+ 21 

only, which may capture less variation but is also less prone to biases. Although our results 22 

suggest that the available CO+ and O:C estimates (Aiken et al., 2008; Canagaratna et al., 23 

2015) may not well capture the CO+ variability, our CO+ parameterization should not be 24 

applied to calculate the O:C ratios or recalculate the OA mass from AMS datasets, as those 25 

are calibrated assuming a standard fragmentation table (i.e. CO2
+ = CO+).  26 

In a recent work, Canagaratna et al. (2015) reported the Ar nebulization of water soluble 27 

single compounds to study the HR-AMS mass spectral fingerprints in order to improve the 28 

calculation of O:C and OM:OC ratios. Following the same procedure, we nebulized a subset 29 

of the same standard compounds including malic acid, azalaic acid, citric acid, tartaric acid, 30 

cis-pinonic acid, and D(+)-mannose. We obtained comparable CO2
+:CO+ ratios (within 10%) 31 

to those of Canagaratna et al. (2015) for all the analyzed compounds, highlighting the 32 
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comparability of results across different instruments. With the exception of some 1 

multifunctional compounds (citric acid, malic acid tartaric acid, ketobutyric acid, hydroxyl 2 

methylglutaric acid, pyruvic acid, oxaloacetic acid, tartaric acid, oxalic acid and malonic 3 

acid), the water-soluble single compounds analyzed by Canagaratna et al. (2015) mostly 4 

showed CO2
+:CO+ ratios <1, systematically lower than the CO2

+:CO+ ratios measured for the 5 

bulk WSOM in Lithuania (1st quartile 1.50, median 1.75, 3rd quartile 2.01), which represents a 6 

large fraction of the total OM (bulk EE: median = 0.59, 1st quartile = 0.51, 3rd quartile = 0.72). 7 

Considering the relatively high extraction efficiency, and considering that the CO+ and CO2
+ 8 

fragmentation precursors tend to be more water soluble than the bulk OA, the aforementioned 9 

compounds could be representative of a large part of the CO+ and CO2
+ fragmentation 10 

precursors. With the exception of some multifunctional compounds, the water-soluble single 11 

compounds analyzed by Canagaratna et al. (2015) mostly showed CO2
+:CO+ ratios <1, 12 

systematically lower than the CO2
+:CO+ ratios measured for the bulk WSOM in Lithuania (1st 13 

quartile 1.50, median 1.75, 3rd quartile 2.01), which represents a large fraction of the total OM 14 

(bulk EE: median = 0.59, 1st quartile = 0.51, 3rd quartile = 0.72). This indicates that the 15 

selection of appropriate reference compounds for ambient OA is non-trivial, and the 16 

investigation of multifunctional compounds is of high importance.  17 

 18 

5 Conclusions 19 

PM1 filter samples were collected over an entire year (November 2013 to October 2014) at 20 

three different stations in Lithuania. Filters were analyzed by water extraction followed by 21 

nebulization of the liquid extracts and subsequent measurement of the generated aerosol with 22 

an HR-ToF-AMS (Daellenbach et al., 2016). For the first time, the nebulization step was 23 

conducted in Ar, enabling direct measurement of the CO+ ion, which is typically masked by 24 

N2
+ in ambient air and assumed to be equal to CO2

+ (Aiken et al., 2008). CO2
+:CO+ values >1 25 

were systematically observed, with a mean ratio of 1.7±0.3. This is likely an upper limit for 26 

ambient aerosol, as only the water-soluble OM fraction is measured by the offline-AMS 27 

technique. CO+ concentrations were parameterized as a function of CO2
+, and C2H4O2

+, and 28 

this two-variable parameterization showed a superior performance to a parameterization based 29 

on CO2
+ alone, because CO+ and CO2

+ show different seasonal trends. 30 

PMF analysis was conducted on both the offline-AMS data described above and a set of 31 

molecular markers together with total OM. Biomass burning was found to be the largest OM 32 
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source in winter, while secondary OA was largest in summer. However, higher concentrations 1 

of primary anthropogenic sources (biomass burning and hopanes here used as traffic 2 

markerstraffic and biomass burning) were found at the urban background station of Vilnius. 3 

The offline-AMS and marker-based analyses also identified local emissions and primary 4 

biological particles, respectively, as factors with low overall but episodically important 5 

contributions to PM. Both methods showed traffic exhaust emissions to be only minor 6 

contributors to the total OM; which is not surprising given the distance of the three sampling 7 

stations from busy roads. 8 

The two PMF analyses apportioned SOA to sources in different ways. The offline-AMS data 9 

yielded factors related to regional background (B-OOA) and temperature-driven (likely 10 

biogenic-influenced) emissions (S-OOA), while the marker-PMF yielded factors related to 11 

nitrate, sulfate, and MSA. For the offline-AMS PMF, S-OOA was the dominant factor in 12 

summer and showed a positive exponential correlation with the average daily temperature, 13 

similar to the behavior observed by Leaitch et al. (2011) in a Canadian boreal forest. 14 

Combining the two source apportionment techniques suggests that the S-OOA factor includes 15 

contributions from both terrestrial and marine secondary biogenic sources, while only small 16 

PBOA contributions to submicron OOA factors are possible. The analysis highlights the 17 

importance of regional meteorological conditions on air pollution in the southeastern Baltic 18 

region, as evidenced by simultaneous high BBOA levels at the three stations during three 19 

different episodes in winter and by statistically similar S-OOA concentrations across the three 20 

stations during summer. 21 
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Figures main text 1 

 2 

Figure 1. Sampling locations, and measured PM1 composition. Ion concentrations from IC. 3 
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 1 

Figure 2. Offline-AMS PMF factor profiles: background oxygenated OA (B-OOA), summer 2 

oxygenated OA (S-OOA), biomass burning OA (BBOA), local OA (LOA). 3 

.  4 

 5 

 6 

Figure 3. a) Temporal evolutions of relative contributions to the OA factors; b) OA sources 7 

and corresponding tracers: concentrations and uncertainties (shaded areas). 8 
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  1 

  2 

Figure 4. Marker-PMF factor profiles (bars) and relative contributions of the factors to the 3 

measured variables (symbols). Factor list and abbreviations: NO3
--related secondary aerosol 4 

(NO3
—related SA), SO4

2--related-SA, MSA-related-SA, Na+-rich aerosol, primarybiological 5 

organic aerosol (PBOA), traffic exhaust (TE), biomass burning (BB). 6 
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1 

  2 

Figure 5. PM1 marker source apportionment: factor time series and relative contributions. 3 

Shaded areas indicate uncertainties (standard deviation) of 20 bootstrap runs. 4 
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 1 

Figure 6. Marker-PMF and offline-AMS OM source apportionment comparison. 2 

 3 

Figure 7. a) water-soluble fCO2
+ vs fCO+ scatter plot. Color code denotes the average daily 4 

temperature [°C], diamonds indicate the fCO2
+/fCO+ ratio for different PMF factor profiles. 5 

The 1:1 line is displayed in red. Few points from Rūgšteliškis lie outside the triangle, 6 

suggesting they are not well explained by our PMF model. However, Fig. S5 displays flat 7 

residuals for Rūgšteliškis, indicating an overall good WSOM explained variability by the 8 

model. b) water-soluble fC2H3O
+ vs fCO+ scatter plot. Color code denotes the average daily 9 

temperature [°C] c) Scatter plot of the water-soluble CO2+ to CO+ ratio vs. average daily 10 

temperature. Grey code denotes fC2H4O2
+.  11 
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 1 

Figure 7. a) water-soluble fCO2
+ vs fCO+ scatter plot. Color code denotes the average daily 2 

temperature [°C], diamonds indicate the fCO2
+/fCO+ ratio for different PMF factor profiles. 3 

The 1:1 line is displayed in red. Few points from Rūgšteliškis lie outside the triangle, 4 

suggesting they are not well explained by our PMF model. However, Fig. S5 displays flat 5 

residuals for Rūgšteliškis, indicating an overall good WSOM explained variability by the 6 

model. b) Scatter plot of the water-soluble CO2+ to CO+ ratio vs. average daily temperature. 7 

Grey code denotes fC2H4O2
+.  8 

 9 

 10 

Figure 8. Time-dependent fractional contributions (f) of typical AMS tracers. 11 
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